
Computer Architecture (263-2210-00L), Fall 2017

HW 3: Branch handling and GPU

SOLUTIONS
Instructor: Prof. Onur Mutlu

TAs: Hasan Hassan, Arash Tavakkol, Mohammad Sadr, Lois Orosa, Juan Gomez Luna

Assigned: Wednesday, Oct 25, 2017
Due: Wednesday, Nov 8, 2017

• Handin - Critical Paper Reviews (1). You need to submit your reviews to https:

//safari.ethz.ch/review/architecture/. Please check your inbox. You should have
received an email with the password you can use to login to the paper review system. If you
have not received any email, please contact comparch@lists.ethz.ch. In the first page after
login, you should click in “Architecture - Fall 2017 Home”, and then go to “any submitted
paper” to see the list of papers.
• Handin - Questions (2-10). Please upload your solution to the Moodle (https:
//moodle-app2.let.ethz.ch/) as a single PDF file. Please use a typesetting soft-
ware (e.g., LaTeX) or a word processor (e.g., MS Word, LibreOfficeWriter) to
generate your PDF file. Feel free to draw your diagrams either using an ap-
propriate software or by hand, and include the diagrams into your solutions
PDF.

1 Critical Paper Reviews [150 points]

Please read the following handout on how to write critical reviews. We will give out extra credit that is
worth 0.5% of your total grade for each good review.

• Lecture slides on guidelines for reviewing papers. Please follow this format.
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-f17-

how-to-do-the-paper-reviews.pdf

• Some sample reviews can be found here: https://safari.ethz.ch/architecture/fall2017/doku.

php?id=readings

(a) Write a one-page critical review for the following paper:
B. C. Lee, E. Ipek, O. Mutlu and D. Burger. ”Architecting phase change memory as a scalable DRAM
alternative.” ISCA 2009. https://people.inf.ethz.ch/omutlu/pub/pcm_isca09.pdf

(b) Write a one-page critical review for two of the following papers:

• McFarling, Scott. “Combining branch predictors”. Vol. 49. Technical Report TN-36, Digital Western
Research Laboratory, 1993. https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.

php?media=combining.pdf

• Yeh, Tse-Yu, and Yale N. Patt. “Two-level adaptive training branch prediction.” Proceedings of the
24th annual international symposium on Microarchitecture. ACM, 1991. https://safari.ethz.ch/
architecture/fall2017/lib/exe/fetch.php?media=yeh_patt-adaptive-training-1991.pdf

• Keckler, S. W., Dally, W. J., Khailany, B., Garland, M., and Glasco, D. “GPUs and the future of
parallel computing.” IEEE Micro, 2011. https://safari.ethz.ch/architecture/fall2017/lib/

exe/fetch.php?media=ieee-micro-gpu.pdf

1/18

https://safari.ethz.ch/review/architecture/
https://safari.ethz.ch/review/architecture/
https://moodle-app2.let.ethz.ch/
https://moodle-app2.let.ethz.ch/
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-f17-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-f17-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/architecture/fall2017/doku.php?id=readings
https://safari.ethz.ch/architecture/fall2017/doku.php?id=readings
https://people.inf.ethz.ch/omutlu/pub/pcm_isca09.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=combining.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=combining.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=yeh_patt-adaptive-training-1991.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=yeh_patt-adaptive-training-1991.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=ieee-micro-gpu.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=ieee-micro-gpu.pdf

2 GPUs and SIMD [100 points]

We define the SIMD utilization of a program run on a GPU as the fraction of SIMD lanes that are kept
busy with active threads during the run of a program. As we saw in lecture and practice exercises, the SIMD
utilization of a program is computed across the complete run of the program.

The following code segment is run on a GPU. Each thread executes a single iteration of the shown loop.
Assume that the data values of the arrays A, B, and C are already in vector registers so there are no loads
and stores in this program. (Hint: Notice that there are 6 instructions in each thread.) A warp in the GPU
consists of 64 threads, and there are 64 SIMD lanes in the GPU. Please assume that all values in array B
have magnitudes less than 10 (i.e., |B[i]| < 10, for all i).

for (i = 0; i < 1024; i++) {

A[i] = B[i] * B[i];

if (A[i] > 0) {

C[i] = A[i] * B[i];

if (C[i] < 0) {

A[i] = A[i] + 1;

}

A[i] = A[i] - 2;

}

}

Please answer the following five questions.

(a) [10 points] How many warps does it take to execute this program?

Warps = (Number of threads) / (Number of threads per warp)
Number of threads = 210 (i.e., one thread per loop iteration).
Number of threads per warp = 64 = 26 (given).
Warps = 210/26 = 24

(b) [10 points] What is the maximum possible SIMD utilization of this program?

100%

2/18

(c) [30 points] Please describe what needs to be true about array B to reach the maximum possible SIMD
utilization asked in part (b). (Please cover all cases in your answer)

B:
For every 64 consecutive elements: every value is 0, every value is positive, or every value
is negative. Must give all three of these.

(d) [15 points] What is the minimum possible SIMD utilization of this program?

Answer: 132/384
Explanation: The first two lines must be executed by every thread in a warp (64/64 uti-
lization for each line). The minimum utilization results when a single thread from each warp
passes both conditions on lines 2 and 4, and every other thread fails to meet the condi-
tion on line 2. The thread per warp that meets both conditions, executes lines 3-6 result-
ing in a SIMD utilization of 1/64 for each line. The minimum SIMD utilization sums to
(64 ∗ 2 + 1 ∗ 4)/(64 ∗ 6) = 132/384

(e) [35 points] Please describe what needs to be true about array B to reach the minimum possible SIMD
utilization asked in part (d). (Please cover all cases in your answer)

B:
Exactly 1 of every 64 consecutive elements must be negative. The rest must be zero. This
is the only case that this holds true.

3/18

3 AoS vs. SoA on GPU [50 points]

The next figure shows the execution time for processing an array of data structures on a GPU. Abscissas
represent the number of members in a data structure. Consecutive GPU threads read consecutive structures,
and compute the sum reduction of their members. The result is stored in the first member of the structure.

0"

2"

4"

6"

8"

10"

12"

14"

16"

18"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"

A
ve
ra
ge
'a
cc
es
s'
*
m
e'
pe

r'
flo

at
'(n

s)
'

Structure'size'(number'of'floats)'

Array0of0Structure"

Discrete"Arrays"

(a) NVIDIA

0"

2"

4"

6"

8"

10"

12"

2" 4" 6" 8" 10" 12" 14" 16" 18" 20"

A
ve
ra
ge
'a
cc
es
s'
*
m
e'
pe

r'
flo

at
'(n

s)
'

Structure'size'(number'of'floats)'

Array,of,Structure"

Discrete"Arrays"

(b) ATI

Figure 1: Speedup of Discrete-Array over AoS layout on a simple reduction kernel

for the next mapping. For example, we can use a column-
majored 3 ⇥ 5 matrix transposition example shown in Fig-
ure 3. We start with k1 = 1 (the location of A(1, 0)) and
map it to k0

1 = 5 (the location of A0(0, 1)). We can then use
k2 = 5 (the location of A(2, 1)) and map it to k0

2 = 11 (the
location of A0(1, 2)); the chain element at location 5 will be
shifted to location 11, and the element at location 11 will be
shifted to location 13, and so on. Eventually, we will return
to the original o↵set 1. This gives a cycle of (1 5 11 13 9

3 1). For brevity, we will omit the second occurrence of 1
and show the cycle as (1 5 11 13 9 3). The reader should
verify that there are five such cycles in transposing a 5 ⇥ 3
column-majored matrix: (0) (1 5 11 13 9 3)(7)(2 10 8

12 4 6)(14).

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 14"13"

A

A’ (0,0) (1,0) (2,0) (3,0) (2,1) (0,1) (1,1) (4,0) (3,1) (0,2) (4,1) (2,2) (1,2) (3,2) (4,2)

(0,0) (1,0) (2,0) (0,1) (1,2) (2,1) (0,2) (1,1) (2,2) (1,3) (0,3) (0,4) (2,3) (1,4) (2,4)

Figure 3: Converting Layout of Array F

An important observation is that an in-place transpose
algorithm can perform the data movement for these five sets
of o↵set locations independently. This means that we only
need to synchronize the data movement within each cycle.

Unfortunately, the number of cycles and the length of each
cycle vary with problem size and there is in general no lo-
cality between elements in a cycle [13] in in-place transposi-
tion. Note for square matrices, the size of a cycle is either 1
(diagonal) or 2 (other elements), but in the case of Array-of-
Structure, the aspect ratio is usually not 1:1, as the number
of elements in a structure is usually much smaller than the
total number of structure instances. We will address this
point further in Section 4.4.

4. APPROACH
The proposed approach consists of three parts: the ASTA

layout, in-place marshaling from AoS and DA to ASTA,
and the design of a dynamic runtime marshaling library for
OpenCL.

4.1 The ASTA Layout
Given an AoS layout, we can convert T adjacent structure

instances into a mini SoA. We call this scheme Array-of-
Structure-of-Tiled-Array (ASTA). In Listing 1, the structure
type in Lines 15–18 and kernel ASTA shown in line 20 is an
example of ASTA. Note the struct foo_2 is derived from
struct foo by merging 4 instances of struct foo and gen-
erate a “mini SoA” out of each merged section. E↵ectively,
each scalar member in struct foo is expanded to a short
vector in struct foo_2. We call the length of this short
vector (T) the coarsening factor of the ASTA type. The
short vector is called a tile. Usually the coarsening factor is
at least the number of work-items participating in memory
coalescing. ASTA improves memory coalescing while keep-
ing the field members of the same original instance more
closely stored, and is thus potentially useful to reduce mem-
ory channel partition camping due to large strides [16, 15].

The AoS layout can be considered as an M ⇥ S array
where S is a small integer in row-major layout. In this way,
DA is S ⇥M . Similarly, ASTA is similar to M 0 ⇥ S ⇥ T
where M = M 0T .

At a high level, marshaling from AoS to ASTA is similar
to transpose M 0 instances of small T ⇥S matrices. Whereas
marshaling from DA to ASTA is similar to transpose a ma-
trix of S ⇥M 0 of T -sized tiles.

We propose three algorithms here to facilitate e�cient
in-place marshaling. For AoS to ASTA, when T ⇥ S is
small enough, a barrier-synchronization-based approach is
proposed. When T ⇥ S is larger (but still not as large as
a full matrix transposition), a fast cycle-following approach
that exploits locality within an ASTA instance is proposed.
For DA to ASTA, we exploit the fact that the T can cover
one or more cache lines, so there is good locality when mov-
ing tiles.

4.2 In-place Conversion from AoS

The green line is the time for a kernel that accesses an array that is stored as discrete sub-arrays, that is,
all i-th members of all array elements are stored in the i-th sub-array, in consecutive memory locations. The
red line is the kernel time with an array that contains members of the same structure in consecutive memory
locations.

• Why does the red line increase linearly? Why not the green line?

GPU global memory accesses are carried out on a per-warp basis. If all threads in the same
warp access the same cache line or memory segment, the efficiency is maximal. This is the
case of the green line.
In the A-o-S case, consecutive threads have a stride between them. This increases the number
of memory transactions that are necessary for a single warp.

• How can the effect on the red line be alleviated?

The effect for this kernel could be alleviated by the use of caches that store structure members
that will be accessed during the reduction operation.

• How would both kernels perform on a single-core CPU with one level of cache? And on a dual-core
CPU with individual caches? And on a dual-core CPU with a shared cache?

On a single-core CPU, the A-o-S layout benefits from the cache: structure members are
cached when the first member is accessed. The DA layout might result in a similar perfor-
mance, as long as the relation between structure size and cache size allows for enough cache
hits per data structure.
On a dual-core CPU with individual caches, the DA layout might provoke cache conflicts
in the output writing. With a shared cache, it is more likely that A-o-S and DA obtain a
similar performance.

4/18

4 SIMD Processing [50 points]

Suppose we want to design a SIMD engine that can support a vector length of 16. We have two options: a
traditional vector processor and a traditional array processor.

Which one is more costly in terms of chip area (circle one)?

The traditional vector processor The traditional array processor Neither

Explain:

An array processor requires 16 functional units for an operation whereas a vector processor requires
only 1.

Assuming the latency of an addition operation is five cycles in both processors, how long will a VADD (vector
add) instruction take in each of the processors (assume that the adder can be fully pipelined and is the same
for both processors)?

For a vector length of 1:

The traditional vector processor: 5 cycles

The traditional array processor: 5 cycles

For a vector length of 4:

The traditional vector processor: 8 cycles (5 for the first element to complete, 3 for the remaining 3)

The traditional array processor: 5 cycles

For a vector length of 16:

The traditional vector processor:
20 cycles (5 for the first element to complete, 15 for the remaining
15)

The traditional array processor: 5 cycles

5/18

5 Fine-Grained Multithreading [100 points]

Consider a design “Machine I” with five pipeline stages: fetch, decode, execute, memory and writeback.
Each stage takes 1 cycle. The instruction and data caches have 100% hit rates (i.e., there is never a stall for
a cache miss). Branch directions and targets are resolved in the execute stage. The pipeline stalls when a
branch is fetched, until the branch is resolved. Dependency check logic is implemented in the decode stage
to detect flow dependences. The pipeline does not have any forwarding paths, so it must stall on detection
of a flow dependence.

In order to avoid these stalls, we will consider modifying Machine I to use fine-grained multithreading.

(a) In the five stage pipeline of Machine I shown below, clearly show what blocks you would need to add in
each stage of the pipeline, to implement fine-grained multithreading. You can replicate any of the blocks
and add muxes. You don’t need to implement the mux control logic (although provide an intuitive name
for the mux control signal, when applicable).

ALU File
Register

 File
Register

 File
Register

PC

PC

PC

.

.

.

Fetch Decode Execute Mem Writeback

Address

Instruction

Address

Data
Cache

Instruction
Cache

Data

.

.

.

Thread ID

Thread ID Thread ID

(b) The machine’s designer first focuses on the branch stalls, and decides to use fine-grained multithreading
to keep the pipeline busy no matter how many branch stalls occur. What is the minimum number of
threads required to achieve this?

3
Why?

Since branches are resolved in the Execute stage, it is necessary that the Fetch stage does not
fetch
for a thread until the thread’s previous instruction has passed Execute. Hence three threads
are
needed to cover Fetch, Decode, Execute.

(c) The machine’s designer now decides to eliminate dependency-check logic and remove the need for flow-
dependence stalls (while still avoiding branch stalls). How many threads are needed to ensure that no
flow dependence ever occurs in the pipeline?

4
Why?

The designer must ensure that when an instruction is in Writeback, the next instruction in
the same
thread has not reached Decode yet. Hence, at least 4 threads are needed.

A rival designer is impressed by the throughput improvements and the reduction in complexity that
FGMT brought to Machine I. This designer decides to implement FGMT on another machine, Machine
II. Machine II is a pipelined machine with the following stages.

6/18

Fetch 1 stage
Decode 1 stage
Execute 8 stages (branch direction/target are resolved in the first execute stage)
Memory 2 stages

Writeback 1 stage

Assume everything else in Machine II is the same as in Machine I.

(d) Is the number of threads required to eliminate branch-related stalls in Machine II the same as in Machine
I?

YES NO (Circle one)

If yes, why?

Branches are resolved at the third pipeline stage in both machines, and distance from fetch
to branch
resolution determines the minimum number of threads to avoid branch stalls.

If no, how many threads are required?

N/A

(e) What is the minimum CPI (i.e., maximum performance) of each thread in Machine II when this mini-
mum number of threads is used?
3 (if no flow dependence stalls occur)

(f) Now consider flow-dependence stalls. Does Machine II require the same minimum number of threads as
Machine I to avoid the need for flow-dependence stalls?

YES NO (Circle one)

If yes, why?

N/A

If no, how many threads are required?

12 (the Decode, Execute 1 – 8, Memory, and Writeback stages must all have instructions from
independent threads.)

(g) What is the minimum CPI of each thread when this number of threads (to cover flow-dependence stalls)
is used?

12

(h) After implementing fine grained multithreading, the designer of Machine II optimizes the design and
compares the pipeline throughput of the original Machine II (without FGMT) and the modified Ma-
chine II (with FGMT) both machines operating at their maximum possible frequency, for several code
sequences. On a particular sequence that has no flow dependences, the designer is surprised to see that
the new Machine II (with FGMT) has lower overall throughput (number of instructions retired by the
pipeline per second) than the old Machine II (with no FGMT). Why could this be? Explain concretely.

The additional FGMT-related logic (MUXes and thread selection logic) could increase the
critical
path length, which will reduce maximum frequency and thus performance.

7/18

6 Multithreading [50 points]

Suppose your friend designed the following fine-grained multithreaded machine:

• The pipeline has 22 stages and is 1 instruction wide.

• Branches are resolved at the end of the 18th stage and there is a 1 cycle delay after that to communicate
the branch target to the fetch stage.

• The data cache is accessed during stage 20. On a hit, the thread does not stall. On a miss, the thread
stalls for 100 cycles, fixed. The cache is non-blocking and has space to accommodate 16 outstanding
requests

• The number of hardware contexts is 200

Assuming that there are always enough threads present, answer the following questions:

(a) Can the pipeline always be kept full and non-stalling? Why or why not? (Hint: think about the worst
case execution characteristics)

Circle one: YES NO

NO - will stall when more than 16 outstanding misses in pipe

(b) Can the pipeline always be kept full and non-stalling if all accesses hit in the cache? Why or why not?

Circle one: YES NO

YES - switching between 200 threads is plenty to avoid stalls due to branch prediction delay

(c) Assume that all accesses hit in the cache and your friend wants to keep the pipeline always full and
non-stalling. How would you adjust the hardware resources (if necessary) to satisfy this while minimizing
hardware cost? You cannot change the latencies provided above. Be comprehensive and specific with
numerical answers. If nothing is necessary, justify why this is the case.

Reduce hardware thread contexts to 19, the minimum to keep pipe full/non-stalling

(d) Assume that all accesses miss in the cache and your friend wants to keep the pipeline always full and
non-stalling. How would you adjust the hardware resources (if necessary) to satisfy this while minimizing
hardware cost? You cannot change the latencies provided above. Be comprehensive and specific with
numerical answers. If nothing is necessary, justify why this is the case.

Reduce hardware thread contexts to 100, the minimum to keep pipe full/non-stalling. Increase
capability to support 100 outstanding misses

8/18

7 Branch Prediction [100 points]

Assume the following piece of code that iterates through a large array populated with completely (i.e.,
truly) random positive integers. The code has four branches (labeled B1, B2, B3, and B4). When we say
that a branch is taken, we mean that the code inside the curly brackets is executed.

for (int i=0; i<N; i++) { /* B1 */

val = array[i]; /* TAKEN PATH for B1 */

if (val % 2 == 0) { /* B2 */

sum += val; /* TAKEN PATH for B2 */

}

if (val % 3 == 0) { /* B3 */

sum += val; /* TAKEN PATH for B3 */

}

if (val % 6 == 0) { /* B4 */

sum += val; /* TAKEN PATH for B4 */

}

}

(a) Of the four branches, list all those that exhibit local correlation, if any.

Only B1.

B2, B3, B4 are not locally correlated. Just like consecutive outcomes of a die, an element
being a multiple of N (N is 2, 3, and 6, respectively for B2, B3, and B4) has no bearing on
whether the next element is also a multiple of N .

(b) Which of the four branches are globally correlated, if any? Explain in less than 20 words.

B4 is correlated with B2 and B3. 6 is a common multiple of 2 and 3.

Now assume that the above piece of code is running on a processor that has a global branch predictor. The
global branch predictor has the following characteristics.

• Global history register (GHR): 2 bits.

• Pattern history table (PHT): 4 entries.

• Pattern history table entry (PHTE): 11-bit signed saturating counter (possible values: -1024–1023)

• Before the code is run, all PHTEs are initially set to 0.

• As the code is being run, a PHTE is incremented (by one) whenever a branch that corresponds to that
PHTE is taken, whereas a PHTE is decremented (by one) whenever a branch that corresponds to that
PHTE is not taken.

9/18

(d) After 120 iterations of the loop, calculate the expected value for only the first PHTE and fill it in the
shaded box below. (Please write it as a base-10 value, rounded to the nearest one’s digit.)

Hint. For a given iteration of the loop, first consider, what is the probability that both B1 and B2 are
taken? Given that they are, what is the probability that B3 will increment or decrement the PHTE? Then
consider...

Show your work.

Without loss of generality, let’s take a look at the numbers from 1 through 6. Given that a
number is a multiple of two (i.e., 2, 4, 6), the probability that the number is also a multiple
of three (i.e., 6) is equal to 1/3, let’s call this value Q. Given that a number is a multiple of
two and three (i.e., 6), the probability that the number is also a multiple of six (i.e., 6) is
equal to 1, let’s call this value R.

For a single iteration of the loop, the PHTE has four chances of being incremented/decre-
mented, once at each branch.

• B3’s contribution to PHTE. The probability that both B1 and B2 are taken is denoted as
P(B1 T && B2 T), which is equal to P(B1 T)*P(B2 T) = 1*1/2 = 1/2. Given that they
are, the probability that B3 is taken, is equal to Q = 1/3. Therefore, the PHTE will be
incremented with probability 1/2*1/3 = 1/6 and decremented with probability 1/2*(1-1/3)
= 1/3. The net contribution of B3 to PHTE is 1/6-1/3 = -1/6.

• B4’s contribution to PHTE. P(B2 T && B3 T) = 1/6. P(B4 T | B2 T && B3 T) = R =
1. B4’s net contribution is 1/6*1 = 1/6.

• B1’s contribution to PHTE. P(B3 T && B4 T) = 1/6. P(B1 T | B3 T && B4 T) = 1.
B1’s net contribution is 1/6*1 = 1/6.

• B2’s contribution to PHTE. P(B4 T && B1 T) = 1/6*1 = 1/6. P(B2 T | B4 T && B1 T)
= 1/2. B2’s net contribution is 1/6*1/2 - 1/6*1/2 = 0.

For a single iteration, the net contribution to the PHTE, summed across all the four branches,
is equal to 1/6. Since there are 120 iterations, the expected PHTE value is equal to
1/6*120=20.

1 0

GHR

O
ld
e
r

Y
o
u
n
g
e
r

PHT

TT

NN

TN

NT

1
st
PHTE

2
nd
PHTE

3
rd
PHTE

4
th
PHTE

10/18

8 Branch Prediction [100 points]

Suppose we have the following loop executing on a pipelined MIPS machine.

DOIT SW R1, 0(R6)

ADDI R6, R6, 2

AND R3, R1, R2

BEQ R3, R0 EVEN

ADDI R1, R1, 3

ADDI R5, R5, -1

BGTZ R5 DOIT

EVEN ADDI R1, R1, 1

ADDI R7, R7, -1

BGTZ R7 DOIT

Assume that before the loop starts, the registers have the following decimal values stored in them:

Register Value

R0 0
R1 0
R2 1
R3 0
R4 0
R5 5
R6 4000
R7 5

The fetch stage takes one cycle, the decode stage also takes one cycle, the execute stage takes a variable
number of cycles depending on the type of instruction (see below), and the store stage takes one cycle.

All execution units (including the load/store unit) are fully pipelined and the following instructions that use
these units take the indicated number of cycles:

Instruction Number of Cycles
SW 3

ADDI 2
AND 3

BEQ/BGTZ 1

Data forwarding is used wherever possible. Instructions that are dependent on the previous instructions
can make use of the results produced right after the previous instruction finishes the execute stage.

The target instruction after a branch can be fetched when the branch instruction is in ST stage. For example,
the execution of an AND instruction followed by a BEQ would look like:

AND F | D | E1 | E2 | E3 | ST

BEQ F | D | - | - | E1 | ST

TARGET F | D

A scoreboarding mechanism is used.

11/18

Answer the following questions:

1. How many cycles does the above loop take to execute if no branch prediction is used (the pipeline
stalls on fetching a branch instruction, until it is resolved)?

Solution:
The first iteration of the DOIT loop takes 15 cycles as shown below:

F | D | E1 | E2 | E3 | ST |

F | D | E1 | E2 | ST |

F | D | E1 | E2 | E3 | ST |

F | D | - | - | E1 | ST |

F | D | E1 | E2 | ST |

F | D | E1 | E2 | ST |

F | D | - | E1 | ST |

The rest of the iterations each take 14 cycles, as the fetch cycle of the SW instruction can be overlapped
with the ST stage of the BGTZ DOIT branch.
There are 9 iterations in all as the loop execution ends when R7 is zero and R5 is one.

Total number of cycles = 15 + (14× 8) = 127 cycles

2. How many cycles does the above loop take to execute if all branches are predicted with 100% accuracy?

Solution:
The first iteration of the DOIT loop takes 13 cycles as shown below:

F | D | E1 | E2 | E3 | ST |

F | D | E1 | E2 | ST |

F | D | E1 | E2 | E3 | ST |

F | D | - | - | E1 | ST |

F | - | - | D | E1 | E2 | ST |

F | D | E1 | E2 | ST |

F | D | - | E1 | ST |

The rest of the iterations each take 10 cycles, as the first three stages of the SW instruction can be
overlapped with the execution of the BGTZ DOIT branch instruction.

Total number of cycles = 13 + (10× 8) = 93 cycles

3. How many cycles does the above loop take to execute if a static BTFN (backward taken-forward not
taken) branch prediction scheme is used to predict branch directions? What is the overall branch
prediction accuracy? What is the prediction accuracy for each branch?

Solution:
The first iteration of the DOIT loop takes 15 cycles as the BEQ EVEN branch is predicted wrong the
first time.

F | D | E1 | E2 | E3 | ST |

F | D | E1 | E2 | ST |

F | D | E1 | E2 | E3 | ST |

F | D | - | - | E1 | ST |

F | D | E1 | E2 | ST |

F | D | E1 | E2 | ST |

F | D | - | E1 | ST |

12/18

Of the remaining iterations, the BEQ EVEN branch is predicted right 4 times, while it is mispredicted
the remaining four times.

The DOIT branch is predicted right all times.

Number of cycles taken by an iteration when the BEQ EVEN branch is predicted right = 10 cycles
Number of cycles taken by an iteration when the BEQ EVEN branch is not predicted right = 12 cycles

Total number of cycles = 15 + (10× 4) + (12× 4) = 103 cycles

The BEQ EVEN branch is mispredicted 5 times out of 9. So, the prediction accuracy is 4/9.
The first BGTZ DOIT branch is predicted right 4 times out of 4. So, the prediction accuracy is 4/4.
The second BGTZ DOIT branch is predicted right 4 times out of 5. So, the prediction accuracy is 4/5.

Therefore the overall prediction accuracy is 12/18.

13/18

9 Interference in Two-Level Branch Predictors [50 points]

Assume a two-level global predictor with a global history register and a single pattern history table shared
by all branches (call this “predictor A”).

1. We call the notion of different branches mapping to the same locations in a branch predictor ”branch
interference”. Where do different branches interfere with each other in these structures?

Solution:
Global history register (GHR), Pattern history table (PHT)

2. Compared to a two-level global predictor with a global history register and a separate pattern history
table for each branch (call this “predictor B”),

(a) When does predictor A yield lower prediction accuracy than predictor B? Explain. Give a concrete
example. If you wish, you can write source code to demonstrate a case where predictor A has lower
accuracy than predictor B.

Solution:
Predictor A yields lower prediction accuracy when two branches going in opposite directions are
mapped to the same PHT entry. Consider the case of a branch B1 which is always-taken for a
given global history. If branch B1 had its own PHT, it would always be predicted correctly. Now,
consider a branch B2 which is always-not-taken for the same history. If branch B2 had its own
PHT, it would also be predicted right always. However, if branches B1 and B2 shared a PHT, they
would map to the same PHT entry and hence, interfere with each other and degrade each other’s
prediction accuracy.

Consider a case when the global history register is 3 bits wide and indexes into a 8-entry pattern
history table and the following code segment:

for (i = 0; i < 1000; i ++)

{

if (i % 2 == 0) //IF CONDITION 1

{

........

}

if (i % 3 == 0) // IF CONDITION 2

{

........

}

}

For a global history of “NTN”, IF CONDITION 1 is taken, while IF CONDITION 2 is not-taken.
This causes destructive interference in the PHT.

(b) Could predictor A yield higher prediction accuracy than predictor B? Explain how. Give a concrete
example. If you wish, you can write source code to demonstrate this case.

Solution:
This can happen if the predictions for a branch B1 for a given history become more accurate
when another branch B2 maps to the same PHT entry whereas the predictions would not have
been accurate had the branch had its own PHT. Consider the case in which branch B1 is always
mispredicted for a given global history (when it has its own PHT) because it happens to oscillate
between taken and not taken for that history. Now consider an always-taken branch B2 mapping

14/18

to the same PHT entry. This could improve the prediction accuracy of branch B1 because now B1
could always be predicted taken since B2 is always taken. This may not degrade the prediction
accuracy of B2 if B2 is more frequently executed than B1 for the same history. Hence, overall
prediction accuracy would improve.

Consider a 2-bit global history register and the following code segment.

if (cond1) { }

if (cond2) { }

if ((a % 4) == 0) {} //BRANCH 1

if (cond1) { }

if (cond2) { }

if ((a % 2) == 0) {} //BRANCH 2

BRANCH 2 is strongly correlated with BRANCH 1, because when BRANCH 1 is taken BRANCH
2 is always taken. Furthermore, the two branches have the same history leading up to them.
Therefore, BRANCH 2 can be predicted accurately based on the outcome of BRANCH 1, even if
BRANCH 2 has not been seen before.

(c) Is there a case where branch interference in predictor structures does not impact prediction accu-
racy? Explain. Give a concrete example. If you wish, you can write source code to demonstrate
this case as well.

Solution:
Predictor A and B yield the same prediction accuracy when two branches going in the same
direction are mapped to the same PHT entry. In this case, the interference between the branches
does not impact prediction accuracy. Consider two branches B1 and B2 which are always-taken
for a certain global history. The prediction accuracy would be the same regardless of whether B1
and B2 have their own PHTs or share a PHT.

Consider a case when the global history register is 3 bits wide and indexes into a 8 entry pattern
history table and the following code segment:

for (i = 0; i < 1000; i += 2) //LOOP BRANCH

{

if (i % 2 == 0) //IF CONDITION

{

........

}

}

LOOP BRANCH and IF CONDITION are both taken for a history of “TTT”. Therefore, although
these two branches map to the same location in the pattern history table, the interference between
them does not impact prediction accuracy.

15/18

10 Branch Prediction vs Predication [100 points]

Consider two machines A and B with 15-stage pipelines with the following stages.

• Fetch (one stage)

• Decode (eight stages)

• Execute (five stages).

• Write-back (one stage).

Both machines do full data forwarding on flow dependences. Flow dependences are detected in the last stage
of decode and instructions are stalled in the last stage of decode on detection of a flow dependence.

Machine A has a branch predictor that has a prediction accuracy of P%. The branch direction/target is
resolved in the last stage of execute.

Machine B employs predicated execution, similar to what we saw in lecture.

1. Consider the following code segment executing on Machine A:

add r3 <- r1, r2

sub r5 <- r6, r7

beq r3, r5, X

addi r10 <- r1, 5

add r12 <- r7, r2

add r1 <- r11, r9

X: addi r15 <- r2, 10

.....

When converted to predicated code on machine B, it looks like this:

add r3 <- r1, r2

sub r5 <- r6, r7

cmp r3, r5

addi.ne r10 <- r1, 5

add.ne r12 <- r7, r2

add.ne r14 <- r11, r9

addi r15 <- r2, 10

.....

(Assume that the condition codes are set by the “cmp” instruction and used by each predicated “.ne”
instruction. Condition codes are evaluated in the last stage of execute and can be forwarded like any
other data value.)

This segment is repeated several hundreds of times in the code. The branch is taken 40% of the time
and not taken 60% of the time. On average, for what range of P would you expect machine A to have
a higher instruction throughput than machine B?

Solution:
This question illustrates the trade-off between misprediction penalty on a machine with branch pre-
diction and the wasted cycles from executing useless instructions on a machine with predication.

This is one solution with the following assumptions:

• Machines A and B have separate (pipelined) branch/compare and add execution units. So, an
add instruction can execute when a branch/compare instruction is stalled.

• Writebacks happen in-order.

16/18

• When a predicated instruction is discovered to be useless (following the evaluation of the cmp
instruction), it still goes through the remaining pipeline stages as nops.

There are several possible right answers for this question, based on the assumptions you make.

On machine A, when the beq r3, r5, X branch is not-taken and predicted correctly, the execution
timeline is as follows:

add r3 <- r1, r2 F|D1|D2|D3|D4|D5|D6|D7|D8|E1|E2|E3|E4|E5|WB|

sub r5 <- r6, r7 F|D1|D2|D3|D4|D5|D6|D7|D8|E1|E2|E3|E4|E5|WB|

beq r3, r5, X F|D1|D2|D3|D4|D5|D6|D7|D8|- |- |- |- |E1|E2|E3|E4|E5|WB|

addi r10 <- r1, 5 F|D1|D2|D3|D4|D5|D6|D7|- |- |- |- |D8|E1|E2|E3|E4|E5|WB|

add r12 <- r7, r2 F|D1|D2|D3|D4|D5|D6|- |- |- |- |D7|D8|E1|E2|E3|E4|E5|WB|

add r1 <- r11, r9 F|D1|D2|D3|D4|D5|- |- |- |- |D6|D7|D8|E1|E2|E3|E4|E5|WB|

X: addi r15 <- r2, 10 F|D1|D2|D3|D4|- |- |- |- |D5|D6|D7|D8|E1|E2|E3|E4|E5|WB|

.....

When the branch is taken and predicted correctly, the execution timeline is as follows:

add r3 <- r1, r2 F|D1|D2|D3|D4|D5|D6|D7|D8|E1|E2|E3|E4|E5|WB|

sub r5 <- r6, r7 F|D1|D2|D3|D4|D5|D6|D7|D8|E1|E2|E3|E4|E5|WB|

beq r3, r5, X F|D1|D2|D3|D4|D5|D6|D7|D8|- |- |- |- |E1|E2|E3|E4|E5|WB|

X: addi r15 <- r2, 10 F|D1|D2|D3|D4|D5|D6|D7|- |- |- |- |D8|E1|E2|E3|E4|E5|WB|

.....

Machine A encounters a misprediction penalty of 17 cycles (8 decode stages + 5 execution stages + 4
stall cycles) on a branch misprediction (regardless of whether the branch is taken or not-taken).

Machine B’s execution timeline is exactly the same as machine A’s timeline with correct prediction,
when the branch is not-taken. However, when the branch is taken (cmp evaluates to equal) machine
B wastes three cycles as shown below.

add r3 <- r1, r2 F|D1|D2|D3|D4|D5|D6|D7|D8|E1|E2|E3|E4|E5|WB|

sub r5 <- r6, r7 F|D1|D2|D3|D4|D5|D6|D7|D8|E1|E2|E3|E4|E5|WB|

cmp r3, r5 F|D1|D2|D3|D4|D5|D6|D7|D8|- |- |- |- |E1|E2|E3|E4|E5|WB|

addi.ne r10 <- r1, 5 F|D1|D2|D3|D4|D5|D6|D7|- |- |- |- |D8|E1|E2|E3|E4|E5|WB|

add.ne r12 <- r7, r2 F|D1|D2|D3|D4|D5|D6|- |- |- |- |D7|D8|E1|E2|E3|E4|E5|WB|

add.ne r14 <- r11, r9 F|D1|D2|D3|D4|D5|- |- |- |- |D6|D7|D8|E1|E2|E3|E4|E5|WB|

addi r15 <- r2, 10 F|D1|D2|D3|D4|- |- |- |- |D5|D6|D7|D8|E1|E2|E3|E4|E5|WB|

.....

Therefore, machine A has higher instruction throughput than machine B if the cost of misprediction
is lower than the wasted cycles from executing useless instructions.

(1− P)× 17 < 3× 0.4

Therefore, for P > 0.9294, machine A has higher instruction throughput than machine B.

2. Consider another code segment executing on Machine A:

add r3 <- r1, r2

sub r5 <- r6, r7

beq r3, r5, X

addi r10 <- r1, 5

add r12 <- r10, r2

add r14 <- r12, r9

X: addi r15 <- r14, 10

.....

When converted to predicated code on machine B, it looks like this:

add r3 <- r1, r2

sub r5 <- r6, r7

17/18

cmp r3, r5

addi.ne r10 <- r1, 5

add.ne r12 <- r10, r2

add.ne r14 <- r12, r9

addi r15 <- r14, 10

.....

(Assume that the condition codes are set by the “cmp” instruction and used by each predicated “.ne”
instruction. Condition codes are evaluated in the last stage of execute and can be forwarded like any
other data value.)

This segment is repeated several hundreds of times in the code. The branch is taken 40% of the time
and not taken 60% of the time. On average, for what range of P would you expect machine A to have
a higher instruction throughput than machine B?

Solution:

On machine A, when the beq r3, r5, X branch is not-taken and predicted correctly, the execution
timeline is as follows:

add r3 <- r1, r2 F|D1|D2|D3|D4|D5|D6|D7|D8|E1|E2|E3|E4|E5|WB|

sub r5 <- r6, r7 F|D1|D2|D3|D4|D5|D6|D7|D8|E1|E2|E3|E4|E5|WB|

beq r3, r5, X F|D1|D2|D3|D4|D5|D6|D7|D8|- |- |- |- |E1|E2|E3|E4|E5|WB|

addi r10 <- r1, 5 F|D1|D2|D3|D4|D5|D6|D7|- |- |- |- |D8|E1|E2|E3|E4|E5|WB|

add r12 <- r10, r2 F|D1|D2|D3|D4|D5|D6|- |- |- |- |D7|D8|E1|E2|E3|E4|E5|WB|

add r14 <- r12, r9 F|D1|D2|D3|D4|D5|- |- |- |- |D6|D7|D8|- |- |- |- |E1|E2|E3|E4|E5|WB|

X: addi r15 <- r14, 10 F|D1|D2|D3|D4|- |- |- |- |D5|D6|D7|- |- |- |- |D8|- |- |- |- |E1|E2|E3|E4|E5|WB|

.....

When the branch is taken and predicted correctly, the execution timeline is as follows:

add r3 <- r1, r2 F|D1|D2|D3|D4|D5|D6|D7|D8|E1|E2|E3|E4|E5|WB|

sub r5 <- r6, r7 F|D1|D2|D3|D4|D5|D6|D7|D8|E1|E2|E3|E4|E5|WB|

cmp r3, r5 F|D1|D2|D3|D4|D5|D6|D7|D8|- |- |- |- |E1|E2|E3|E4|E5|WB|

addi r15 <- r14, 10 F|D1|D2|D3|D4|D5|D6|D7|- |- |- |- |D8|E1|E2|E3|E4|E5|WB|

.....

Machine A encounters a misprediction penalty of 17 cycles (8 decode stages + 5 execution stages + 4
stall cycles) on a branch misprediction (regardless of whether the branch is taken or not-taken).

Machine B’s execution timeline is exactly the same as machine A’s timeline with correct prediction,
when the branch is not-taken. However, when the branch is taken (cmp evaluates to equal) machine
B wastes eleven cycles as shown below.

add r3 <- r1, r2 F|D1|D2|D3|D4|D5|D6|D7|D8|E1|E2|E3|E4|E5|WB|

sub r5 <- r6, r7 F |D1|D2|D3|D4|D5|D6|D7|D8|E1|E2|E3|E4|E5|WB|

cmp r3, r5 F |D1|D2|D3|D4|D5|D6|D7|D8|- |- |- |- |E1|E2|E3|E4|E5|WB|

addi.ne r10 <- r1, 5 F |D1|D2|D3|D4|D5|D6|D7|- |- |- |- |D8|E1|E2|E3|E4|E5|WB|

add.ne r12 <- r10, r2 F |D1|D2|D3|D4|D5|D6|- |- |- |- |D7|D8|E1|E2|E3|E4|E5|WB|

add.ne r14 <- r12, r9 F |D1|D2|D3|D4|D5|- |- |- |- |D6|D7|D8|- |- |- |- |E1|E2|E3|E4|E5|WB|

addi r15 <- r14, 10 F |D1|D2|D3|D4|- |- |- |- |D5|D6|D7|- |- |- |- |D8|- |- |- |- |E1|E2|E3|E4|E5|WB|

Machine A has higher instruction throughput than machine B if the cost of misprediction is lower than
the wasted cycles from executing useless instructions.

(1− P)× 17 < 11× 0.4

Therefore, for P > 0.7411, machine A has higher instruction throughput than machine B.

18/18

	Critical Paper Reviews [150 points]
	GPUs and SIMD [100 points]
	AoS vs. SoA on GPU [50 points]
	 SIMD Processing [50 points]
	Fine-Grained Multithreading [100 points]
	Multithreading [50 points]
	Branch Prediction [100 points]
	Branch Prediction [100 points]
	Interference in Two-Level Branch Predictors [50 points]
	Branch Prediction vs Predication [100 points]

