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Abstract—In portable computing systems like smartphones,
energy is generally a key but limited resource where application
cores have been proven to consume a significant part of it. To
understand the characteristics of the energy consumption, in
this paper, we focus our attention on the portion of energy
that is spent to move data to the application core’s internal
registers from the memory system. The primary motivation
for this focus comes from the relatively higher energy cost
associated with a data movement instruction compared to that
of an arithmetic instruction. Another important factor is the
distributive computing nature among different units in a SoC
which leads to a higher data movement to/from the application
cores.

We perform a detailed investigation to quantify the impact
of data movement on overall energy consumption of a pop-
ular, commercially-available smart phone device. To aid this
study, we design micro-benchmarks that generate desired data
movement patterns between different levels of the memory
hierarchy and measure the instantaneous power consumed
by the device when running these micro-benchmarks. We
extensively make use of hardware performance counters to
validate the micro-benchmarks and to characterize the energy
consumed in moving data. We take a step further to utilize this
calculated energy cost of data movement to characterize the
portion of energy that an application spends in moving data
for a wide range of popular smart phone workloads. We find
that a considerable amount of total device energy is spent in
data movement (an average of 35% of the total device energy).
Our results also indicate a relatively high stalled cycle energy
consumption (an average of 23.5%) for current smart phones.
To our knowledge, this is the first study that quantifies the
amount of data movement energy for emerging smart phone
applications running on a recent, commercial smart phone
device. We hope this characterization study and the insights
developed in the paper can inspire innovative designs in smart
phone architectures with improved performance and energy
efficiency.

I. INTRODUCTION

In recent years, there has been an explosive growth in

the use of mobile phones, especially smart phones, for our

everyday computing needs. To cover the wide range of

application requirements running on the smart phones, it

is becoming the trend for mobile System-on-Chip (SoC) to

include an increasing number of general-purpose application

cores (up to eight cores to date), hundreds of graphic pro-

cessing cores, and many special purpose accelerators such

as digital signal processing cores and video encoder/decoder

cores, as exemplified by the recent NVIDIA Tegra K1.

Among all the components in a mobile SoC platform,

the device display has been shown to be the most energy-

hungry in several studies, e.g., [1], [2], when operating in

full brightness. In the energy characterization study [2],

Pandiyan et al. showed that when the brightness of the screen

display is at 25%, the general-purpose application processor

becomes the most energy-hungry component, consuming

more than 50% of the total energy capacity of the device.

This has motivated our work to delve deeper into the energy

consumption characteristics of the application cores.

Most prior work that characterize the power profile of

smart phones focus on component-level results. For ex-

ample, Carroll and Heiser [1] used sensors on a smart

phone to measure the power usage of the individual com-

putation components under different workloads. Similarly,

Murmuria et al. [3] demonstrated a power usage charac-

terization and develop a power-modeling framework, based

on the component-level power consumption. However, these

component-level energy results do not give the full picture

of how energy is spent in the entire system since the

information of where data reside in the system and how

data is moved across the system are not considered.

Recent work have highlighted the significance of the data

movement energy cost in the desktop and server computing

environment. Moving data present in the cache requires as

much energy as a floating point computation itself and cost

much more if the data is not in the cache hierarchy [4].

For scientific applications executed on high-performance

desktop/server processors, 28-40% of total energy cost is

spent in moving data [5]. The gap between the energy cost

of moving data from memory to registers and the energy cost

of performing floating point computations is widening for

future systems. The energy cost of double-precision floating

point operations is expected to reduce by ten times by 2018

while the energy cost of moving data from memory to

register is expected to remain the same [6], [7]. This trend

indicates the significance of data movement energy.

To better understand the energy cost of data movement

in one of the most energy-hungry elements in smart phones,

i.e., the multi-core application processor, this paper performs

a detailed investigation to quantify the overall energy cost
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Figure 1. Dynamic power consumption comparison for benchmarks
that perform continuous load instruction execution with and without data
dependency, and add instruction execution utilizing one or both pipelines
of the dual-issue ARM Cortex-A9 processor.

of data movement for modern smart phone applications on a

real, commercially available smart phone. We find that even

when the mobile application processor is solely working on

fetching data from the memory and idling most of the cycles,

its power consumption is on par with that when it is busy

executing arithmetic operations under 100% utilization.

Figure 1 compares the application processor power con-

sumption under four different scenarios: continuous load

instruction execution with and without data dependency, and

add instruction execution utilizing one or both pipelines

of the dual-issue ARM Cortex-A9 processor. The dynamic

power consumption of the benchmark which performs con-

tinuous independent load instruction execution is far more

significant than that when performing continuous add oper-

ations. This indicates the significance of the data movement

energy cost relative to the ALU operations and to the total

application energy consumption.

To quantify and evaluate the impact of data movement

energy on modern smart phone platforms, this paper first

presents a methodology to measure the energy of data

movement across the multi-level memory hierarchy in a

mobile application processor. We show that the energy cost

to perform a memory load instruction whose data is not

found in the processor caches is 115 times higher than

that of an add operation. With the unit energy cost for the

arithmetic and memory operations, we take a step further

to characterize modern smart phone workloads running on

a Samsung Galaxy S3 platform. On average, a significant

portion (34.6%) of the total device energy consumption

is spent on moving data from one level of the memory

hierarchy to the next level for interactive smart phone

workloads. The data movement energy is particularly high

(41%) for realistic web browsing.

In summary, this paper makes the following contributions:

1) We develop a micro-benchmark methodology to char-

acterize in detail the data movement energy across

Figure 2. Architecture of the ARM Cortex-A9 processor in a Samsung
Galaxy S3 smart phone.

different levels of the memory hierarchy on a commer-

cial smart phone platform. The hardware performance

counter- and power meter-based measurements allow

us to estimate the energy cost of data movement in the

different levels of the memory hierarchy in a Samsung

Galaxy S3 device.

2) With the unit cost of data movement energy, we perform

a detailed characterization to show the significance

of data movement energy and stalled cycle energy of

the entire device when running realistic smart phone

applications, including various web browsing activities,

video playback, photo browsing, and a video game.

Based on the result, we offer our insights for future

smart phone architecture designs.

The remainder of the paper is organized as follows: In

Section II, we give background information of the memory

hierarchy for modern smart phone architectures and we de-

scribe the design of the micro-benchmarks that characterize

the data movement energy for a specific memory hierarchy.

Section III outlines our energy measurement methodology.

Section IV describes our real-device experimental setup for

measuring the energy consumption. Section V presents our

experimental results and insights gained from the results.

Section VI summarizes prior work in this area and Sec-

tion VII concludes the paper.

II. MICRO-BENCHMARKS: ISOLATING DATA ACCESSES

TO A SPECIFIC LEVEL OF THE MEMORY HIERARCHY

A. Background

Modern smart phone processor architectures feature a hi-

erarchical memory structure. Figure 2 illustrates the memory

hierarchy of the ARM Cortex-A9 processor in a Samsung

Galaxy S3 smart phone. Other commonly-available mobile

processors, e.g., Intel Atom-based Clover Trail processors,

also implement a similar memory hierarchy. When data in

the memory is accessed, it will be moved across different
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Figure 3. Latency measurement of the designed micro-benchmarks with
varying active data working set sizes.

levels of memory: from DRAM to the level-two (L2) cache,

from the L2 cache to the level-one (L1) cache, and from

the L1 cache to the register file. To accurately quantify

the data movement energy cost, we design a set of micro-

benchmarks to continuously access data in a specific level of

the memory hierarchy. We correlate the data references from

the micro-benchmark with power readings obtained from an

external power meter to compute the energy cost of each

data movement operation.

ARM Cortex-A9 specifications: The designed micro-

benchmarks are executed on an ARM Cortex-A9 processor

and are used to carry out specific data movement patterns.

Since the intended data movement patterns are closely cou-

pled with the architectural parameters of the experimental

platform, we give the parameter details here. The ARM

Cortex-A9 processor used in this study has four cores. Each

core has a private 32KB instruction cache and a private

32KB data cache. All cores share the unified L2 cache

whose size is 1MB. In addition, each core also has a two-

level translation lookaside buffer (TLB) – L1 instruction

and data TLBs (Micro TLBs) are fully set-associative (each

with 32 entries) and the L2 TLB (Main TLB) is 2-way

set-associative with 128 entries. When virtual-to-physical

address translation is not present in the TLB resulting a TLB

miss, page table walk needs to be performed. This can cause

up to two additional memory accesses in the cache. We use

the default page size of 4KB in the experimental platform.

B. Design of the Micro-Benchmarks

Isolating data accesses to a specific level of the memory

hierarchy and quantifying the energy cost of a specific

data movement are challenging in modern processors. Out-

of-order execution and other important architectural opti-

mization features, such as data prefetching and speculation,

have worked well in hiding memory latencies but, at the

same time, make the energy cost benchmarking for an

individual instruction difficult. We design a set of micro-

benchmarks that minimize the effect of out-of-order execu-

Initialize benchmark
Start Timer
for i = 0 TO i < iterations/x do

Unroll x times { benchmark operation; }
end for
Stop Timer

Algorithm 1: Pseudo-code of the micro-benchmark which
performs the desired data movement in a target level of the
memory hierarchy iteratively.

tion and other architectural optimizations. The design of the

micro-benchmark methodology is inspired by a recent work

that quantifies the data movement energy cost for scientific

applications running on desktop and server processors [5].

The goal for the benchmark design is to consistently

bring data from a particular level of memory hierarchy. The

program has to overcome a number of micro-architectural

and compiler optimizations to accomplish that. Between the

two, hardware optimizations are relatively harder to combat

as they occur at runtime, are not visible to the software

and only can be deduced based on performance counter

values. On the other hand, compiler optimizations can be

investigated by reviewing the assembly code which the

compiler generates and be selectively disabled with compiler

flags and appropriate programming methods. We summarize

the workings of our micro-benchmarks as follows:

1) Each micro-benchmark first requests the operating sys-

tem to allocate a size of memory that fits within

the capacity of the level of memory system we are

interested in.

2) The memory region is then accessed as an array of

pointers. Pointer chasing is performed so that each array

element access corresponds to only one architecturally

executed load to avoid overhead due to array index

increment. We utilize a temporary pointer variable to

hold an address that refers to a word in the data set

and a subsequent dereference of the pointer provides

the address to another word. The sequence of addresses

dereferenced can either be random or strided depending

on the specific benchmark. The following snippet of C

code illustrates pointer chasing.

tmp_ptr = *(void**)tmp_ptr;
3) By continuously performing these dereferences in a

loop, we traverse different portions of the allocated

memory. The loop is timed to enable the calculation of

the average latency per load instruction. The average

latency is used to validate that the micro-benchmark

indeed performs the intended memory accesses in the

target level of the memory hierarchy. Algorithm 1

outlines the pseudo-code of the micro-benchmark.

We create three micro-benchmarks to study the data

movement energy across the different levels of the memory

hierarchy, namely from the L1 cache to registers, from the
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L2 cache to registers, and from main memory to registers.

• L1 cache to CPU register
(MicrobenchmarkL1→Reg): This micro-benchmark

performs random accesses within the data set. Each

access brings a word from the L1 data cache to the

register and all data references to the L1 cache are

hits. We choose a data set of 24KB which comfortably

fits in the 32KB L1 data cache.

• L2 cache to CPU register
(MicrobenchmarkL2→Reg): This micro-benchmark

performs random accesses within the data set that

fits into the 1MB L2 cache of the experimental

platform. The selection of the data set size for this

micro-benchmark requires more considerations than

MicrobenchmarkL1→Reg . This is because additional

TLB misses can be incurred by the random-walk

references performed in the larger memory region. In

order to ensure the majority of data movement happens

between the L2 cache and the register, we need to

choose a data set size that fits in the 1MB L2 cache

but does not fit in the 32KB L1 cache. In addition,

we also want to keep the TLB miss rate as small

as possible1. To fulfill these constraints, we select

the data set size of MicrobenchmarkL2→Reg to be

125KB. As shown in Figure 3, the selected data set

size performs memory accesses that move data from

the L2 cache to the register as intended since the load

latency closely tracks the L2 cache access latency.

• Main memory to CPU register
(Microbenchmarkmemory→Reg): This micro-

benchmark is designed to bring data from the

memory to the processor register. This means that

the data set size needs to be larger than the 1MB

L2 cache resulting in high L1 and L2 cache miss

rates. Since the data set size needs to be larger than

1MB, this micro-benchmark inevitably thrashes the

L2 TLB. Because the additional memory references

related to page table walks also access the cache

hierarchy, these additional references can significantly

lower the high L1 and L2 cache miss rates expected

for the random access micro-benchmark. Currently,

there is not a known, effective method to differentiate

cache accesses related to page table walks from those

made by application load instructions. As a result,

we experimentally choose a data set size that has a

high L2 miss rate while keeping the TLB allocations

as few as possible. In this paper, we choose the data

set size to be 2MB. Therefore, this causes more data

movement for each memory instruction compared to

one with a smaller data set.

• Integer and NOP (Microbenchmarkadd and
Microbenchmarknop): In addition to the micro-

1The 128-entry TLB effectively covers the memory region of 512KB

benchmarks which perform iterative data movement

from a specific level of the memory hierarchy to

the processor register, we design two more micro-

benchmarks that execute integer addition and NOP

instructions continuously to understand their relative

impact on energy consumption with respect to that of

data movement.

C. Discussion

There are other challenges and considerations in the

process of designing and running the micro-benchmarks,

which we discuss below.

• Compiler Optimization: It is possible for the compiler

to optimize away the register variable allocated for

the temporary pointer storage. Because of this, we

manually verify the designed data movement patterns

by looking at the assembly code generated for the

micro-benchmarks.

• Loop Unrolling Effect: The main loop of memory

accesses in the micro-benchmarks can be unrolled such

that a larger number of memory loads are executed

for each loop iteration to reduce the frequency of

branch instruction execution. We carefully select the

loop size/iterations such that the loop body is large

enough for the reduced overhead of loop index incre-

ment and branch instructions but not too large to cause

unintended, additional instruction cache misses.

• Priority of the Micro-benchmarks, Task Migration,
and Dynamic Frequency Control in the Operating
System: To minimize interference with other running

processes, we give the micro-benchmarks the high-

est priority by setting the nice number2 to −20.

Furthermore, to prevent task migration between the

different, available cores, we pin the micro-benchmarks

to a specific core at the beginning of the program

execution. Finally, the micro-benchmark power con-

sumption highly depends on the core frequency setting,

and the default Android/Linux operating system varies

the core frequency dynamically based on utilization.

To eliminate the influence of frequency variation, we

use the performance governor to control and set the

frequency of the cores at 1.4 GHz.

III. DATA MOVEMENT ENERGY MEASUREMENT

In this section, we describe the techniques we used to

measure the energy cost of individual instructions and to

isolate the components of the system that do not contribute

to the data movement energy, e.g., idle energy and stalled

cycles. Then we derive the energy cost of data movement

and cache prefetchers.

2nice is a Linux program to give a process more or less CPU time than
other processes. A niceness of −20 is the highest priority and 19 is the
lowest priority.

174978-1-4799-6454-3/14/$31.00 ©2014 IEEE 174



Emem 

EL2 

EL1 

Ereg 

ΔEnergyL1 ΔEnergyL2 ΔEnergymem 

register L1 cache L2 cache memory 

Figure 4. Energy measurement for data movement across the memory
hierarchy.

Figure 4 illustrates our approach in determining the energy

cost for accessing data in different levels of the memory

hierarchy. We first determine the energy cost for moving

data from the L1 cache to the registers (ΔEnergyL1), and

repeat this process to determine the energy cost for moving

data from the L2 cache to the L1 cache (ΔEnergyL2) and

from the memory to the L2 cache (ΔEnergymem). Since

the number of instructions performed in the body loop of the

micro-benchmarks is in the order of billions, we ensure that

the majority of the processor energy consumption is spent

on the designed data movement.

A. Dynamic Energy Measurement of the Micro-Benchmarks

Working with a commercial product does not offer the

flexibility of a product development board with exposed test

points/voltage rails or even that of a PC motherboard. The

only access points our system offers for power measurement

are the battery terminals. The entire system that consists

of the display, LEDs, speakers, DRAM, SoC, sensors,

eMMC etc. is powered via this set of terminals. For the

data movement power measurements at this terminal to be

meaningful, we keep all the peripheral components turned

off or inactive through options that the OS provides. When

the display, Wi-Fi, mobile radio and other peripherals are

turned off, the application processor and DRAM consume

most of the power [2] since the micro-benchmarks used in

our measurements do not make use any peripheral compo-

nents. To minimize potential interference, we also manually

terminate unnecessary background service processes in our

smart phone experimental platform that can potentially skew

measurements of the micro-benchmarks. The power mea-

surements are made in stable memory access phases (regions

of interest) when the program is fully loaded into memory

and executes only data movement instructions.

In order to calculate the power consumption of the micro-

benchmarks, the baseline power or the idle power con-

sumption of the device before the micro-benchmarks begin

to execute is recorded and subtracted from the measured

value. Thus, the power consumption attributed to the micro-

benchmarks is

Pmicrobenchmark = Pdevice − Pidle

Furthermore, the total energy consumption of the micro-

benchmarks is

Emicrobenchmark =

∫ EndTime

StartT ime

Pmicrobenchmarkdt

B. Stall Cycles

Depending on where data resides, it takes from 4 to 200

cycles to bring the requested data to processor registers.

This means that the processor spends a majority of time

waiting for data, resulting in significant stall cycles. The

stall cycles increase when the memory instruction in an

application depends on the data requested by the previous

instruction, e.g., in the pointer-chasing micro-benchmarks.

In order to separate the energy cost of stall cycles

from the energy cost of moving data from one level to

another level of the memory hierarchy, we design a match-

ing micro-benchmark, MicrobenchmarkL1→Reg,no−dep.,

which performs exactly the same data movement as in

MicrobenchmarkL1→Reg , except that all data dependen-

cies in the original micro-benchmark have been removed.

This is done by replacing the pointer chasing-based data

movement with pre-calculated memory addresses. Since

all memory addresses in MicrobenchmarkL1→Reg,no−dep.

are known, the memory accesses are independent of

each other and, thus, the stall cycles caused by data

dependency is removed. The number of stall cycles in

MicrobenchmarkL1→Reg is obtained from the perfor-

mance counters.

By comparing the energy consumption of

MicrobenchmarkL1→Reg,no−dep. with the pointer chasing

MicrobenchmarkL1→Reg , we can compute the stall cycle

energy consumption. Using values measured from the

hardware performance counters, it can be deduced that

MicrobenchmarkL1→Reg creates three pipeline stalls for

each load that is issued. Therefore, Stall Cycle energy can

be computed as:

EStall = (EL1toReg→Reg − EL1toReg→Reg,no−dep)/NStalls

C. Long Latency Memory Operations

The MicrobenchmarkL2→Reg and

MicrobenchmarkRAM→Reg benchmarks with the pointer

chasing logic like MicrobenchmarkL1→Reg cause several

stall cycles due to the data dependency between loads. The

stall cycle energy has to be subtracted from the energy

measurement values for both benchmarks to isolate the

data movement energy. We use the same formula below for

these long latency operations.

EL2→Reg = (EL2→Reg−EStall∗NStalls)/NMemoryAccesses
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D. Cache Prefetcher

Hardware prefetching is a commonly-used latency miti-

gation technique in modern processors. Cache prefetchers

bring data into the cache hierarchy before the actual refer-

ence, thereby shortening the memory latency of application

demand requests. While often helpful, the benefits of aggres-

sive prefetching hinge on its accuracy. When effective, mem-

ory performance can be significantly improved. However,

inaccurate or untimely prefetched cache lines can result in

additional data to be brought into the cache, which amounts

to wasted energy. As energy is a key limited resource in

mobile platforms, it is of critical importance to evaluate the

energy cost of prefetching. We approximate this energy cost

of prefetching as ERAM→L2, i.e., same as moving data from

the memory to L2 cache. The rationale is that the energy cost

of prefetching a line from memory is mostly expended on the

actual data movement [5]. Isolating the energy consumption

of prefetch engine’s overhead from this is not apparent, due

to a combination of the energy measurement methodology

we adopt and the limited access to component level power

measurement on a production smartphone.

There are three distinct prefetchers on the Samsung

Exynos-based SoC which houses the ARM Cortex A9 pro-

cessor: per-core L1 cache stride prefetchers, L2 double line-

fill cache prefetcher, and the L2 cache stride prefetcher [8].

The per-core L1 cache prefetchers monitor cache ref-

erences to the L1 cache based on the program counter

(PC) value and address and is capable of tracking multiple

prefetch streams. The L1 cache prefetchers bring data from

the lower levels of the cache hierarchy in advance by placing

the prefetched cache lines into a dedicated prefetch buffer.

Upon hits, prefetched data are brought from the prefetch

buffers to the L1 caches. In the case of inaccurate prefetch

requests, the prefetcher throttles down its aggressiveness to

reduce the degree of potential interference in the prefetch

buffer. Apart from this, the L1 prefetcher also sends prefetch

hints to the L2 cache controller for prefetching lines into

the L2 cache. These lines that are allocated in the L2 cache

are not sent to the L1 cache. The L2 double line-fill cache

prefetcher observes the L2 cache misses and fetches two

cache lines – the one that caused a miss and the next

line from the memory. The L2 controller implements stride

prefetching mechanism that fetches a pre-configured number

of cache lines based on the references it receives.

IV. EXPERIMENTAL SETUP

This section introduces our experimental methodology for

real-system energy measurements.

A. Real-Device Experimental Platform

We perform our experiments on a Samsung Galaxy S3

smart phone which houses a Samsung-made Exynos4 Quad

4412 SoC. The SoC has four Cortex-A9 application cores

with a 1GB Low Power DDR (LPDDR) memory. There

Table I
ENERGY COST OF DATA MOVEMENT.

Operation Energy
Cost (nJ)

Δ Energy
(nJ)

Equivalent
ADD Ops

NOP 0.105 - -
ADD 0.105 - 1
LOAD L1→ Reg 0.192 0.192 1.83
LOAD L2→ Reg 0.803 0.611 7.65
LOAD DRAM→ Reg 12.032 11.228 114.6
Stall cycle 0.068 - -

are separate L1 instruction and data caches for each of

the four cores and a shared unified L2 cache. The device

runs a rooted Android 4.3 Jelly Bean OS. The Linux kernel

is configured to enable performance profiling with ARM

Streamline [9]. The micro-benchmarks are written in C,

cross-compiled on the host machine with ARM-Android

NDK toolchains [10]. The binaries are pushed to the device

and are launched from the host machine via the adb terminal.

Cortex-A9 provides 6 hardware performance counters

which can be used to measure six performance events

simultaneously. Similarly, the L2 cache controller that is

integrated with the application cores provides two counters.

The L2 prefetcher is turned on/off by modifying a part of

architecture-specific kernel code that runs during the OS

initialization. We extend the Linux kernel modules in [11]

to read the L2 cache controller registers and to validate the

configuration that has been set by the kernel.

B. Energy Measurement for the Experimental Platform

We remove the smart phone’s battery and power the

device with a DC power supply set to 4.0V. The National

Instruments DAQ 6251 [12] is used for voltage and current

measurement along with a small shunt resistor. The DAQ

periodically samples voltages which is graphically repre-

sented in the NI Signal Express [13] tool. The data logged by

the DAQ is minimally processed to eliminate noise by time

averaging, histogram analysis and DC component extraction.

Both current and voltage are sampled at 100KHz with a res-

olution of 10−6. All energy measurement results presented

in this paper are obtained with the lowest brightness setting

for the display. And, the results are the average of three

individual runs of each experiment.

C. Workloads

In addition to the set of micro-benchmarks used to

quantify the energy cost of data movement, we execute

a set of commonly-used smart phone workloads for data

movement energy characterization. We use smart phone

applications from the MobileBench suite [2], including an

image processing application (PhotoView), video play-

back (VideoPlayback), general web browsing (GWB),

realistic web browsing (RWB), and education-oriented web

browsing (EWB).

PhotoView is a photo-browsing workload that starts a

slide show of full-screen high resolution images, each with
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Figure 5. Instruction mix for workloads

a resolution of 4912x3264 and is of size between 4 to 6 MB,

whereas VideoPlayback renders a full-screen HD (720p)

MPEG-4 video of size 80 MB. GWB and RWB sequentially

load and render a set of popular websites, including Amazon,

BBC, CNN, Craiglist, eBay, ESPN, Google, MSN, Slashdot,

Twitter, and YouTube, from the secondary storage. The

benchmarks differ in the browsing activities performed after

the web pages are fully loaded. RWB mimics realistic user

browsing behavior by scrolling the web pages up and down

with random delays and web page zooming. EWB is based

on the popular Blackboard course web platform. It combines

Blackboard page browsing and document browsing by in-

voking a document reader to skim through a set of Portable

Document Files (PDFs). Furthermore, we evaluate a gaming

workload, Frozen Bubbles, which models an interactive

game application [14].

Figure 5 shows the instruction composition for these

workloads. About 60% of the instructions (i.e., integer,

floating point and NEON instructions) perform computations

and a significant 25% of the instructions perform memory

loads and stores. With the energy consumption of a single

instruction or data memory access3 potentially costing upto

115 times of the cost of an integer instruction, data move-

ment energy cost evaluation for mobile workloads is critical.

We present a detailed analysis of the data movement energy

cost in Section V.

D. Validation

We create another set of benchmarks to validate our

energy estimation methodology and the measured energy

cost values. Each of these validation benchmarks essen-

tially performs a combination of the data movement and

arithmetic operations described earlier in Section II. Per-

formance counter values are collected for the benchmarks

3For example, the execution of a memory load instruction needs to access
the memory twice – the instruction itself and data in the requested memory
location.

Figure 6. Validation error rate.

from Streamline to identify a) the number of data movement

operations that occur between the different levels of the

memory hierarchy, b) the number of stall cycles, and c) the

number of arithmetic operations.

The energy consumed by each of these operations over

the benchmark execution is calculated by multiplying the

energy cost per unit operation (Table I) with the raw counts

given by the performance counters. For example, the total

energy consumption of the L2 → Reg + Add validation

benchmark is

EL2→Reg+Add = EL2→L1 ∗NL2 + EL1→Reg ∗NL1

+EStall ∗Nstall + EAdd ∗NAdd

The estimated energy consumption is compared with the

actual energy consumption measurement of the experimen-

tal platform. Figure 6 shows the accuracy of our micro-

benchmark methodology for data movement energy. The

error rate is calculated as follows:

Accuracy =
Emeasured − Eestimated

Emeasured

We find that our micro-benchmark approach can accurately

estimate the energy consumption of data movement. The

error rate is 3.4% on average and is generally under 3.5%.

Only for the L2 → Reg+Add benchmark, we over-estimate

the benchmark energy consumption by 8.6%.

V. ENERGY COST ANALYSIS FOR MOBILE WORKLOADS

We obtain the total energy consumption measurement

for a diverse set of mobile workloads (Section IV-C) by

sampling the dynamic power consumption, Pi, of a mobile

application with the DAQ continuously. The total energy

consumption of the application is derived from the dynamic

power consumption samples as follows:

Energy =

∫ EndTime

StartT ime

Ptdt =
k∑

i=0

Ptti

The total energy consumption includes the dynamic en-

ergy consumption of the entire experimental device but not
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Figure 7. Energy breakdown for the experimental device.

considering the idle energy portion. The data movement

energy is estimated by multiplying the number of accesses to

the L1, L2 caches, and the main memory with the respective

unit energy cost for moving data between the different

levels (Table I). Similarly, we evaluate the energy spent

on processor stall cycles. By separating the data movement

and stall cycle energy consumption from the total energy

consumption of the experimental device, we can attribute the

rest of the energy consumption to the application processor,

other SoC accelerators which may be active and performing

computations concurrently with the application processor,

other system peripherals (e.g., SD card access), as well as

the display.

Figure 7 shows the energy breakdown for the mobile

workloads. The Data Movement Energy bars represent the

portion of the total device energy consumption attributed to

the data movement in the application processor’s memory

hierarchy and the Stall Cycle Energy bars represent the

portion of the total device energy consumption attributed

to processor stall cycles while the Others bars represent the

rest of the energy consumption of other active components

in the device. On average, a significant portion (34.6%) of

the total device energy consumption is spent on moving

data from one level of the memory hierarchy to the next

level for mobile workloads. The data movement energy is

particularly high (41%) for realistic web browsing (RWB).

Relatively PhotoView spends less amount of energy in

data movement. This is likely due to the behavior of using

hardware acceleration for jpeg decoding. As a result, more

energy is spent on the Others category for PhotoView.

What we also observe is that there is a considerable

amount of energy spent on stall cycles in the application

processor. On average, 23.5% of the total device energy is

spent on stalled cycles, e.g., resolving data dependencies,

waiting for long latency memory operations, etc. This stall

cycle energy is expected to increase when we consider

realistic user behavior for mobile devices. Users typically

do not use their smart phones for continuous computations.

Typical smart phone usage reveals a pattern of a short-term

use, e.g., texting, viewing pictures, searching for restaurants,

followed by a long period of idle time. While today’s An-

droid OS already adopts smart energy management policies

that aggressively modulate down the operating frequency

of the application processor or even puts the application

processor into the sleep mode, the stalled cycle energy in the

processor cannot be completely eliminated by such coarse-

grained energy management. This urges architects for mobile

processors to integrate more, but simplified, cores into the

application processor to reduce the amount of stall cycles

which can translate to improved energy efficiency. Finally,

the energy cost of computations, hardware accelerators, etc.,

in the Other category varies from 31.3% to 54.1%. We

expect a significant portion of the Other energy consump-

tion to come from the smart phone display, which has been

shown as one of the most power-hungry components in

modern smart phones [1], [2].

In addition to the energy breakdown, we also perform

the energy analysis for data moving from one level of the

memory hierarchy to another level. Figure 8 shows the

relative energy cost for moving data from the L1 cache

to processor register (L1 → Reg), from the L2 cache to

the L1 instruction cache (L2 → L1Instruction), from the

L2 cache to the L1 data cache (L2 → L1Data), from the

memory to the L2 cache by the processor (Mem → L2)

and by the cache prefetchers (Prefetches). Depending

on the memory access patterns of the mobile workloads,

the energy consumption dedicated to each level of the

memory hierarhcy varies. For all studied workloads except

for VideoPlayback, L1 → Reg is the most signifi-

cant. The reason for the relatively lower L1 → Reg for

VideoPlayback is because the active working set of this

benchmark does not completely fit in the cache hierarchy,

having a higher L2 cache miss rate of 24.86%. Thus, a

considerable amount of energy is spent moving data from

the memory to the L2 cache.

Another interesting observation for the studied mobile

workloads is the relatively higher data movement energy

to bring instructions to the L1 instruction cache than to

bring data to the L1 data cache. This is because mobile

workloads often heavily rely on built-in libraries and system

calls in the OS (Android Jelly Bean 4.3 in our case) and thus

exhibit larger instruction working sets that can exceed the

size of the L1 instruction cache. This is similarly shown

in an older study by Guitierrez et al. [15]. Overall, the

data movement energy of Mem → L2 is dominating. This

motivates mobile processor and SoC architects to optimize

the data path between the memory and the L2 cache, which

will translate to significant energy consumption reduction

and improved energy efficiency gains.

VI. RELATED WORK

There have been a number of efforts that develop power

models to estimate smart phone energy consumption. Most
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Figure 8. Relative energy cost for moving data from one level to another level of the entire memory hierarchy in the ARM Cortex-A9 processors for
mobile workloads.

of these power modeling and energy estimation techniques

are based on application processor utilization. Shye et

al. [16] described a regression-based power estimation tech-

nique that can predict the power consumed by different

components on a smart phone. Pathak et al. [17] developed a

power model based on system call tracing and demonstrated

that energy estimation is possible using their developed

power model. Zhang et al. [18] leveraged the battery sensor

on a smart phone to construct a model for power estimation.

Li et al. [19] took a different approach to energy estimation

by profiling the Java byte code of an application, aiming at

providing energy consumption data to application develop-

ers. However, none of these works focus on data movement

energy consumption which is a major contributor to the

overall device energy consumption, as we show in this paper.

There have been a few studies that quantify data move-

ment energy via micro-benchmarking for server processors.

Molka et al. [20] quantified instruction level and data transfer

energy consumption for Intel and AMD server processors.

Kastor et al. [5] took a step further by proposing an energy

cost evaluation methodology for data movement between the

different memory levels. With the estimated data movement

energy cost, the data movement energy characterization for

scientific applications were performed. Nonetheless, both

studies were performed on server-class processors. This

work is the first that attempts to quantify the data movement

energy cost for modern smart phone workloads running

on a commercial smart phone device. The smart phone

applications and the mobile processors are vastly different

from their server or desktop counterparts. With the increas-

ing popularity of smart phones, the data movement energy

cost presented in this paper along with the detailed data

movement energy characterization for the diverse range of

smart phone applications provide insights into which data

paths to improve upon, in order to further increase the energy

efficiency of next generation smart phones.

VII. CONCLUSION

This paper presents a detailed methodology for quan-

tifying the data movement energy cost on a commercial

smart phone and summarizes the energy cost for moving

data from one to another level of the memory hierarchy

in a mobile processor, ARM Cortex-A9. Given the energy

cost, we take a step further to characterize the portion of the

energy that is spent on data movement for a diverse set of

smart phone applications. Overall, the energy spent on data
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movement in mobile processors is significant. 34.6% of the

total device energy consumption is spent on moving data

from one level of the memory hierarchy to the next level

for interactive smart phone workloads. The data movement

energy is particularly high (41%) for realistic web browsing

that is commonly performed on smart phones. Our results

also indicate a relatively high stalled cycle energy consump-

tion (an average of 23.5%) for current smart phones. This

motivates mobile processors to include more but simpler

cores in the design. Furthermore, the considerable amount

of energy spent on moving data from the memory to the L2

cache encourages more researches into low-power emerg-

ing memory technologies for embedded devices. With the

detailed energy characterization and the insights provided

in this paper, we hope to inspire innovative designs that

lower power consumption of memory instructions through

more optimized data paths and simpler architecture for smart

phone architectures.
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