

chapter

The von Neumann Model

We are now ready to raise our level of abstraction another notch. We will build
on the logic structures that we studied in Chapter 3, both decision elements and
storage elements, to construct the basic computer model first proposed by John
von Neumann in 1946.

41 Basic Componenrs

To get a task done by a computer, we need two things: a computer program that
specifies what the computer must to do to complete the task, and the computer
itself that is to carry out the task.

A computer program consists of a set of instructions, each specifying a well-

defined piece of work for the computer to carry out. The instruction is the smallest
piece of work specified in a computer program. That is, the computer either carries
out the work specified by an instruction or it does not. The computer does not
have the luxury of carrying out a piece of an instruction.
_ John von Neumann proposed a fundamental model of a computer for process-
Ing computer programs in 1946. Figure 4.1 shows its basic components. We have
taken a little poetic license and added a few of our own minor embellishments
t0 von Neumann’s original diagram. The von Neumann model consists of five
Parts: memory, a processing unit, input, output, and a control unit. The computer
Program is contained in the computer’s memory. The control of the order in which
the instructions are carried out is performed by the control unit.

We will describe each of the five parts of the von Neumann model.

—————

98 chapter 4 The von Neumann Model

MEMORY

OUTPUT

* Monitor
* Printer
*LED

* Keyboard
* Mouse

* Scanner
* Card reader

1
CONTROL UNIT
\@PC\

Figure 4.1 The von Neumann model, overall block diagram

4.1.1 Memory

Recall that in Chapter 3 we examined a simple 22-by-3-bit memory that was con-
structed out of gates and latches. A more realistic memory for one of today’s
computer systems is 228 by 8 bits. That is, a typical memory in today’s world
of computers consists of 228 distinct memory locations, each of which is capa-
ble of storing 8 bits of information. We say that such a memory has an address
space of 228 uniquely identifiable locations, and an addressability of 8 bits. We
refer to such a memory as a 256-megabyte memory (abbreviated, 256 MB). The
“256 mega” refers to the 128 Jocations, and the “byte” refers to the 8 bits stored
in each location. The term byte is, by definition, the word used to describe 8 bits,
much the way gallon describes four quarts.

We note (as we will note again and again) that with k bits, we can represent
uniquely 2k items. Thus, to uniquely identify 228 memory locations, each loca-
tion must have its own 28-bit address. In Chapter 5, we will begin the complete
definition of the instruction set architecture (ISA) of the LC-3 computer. We will
see that the memory address space of the LC-3 is 216, and the addressability is
16 bits.
| Recall from Chapter 3 that we access memory by providing the address from
‘ which we wish to read, or to which we wish to write. To read the contents of amem-
‘ ory location, we first place the address of that location in the memory’s address

register (MAR), and then interrogate the computer’s memory. The information

‘g

4.1 Basic Components

000

001

010

011

100 00000110
;; 101
. 110 00000100
.
- 111
.

Figure 4.2 Location 6 contains the value 4; location 4 contains the value 6

stored in the location having that address will be placed in the memory’s data
register (MDR). To write (or store) a value in a memory location, we first write
the address of the memory location in the MAR, and the value to be stored in the
MDR. We then interrogate the computer’s memory with the Write Enable signal
asserted. The information contained in the MDR will be written into the memory
location whose address is in the MAR.

Before we leave the notion of memory for the moment, let us again emphasize
the two characteristics of a memory location: its address and what is stored there.
Figure 4.2 shows a representation of a memory consisting of eight locations. Its
addresses are shown at the left, numbered in binary from O to 7. Each location
contains & bits of information. Note that the value 6 is stored in the memory
location whose address is 4, and the value 4 is stored in the memeory location
whose address is 6. These represent two very different situations.

Finally, an analogy comes to mind: the post office boxes in your local post
office. The box number is like the memory location’s address. Each box number is
unique. The information stored in the memory location is like the letters contained
in the post office box. As time goes by, what is contained in the post office box at
any particular moment can change. But the box number remains the same. So, too,
with each memory location. The value stored in that location can be changed, but
the location’s memory address remains unchanged.

4.1.2 Processing Unit

The actual processing of information in the computer is carried out by the
Drocessing unit. The processing unit in a modern computer can consist of many
sophisticated complex functional units, each performing one particular operation
(divide, square root, etc.). The simplest processing unit, and the one normally
thought of when discussing the basic von Neumann model, is the ALU. ALU is
_ the abbreviation for Arithmetic and Logic Unit, so called because it is usually
 Capable of performing basic arithmetic functions (like ADD and SUBTRACT)
and basic logic operations (like bit-wise AND, OR, and NOT that we have already
studied in Chapter 2). As we will see in Chapter 5, the LC-3 has an ALU, which
can perform ADD, AND, and NOT operations.

The size of the quantities normally processed by the ALU is often referred to
a3 the word length of the computer, and each element is referred to as a word. In

99

————7

100 chapter 4 The von Neumann Model

the LC-3, the ALU processes 16-bit quantities. We say the LC-3 has a word length
of 16 bits. Each ISA has its own word length, depending on the intended use of the
computer. Most microprocessors today that are used in PCs or workstations have
a word length of either 32 bits (as is the case with Intel’s Pentium I'V) or 64 bits (as
is the case with Sun’s SPARC-V9 processors and Intel’s Itanium processor). For
some applications, like the microprocessors used in pagers, VCRs, and cellular
telephones, 8 bits are usually enough. Such microprocessors, we say, have a word
length of 8 bits.

It is almost always the case that a computer provides some small amount of
storage very close to the ALU to allow results to be temporarily stored if they
will be needed to produce additional results in the near future. For example, if a
computer is to calculate (A+ B) - C, it could store the result of A+ B in memory,
and then subsequently read it in order to multiply that result by C. However, the
time it takes to access memory is long compared to the time it takes to perform the
ADD or MULTIPLY. Almost all computers, therefore, have temporary storage for
storing the result of A + B in order to avoid the unnecessarily longer access time
that would be necessary when it came time to multiply. The most common form of
temporary storage is a set of registers, like the register described in Section 3.4.3.
Typically, the size of each register is identical to the size of values processed
by the ALU, that is, they each contain one word. The LC-3 has eight registers
(RO, R1, ... R7), each containing 16 bits. The SPARC-VO ISA has 32 registers
(RO, R1, ... R31), each containing 64 bits.

4.1.3 Input and Output

In order for a computer to process information, the information must get into
the computer. In order to use the results of that processing, those results must
be displayed in some fashion outside the computer. Many devices exist for the
purposes of input and output. They are generically referred to in computer jar-
gon as peripherals because they are in some sense accessories to the processing
function. Nonetheless, they are no less important.

In the LC-3 we will have the two most basic of input and output devices. For
input, we will use the keyboard; for output, we will use the monitor.

There are, of course, many other input and output devices in computer systems
today. For input we have among other things the mouse, digital scanners, and
floppy disks. For output we have among other things printers, LED displays, and
disks. In the old days, much input and output was carried out by punched cards.
Fortunately, for those who would have to lug boxes of cards around, the use of
punched cards has largely disappeared.

4.1.4 Control Unit

The control unit is like the conductor of an orchestra; it is in charge of making all
the other parts play together. As we will see when we describe the step-by-step
process of executing a computer program, it is the control unit that keeps track
of both where we are within the process of executing the program and where we
are in the process of executing each instruction.

4.2 The LC-3: An Example von Neumann Machine 101

To keep track of which instruction is being executed, the control unit has an
instruction register to contain that instruction. To keep track of which instruction
is to be processed next, the control unit has a register that contains the next
instruction’s address. For historical reasons, that register is called the program
counter (abbreviated PC), although a better name for it would be the instruction
pointer, since the contents of this register are, in some sense, “pointing” to the
next instruction to be processed. Curiously, Intel does in fact call that register the
instruction pointer, but the simple elegance of that name has not caught on.

4.2 The LC-3: An Example von Neumann Machine

In Chapter 5, we will introduce in detail the LC-3, a simple computer that we
will study extensively. We have already shown you its data path in Chapter 3
(Figure 3.33) and identified several of its structures in Section 4.1. In this sec-
tion, we will pull together all the parts of the LC-3 we need to describe it as
a von Neumann computer (see Figure 4.3). We constructed Figure 4.3 by start-
ing with the LC-3’s full data path (Figure 3.33) and removing all elements that
are not essential to pointing out the five basic components of the von Neumann
model.

Note that there are two kinds of arrowheads in Figure 4.3: filled-in and
not-filled-in. Filled-in arrowheads denote data elements that flow along the cor-
responding paths. Not-filled-in arrowheads denote control signals that control the
processing of the data elements. For example, the box labeled ALU in the pro-
cessing unit processes two 16-bit values and produces a 16-bit result. The two
sources and the result are all data, and are designated by filled-in arrowheads.
The operation performed on those two 16-bit data elements (it is labeled ALUK)
is part of the control—therefore, a not-filled-in arrowhead.

MEMORY consists of the storage elements, along with the MAR for
addressing individual locations and the MDR for holding the contents of a
memory location on its way to/from the storage. Note that the MAR
contains 16 bits, reflecting the fact that the memory address space of the
LC-3 is 2'® memory locations. The MDR contains 16 bits, reflecting the
fact that each memory location contains 16 bits—that is, that the LC-3 is
16-bit addressable.

INPUT/OUTPUT consists of a keyboard and a monitor. The simplest
keyboard requires two registers, a data register (KBDR) for holding the
ASCII codes of keys struck, and a status register (KBSR) for maintaining
status information about the keys struck. The simplest monitor also requires
two registers, one (DDR) for holding the ASCII code of something to be
displayed on the screen, and one (DSR) for maintaining associated status
information. These input and output registers will be discussed in more
detail in Chapter 8.

THE PROCESSING UNIT consists of a functional unit that can perform ‘
arithmetic and logic operations (ALU) and eight registers (RO, ... R7) for \
storing temporary values that will be needed in the near future as operands

chapter 4 The von Neumann Model

PROCESSOR BUS

R—> FINITE

STATE

[IR |<-LDJR |mACHINE[o

16

¥

B

PROCESSING
UNIT

CONTROL UNIT

GateALU

GateMDR —/\

LD.MAR

OUTPUT

MEMORY INPUT

Figure 4.3 The LC-3 asan example of the von Neumann model

for subsequent instructions. The LC-3 ALU can perform one arithmetic
operation (addition) and two logical operations (bitwise AND and bitwise

complement).

THE CONTROL UNIT consists of all the structures needed to manage
the processing that is carried out by the computer. Its most important
structure is the finite state machine, which directs all the activity. Recall the
finite state machines in Section 3.6. Processing is carried out step by step,
or rather, clock cycle by clock cycle. Note the CLK input to the finite state
machine in Figure 4.3. It specifies how long each clock cycle lasts. The

4.3 Instruction Processing

instruction register (IR) is also an input to the finite state machine since
what LC-3 instruction is being processed determines what activities must be
carried out. The program counter (PC) is also a part of the control unit; it
keeps track of the next instruction to be executed after the current
instruction finishes.

Note that all the external outputs of the finite state machine in Figure 4.3 have
arrowheads that are not filled in. These outputs control the processing throughout
the computer. For example, one of these outputs (two bits) is ALUK, which
controls the operation performed in the ALU (add, and, or not) during the current
clock cycle. Another output is GateALU, which determines whether or not the
output of the ALU is provided to the processor bus during the current clock cycle.

The complete description of the data path, control, and finite state machine
for one implementation of the LC-3 is the subject of Appendix C.

43 Instruction Processing

The central idea in the von Neumann model of computer processing is that the
program and data are both stored as sequences of bits in the computer’s memory,
and the program is executed one instruction at a time under the direction of the
control unit.

4.3.1 The Instruction

The most basic unit of computer processing is the instruction. It is made up of
two parts, the opcode (what the instruction does) and the operands (who it is to
do it to). In Chapter 5, we will see that each LC-3 instruction consists of 16 bits
(one word), numbered from left to right, bit [15] to bit [0]. Bits [15:12] contain
the opcode. This means there are at most 2 distinct opcodes. Bits [11:0] are used
to figure out where the operands are.

The ADD Instruction The ADD instruction requires three operands: two source
operands (the data that is to be added) and one destination operand (the sum that is to
be stored after the addition is performed). We said that the processing unit of the LC-3
contained eight registers for purposes of storing data that may be needed later. In fact,
the ADD instruction requires that at least one of the two source operands (and often
both) is contained in one of these registers, and that the result of the ADD is put into
one of these eight registers. Since there are eight registers, three bits are necessary to
identify each register. Thus the 16-bit LC-3 ADD instruction has the following form
(we say format):

b 14 13 12 11 109 8 7 6 5 4 3 o [0

0 o 10 b ool ololoioll 10

ADD R6 R2 R6

103

Example 4.1

———ﬁ

104 chapter 4 The von Neumann Model

The 4-bit opcode for ADD, contained in bits [15:12], is 0001. Bits [11:9] identify the
Jocation to be used for storing the result, in this case register 6 (R6). Bits [8:6] and bits
[2:0] identify the registers to be used to obtain the source operands, in this case R2 and
R6. Bits [5:3] have a purpose that it is not necessary to understand in the context of this
example. We will save the explanation of bits [5:3] for Section 5.2.

Thus, the instruction we have just encoded is interpreted, “Add the contents of
register 2 (R2) to the contents of register 6 (R6) and store the result back into register
6 (R6).”

The LDR Instruction The LDR instruction requires two operands. LD stands for
load, which is computerese for “gotoa particular memory location, read the value that is
contained there, and store it in one of the registers.” The two operands that are required
are the value to be read from memory and the destination register, which will contain
that value after the instruction is processed. The R in LDR identifies the mechanism that
will be used to calculate the address of the memory location to be read. That mechanism
is called the addressing mode, and the particular addressing mode identified by the use
of the letter R is called Base-+offset. Thus, the 16-bit LC-3 LDR instruction has the
following format:

15141312111098765432 0

1
] plo pilo 001 L0
LDR R2 R3 6

The four-bit opcode for LDR is 01 10. Bits [11:9] identify the register that will contain
the value read from memory after the instruction is executed. Bits [8:0] are used to
calculate the address of the location to be read. In particular, since the addressing
mode is BASE-+offset, this address 1s computed by adding the 2’s complement integer
contained in bits [5:0] of the instruction to the contents of the register specified by bits
[8:6]. Thus, the instruction we have just encoded is interpreted: “Add the contents of
R3 to the value 6 to form the address of a memory location. Load the contents stored
in that memory location into R2.”

4.3.2 The Instruction Cycle

Instructions are processed under the direction of the control unit in a very system-
atic, step-by-step manner. The sequence of steps is called the instruction cycle,
and each step is referred to as a phase. There are fundamentally six phases to the
instruction cycle, although many computers have been designed such that not all
instructions require all six phases. We will discuss this momentarily.

But first, we will examine the six phases of the instruction cycle:

FETCH

DECODE

EVALUATE ADDRESS
FETCH OPERANDS

4.3 Instruction Processing
EXECUTE
STORE RESULT

The process is as follows (again refer to Figure 4.3, our simplified version of the
LC-3 data path):

FETCH

The FETCH phase obtains the next instruction from memory and loads it into
the instruction register (IR) of the control unit. Recall that a computer program
consists of a collection of instructions, that each instruction is represented by a
sequence of bits, and that the entire program (in the von Neumann model) is stored
in the computer’s memory. In order to carry out the work of the next instruction,
we must first identify where it is. The program counter (PC) contains the address
of the next instruction. Thus, the FETCH phase takes multiple steps:

e

Firgt the MAR is loaded with the contents of the PC.

Next, the memory is interrogated, which results
in the next instruction being placed by the memory
into the MDR.

Finally, the IR is loaded with the contents
of the MDR.

We are now ready for the next phase, decoding the instruction. However, when
the instruction cycle is complete, and we wish to fetch the next instruction, we
would like the PC to contain the address of the next instruction. Therefore, one
more step the FETCH phase must perform is to increment the PC. In that way, at
the completion of the execution of this instruction, the FETCH phase of the next
instruction will load into IR the contents of the next memory location, provided
the execution of the current instruction does not involve changing the value in
the PC.

The complete description of the FETCH phase is as follows:

Step 1: Load the MAR with the contents of the PC, and
simultaneously increment the PC.

Step 2: Interrogate memory, resulting in the instruction
being placed in the MDR.

Step 3: Lead the IR with the contents of the MDR.

Each of these steps is under the direction of the control unit, much like, as we said
previously, the instruments in an orchestra are under the control of a conductor’s
baton. Each stroke of the conductor’s baton corresponds to one machine cycle. We
will see in Section 4.4.1 that the amount of time taken by each machine cycle is
 one clock cycle. In fact, we often use the two terms interchangeably. Step 1 takes

e machine cycle. Step 2 could take one machine cycle, or many machine cycles,
depending on how long it takes to access the computer’s memory. Step 3 takes one
machine cycle. In a modern digital computer, a machine cycle takes a very small
Taction of a second. Indeed, a 3.3-GHz Intel Pentium IV completes 3.3. billion

105

—_77

106 chapter 4 The von Neumann Model

machine cycles (or clock cycles) in one second. Said another way, one machine
cycle (or clock cycle) takes 0.303 billionths of a second (0.303 nanoseconds).
Recall that the light bulb that is helping you read this text is switching on and
off at the rate of 60 times a second. Thus, in the time it takes a light bulb to
switch on and off once, today’s computers can complete 55 million machine
cycles!

DECODE

The DECODE phase examines the instruction in order to figure out what the
microarchitecture is being asked to do. Recall the decoders we studied in Chap-
ter 3. In the LC-3, a 4-to-16 decoder identifies which of the 16 opcodes is to be
processed. Input is the four-bit opcode IR[15:12]. The output line asserted is the
one corresponding to the opcode at the input. Depending on which output of the
decoder is asserted, the remaining 12 bits identify what else is needed to process
that instruction.

EVALUATE ADDRESS

This phase computes the address of the memory location that is needed to process
the instruction. Recall the example of the LDR instruction: The LDR instruction
causes a value stored in memory to be loaded into a register. In that example, the
address was obtained by adding the value 6 to the contents of R3. This calculation
was performed during the EVALUATE ADDRESS phase.

FETCH OPERANDS

This phase obtains the source operands needed to process the instruction. In the
LDR example, this phase took two steps: loading MAR with the address calculated
in the EVALUATE ADDRESS phase, and reading memory, which resulted in the
source operand being placed in MDR.

In the ADD example, this phase consisted of obtaining the source operands
from R2 and R6. (In most current microprocessors, this phase [for the ADD
instruction] can be done at the same time the instruction is being decoded. Exactly
how we can speed up the processing of an instruction in this way is a fascinating
subject, but one we are forced to leave for later in your education.)

EXECUTE

This phase carries out the execution of the instruction. In the ADD example, this
phase consisted of the single step of performing the addition in the ALU.

STORE RESULT

The final phase of an instruction’s execution. The result is written to its designated
destination.

Once the sixth phase (STORE RESULT) has been completed, the control unit
begins anew the instruction cycle, starting from the top with the FETCH phase.

4.4 Changing the Sequence of Execution

Since the PC was updated during the previous instruction cycle, it contains at this
point the address of the instruction stored in the next sequential memory location.
Thus the next sequential instruction is fetched next. Processing continues in this
way until something breaks this sequential flow.

ADD [eax], edx This is an example of an Intel x86 instruction that requires all six
phases of the instruction cycle. All instructions require the first two phases, FETCH and
DECODE. This instruction uses the eax register to calculate the address of a memory
location (EVALUATE ADDRESS). The contents of that memory location are then
read (FETCH OPERAND), added to the contents of the edx register (EXECUTE),
and the result written into the memory location that originally contained the first source
operand (STORE RESULT).

The LC-3 ADD and LDR instructions do not require all six phases. In particular,
the ADD instruction does not require an EVALUATE ADDRESS phase. The LDR
instruction does not require an EXECUTE phase.

44 Changing the Sequence of Execufion

Everything we have said thus far suggests that a computer program is executed
in sequence. That is, the first instruction is executed, then the second instruction
is executed, followed by the third instruction, and so on.

We have identified two types of instructions, the ADD, which is an exam-
ple of an operate instruction in that it processes data, and the LDR, which is an
example of a data movement instruction in that it moves data from one place to
another. There are other examples of both operate instructions and data move-
ment instructions, as we will discover in Chapter 5 when we study the LC-3 in
detail. :

There is a third type of instruction, the control instruction, whose purpose
is to change the sequence of instruction execution. For example, there are times,
as we shall see, when it is desirable to first execute the first instruction, then the
second, then the third, then the first again, the second again, then the third again,
then the first for the third time, the second for the third time, and so on. As we
know, each instruction cycle starts with loading the MAR with the PC. Thus, if
we wish to change the sequence of instructions executed, we must change the PC
between the time it is incremented (during the FETCH phase of one instruction)
and the start of the FETCH phase of the next.

Control instructions perform that function by loading the PC during the
EXECUTE phase, which wipes out the incremented PC that was loaded dur-
ing the FETCH phase. The result is that, at the start of the next instruction cycle,
when the computer accesses the PC to obtain the address of an instruction to
fetch, it will get the address loaded during the previous EXECUTE phase, rather
than the next sequential instruction in the computer’s program.

Example 4.3

Example 4.4

T

108 chapter 4 The von Neumann Model

W The JMP Instruction Consider the 1.C-3 instruction JMP, whose format follows.

Assume this instruction is stored in memory location x36A2.

151413121110987654
ﬁ1000|0 0|011|00
IMP R3
The 4-bit opcode for JMP is 1100. Bits [8:6] specify the register which contains the
address of the next instruction to be processed. Thus, the instruction encoded here is
interpreted, 1 oad the PC (during the EXECUTE phase) with the contents of R3 so that

the next instruction processed will be the one at the address obtained from R3.”

Processing will go on as follows. Let’s start at the beginning of the instruction
cycle, with PC = x36A2. The FETCH phase results in the IR being loaded with the
JMP instruction and the PC updated to contain the address x36A3. Suppose the content
of R3 at the start of this instruction is x5446. During the EXECUTE phase, the PC is
loaded with x5446. Therefore, in the next instruction cycle, the instruction processed
will be the one at address x5446, rather than the one at address x36A3.

82 1
0y 0

4.4.1 Control of the Instruction Cycle

We have described the instruction cycle as consisting of six phases, each of which
has some number of steps. We also noted that one of the six phases, FETCH,
required the three sequential steps of loading the MAR with the contents of the
PC, reading memory, and loading the IR with the contents of the MDR. Each step
of the FETCH phase, and indeed, each step of every operation in the computer is
controlled by the finite state machine in the control unit.

Figure 4.4 shows a very abbreviated part of the state diagram corresponding
to the finite state machine that directs all phases of the instruction cycle. As is the
case with the finite state machines studied in Section 3.6, each state corresponds
to one clock cycle of activity. The processing controlled by each state is described
within the node representing that state. The arcs show the next state transitions.

Processing starts with state 1. The FETCH phase takes three clock cycles.
In the first clock cycle, the MAR is loaded with the contents of the PC, and
the PC is incremented. In order for the contents of the PC to be loaded into the
MAR (see Figure 4.3), the finite state machine must assert GatePC and LD.MAR.
GatePC connects the PC to the processor bus. LD.MAR, the write enable signal
of the MAR register, latches the contents of the bus into the MAR at the end of
the current clock cycle. (Latches are loaded at the end of the clock cycle if the
corresponding control signal is asserted.)

In order for the PC to be incremented (again, see Figure 4.3), the finite state
machine must assert the PCMUX select lines to choose the output of the box
labeled +1 and must also assert the LD.PC signal to latch the output of the
PCMUX at the end of the current cycle.

The finite state machine then goes to state 2. Here, the MDR is loaded with
the instruction, which is read from memory.

In state 3, the data is transferred from MDR to the instruction register (IR).
This requires the finite state machine to assert GateMDR and LD.IR, which causes

4.4 Changing the Sequence of Execution

State 1
—_—

MAR <~ PC
PC <-PC +1

¥
/_____ﬁState 2

FETCH MDR <— M[MAR]
-

¥
/______ﬂState 3

IR <~ MDR

3 State 4

DECODE [opcode]

First state after
DECODE for
JMP instruction

First state after
DECODE for
LDR instruction

First state after
DECODE for
ADD instruction

. . State 63
Last state Last state
to carry out e e e to carry out e oo PC <— Register
ADD instruction LDR instruction
To state 1 To state 1 To state 1

Figure 4.4 An abbreviated state diagram of the LC-3

the IR to be latched at the end of the clock cycle, concluding the FETCH phase
of the instruction.

The DECODE phase takes one cycle. In state 4, using the external input
IR, and in particular the opcode bits of the instruction, the finite state machine
can go to the appropriate next state for processing instructions depending on
the particular opcode in IR[15:12]. Processing continues cycle by cycle until the
instruction completes execution, and the next state logic returns the finite state
machine to state 1.

As we mentioned earlier in this section, it is sometimes necessary not to
execute the next sequential instruction but rather to jump to another location to
find the next instruction to execute. As we have said, instructions that change the
flow of instruction processing in this way are called control instructions. This can
be done very easily by loading the PC during the EXECUTE phase of the control
Struction, as in state 63 of Figure 4.4, for example.

109

R ——————————

110 chapter 4 The von Neumann Model

Appendix C contains a full description of the implementation of the L.C-3,
including its full state diagram and data path. We will not go into that level of
detail in this chapter. Our obj ective here is to show you that there is nothing magic
about the processing of the instruction cycle, and that a properly completed state
diagram would be able to control, clock cycle by clock cycle, all the steps required
to execute all the phases of every instruction cycle. Since each instruction cycle
ends by returning to state 1, the finite state machine can process, cycle by cycle,
a complete computer program.

45 Stopping the Computer

From everything we have said, it appears that the computer will continue
processing instructions, carrying out the instruction cycle again and again,
ad nauseum. Since the computer does not have the capacity to be bored, must this
continue until someone pulls the plug and disconnects pOwWer to the computer?

Usually, user programs execute under the control of an operating system.
UNIX, DOS, MacOS, and Windows NT are all examples of operating systems.
Operating systems are just computer programs themselves. So as far as the com-
puteris concerned, the instruction cycle continues whether a user program is being
processed or the operating system is being processed. This is fine as far as user
programs are concerned since each user program terminates with a control instruc-
tion that changes the PC to again start processing the operating system—often to
initiate the execution of another user program.

But what if we actually want to stop this potentially infinite sequence of
instruction cycles? Recall our analogy to the conductor’s baton, beating at the rate
of millions of machine cycles per second. Stopping the instruction sequencing
requires stopping the conductor’s baton. We have pointed out many times that
there is, inside the computer, a component that corresponds very closely to the
conductor’s baton. It is called the clock, and it defines the machine cycle. It
enables the finite state machine to continue on to the next machine cycle, whether
that machine cycle is the next step of the current phase or the first step of the next
phase of the instruction cycle. Stopping the instruction cycle requires stopping
the clock.

Figure 4.5a shows & block diagram of the clock circuit, consisting primarily
of a clock generator and a RUN latch. The clock generator is a crystal oscillator,
apiezoelectric device that youmay have studied in your physics or chemistry class.
For our purposes, the crystal oscillator is 2 black box (recall our definition of black

(0)

2.9 volts
Clock 0 volts

| 3
One —— [e— Time
machine '
Run cycle

Figure 4.5 The clock circuit and its control

Exercises 111

|
box in Section 1.4) that produces the oscillating voltage shown in Figure 4.5b. f
Note the resemblance of that voltage to the conductor’s baton. Every machine il
‘ cycle, the voltage rises to 2.9 volts and then drops back to 0 volts. 1 !
‘} If the RUN latch is in the 1 state (i.e., Q = 1), the output of the clock circuit |
is the same as the output of the clock generator. If the RUN latch is in the O state i ‘
(i.e., @ = 0), the output of the clock circuit is 0. ‘
Thus, stopping the instruction cycle requires only clearing the RUN latch.
Every computer has some mechanism for doing that. In some older machines, it
is done by executing a HALT instruction. In the LC-3, as in many other machines,
it is done under control of the operating system, as we will see in Chapter 9.
Question: If a HALT instruction can clear the RUN latch, thereby stopping
the instruction cycle, what instruction is needed to set the RUN latch, thereby
reinitiating the instruction cycle?

Exercises

4.1 Name the five components of the von Neumann model. For each
component, state its purpose.

4.2 Briefly describe the interface between the memory and the processing
unit. That is, describe the method by which the memory and the }
processing unit communicate. 1

4.3 What is misleading about the name program counter? Why is the name
instruction pointer more insightful?

4.4 What is the word length of a computer? How does the word length of a
computer affect what the computer is able to compute? That is, is it a
valid argument, in light of what you learned in Chapter 1, to say that a
computer with a larger word size can process more information and
therefore is capable of computing more than a computer with a smaller
word size?

4.5 The following table represents a small memory. Refer to this table for the
following questions.

Address Data
0000 0001 11100100 0011
0001 1111 0000 0010 0101
0010 0110 1111 0000 0001
0011 0000 0000 0000 0000
0100 0000 0000 0110 0101
0101 0000 0000 0000 0110 .
0110 1111 1110 1101 0011

0111 00000110 1101 1001

————————

112 chapter 4 The von Neumann Model

a. What binary value does location 3 contain? Location 67

b. The binary value within each location can be interpreted in many
ways. We have seen that binary values can represent unsigned
numbers, 2’s complement signed numbers, floating point numbers,
and so forth.

(1) Interpret location 0 and location 1 as 2’s complement integers.

(2) Interpret location 4 as an ASCII value.

(3) Interpret locations 6 and 7 as an IEEE floating point number.
Location 6 contains number [15:0]. Location 7 contains number
[31:16].

(4) Interpret location 0 and location 1 as unsigned integers.

c. In the von Neumann model, the contents of 2 memory location can
also be an instruction. If the binary pattern in location 0 were
interpreted as an instruction, what instruction would it represent?

4. A binary value can also be interpreted as a memory address. Say the
value stored in location 5 is a memory address. To which location
does it refer? What binary value does that location contain?

4.6 What are the two components of an instruction? What information
do these two components contain?

4.7 Suppose a 32-bit instruction takes the following format:

If there are 60 opcodes and 32 registers, what s the range of values that
can be represented by the immediate IMM)? Assume IMM is a2’s
complement value.

4.8 Suppose a 32-bit instruction takes the following format:

SR [ONUSED |

If there are 225 opcodes and 120 registers,

a. What is the minimum number of bits required to represent the
OPCODE?

b. What is the minimum number of bits required to represent the
Destination Register (DR)?

c. What is maximum number of UNUSED bits in the instruction
encoding?

4.9 The FETCH phase of the instruction cycle does two important things.
One is that it loads the instruction to be processed next into the IR. What
is the other important thing?

4.10 Examples 4.1, 4.2, and 4.5 illustrate the processing of the ADD, LDR,
and JMP instructions. T he PC, IR, MAR, and MDR are written in yarious
phases of the instruction cycle, depending on the opcode of the particular
instruction. In each location in the table below, enter the opcodes which

G e

4.11

4.12

4.13

Exercises

write to the corresponding register (row) during the corresponding phase
{column) of the instruction cycle.

Fetch Evaluate | Fetch Store
Instruction | Decode | Address | Data | Execute | Result
PC
IR
MAR
MDR

State the phases of the instruction cycle and briefly describe what
operations occur in each phase.

For the instructions ADD, LDR, and JMP, write the operations that occur
in each phase of the instruction cycle.

Say it takes 100 cycles to read from or write to memory and only one
cycle to read from or write to a register. Calculate the number of cycles
it takes for each phase of the instruction cycle for both the 1A-32
instruction “ADD [eax], edx” (refer to Example 4.3) and the LC-3
instruction “ADD R6, R2, R6.” Assume each phase (if required) takes
one cycle, unless a memory access is required.

Describe the execution of the JMP instruction if R3 contains x369C
(refer to Example 4.5).

If a HALT instruction can clear the RUN latch, thereby stopping the
instruction cycle, what instruction is needed to set the RUN latch, thereby
reinitiating the instruction cycle?

a. If a machine cycle is 2 nanoseconds (i.e., 2 - 10~° seconds), how
many machine cycles occur each second?

b. If the computer requires on the average eight cycles to process each
instruction, and the computer processes instructions one at a time
from beginning to end, how many instructions can the computer
process in 1 second?

¢. Preview of future courses: In today’s microprocessors, many features
are added to increase the number of instructions processed each
second. One such feature is the computer’s equivalent of an assembly
line. Each phase of the instruction cycle is implemented as one or
more separate pieces of logic. Each step in the processing of an
instruction picks up where the previous step left off in the previous
machine cycle. Using this feature, an instruction can be fetched

from memory every machine cycle and handed off at the end of the

machine cycle to the decoder, which performs the decoding function

during the next machine cycle while the next instruction is being
fetched. Ergo, the assembly line. Assuming instructions are located at

114

chapter 4 Thevon Neumann Model

sequential addresses in memory, and nothing breaks the sequential
flow, how many instructions can the microprocessor execute each
second if the assembly line is present? (The assembly line is called a

pipeline, which you will

encounter in your advanced courses. There

are many reasons why the assembly line cannot operate atits
maximum rate, a topic you will consider at length in some of
these courses.)

