
The RowHammer Problem
and Other Issues We May Face as Memory Becomes Denser

Onur Mutlu
ETH Zürich

onur.mutlu@inf.ethz.ch
https://people.inf.ethz.ch/omutlu

Abstract—As memory scales down to smaller technology nodes,
new failure mechanisms emerge that threaten its correct op-
eration. If such failure mechanisms are not anticipated and
corrected, they can not only degrade system reliability and
availability but also, perhaps even more importantly, open up
security vulnerabilities: a malicious attacker can exploit the
exposed failure mechanism to take over the entire system. As
such, new failure mechanisms in memory can become practical
and significant threats to system security.

In this work, we discuss the RowHammer problem in DRAM,
which is a prime (and perhaps the first) example of how a
circuit-level failure mechanism in DRAM can cause a practical
and widespread system security vulnerability. RowHammer, as
it is popularly referred to, is the phenomenon that repeatedly
accessing a row in a modern DRAM chip causes bit flips in
physically-adjacent rows at consistently predictable bit locations.
It is caused by a hardware failure mechanism called DRAM
disturbance errors, which is a manifestation of circuit-level cell-
to-cell interference in a scaled memory technology. Researchers
from Google Project Zero recently demonstrated that this hard-
ware failure mechanism can be effectively exploited by user-level
programs to gain kernel privileges on real systems. Several other
recent works demonstrated other practical attacks exploiting
RowHammer. These include remote takeover of a server vul-
nerable to RowHammer, takeover of a victim virtual machine
by another virtual machine running on the same system, and
takeover of a mobile device by a malicious user-level application
that requires no permissions.

We analyze the root causes of the RowHammer problem
and examine various solutions. We also discuss what other
vulnerabilities may be lurking in DRAM and other types of
memories, e.g., NAND flash memory or Phase Change Memory,
that can potentially threaten the foundations of secure systems, as
the memory technologies scale to higher densities. We conclude
by describing and advocating a principled approach to memory
reliability and security research that can enable us to better
anticipate and prevent such vulnerabilities.

I. INTRODUCTION

Memory is a key component of all modern computing systems,
often determining the overall performance, energy efficiency, and
reliability characteristics of the entire system. The push for increasing
the density of modern memory technologies via technology scaling,
which has resulted in higher capacity (i.e., density) memory and
storage at lower cost, has enabled large leaps in the performance
of modern computers [77]. This positive trend is clearly visible
in especially the dominant main memory and solid-state storage
technologies of today, i.e., DRAM [62, 28] and NAND flash mem-
ory [16], respectively. Unfortunately, the same push has also greatly
decreased the reliability of modern memory technologies, due to
the increasingly smaller memory cell size and increasingly smaller
amount of charge that is maintainable in the cell, which makes the
memory cell much more vulnerable to various failure mechanisms
and noise and interference sources, both in DRAM [69, 53, 46, 45]
and NAND flash [16, 20, 19, 22, 24, 17, 18, 23, 21, 72].

In this work, and the associated invited special session talk,
we discuss the effects of reduced memory reliability on system
security. As memory scales down to smaller technology nodes, new

failure mechanisms emerge that threaten its correct operation. If such
failure mechanisms are not anticipated and corrected, they can not
only degrade system reliability and availability, but also, perhaps
even more importantly, open up security vulnerabilities: a malicious
attacker can exploit the exposed failure mechanism to take over the
entire system. As such, new failure mechanisms in memory can
become practical and significant threats to system security.

We first discuss the RowHammer problem in DRAM, as a prime
example of such a failure mechanism. We believe RowHammer is
the first demonstration of how a circuit-level failure mechanism
in DRAM can cause a practical and widespread system security
vulnerability (Section II). After analyzing RowHammer in detail, we
describe solutions to it (Section II-C). We then turn our attention
to other vulnerabilities that may be present or become present in
DRAM and other types of memories (Section III), e.g., NAND flash
memory or Phase Change Memory, that can potentially threaten the
foundations of secure systems, as the memory technologies scale
to higher densities. We conclude by describing and advocating a
principled approach to memory reliability and security research that
can enable us to better anticipate and prevent such vulnerabilities
(Section IV).

II. THE ROWHAMMER PROBLEM

Memory isolation is a key property of a reliable and secure
computing system. An access to one memory address should not have
unintended side effects on data stored in other addresses. However, as
process technology scales down to smaller dimensions, memory chips
become more vulnerable to disturbance, a phenomenon in which
different memory cells interfere with each others’ operation. We have
shown, in our ISCA 2014 paper [53], the existence of disturbance
errors in commodity DRAM chips that are sold and used in the field
today. Repeatedly reading from the same address in DRAM could
corrupt data in nearby addresses. Specifically, when a DRAM row
is opened (i.e., activated) and closed (i.e., precharged) repeatedly
(i.e., hammered), enough times within a DRAM refresh interval,
one or more bits in physically-adjacent DRAM rows can be flipped
to the wrong value. This DRAM failure mode is now popularly
called RowHammer [55, 99, 1, 2, 57, 10, 33, 89, 90, 13, 86, 98].
Using an FPGA-based experimental DRAM testing infrastructure,
which we originally developed for testing retention time issues in
DRAM [69],1 we tested 129 DRAM modules manufactured by
three major manufacturers (A, B, C) in seven recent years (2008–
2014) and found that 110 of them exhibited RowHammer errors, the
earliest of which dates back to 2010. This is illustrated in Figure 1,
which shows the error rates we found in all 129 modules we tested
where modules are categorized based on manufacturing date.2 In
particular, all DRAM modules from 2012–2013 were vulnerable to
RowHammer, indicating that RowHammer is a recent phenomenon
affecting more advanced process technology generations.

1This infrastructure is currently released to the public, and is described in
detail in our HPCA 2017 paper [39]. The infrastructure has enabled many
studies [63, 69, 53, 39, 28, 47, 46, 84, 48] into the failure and performance
characteristics of modern DRAM, which were previously not well understood.

2Test details and experimental setup, along with a listing of all modules
and their characteristics, are reported in our original RowHammer paper [53].

1

mailto:onur.mutlu@inf.ethz.ch
https://people.inf.ethz.ch/omutlu


2008 2009 2010 2011 2012 2013 2014
Module Manufacture Date

0

100

101

102

103

104

105

106
E

rr
or

s
pe

r1
09

C
el

ls
A Modules B Modules C Modules

Fig. 1: RowHammer error rate vs. manufacturing dates of 129 DRAM
modules we tested (reproduced from [53]).

A. User-Level RowHammer
We have also demonstrated that a very simple user-level pro-

gram [53, 3] can reliably and consistently induce RowHammer
errors in three commodity AMD and Intel systems using vulnerable
DRAM modules. We released the source code of this program [3],
which Google Project Zero later enhanced [4]. Using our user-
level RowHammer test program, we showed that RowHammer errors
violate two invariants that memory should provide: (i) a read access
should not modify data at any address and (ii) a write access should
modify data only at the address that it is supposed to write to. As
long as a row is repeatedly opened, both read and write accesses
can induce RowHammer errors, all of which occur in rows other
than the one that is being accessed. Since different DRAM rows
are mapped (by the memory controller) to different software pages,
our user-level program could reliably corrupt specific bits in pages
belonging to other programs. As a result, RowHammer errors can
be exploited by a malicious program to breach memory protection
and compromise the system. In fact, we hypothesized, in our ISCA
2014 paper, that our user-level program, with some engineering effort,
could be developed into a disturbance attack that injects errors into
other programs, crashes the system, or hijacks control of the system.
We left such research for the future since our primary objective was
to understand and prevent RowHammer errors [53].3

B. RowHammer as a Security Threat
RowHammer exposes a security threat since it leads to a breach

of memory isolation, where accesses to one row (e.g., an OS page)
modifies the data stored in another memory row (e.g., another OS
page). As indicated above, malicious software can be written to
take advantage of these disturbance errors. We call these disturbance
attacks [53], or RowHammer attacks. Such attacks can be used to
corrupt system memory, crash a system, or take over the entire sys-
tem. Confirming the predictions of our ISCA paper [53], researchers
from Google Project Zero developed a user-level attack that exploits
RowHammer to gain kernel privileges and thus take over an entire
system [89, 90]. More recently, researchers showed that RowHammer
can be exploited in various ways to take over various classes of
systems. For example, RowHammer vulnerability in a remote server
can be exploited to remotely take over the server via the use of
JavaScript [33]. Or, a virtual machine can take over a victim virtual
machine running on the same system by inducing RowHammer errors

3Our ISCA 2014 paper [53] provides a detailed analysis of various charac-
teristics of RowHammer, including its data pattern dependence, relationship
with leaky cells, repeatability of errors, and various circuit-level causes
of the phenomenon. We omit these analyses here and focus on security
vulnerabilities and prevention of RowHammer, and refer the reader to [53]
for a rigorous treatment of the characteristics and causes of the RowHammer
phenomenon.

in the victim virtual machine’s memory space [86]. Or, a malicious
application that requires no permissions can take control of a mobile
device by exploiting RowHammer, as demonstrated in real Android
devices [98]. Or, an attacker can gain arbitrary read and write access
in a web browser by exploiting RowHammer together with memory
deduplication, as demonstrated on a real Microsoft Windows 10
system [13]. As such, the RowHammer problem has widespread
and profound real implications on system security, threatening the
foundations of memory isolation on top of which modern system
security principles are built.

As described above, RowHammer has recently been the subject of
many popular analyses and discussions on hardware-induced security
problems [55, 99, 1, 2, 35, 57, 10, 33, 98, 86, 13, 90] as well as the
prime vulnerability exploited by various software-level attacks that
rely on no permissions or software vulnerabilities [33, 98, 86, 13].
As a result of the severity of the security problem, several major
system manufacturers increased DRAM refresh rates to reduce the
probability of occurrence of RowHammer [9, 40, 67, 32]. And,
multiple memory test programs have been augmented to test for
RowHammer errors [80, 8, 98]. Unfortunately, some recent reports
suggest that even state-of-the-art DDR4 DRAM chips are vulnerable
to RowHammer [57], which suggests that the security vulnerabilities
might continue in the current generation of DRAM chips as well.
As such, it is critical to investigate solutions to the RowHammer
vulnerability.

C. Solutions to RowHammer
Given that it is such a critical vulnerability, it is important to find

both immediate and long-term solutions to the RowHammer problem
(as well as related problems that might cause similar vulnerabilities).
The goal of the immediate solutions is to ensure that existing systems
are patched such that the vulnerable DRAM devices that are already
in the field cannot be exploited. The goal of the long-term solutions
is to ensure that future DRAM devices do not suffer from the
RowHammer problem when they are released into the field.

Given that immediate solutions require mechanisms that already
exist in systems operating in the field, they are fundamentally more
limited. A popular immediate solution, described and analyzed by
our ISCA 2014 paper [53], is to increase the refresh rate of memory
such that the probability of inducing a RowHammer error before
DRAM cells get refreshed is reduced. Several major system manu-
facturers have adopted this solution and released security patches that
increased DRAM refresh rates (e.g., [9, 40, 67, 32]) in the memory
controllers. While this solution might be practical and effective
in reducing the vulnerability, it has the significant drawbacks of
increasing energy/power consumption, reducing system performance,
and degrading quality of service experienced by user programs. Our
paper shows that the refresh rate needs to be increased by 7X if we
want to eliminate all RowHammer-induced errors we saw in our tests
of 129 DRAM modules. Since DRAM refresh is already a significant
burden [68, 26, 45, 46, 84] on energy consumption, performance, and
quality of service, increasing it by any significant amount would only
exacerbate the problem. Yet, increased refresh rate is likely the most
practical immediate solution to RowHammer.

Other immediate solutions modify the software. For example,
ANVIL proposes software-based detection of RowHammer attacks by
monitoring via hardware performance counters and selective explicit
refreshing of victim rows that are found to be vulnerable [10]. Un-
fortunately, such solutions require modifications to system software
and might be intrusive to system operation (yet they are a promising
area of research).

Our ISCA 2014 paper [53] discusses and analyzes seven long-
term countermeasures to the RowHammer problem. The first six
solutions are: 1) making better DRAM chips that are not vulnerable,
2) using error correcting codes (ECC), 3) increasing the refresh
rate (as discussed above), 4) remapping RowHammer-prone cells
after manufacturing, 5) remapping/retiring RowHammer-prone cells
at the user level during operation, 6) accurately identifying hammered
rows during runtime and refreshing their neighbors. None of these
first six solutions are very desirable as they come at significant
power, performance or cost overheads. We already discussed the
overheads of increasing the refresh rates across the board. Similarly,

2



simple SECDED ECC (an example of the second solution above), as
employed in many systems, is not enough to prevent all RowHammer
errors, as some cache blocks experience two or more bit flips, which
are not correctable by SECDED ECC, as we have shown [53].
Thus, stronger ECC is likely required to correct RowHammer errors,
which comes at the cost of additional energy, performance, cost, and
DRAM capacity overheads. Alternatively, the sixth solution described
above, i.e., accurately identifying a row as a hammered row requires
keeping track of access counters for a large number of rows in the
memory controller [50], leading to very large hardware area and
power consumption, and potentially performance, overheads.

We believe the long-term solution to RowHammer can actually
be very simple and low cost: when the memory controller closes a
row (after it was activated), it, with a very low probability, refreshes
the adjacent rows. The probability value is a parameter determined
by the system designer or provided programmatically, if needed, to
trade off between performance overhead and vulnerability protection
guarantees. We show that this probabilistic solution, called PARA
(Probabilistic Adjacent Row Activation), is extremely effective: it
eliminates the RowHammer vulnerability, providing much higher
reliability guarantees than modern hard disks today, while requir-
ing no storage cost and having negligible performance and energy
overheads [53].

PARA is not immediately implementable because it requires
changes to either the memory controllers or the DRAM chips,
depending on where it is implemented. If PARA is implemented
in the memory controller, the memory controller needs to obtain
information on which rows are adjacent to each other in a DRAM
bank. This information is currently unknown to the memory controller
as DRAM manufacturers can internally remap rows to other loca-
tions [69, 53, 48, 47, 65] for various reasons, including for tolerating
various types of faults. However, this information can be simply
provided by the DRAM chip to the memory controller using the serial
presence detect (SPD) read-only memory present in modern DRAM
modules, as described in our ISCA 2014 paper [53]. If PARA is
implemented in the DRAM chip, then the hardware interface to the
DRAM chip should be such that it allows DRAM-internal refresh
operations that are not initiated by an external memory controller.
This could be achieved with the addition of a new DRAM command,
like the targeted refresh command proposed in a patent by Intel [11].
In 3D-stacked memory technologies [54, 66], e.g., HBM (High
Bandwidth Memory) [43, 66] or HMC (Hybrid Memory Cube) [5],
which combine logic and memory in a tightly integrated fashion, the
logic layer can be easily modified to implement PARA.

All these implementations of the promising PARA solution are
examples of much better cooperation between memory controller
and the DRAM chips. Regardless of the exact implementation, we
believe RowHammer, and other upcoming reliability vulnerabilities
like RowHammer, can be much more easily found, mitigated, and
prevented with better cooperation between and co-design of system
and memory, i.e., system-memory co-design [77]. System-memory
co-design is explored by recent works for mitigating various DRAM
scaling issues, including retention failures and performance prob-
lems [68, 52, 77, 45, 79, 70, 46, 84, 48, 47, 63, 62, 91, 27,
28, 69, 26, 53, 65, 38, 93, 64, 92]. Taking the system-memory
co-design approach further, providing more intelligence and con-
figurability/programmability in the memory controller can greatly
ease the tolerance to errors like RowHammer: when a new failure
mechanism in memory is discovered, the memory controller can be
configured/programmed/patched to execute specialized functions to
profile and correct for such mechanisms. We believe this direction
is very promising, and several works have explored online profiling
mechanisms for fixing retention errors [46, 84, 48, 47] and reducing
latency [65]. These works provide examples of how an intelligent
memory controller can alleviate the retention failures, and thus the
DRAM refresh problem [68, 69], as well as the DRAM latency
problem [62, 63].

D. Putting RowHammer into Context
Springing off from the stir created by RowHammer, we take

a step back and argue that there is little that is surprising about
the fact that we are seeing disturbance errors in the heavily-scaled

DRAM chips of today. Disturbance errors are a general class of
reliability problems that is present in not only DRAM, but also other
memory and storage technologies. All scaled memory technologies,
including SRAM [30, 34, 49], flash [16, 20, 19, 23, 31], and hard disk
drives [44, 97, 102], exhibit such disturbance problems. In fact, our
recent work at DSN 2015 [23] experimentally characterizes the read
disturb errors in flash memory, shows that the problem is widespread
in flash memory chips, and develops mechanisms to correct such
errors in the flash memory controller. Even though the mechanisms
that cause the bit flips are different in different technologies, the high-
level root cause of the problem, cell-to-cell interference, i.e., that the
memory cells are too close to each other, is a fundamental issue that
appears and will appear in any technology that scales down to small
enough technology nodes. Thus, we should expect such problems to
continue as we scale any memory technology, including emerging
ones, to higher densities.

What sets DRAM disturbance errors apart from other technologies’
disturbance errors is that in modern DRAM, as opposed to other tech-
nologies, error correction mechanisms are not commonly employed
(either in the memory controller or the memory chip). The success of
DRAM scaling until recently has not relied on a memory controller
that corrects errors (other than performing periodic refresh). Instead,
DRAM chips were implicitly assumed to be error-free and did not
require the help of the controller to operate correctly. Thus, such
errors were perhaps not as easily anticipated and corrected within the
context of DRAM. In contrast, the success of other technologies, e.g.,
flash memory and hard disks, has heavily relied on the existence of
an intelligent controller that plays a key role in correcting errors and
making up for reliability problems of the memory chips themselves.
This has not only enabled the correct operation of assumed-faulty
memory chips but also enabled a mindset where the controllers are
co-designed with the chips themselves, covering up the memory tech-
nology’s deficiencies and hence perhaps enabling better anticipation
of errors with technology scaling. This approach is very prominent
in modern SSDs (solid state drives), for example, where the flash
memory controller employs a wide variety of error mitigation and
correction mechanisms [17, 16, 20, 19, 21, 23, 24, 22, 18, 72],
including not only sophisticated ECC mechanisms but also targeted
voltage optimization, retention mitigation and disturbance mitigation
techniques. We believe changing the mindset in modern DRAM to
a similar mindset of assumed-faulty memory chip and an intelligent
memory controller that makes it operate correctly can not only enable
better anticipation and correction of future issues like RowHammer
but also better scaling of DRAM into future technology nodes [77].

III. OTHER POTENTIAL VULNERABILITIES

We believe that, as memory technologies scale to higher densities,
other problems may start appearing (or may already be going unno-
ticed) that can potentially threaten the foundations of secure systems.
There have been recent large-scale field studies of memory errors
showing that both DRAM and NAND flash memory technologies
are becoming less reliable [76, 94, 95, 96, 75, 88]. As detailed
experimental analyses of real DRAM and NAND flash chips show,
both technologies are becoming much more vulnerable to cell-to-
cell interference effects [53, 23, 21, 19, 16, 20, 78, 72, 24], data
retention is becoming significantly more difficult in both technolo-
gies [68, 46, 69, 48, 84, 26, 45, 73, 22, 17, 71, 16, 20, 18, 78, 47], and
error variation within and across chips is increasingly prominent [69,
63, 28, 25, 16, 20, 65]. Emerging memory technologies [77, 74], such
as Phase-Change Memory [58, 106, 83, 82, 100, 85, 60, 59, 105, 104],
STT-MRAM [29, 56], and RRAM/ReRAM/memristors [101] are
likely to exhibit similar and perhaps even more exacerbated reliability
issues. We believe, if not carefully accounted for and corrected, these
reliability problems may surface as security problems as well, as in
the case of RowHammer, especially if the technology is employed as
part of the main memory system.

We briefly examine two example potential vulnerabilities. We
believe future work examining these vulnerabilities, among others,
are promising for both fixing the vulnerabilities and enabling the
effective scaling of memory technology.

3



A. Data Retention Failures
Data retention is a fundamental reliability problem, and hence a

potential vulnerability, in charge-based memories like DRAM and
flash memory. This is because charge leaks out of the charge storage
unit (e.g., the DRAM capacitor or the NAND flash floating gate)
over time. As such memories become denser, three major trends
make data retention more difficult [68, 69, 45, 22]. First, the number
of memory cells increases, leading to the need for more refresh
operations to maintain data correctly. Second, the charge storage
unit (e.g., the DRAM capacitor) becomes smaller and/or morphs
in structure, leading to potentially lower retention times. Third, the
voltage margins that separate one data value from another become
smaller (e.g., the same voltage window gets divided into more “states”
in NAND flash memory, to store more bits per cell), and as a result
the same amount of charge loss is more likely to cause a bit error in
a smaller technology node than a larger one.

1) DRAM Data Retention Issues: Data retention issues in
DRAM are a fundamental scaling limiter of the DRAM technol-
ogy [69, 45]. We have shown, in recent works based on rigorous
experimental analyses of modern DRAM chips [69, 46, 84, 48],
that determining the minimum retention time of a DRAM cell is
getting significantly more difficult. Thus, determining the correct rate
at which to refresh DRAM cells has become more difficult, as also
indicated by industry [45]. This is due to two major phenomena, both
of which get worse (i.e., become more prominent) with technology
scaling. First, Data Pattern Dependence (DPD): the retention time
of a DRAM cell is heavily dependent on the data pattern stored in
itself and in the neighboring cells [69]. Second, Variable Retention
Time (VRT): the retention time of some DRAM cells can change
drastically over time, due to a memoryless random process that
results in very fast charge loss via a phenomenon called trap-assisted
gate-induced drain leakage [103, 87, 69]. These phenomena greatly
complicate the accurate determination of minimum data retention
time of DRAM cells. In fact, VRT, as far as we know, is very
difficult to test for because there seems to be no way of determining
that a cell exhibits VRT until that cell is observed to exhibit VRT
and the time scale of a cell exhibiting VRT does not seem to
be bounded, given the current experimental data [69]. As a result,
some retention errors can easily slip into the field because of the
difficulty of the retention time testing. Therefore, data retention in
DRAM is a vulnerability that can greatly affect both reliability and
security of current and future DRAM generations. We encourage
future work to investigate this area further, from both reliability and
security, as well as performance and energy efficiency perspectives.
Various works in this area provide insights about the retention
time properties of modern DRAM devices based on experimental
data [69, 46, 84, 48, 39], develop infrastructures to obtain valuable
experimental data [39], and provide potential solutions to the DRAM
retention time problem [68, 69, 46, 84, 48, 47, 26], all of which the
future works can build on.

Note that data retention failures in DRAM are likely to be inves-
tigated heavily to ensure good performance and energy efficiency.
And, in fact they already are (see, for example, [68, 26, 47, 46, 48]).
We believe it is important for such investigations to ensure no new
vulnerabilities (e.g., side channels) open up due to the solutions
developed.

2) NAND Flash Data Retention Issues: Experimental analysis
of modern flash memory devices show that the dominant source of
errors in flash memory are data retention errors [16]. As a flash cell
wears out, its charge retention capability degrades [16, 22] and the
cell becomes leakier. As a result, to maintain the original data stored
in the cell, the cell needs to be refreshed [17, 18]. The frequency of
refresh increases as wearout of the cell increases. We have shown
that performing refresh in an adaptive manner greatly improves the
lifetime of modern MLC (multi-level cell) NAND flash memory while
causing little energy and performance overheads [17, 18]. Most high-
end SSDs today employ refresh mechanisms.

As flash memory scales to smaller nodes and even more bits per
cell, data retention becomes a bigger problem. As such, it is critical
to understand the issues with data retention in flash memory. Our
recent work provides detailed experimental analysis of data retention

behavior of MLC NAND flash memory [22]. We show, among other
things, that there is a wide variation in the leakiness of different
flash cells: some cells leak very fast, some cells leak very slowly.
This variation leads to new opportunities for correctly recovering
data from a flash device that has experienced an uncorrectable error:
by identifying which cells are fast-leaking and which cells are slow-
leaking, one can probabilistically estimate the original values of the
cells before the uncorrectable error occurred. This mechanism, called
Retention Failure Recovery, leads to significant reductions in bit error
rate in modern MLC NAND flash memory [23] and is thus very
promising. Unfortunately, it also points out to a potential security and
privacy vulnerability: by analyzing data and cell properties of a failed
device, one can potentially recover the original data. We believe such
vulnerabilities can become more common in the future and therefore
they need to be anticipated, investigated, and understood.

B. Other Vulnerabilities in NAND Flash Memory
We believe other sources of error (e.g., cell-to-cell interference)

and cell-to-cell variation in flash memory can also lead various
vulnerabilities. For example, another type of variation (that is similar
to the variation in cell leakiness that we described above) exists in
the vulnerability of flash memory cells to read disturbance [23]: some
cells are much more prone to read disturb effects than others. This
wide variation among cells enables one to probabilistically estimate
the original values of cells in flash memory after an uncorrectable
error has occurred. Similarly, one can probabilistically correct the
values of cells in a page by knowing the values of cells in the
neighboring page [21]. These mechanisms [23, 21] are devised
to improve flash memory reliability and lifetime, but the same
phenomena that make them effective in doing so can also lead to
potential vulnerabilities, which we believe are worthy of investigation
to ensure security and privacy of data in flash memories.

As an example, we have recently shown [24] that it is theoretically
possible to exploit vulnerabilities in flash memory programming
operations on existing solid-state drives (SSDs) to cause (malicious)
data corruption. This particular vulnerability is caused by the two-
step programming method employed in dense flash memory devices,
e.g., MLC NAND flash memory. An MLC device partitions the
threshold voltage range of a flash cell into four distributions. In order
to reduce the number of errors introduced during programming of
a cell, flash manufacturers adopt a two-step programming method,
where the least significant bit of the cell is partially programmed first
to some intermediate threshold voltage, and the most significant bit is
programmed later to bring the cell up to its full threshold voltage. We
find that two-step programming exposes new vulnerabilities, as both
cell-to-cell program interference and read disturbance can disrupt the
intermediate value stored within a multi-level cell before the second
programming step completes. We show that it is possible to exploit
these vulnerabilities on existing solid-state drives (SSDs) to alter the
partially-programmed data, causing (malicious) data corruption. We
experimentally characterize the extent of these vulnerabilities using
contemporary 1X-nm (i.e., 15-19nm) flash chips [24]. Building on
our experimental observations, we propose several new mechanisms
for MLC NAND flash that eliminate or mitigate disruptions to
intermediate values, removing or reducing the extent of the vulnera-
bilities, mitigating potential exploits, and increasing flash lifetime by
16% [24]. We believe investigation of such vulnerabilities in flash
memory will lead to more robust flash memory devices in terms of
both reliability and security, as well as performance.

IV. PREVENTION

Various reliability problems experienced by scaled memory tech-
nologies, if not carefully anticipated, accounted for, and corrected,
may surface as security problems as well, as in the case of RowHam-
mer. We believe it is critical to develop principled methods to
understand, anticipate, and prevent such vulnerabilities. In particular,
principled methods are required for three major steps in the design
process.

First, it is critical to understand the potential failure mecha-
nisms and anticipate them beforehand. To this end, developing solid
methodologies for failure modeling and prediction is critical. To

4



develop such methodologies, it is essential to have real experimental
data from past and present devices. Data available both at the
small scale (i.e., controlled testing of individual devices, as in,
e.g., [69, 63, 46, 28, 16, 20, 23, 22, 72]) as well as the large scale
(i.e., data obtained during in-the-field operation of the devices, under
likely-uncontrolled conditions, as in, e.g., [76, 75]) can enable accu-
rate models for failures, which could aid many purposes, including
the development of better reliability mechanisms and prediction of
problems before they occur.

Second, it is critical to develop principled architectural methods
that can avoid, tolerate, or prevent such failure mechanisms that can
lead to vulnerabilities. For this, we advocate co-architecting of the
system and the memory together, as we described earlier. Designing
intelligent, flexible, and configurable memory controllers that can
understand and correct existing and potential failure mechanisms can
greatly alleviate the impact of failure mechanisms on reliability, se-
curity, performance, and energy efficiency. Described in Section II-C,
this system-memory co-design approach can also enable new oppor-
tunities, like performing effective processing near or in the memory
device [91, 92, 6, 7, 93, 42, 41, 12, 27, 81, 36, 37]. In addition
to designing the memory device together with the controller, we
believe it is important to investigate mechanisms for good partitioning
of duties across the various levels of transformation in computing,
including system software, compilers, and application software.

Third, it is critical to develop principled methods for electronic
design, automation and testing, which are in harmony with the
failure modeling/prediction and system reliability methods, which
we mentioned in the above two paragraphs. Design, automation and
testing methods need to provide high and predictable coverage of
failures and work in conjunction with architectural and across-stack
mechanisms. For example, enabling effective and low-cost online
profiling of DRAM [69, 46, 84, 48, 47] in a principled manner requires
cooperation of failure modeling mechanisms, architectural methods,
and design, automation and testing methods.

V. CONCLUSION

It is clear that the reliability of memory technologies we greatly
depend on is reducing, as these technologies continue to scale to
ever smaller technology nodes in pursuit of higher densities. These
reliability problems, if not anticipated and corrected, can also open
up serious security vulnerabilities, which can be very difficult to
defend against, if they are discovered in the field. RowHammer is
an example, likely the first one, of a hardware failure mechanism
that causes a practical and widespread system security vulnerability.
As such, its implications on system security research are tremendous
and exciting. The need to prevent such vulnerabilities opens up new
avenues for principled approaches to 1) understanding, modeling,
and prediction of failures, and 2) architectural as well as design,
automation and testing methods for ensuring reliable operation. We
believe the future is very bright for research in reliable and secure
memory systems, and many discoveries abound in the exciting yet
complex intersection of reliability and security issues in such systems.

ACKNOWLEDGMENTS

This paper, and the associated talk, are a result of the research
done together with many students and collaborators over the course
of the past 4-5 years. We acknowledge their contributions. In par-
ticular, three PhD theses have shaped the understanding that led
to this work. These are Yoongu Kim’s thesis entitled “Architectural
Techniques to Enhance DRAM Scaling” [51], Yu Cai’s thesis entitled
“NAND Flash Memory: Characterization, Analysis, Modeling and
Mechanisms” [15] and his continued follow-on work after his thesis,
and Donghyuk Lee’s thesis entitled “Reducing DRAM Latency at
Low Cost by Exploiting Heterogeneity” [61]. We also acknowledge
various funding agencies (NSF, SRC, ISTC, CyLab) and industrial
partners (AMD, Google, Facebook, HP Labs, Huawei, IBM, Intel,
Microsoft, Nvidia, Oracle, Qualcomm, Rambus, Samsung, Seagate,
VMware) who have supported the presented and other related work
generously over the years. The first version of this talk was delivered
at a CyLab Partners Conference in September 2015. Another version
of the talk was delivered as part of an Invited Session at DAC 2016,

with a collaborative accompanying paper entitled “Who Is the Major
Threat to Tomorrows Security? You, the Hardware Designer” [14].

REFERENCES

[1] RowHammer Discussion Group. https://groups.google.com/forum/#!
forum/rowhammer-discuss.

[2] RowHammer on Twitter. https://twitter.com/search?q=rowhammer&
src=typd.

[3] rowhammer: Source code for testing the row hammer error mechanism
in dram devices. https://github.com/CMU-SAFARI/rowhammer.

[4] Test DRAM for bit flips caused by the rowhammer problem. https:
//github.com/google/rowhammer-test.

[5] Hybrid Memory Consortium, 2012. http://www.hybridmemorycube.
org.

[6] J. Ahn et al. A Scalable Processing-in-Memory Accelerator for Parallel
Graph Processing. In ISCA, 2015.

[7] J. Ahn et al. PIM-Enabled Instructions: A Low-Overhead, Locality-
Aware Processing-in-Memory Architecture. In ISCA, 2015.

[8] B. Aichinger. The Known Failure Mechanism in DDR3 Memory
referred to as Row Hammer. http://ddrdetective.com/files/6414/1036/
5710/The Known Failure Mechanism in DDR3 memory referred
to as Row Hammer.pdf, September 2014.

[9] Apple Inc. About the security content of Mac EFI Security Update
2015-001. https://support.apple.com/en-us/HT204934, June 2015.

[10] Z. B. Aweke et al. Anvil: Software-based protection against next-
generation rowhammer attacks. In ASPLOS, 2016.

[11] K. Bains et al. Row hammer refresh command. U.S. Patent Number
9117544 B2, 2015.

[12] A. Boroumand et al. LazyPIM: An Efficient Cache Coherence
Mechanism for Processing-in-Memory. IEEE CAL, 2016.

[13] E. Bosman et al. Dedup Est Machina: Memory Deduplication as an
Advanced Exploitation Vector. S&P, 2016.

[14] W. Burleson et al. Who Is the Major Threat to Tomorrow’s Security?
You, the Hardware Designer. DAC, 2016.

[15] Y. Cai. NAND flash memory: Characterization, Analysis, Modeling
and Mechanisms. PhD thesis, Carnegie Mellon University, 2012.

[16] Y. Cai et al. Error patterns in MLC NAND flash memory: Measure-
ment, characterization, and analysis. In DATE, 2012.

[17] Y. Cai et al. Flash Correct-and-Refresh: Retention-aware error man-
agement for increased flash memory lifetime. In ICCD, 2012.

[18] Y. Cai et al. Error Analysis and Retention-Aware Error Management
for NAND Flash Memory. ITJ, 2013.

[19] Y. Cai et al. Program interference in MLC NAND flash memory:
Characterization, modeling, and mitigation. In ICCD, 2013.

[20] Y. Cai et al. Threshold voltage distribution in MLC NAND flash
memory: Characterization, analysis and modeling. In DATE, 2013.

[21] Y. Cai et al. Neighbor-cell assisted error correction for MLC NAND
flash memories. In SIGMETRICS, 2014.

[22] Y. Cai et al. Data retention in MLC NAND flash memory: Character-
ization, optimization and recovery. In HPCA, 2015.

[23] Y. Cai et al. Read Disturb Errors in MLC NAND Flash Memory:
Characterization, Mitigation, and Recovery. In DSN, 2015.

[24] Y. Cai et al. Vulnerabilities in MLC NAND Flash Memory Program-
ming: Experimental Analysis, Exploits, and Mitigation Techniques. In
HPCA, 2017.

[25] K. Chandrasekar et al. Exploiting Expendable Process-margins in
DRAMs for Run-time Performance Optimization. In DATE, 2014.

[26] K. Chang et al. Improving DRAM performance by parallelizing
refreshes with accesses. In HPCA, 2014.

[27] K. Chang et al. Low-Cost Inter-Linked Subarrays (LISA): Enabling
Fast Inter-Subarray Data Movement in DRAM. In HPCA, 2016.

[28] K. Chang et al. Understanding Latency Variation in Modern DRAM
Chips: Experimental Characterization, Analysis, and Optimization.
SIGMETRICS, 2016.

[29] E. Chen et al. Advances and future prospects of spin-transfer torque
random access memory. IEEE Transactions on Magnetics, 46(6), 2010.

[30] Q. Chen et al. Modeling and Testing of SRAM for New Failure
Mechanisms Due to Process Variations in Nanoscale CMOS. In VTS,
2005.

[31] J. Cooke. The Inconvenient Truths of NAND Flash Memory. In Flash
Memory Summit, 2007.

[32] T. Fridley and O. Santos. Mitigations Available for the
DRAM Row Hammer Vulnerability. http://blogs.cisco.com/security/
mitigations-available-for-the-dram-row-hammer-vulnerability, March
2015.

[33] D. Gruss et al. Rowhammer.js: A remote software-induced fault attack
in javascript. CoRR, abs/1507.06955, 2015.

[34] Z. Guo et al. Large-Scale SRAM Variability Characterization in 45
nm CMOS. JSSC, 44(11), 2009.

5

https://groups.google.com/forum/#!forum/rowhammer-discuss
https://groups.google.com/forum/#!forum/rowhammer-discuss
https://twitter.com/search?q=rowhammer&src=typd
https://twitter.com/search?q=rowhammer&src=typd
https://github.com/CMU-SAFARI/rowhammer
https://github.com/google/rowhammer-test
https://github.com/google/rowhammer-test
http://www.hybridmemorycube.org
http://www.hybridmemorycube.org
http://ddrdetective.com/files/6414/1036/5710/The_Known_Failure_Mechanism_in_DDR3_memory_referred_to_as_Row_Hammer.pdf
http://ddrdetective.com/files/6414/1036/5710/The_Known_Failure_Mechanism_in_DDR3_memory_referred_to_as_Row_Hammer.pdf
http://ddrdetective.com/files/6414/1036/5710/The_Known_Failure_Mechanism_in_DDR3_memory_referred_to_as_Row_Hammer.pdf
https://support.apple.com/en-us/HT204934
http://blogs.cisco.com/security/mitigations-available-for-the-dram-row-hammer-vulnerability
http://blogs.cisco.com/security/mitigations-available-for-the-dram-row-hammer-vulnerability


[35] R. Harris. Flipping DRAM bits - maliciously. http://www.zdnet.com/
article/flipping-dram-bits-maliciously/, December 2014.

[36] M. Hashemi et al. Accelerating Dependent Cache Misses with an
Enhanced Memory Controller. In ISCA, 2016.

[37] M. Hashemi et al. Continuous Runahead: Transparent Hardware
Acceleration for Memory Intensive Workloads. In MICRO, 2016.

[38] H. Hassan et al. ChargeCache: Reducing DRAM Latency by Exploiting
Row Access Locality. In HPCA, 2016.

[39] H. Hassan et al. SoftMC: A Flexible and Practical Open-Source
Infrastructure for Enabling Experimental DRAM Studies. In HPCA,
2017.

[40] Hewlett-Packard Enterprise. HP Moonshot Component Pack Ver-
sion 2015.05.0. http://h17007.www1.hp.com/us/en/enterprise/servers/
products/moonshot/component-pack/index.aspx, 2015.

[41] K. Hsieh et al. Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation. ICCD, 2016.

[42] K. Hsieh et al. Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU Systems. ISCA,
2016.

[43] JEDEC. JESD235 High Bandwidth Memory (HBM) DRAM, 2013.
[44] W. Jiang et al. Cross-Track Noise Profile Measurement for Adjacent-

Track Interference Study and Write-Current Optimization in Perpen-
dicular Recording. Journal of Applied Physics, 93(10), 2003.

[45] U. Kang et al. Co-architecting controllers and DRAM to enhance
DRAM process scaling. In The Memory Forum, 2014.

[46] S. Khan et al. The efficacy of error mitigation techniques for DRAM
retention failures: A comparative experimental study. SIGMETRICS,
2014.

[47] S. Khan et al. A Case for Memory Content-Based Detection and
Mitigation of Data-Dependent Failures in DRAM. CAL, 2016.

[48] S. Khan et al. PARBOR: An Efficient System-Level Technique to
Detect Data-Dependent Failures in DRAM. In DSN, 2016.

[49] D. Kim et al. Variation-Aware Static and Dynamic Writability Analysis
for Voltage-Scaled Bit-Interleaved 8-T SRAMs. In ISLPED, 2011.

[50] D.-H. Kim et al. Architectural Support for Mitigating Row Hammering
in DRAM Memories. IEEE CAL, 2015.

[51] Y. Kim. Architectural Techniques to Enhance DRAM Scaling. PhD
thesis, Carnegie Mellon University, 2015.

[52] Y. Kim et al. A case for subarray-level parallelism (SALP) in DRAM.
In ISCA, 2012.

[53] Y. Kim et al. Flipping bits in memory without accessing them: An
experimental study of DRAM disturbance errors. In ISCA, 2014.

[54] Y. Kim et al. Ramulator: A Fast and Extensible DRAM Simulator.
IEEE CAL, 2015.

[55] Y. Kim et al. RowHammer: Reliability Analysis and Security Impli-
cations. ArXiV, 2016.

[56] E. Kultursay et al. Evaluating STT-RAM as an energy-efficient main
memory alternative. In ISPASS, 2013.

[57] M. Lanteigne. How Rowhammer Could Be Used to Exploit Weak-
nesses in Computer Hardware. http://www.thirdio.com/rowhammer.
pdf, March 2016.

[58] B. C. Lee et al. Architecting phase change memory as a scalable
DRAM alternative. In ISCA, 2009.

[59] B. C. Lee et al. Phase change memory architecture and the quest for
scalability. CACM, 2010.

[60] B. C. Lee et al. Phase change technology and the future of main
memory. IEEE Micro, 2010.

[61] D. Lee. Reducing DRAM Latency by Exploiting Heterogeneity. ArXiV,
2016.

[62] D. Lee et al. Tiered-latency DRAM: A low latency and low cost DRAM
architecture. In HPCA, 2013.

[63] D. Lee et al. Adaptive-latency DRAM: Optimizing DRAM timing for
the common-case. In HPCA, 2015.

[64] D. Lee et al. Decoupled Direct Memory Access: Isolating CPU and
IO Traffic by Leveraging a Dual-Data-Port DRAM. In PACT, 2015.

[65] D. Lee et al. Reducing DRAM Latency by Exploiting Design-Induced
Latency Variation in Modern DRAM Chips. ArXiV, 2016.

[66] D. Lee et al. Simultaneous Multi-Layer Access: Improving 3D-Stacked
Memory Bandwidth at Low Cost. TACO, 2016.

[67] Lenovo. Row Hammer Privilege Escalation. https://support.lenovo.
com/us/en/product security/row hammer, March 2015.

[68] J. Liu et al. RAIDR: Retention-aware intelligent DRAM refresh. ISCA,
2012.

[69] J. Liu et al. An experimental study of data retention behavior in modern
DRAM devices: Implications for retention time profiling mechanisms.
ISCA, 2013.

[70] Y. Luo et al. Characterizing application memory error vulnerability to
optimize data center cost via heterogeneous-reliability memory. DSN,
2014.

[71] Y. Luo et al. WARM: Improving NAND Flash Memory Lifetime with
Write-hotness Aware Retention Management. MSST, 2015.

[72] Y. Luo et al. Enabling Accurate and Practical Online Flash Channel
Modeling for Modern MLC NAND Flash Memory. JSAC, 2016.

[73] J. Mandelman et al. Challenges and future directions for the scaling of
dynamic random-access memory (DRAM). IBM Journal of Research
and Development, 46, 2002.

[74] J. Meza et al. A case for efficient hardware-software cooperative
management of storage and memory. In WEED, 2013.

[75] J. Meza et al. A Large-Scale Study of Flash Memory Errors in the
Field. In SIGMETRICS, 2015.

[76] J. Meza et al. Revisiting Memory Errors in Large-Scale Production
Data Centers: Analysis and Modeling of New Trends from the Field.
DSN, 2015.

[77] O. Mutlu. Memory scaling: A systems architecture perspective. IMW,
2013.

[78] O. Mutlu. Error Analysis and Management for MLC NAND Flash
Memory. In Flash Memory Summit, 2014.

[79] O. Mutlu and L. Subramanian. Research problems and opportunities
in memory systems. SUPERFRI, 2014.

[80] PassMark Software. MemTest86: The original industry standard mem-
ory diagnostic utility. http://www.memtest86.com/troubleshooting.htm,
2015.

[81] A. Pattnaik et al. Scheduling Techniques for GPU Architectures with
Processing-In-Memory Capabilities. PACT, 2016.

[82] M. K. Qureshi et al. Enhancing lifetime and security of phase change
memories via start-gap wear leveling. In MICRO, 2009.

[83] M. K. Qureshi et al. Scalable high performance main memory system
using phase-change memory technology. In ISCA, 2009.

[84] M. K. Qureshi et al. AVATAR: A Variable-Retention-Time (VRT)
Aware Refresh for DRAM Systems. In DSN, 2015.

[85] S. Raoux et al. Phase-change random access memory: A scalable
technology. IBM Journal of Research and Development, 2008.

[86] K. Razavi et al. Flip Feng Shui: Hammering a Needle in the Software
Stack. USENIX Security, 2016.

[87] P. J. Restle et al. DRAM variable retention time. IEDM, 1992.
[88] B. Schroeder et al. Flash Reliability in Production: The Expected and

the Unexpected. In USENIX FAST, 2016.
[89] M. Seaborn and T. Dullien. Exploiting the DRAM rowhammer bug to

gain kernel privileges. http://googleprojectzero.blogspot.com.tr/2015/
03/exploiting-dram-rowhammer-bug-to-gain.html.

[90] M. Seaborn and T. Dullien. Exploiting the DRAM rowhammer bug to
gain kernel privileges. BlackHat, 2016.

[91] V. Seshadri et al. RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data. In MICRO, 2013.

[92] V. Seshadri et al. Fast Bulk Bitwise AND and OR in DRAM. CAL,
2015.

[93] V. Seshadri et al. Gather-Scatter DRAM: In-DRAM Address Transla-
tion to Improve the Spatial Locality of Non-unit Strided Accesses. In
MICRO, 2015.

[94] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stear-
ley, J. Shalf, and S. Gurumurthi. Memory errors in modern systems:
The good, the bad, and the ugly. In ASPLOS, 2015.

[95] V. Sridharan and D. Liberty. A study of DRAM failures in the field.
In SC, 2012.

[96] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S. Gu-
rumurthi. Feng shui of supercomputer memory: positional effects in
DRAM and SRAM faults. In SC, 2013.

[97] Y. Tang et al. Understanding Adjacent Track Erasure in Discrete Track
Media. Transactions on Magnetics, 44(12), 2008.

[98] V. van der Veen et al. Drammer: Deterministic Rowhammer Attacks
on Mobile Platforms. CCS, 2016.

[99] Wikipedia. Row hammer. https://en.wikipedia.org/wiki/Row hammer.
[100] H.-S. P. Wong et al. Phase Change Memory. Proceedings of the IEEE,

2010.
[101] H.-S. P. Wong et al. Metal-oxide RRAM. In Proceedings of the IEEE,

2012.
[102] R. Wood et al. The Feasibility of Magnetic Recording at 10 Terabits

Per Square Inch on Conventional Media. Transactions on Magnetics,
45(2), 2009.

[103] D. Yaney et al. A meta-stable leakage phenomenon in DRAM charge
storage - Variable hold time. IEDM, 1987.

[104] H. Yoon et al. Row buffer locality aware caching policies for hybrid
memories. In ICCD, 2012.

[105] H. Yoon et al. Efficient data mapping and buffering techniques for
multi-level cell phase-change memories. TACO, 2014.

[106] P. Zhou et al. A durable and energy efficient main memory using phase
change memory technology. In ISCA, 2009.

6

http://www.zdnet.com/article/flipping-dram-bits-maliciously/
http://www.zdnet.com/article/flipping-dram-bits-maliciously/
http://h17007.www1.hp.com/us/en/enterprise/servers/products/moonshot/component-pack/index.aspx
http://h17007.www1.hp.com/us/en/enterprise/servers/products/moonshot/component-pack/index.aspx
http://www.thirdio.com/rowhammer.pdf
http://www.thirdio.com/rowhammer.pdf
https://support.lenovo. com/us/en/product_security/row_hammer
https://support.lenovo. com/us/en/product_security/row_hammer
http://www.memtest86.com/troubleshooting.htm
http://googleprojectzero.blogspot.com.tr/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com.tr/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://en.wikipedia.org/wiki/Row_hammer

	Introduction
	The RowHammer Problem
	User-Level RowHammer
	RowHammer as a Security Threat
	Solutions to RowHammer
	Putting RowHammer into Context

	Other Potential Vulnerabilities
	Data Retention Failures
	DRAM Data Retention Issues
	NAND Flash Data Retention Issues

	Other Vulnerabilities in NAND Flash Memory

	Prevention
	Conclusion
	References

