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Abstract—Memory deduplication, a well-known technique
to reduce the memory footprint across virtual machines, is
now also a default-on feature inside the Windows 8.1 and
Windows 10 operating systems. Deduplication maps multiple
identical copies of a physical page onto a single shared copy
with copy-on-write semantics. As a result, a write to such a
shared page triggers a page fault and is thus measurably slower
than a write to a normal page. Prior work has shown that an
attacker able to craft pages on the target system can use this
timing difference as a simple single-bit side channel to discover
that certain pages exist in the system.

In this paper, we demonstrate that the deduplication side
channel is much more powerful than previously assumed,
potentially providing an attacker with a weird machine to read
arbitrary data in the system. We first show that an attacker
controlling the alignment and reuse of data in memory is able
to perform byte-by-byte disclosure of sensitive data (such as
randomized 64 bit pointers). Next, even without control over
data alignment or reuse, we show that an attacker can still
disclose high-entropy randomized pointers using a birthday
attack. To show these primitives are practical, we present an
end-to-end JavaScript-based attack against the new Microsoft
Edge browser, in absence of software bugs and with all
defenses turned on. Our attack combines our deduplication-
based primitives with a reliable Rowhammer exploit to gain
arbitrary memory read and write access in the browser.

We conclude by extending our JavaScript-based attack to
cross-process system-wide exploitation (using the popular nginx
web server as an example) and discussing mitigation strategies.

I. INTRODUCTION

Memory deduplication is a popular technique to reduce

the memory footprint of a running system by merging mem-

ory pages with the same contents. Until recently, its primary

use was in virtualization solutions, allowing providers to host

more virtual machines with the same amount of physical

memory [32], [34], [7]. The last five years, however, have

witnessed an increasingly widespread use of memory dedu-

plication, with Windows 8.1 (and later versions) adopting it

as a default feature inside the operating system itself [6].

After identifying a set of identical pages across one or

more processes, the deduplication system creates a single

read-only copy to be shared by all the processes in the

group. The processes can freely perform read operations

on the shared page, but any memory write results in a

(copy-on-write) page fault creating a private copy for the

writing process. Such write operation takes significantly

longer than a write into a non-deduplicated page. This

provides an attacker able to craft pages on the system with

a single-bit timing side channel to identify whether a page

with given content exists in the system. When using this

simple side channel for information disclosure, the memory

requirements grow exponentially with the number of target

bits in a page, resulting in a very slow primitive which prior

work argued useful only to leak low-entropy information [8].

In this paper, we show that memory deduplication can

actually provide much stronger attack primitives than previ-

ously assumed, enabling an attacker to potentially disclose

arbitrary data from memory. In particular, we show that

deduplication-based primitives allow an attacker to leak

even high-entropy sensitive data such as randomized 64 bit

pointers and start off advanced exploitation campaigns. To

substantiate our claims, we show that a JavaScript-enabled

attacker can use our primitives to craft a reliable exploit

based on the widespread Rowhammer hardware vulnerabil-

ity [23]. We show that our exploit can allow an attacker to

gain arbitrary memory read/write access and “own” a mod-

ern Microsoft Edge browser, even when the target browser

is entirely free of bugs with all its defenses are turned on.

All our primitives exploit the key intuition that, if an

attacker has some degree of control over the memory

layout, she can dramatically amplify the strength of the

memory deduplication side channel and reduce its memory

requirements. In particular, we first show how control over

the alignment of data in memory allows an attacker to

pad sensitive information with known content. We use this

padding primitive in conjunction with memory deduplication

to perform byte-by-byte disclosure of high-entropy sensitive

data such as randomized code pointers. We then extend this

attack to situations where the target sensitive information has

strong alignment properties. We show that, when memory

is predictably reused (e.g., when using a locality-friendly

memory allocator), an attacker can still perform byte-by-byte

disclosure via partial data overwrites. Finally, we show that,

even when entropy-reducing primitives based on controlled

memory alignment or reuse are not viable, an attacker who

can lure the target process into creating many specially

crafted and interlinked pages can still rely on a sophisticated

birthday attack to reduce the entropy and disclose high-

entropy data such as randomized heap pointers.
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After showcasing our deduplication-based primitives in

a (Microsoft Edge) browser setting, we generalize our at-

tacks to system-wide exploitation. We show that JavaScript-

enabled attackers can break out of the browser sandbox

and use our primitives on any other independent process

(e.g., network service) running on the same system. As an

example, we use our primitives to leak HTTP password
hashes and break heap ASLR for the popular nginx web

server.

To conclude our analysis, we present a Microsoft Edge

case study which suggests that limiting the deduplication

system to only zero pages can retain significant memory

saving benefits, while hindering the attacker’s ability to use

our primitives for exploitation purposes in practice.

Summarizing, we make the following contributions:

• We describe novel memory deduplication-based prim-

itives to create a programming abstraction (or weird
machine [14], [37]) that can be used by an attacker to

disclose sensitive data and start off powerful attacks on

a target deduplication-enabled system (Section III).

• We describe an implementation of our memory

deduplication-based primitives in JavaScript and eval-

uate their properties on the Microsoft Edge browser

running on Windows 10 (Section IV and Section V).

• We employ our memory deduplication-based primitives

to craft the first reliable Rowhammer exploit for the

Microsoft Edge browser from JavaScript (Section VI).

• We show how our primitives can be extended to system-

wide exploitation by exemplifying a JavaScript-based

cross-process attack on the popular nginx web server

running next to the browser (Section VII).

• We present a mitigation strategy (zero-page deduplica-
tion) that preserves substantial benefits of full memory

deduplication (>80% in our case study) without making

it programmable by an attacker (Section VIII).

II. BACKGROUND

We first discuss the basic idea behind memory deduplica-

tion and its implementation on Windows and Linux. We then

describe the traditional memory deduplication side channel

explored in prior work and its limitations.

A. Memory Deduplication

To reduce the total memory footprint of a running sys-

tem, memory pages with the same contents can be shared

across independent processes. A well-known example of

this optimization is the page cache in modern operating

systems. The page cache stores a single cached copy of

file system contents in memory and shares the copy across

different processes. Memory deduplication generalizes this

idea to the run-time memory footprint of running processes.

Unlike the page cache, two or more pages with the same

content are always deduplicated, even, in fact, if the pages

are completely unrelated and their equivalence is fortuitous.

To keep a single copy of a number of identical pages, a

memory deduplication system needs to perform three tasks:

1) Detect memory pages with the same content. This is

usually done at regular and predetermined intervals

during normal system operations [3], [6].

2) After detecting pages with the same content, keep only

one physical copy and return the others to the memory

allocator. For this purpose, the deduplication system

updates the page-table entries (PTE) of the owning pro-

cesses so that the virtual addresses (originally pointing

to different pages with the same content) now point

to a single shared copy. The PTEs are also marked as

read-only to support copy-on-write (COW) semantics.

3) Create a private copy of the shared page whenever any

process writes to it. Specifically, once one of owning

processes writes to the read-only page, a (COW) page

fault occurs. At this point, the memory deduplication

system can create a private copy of the page and map

it into the corresponding PTE of the faulting process.

On Windows (8.1 onward), memory deduplication is

known as memory combining. The implementation merges

pages that are both private and pageable [2] regardless of

their permission bits. These pages exclude, for example, file-

backed pages or huge pages which are non-pageable on Win-

dows. To perform deduplication, memory combining relies

on a kernel thread to scan the entire physical memory for

pages with identical content. Every 15 minutes (by default),

the thread calls the MiCombineAllPhysicalMemory
function to merge all the identical memory pages found. On

Linux, memory deduplication is known as kernel samepage
merging (KSM). The implementation operates differently

compared to Windows, combining both scanning and merg-

ing operations in periodic and incremental passes over

physical memory [7].

B. The Memory Deduplication Side Channel

As mentioned earlier, writing to a shared page from any of

the owning processes results in a page fault and a subsequent

page copy. Due to these additional (expensive) operations, a

write to a shared page takes significantly longer (up to one

order of magnitude) compared to a write to a regular page.

This timing difference provides an attacker with a side

channel to detect whether a given page exists in the system.

For this purpose, she can craft a page with the exact same

content, wait for some time, and then measure the time to

perform a write operation to the crafted page. If the write

takes longer than a write to a non-deduplicated page (e.g.,

a page with random content), the attacker concludes that a

page with the same content exists. Using this capability, the

attacker may be able to detect a user visiting a particular web

page or running a particular program. We note that, while

false positives here are possible (e.g., due to a non-unique

crafted page or noisy events causing regular write operations

to complete in unexpectedly long time), an attacker can
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Figure 1. The alignment probing primitive to leak high-entropy secrets
with weak memory alignment properties.

use redundancy (e.g., repeated attempts or multiple crafted

pages) to disclose the intended information in a reliable way.

At first glance, memory deduplication seems like a very

slow single-bit side channel that can only be used for

fingerprinting applications [31], [36] or at most leaking a

limited number of bits from a victim process [8]. In the

next section, we describe how memory deduplication can be

abused to provide an attacker with much stronger primitives.

III. ATTACK PRIMITIVES

We describe efficient primitives based on the memory

deduplication side channel to read high-entropy data from

memory. Our primitives abuse a given deduplication system

to build a weird machine [14], [37] that we can program by

controlling the memory layout and generating pages with

appropriate content. We later show that, by relying on our

primitives, an attacker can program the weird machine to

leak sensitive information such as randomized 64 bit pointers

or even much larger secrets (e.g., 30 byte password hashes).

A naive strategy to disclose arbitrarily large secret in-

formation using the single-bit memory deduplication side

channel is to brute force the space of all possible secret page

instances. Brute forcing, however, requires the target page

to be aligned in memory and imposes memory requirements

which increase exponentially with each additional secret

bit. This makes brute forcing high-entropy data not just

extremely time consuming, but also unreliable due to the

increasing possibility of false positives [8]. A more elegant

solution is to disclose the target secret information incremen-

tally or to rely on generative approaches. This intuition forms

the basis for our memory deduplication-based primitives.

Primitive #1: Alignment probing

We craft a primitive that allows an attacker to perform

byte-by-byte probing of secret information by controlling

its alignment. Figure 1-A exemplifies a memory page with

the secret data targeted by the attacker. We refer to pages

that contain secret data as secret pages and to the pages that

the attacker crafts to disclose the secret data as probe pages.

This primitive is applicable when attacker-controlled input

can change the alignment of secret data with weak alignment
properties. For instance, the secret may be a password stored
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Figure 2. The partial reuse primitive to leak high-entropy secrets with
predictable memory reuse properties.

in memory immediately after a blob of attacker-provided

input bytes. By providing fewer or more bytes, the attacker

can shift the password up and down in memory.

Using this capability, the attacker pushes the second part

of the secret out of the target page (Figure 1-B), allowing

her to brute force, using deduplication, only the first part of

the secret (e.g., one byte) with much lower entropy. After

obtaining the first part of the secret, the attacker provides a

smaller input, so that the entire secret is now in one page

(Figure 1-C). Next, she brute forces only the remainder of

the secret to fully disclose the original data (Figure 1-D).

With a larger secret, the attacker can simply change the

alignment multiple times to incrementally disclose the data.

Our alignment probing primitive is very effective in

practice. We later show how we used it to disclose a code

pointer in Microsoft Edge and a password hash in nginx.

Primitive #2: Partial reuse

When the secret has strong memory alignment properties

(e.g., randomized pointers), we cannot use our alignment

probing primitive to reduce the entropy to a practical brute-

force range. In this scenario, we craft a primitive that allows

an attacker to perform byte-by-byte probing of secret infor-

mation by controlling partial reuse patterns. This primitive

is applicable when attacker-controlled input can partially

overwrite stale secret data with predictable reuse properties.

User-space memory allocators encourage memory reuse

and do not normally zero out deallocated buffers for per-

formance reasons. This means that a target application often

reuses the same memory page and selectively overwrites the

content of a reused page with new data. If the application

happens to have previously stored the target secret data in

that page, the attacker can then overwrite part of the secret

with known data and brute force the remainder.

Figure 2-A shows an example of a page that previously

stored the secret and is reused to hold attacker-controlled

input data. After partially overwriting the first part of the

secret with a large input, the attacker can brute force, using

deduplication, only the second part (Figure 2-B). Given

the second part of the secret, the attacker can now brute

force the first part by deduplicating against a page without

an overwritten secret (Figure 2-C). Similar to the previous
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Figure 3. The birthday heap spray primitive to leak high-entropy heap ASLR with no attacker-controlled alignment or reuse.

primitive, the operations generalize to larger secrets and the

result is full disclosure of the original data (Figure 2-D).

Our partial reuse primitive is fairly common in practice.

We later show how we used it to break heap ASLR in nginx.

Primitive #3: Birthday heap spray

Our third primitive can leak a secret even when the

attacker has no control over memory alignment or reuse.

The primitive relies on a generative approach that revolves

around the well-known birthday paradox, which states that

the probability of at least two people in a group having

the same birthday is high even for modest-sized groups.

This primitive is applicable when the attacker can force the

application to controllably spray target secrets over memory.

So far, we assumed that there is only one secret that we

want to leak, so if a (partially masked) secret has P possible

values, we use memory deduplication to perform 1 × P
comparisons between the P probe pages and the single target

page—essentially brute forcing the secret. For a large P ,

doing so requires a prohibitively large amount of memory.

In addition, it requires a large number of tests, which may

lead to many false positives due to noise.

However, if the attacker can cause the target application

to generate many secrets, memory deduplication provides

a much stronger primitive than simple brute forcing. For

instance, an attacker may generate a large number of (secret)

heap pointers by creating a large number of objects from

JavaScript, each referencing another object. For simplicity,

we assume that the object is exactly one page in size and all

fields are crafted constant and known except for one secret

pointer, but other choices are possible. Whatever the page

layout, its content serves as an encoding of the secret pointer.

Assume the attacker causes the application to generate S
such pages, each with a different secret pointer (Figure 3-A).

The attacker now also creates P probe pages, with P being

roughly the same size as S. Each probe page uses the same

encoding as the secret pages, except that, not knowing the

secret pointers, the attacker needs to “guess” their values.

Each probe page contains a different guessed value. The

idea is to find at least one of the probe pages matching any
of the secret pages. This is a classic birthday problem with

the secret and probe values playing the role of birthdays.

Since memory deduplication compares any page with any

other page in each deduplication pass, it automatically tests

all our P possible probe pages against the S target secret

pages (Figure 3-B). A hit on any of our P possible values

immediately exposes a target secret (Figure 3-C).

Our birthday primitive reduces the memory requirements

of the attack by a factor of S. It is especially useful when

leaking the location of randomized pointers. Note that, for

exploitation purposes, it is typically not important which

pointer the attacker leaks, as long as at least one of them

can be leaked. We later show how we used our primitive

to leak a randomized heap pointer in Microsoft Edge and

subsequently craft a reliable Rowhammer exploit.

IV. MICROSOFT EDGE INTERNALS

We discuss Microsoft Edge internals necessary to under-

stand the attacks presented in Section V. First, we look

at object allocation in Microsoft Edge’s JavaScript engine,

Chakra. We then describe how Chakra’s JavaScript arrays of

interest are represented natively. With these constructs, we

show how an attacker can program memory deduplication

from JavaScript. Finally, we describe how an attacker can

reduce noise and reliably exploit our primitives.

A. Object Allocation

Chakra employs different allocation strategies for objects

of different sizes maintained in three buckets [41]: small,

medium, and large object buckets. The small and large object

buckets are relevant and we discuss them in the following.

1) Small objects: Objects with a size between 1 and

768 bytes are allocated using a slab allocator. There are

different pools for objects of different sizes in increments

of 16 bytes. Each pool is four pages (16,384 bytes) in size

and maintains contiguously allocated objects. In some cases,

Chakra combines multiple, related allocations in one pool.

This is the case, for example, for JavaScript arrays with a

pre-allocated size of 17 elements or less, where an 88-byte

header is allocated along with 17 × 8 bytes of data.

2) Large objects: Unlike small objects, large objects (i.e.,

larger than 8,192 bytes) are backed by a HeapAlloc
call and are hence stored in a different memory location

than their headers. One important consequence is that the

elements of a large object have a known page alignment.

As discussed in Section V-C2, we rely on this property to

create our probe pages.
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B. Native Array Representation

Modern JavaScript has two different types of arrays.

Regular Arrays, which can hold elements of any type and

may even be used as a dictionary, and TypedArrays [29],

which can only hold numerical values of a single type,

have a fixed size, and cannot be used as a dictionary.

TypedArrays are always backed by an ArrayBuffer object,

which contiguously stores numerical elements using their

native representation. Large ArrayBuffers are page-aligned

by construction. To store regular Arrays, Chakra internally

relies on several different representations. We focus here on

the two representations used in our exploit.

The first representation can only be used for arrays which

contain only numbers and are not used as dictionaries. With

this representation, all the elements are sequentially encoded

as double-precision IEEE754 floating-point numbers. This

representation allows an attacker to create fake objects in

the data part of the array. In particular, both pointers and

small numbers can be encoded as denormalized doubles.

A second representation is used when an array may

contain objects, strings, or arrays. For this representation,

Microsoft Edge intelligently relies on the fact that double-

precision IEEE754 floats have 252 different ways of encod-

ing both +NaN and −NaN 1. 252 is sufficient to encode

single values for +NaN and −NaN , as well as 48 bit point-

ers and 32 bit integers. This is done by XORing the binary

representation of doubles with 0xfffc000000000000
before storing them in the array. The 12 most significant

bits of a double consist of a single sign bit and an 11-bit

exponent. If the exponent bits are all ones, the number rep-

resents +NaN or −NaN (depending on the sign bit). The

remaining 52 bits do not matter in JavaScript. As mentioned,

Chakra only uses single values for +NaN and −NaN ,

0x7ff8000000000000 and 0xfff8000000000000
respectively. Since a user-space memory address has at least

its 17 most significant bits set to 0, no double value overlaps

with pointers by construction and Chakra can distinguish

between the two cases without maintaining explicit type

information.

The JIT compiler determines which representation to use

based on heuristics. If the heuristics decide incorrectly (e.g.,

a string is later inserted into an array which can only contain

doubles), the representation is changed in-place.

In Section V-C2, we show how we used these representa-

tions to craft our birthday heap spray primitive. Further, we

used the details of the second representation to improve the

success rate of our Rowhammer attack in Section VI.

C. Programming Memory Deduplication from JavaScript

To program memory deduplication, we need to be able

to (a) create arbitrary pages in memory and (b) identify

memory pages that have been successfully deduplicated. We

1Not a Number or NaN represents undefined values.

use TypedArrays to create arbitrary memory pages and an

available high-resolution timer in JavaScript to measure slow

writes to deduplicated pages.

1) Crafting arbitrary memory pages: As mentioned in

Section IV-B, TypedArrays can store native data types in

memory. If the TypedArray is large enough, then the array

is page-aligned and the location of each element in the page

is known. Using, for example, a large Uint8Array, we can

control the content of each byte at each offset within a

memory page, allowing us to craft arbitrary memory pages.

2) Detecting deduplicated pages: While JavaScript pro-

vides no access to native timestamp counters via the

RDTSC instruction, we can still rely on JavaScript’s

performance.now() to gather timing measurements

with a resolution of hundreds of nanoseconds.

We detect a deduplicated page by measuring lengthy

COW page faults when writing to the page. We mea-

sured that writing to a deduplicated page takes around

four times longer than a regular page—including calls to

performance.now(). This timing difference in conjunc-

tion with the ability to craft arbitrary memory pages provides

us with a robust side channel in Microsoft Edge.

3) Detecting deduplication passes: As previously dis-

cussed in Section II, Windows calls MiCombineAll-
PhysicalMemory every 15 minutes to deduplicate pages.

To detect when a deduplication pass occurs, we create pairs

of pages with unique content, and write to pages belonging

to different pairs every 10 seconds. Once a number of

writes take considerably longer than a moving average, we

conclude that a deduplication pass has occurred.

D. Dealing with Noise

To minimize the noise during our measurements, we used

a number of techniques that we briefly describe here.

The first technique is to avoid cold caches. We first read

from the address on which we are going to perform a write to

ensure the page has not been swapped out to stable storage.

Further, we call performance.now() a few times before

doing the actual measurements in order to ensure its code

is present in the CPU cache.

The second technique is to avoid interferences from the

garbage collector (GC). We try to trigger the GC before

doing any measurements. This can be done on most browsers

by allocating and freeing small chunks of memory and

detecting a sudden slowdown during allocations. On Mi-

crosoft Edge, however, it is possible to make a call to

window.CollectGarbage() to directly invoke the GC.

The third technique is to avoid interferences from CPU’s

dynamic frequency scaling (DFS). We try to minimize noise

from DFS by keeping the CPU in a busy loop for a few

hundred milliseconds and ensuring that it is operating at the

maximum frequency during our measurements.

Equipped with reliable timing and memory management
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Figure 4. The incremental disclosure of a code pointer through JIT code.
In the first deduplication pass, we can leak the higher bits of a randomized
code pointer (A) and, in the second deduplication pass, we can leak the
lower bits (B).

capabilities in JavaScript, we now move on to the imple-

mentation of our primitives and our Rowhammer attack.

V. IMPLEMENTATION

We now discuss the implementation details of the memory

deduplication-based primitives introduced in Section III.

Our implementation is written entirely in JavaScript and

evaluated on Microsoft Edge running on Windows 10. We

chose Microsoft Edge as our target platform since it is a

modern browser that is designed from the ground up with

security in mind. At the time of writing, Microsoft Edge

is the only browser on Windows that ships as a complete

64 bit executable by default. 64 bit executables on Windows

benefit from additional ASLR entropy compared to their

32 bit counterparts [27]. Nonetheless, we now show that

using memory deduplication, we can leak pointers into the

heap as well as pointers into interesting code regions.

Before detailing our end-to-end implementation, we first

describe the testbed we used to develop our attacks.

A. Testbed

We used a PC with an MSI Z87-G43 motherboard, an

Intel Core i7-4770 CPU, and 8 GB of DDR3 RAM clocked

at 1600MHz running Windows 10.0.10240.

B. Leaking Code Pointers in Edge

We used our alignment probing primitive to leak code

pointers in Microsoft Edge. Like all modern browsers,

Microsoft Edge employs a JIT compiler which compiles

JavaScript to native code. The generated code is full of

references to memory locations (i.e., both heap pointers

and code pointers) and, since x86 opcodes vary in size,

most of these pointers turn out to be unaligned. This is

ideal for our alignment probing primitive. We can first

craft a large JavaScript routine mostly filled with known

instructions that do not reference any pointers. Then, right in

the middle, we can cause the generation of an instruction that

contains a single pointer, and surgically position this pointer

right across two page boundaries. We can then incremen-

tally leak parts of the pointer across multiple deduplication

passes. Although, in principle, this strategy sounds simple,

complications arise when we account for security defenses

deployed by modern browsers.

Microsoft Edge and other browsers randomize the JIT

code they generate as a mitigation against return-oriented

programming (ROP). Otherwise, a deterministic code gen-

eration scheme would allow attackers to generate their own

ROP gadgets at a known offset in the JIT code. Random-

ization techniques include using XOR to mask constant

immediates with a random value and insertion of dummy

opcodes in the middle of JIT code. These lead to the

presence of significant randomness to leak pointers in the

middle of a JavaScript function with the approach described

earlier. Fortunately, randomization does not affect the end

of the JIT code generated for a given JavaScript function.

At the very end of each compiled JavaScript routine,

we can find some exception handling code. The last two

instructions of this code load a code pointer into the RAX
register and jump there. The remainder of the page is

filled with int 3 instructions (i.e., 0xcc opcode). The

code pointer always points to the same code address in

chakra.dll and can therefore reveal the base address

of this DLL. For this to work, we need to make the JIT

compiler create a routine which is slightly larger than one

page in size. We could then push the code address partially

across this page boundary, and create a second page where

all data is known except for this partial code pointer. By

pushing this code pointer further over the page boundary,

we can expose more and more entropy to the second page

as shown in Figure 4. This provides us with the semantics

we need for our alignment probing primitive to work.

The only problem we still need to overcome is that we do

not fully control the size of the routine due to the random

insertion of dummy instructions. Given that the entropy of

dummy instruction insertion is relatively low for practical

reasons, we solved this by simply making the compiler

generate JIT code for a few hundred identical routines. This

results in a few pages for each possible alignment of our

code pointer across the page boundary. At least one of them

will inevitably be the desired alignment to probe for.

1) Dealing with noise: Although we have a very small

number of probe pages, false positives may still occur. A

simple way to sift out false positives when probing for

secret pages with k unknown bytes, is to probe for pages

with fewer (e.g., k − 1) unknown bytes as well. Recall that

we spray the JIT area with the same function, but due to

the introduced randomness by the JIT compiler, different

(last) pages end up with different number of bytes from the

pointers. Hence, in the final pass we can probe for secret
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Figure 5. Entropy of an arbitrary randomized heap pointer before and
after using the timing side channel.

pages which contain six, seven, and eight bytes all at once.

Since the correct guesses contain the same information, they

are redundant and can thus be used to verify each other using

a simple voting scheme. Figure 4 shows how we exploit this

redundancy to reduce the noise in the first and the second

deduplication pass (A and B, respectively).

2) Time and memory requirements: ASLR entropy for

64 bit DLLs on Windows 10 is 19 bits. DLL mappings

may start from 0x7ff800000000 to 0x7fffffff0000.

Assuming we know the exact version of chakra.dll
(which allows us to predict the 16 least significant bits), we

can easily leak the pointer’s location in two deduplication

passes. In the first pass, we can leak the five most significant

bytes, as shown in Figure 4-A. Out of these bytes only the

11 least significant bits are unknown, hence, we only need

211 probe pages requiring 8 MB of memory. In a second pass

(Figure 4-B), we can probe for the remaining eight bits of

entropy. Note that the memory requirement of this attack is

orders of magnitude smaller than a sheer brute force, making

this attack feasible in a browser setting.

In case the exact version of chakra.dll is unknown,

we can opt to leak the pointer in three passes by leaking

the two least significant bytes in the last pass. Assuming the

code pointer is aligned on a 16 byte boundary, this requires

212 probe pages and 16 MB of memory.

C. Leaking Heap Pointers in Edge

While we could incrementally leak randomized code

pointers using our alignment probing primitive in Microsoft

Edge, we did not find a similar scenario to leak randomized

heap pointers given their strong alignment properties. To

leak heap pointers, using our partial reuse primitive is

an option, but given the strong security defenses against

use-after-free vulnerabilities deployed in modern browsers,

memory reuse is not easily predictable. Hence, a different

strategy is preferable.

Since we have the ability to generate many heap pointers

from JavaScript, we can craft our birthday heap spray

primitive (Section III) to leak heap pointers. For this attack,

we allocate many small heap objects and try to leak the

locations of some of them. Before employing our birthday

heap spray primitive to break heap ASLR, we first describe

an additional novel timing side channel to further reduce the

entropy in a preliminary step.

1) Reducing ASLR entropy: At the time of writing, 64 bit

heap memory on Windows 10 starts at addresses ranging be-

tween 0x100000000 and 0x10000000000, and aligned
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Figure 6. The birthday heap spray primitive to leak high-entropy heap
ASLR with no attacker-controlled alignment or reuse. After finding the
alignment of the sprayed heap objects via a side-channel (A), we encode
the address of each 1 MB-aligned object (B) into a secret page by storing its
reference multiple times (C). We then guess these secret pages by creating
probe pages that mimic the layout of secret pages (D). In our current
version, our guesses are 128 MB apart.

at 16-page boundaries. This leaves us with 24 bits of entropy

for the heap, similar to what prior work previously reported

for Windows 8 [27]. Most pointers used from JavaScript,

however, do not align at 16-page boundaries and can point

to any 16 byte-aligned location after their base offset (see

Figure 5 for an example). This leaves us with 36 bits of

entropy for randomized heap addresses.

Mounting our birthday heap spray primitive directly on

36 bits of entropy requires 218 secret pages and the same

number of probe pages, amounting to 1 GB of memory.

Additionally, finding a signal in 218 pages requires a very

small false positive rate, which past research shows is

difficult to achieve in practice [8]. However, using a timing

side channel in Microsoft Edge’s memory allocator, we can

reliably detect objects that are aligned to 1 MB, reducing the

entropy down to 20 bits.

Whenever Microsoft Edge’s memory allocator runs out

of memory, it needs to ask the operating system for new

pages. Every time this happens, the allocator asks for 1 MB

of memory. These allocations happen to also be aligned at

the 1 MB boundary. In order to get many consecutive alloca-

tions, we spray many small array objects (see Section IV-A)

on the heap in a tight loop and keep a reference to them so

that they are not garbage collected. We time each of these

allocations and mark the ones that take longer than eight

times the average to complete. If, for example, it takes 4,992

objects to fill a 1 MB slab buffer, we try to find chains of

slower allocations that are 4,992 allocations apart. These are

the array objects aligned at the 1 MB boundary.

There may still be a small number of false positives in

our (large) set of candidates. This is not an issue, as these

candidates will simply not match any of the probe pages that

we craft for our birthday heap spray primitive.

2) Birthday heap spray: Figure 6 summarizes the steps

we followed to implement our birthday heap spray primitive.
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Figure 7. Birthday heap spray’s reliability and memory tradeoffs.

As a first step, we allocate a number of target objects

aligned at the 1 MB boundary using the timing side channel

introduced earlier (Figure 6-A). The reference to a 1 MB-

aligned object constitutes a secret that we want to leak

using our birthday heap spray primitive. Since we can create

an arbitrarily large number of such objects, we can force

Microsoft Edge to generate S secrets for our birthday attack.

We encode each of the S secrets in a single secret page

which we describe now. Our S secret pages are backed

using a large Array, as described in Section IV-A. We fill

in the array elements (at known offsets) with references to

exactly one secret per page. Using this strategy, we can force

each secret page to store 512 identical 64 bit pointers. Note

that probing directly for a target object’s header (without

using our secret pages) incurs more entropy, since the header

contains different pointers. This increases the entropy of the

page that stores an object’s header significantly. When using

secret pages, in contrast, the only entropy originates from a

single pointer referencing one of the S secrets (Figure 6-

B/C).

We now need to craft P probe values to guess at least

one of the S secrets. We encode each value in a probe page

to mimic the layout of the secret pages. To store our probe

pages, we create a large TypedArray, which, compared to a

regular Array, offers more controllable value representations.

We fill each array page with 512 guessed 64 bit pointers

similar to the secret pages (Figure 6-D).

After the generation step completes, a few of our P probe

pages get inevitably deduplicated with some of our S secret

pages. Since we can detect deduplicated probe pages using

our memory deduplication side channel, we can now leak

correctly guessed pointer values and break heap ASLR.

3) Dealing with noise: If we want to add some redun-

dancy in detecting an object’s address, we cannot simply

create extra identical probe pages. Identical probe pages get

deduplicated together, resulting in false positives. However,

since we have no restrictions on how to “encode” our secret

into a page, we can add variations to create extra sets of

Pointer type Memory Dedup passes Time

Unknown code 16 MB 3 45 Minutes
Known code 8 MB 2 30 Minutes
Heap 500 MB 1 15 Minutes
Heap + unknown code 516 MB 3 45 Minutes
Heap + known code 508 MB 2 30 Minutes

Table I
TIME AND MEMORY REQUIREMENTS TO LEAK POINTERS IN THE

CURRENT IMPLEMENTATION.

secret and probe pages. One way is to fill all but one of the

available slots (i.e., 511 slots) with a reference to our object,

and fill the remaining slot with a different magic number for

each redundant set of pages.

4) Time and memory requirements: Our implementation

of the birthday heap spray primitive requires only a single

deduplication pass to obtain a heap pointer. For the execution

of the attack, we need to allocate three chunks of memory. A

first chunk is needed for the S 1 MB-aligned target objects,

resulting in S · 220 bytes. A second chunk of memory

is needed for the secret pages. With a redundancy factor

r, we need S · r · 212 bytes for the secret pages. To

cover 20 bits of entropy, we need P = 220

S probe pages,

each with a r redundancy factor, resulting in 220

S · r · 212
bytes. Figure 7 shows the memory requirements for different

redundancy factors based on this formula. With our target

redundancy factor of three (which we found sufficient and

even conservative in practice), we can leak a heap pointer

with only 500 MB of memory. Table I summarizes the end-

to-end requirements for our attacks to leak code and heap

pointers. Note that we can leak part of a code pointer and

a complete heap pointer in the same deduplication pass (15

minutes). Given a known version of chakra.dll, we can

leak both pointers in two deduplication passes (30 minutes).

D. Discussion

In this section, we described the implementation of

our memory deduplication primitives in Microsoft Edge’s

JavaScript engine. Using our alignment probing primitive,

we leaked a randomized code pointer and, using our birthday

heap spray primitive, we leaked a randomized heap pointer.

We successfully repeated each of these attacks 10 times.

In the next section, we describe the first remote Rowham-

mer exploit that extensively relies on our memory deduplica-

tion primitives to disclose randomized pointers. To the best

of our knowledge, ours is the first modern browser exploit

that does not rely on any software vulnerability.

We did not need to employ the partial reuse primitive

for our Rowhammer exploit, but, while we found that

controlling memory reuse on the browser heap is nontrivial,

we believe that our partial reuse primitive can be still

used to leak randomized stack addresses by triggering deep

functions in JIT code and partially overwriting the stack. In
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Section VII, in turn, we extensively use our partial reuse

primitive to leak a 30 byte password hash from a network

server—part of a class of applications which is, in contrast,

particularly susceptible to controlled memory reuse attacks.

VI. ROWHAMMERING MICROSOFT EDGE

Rowhammer [23] is a widespread DRAM vulnerability

that allows an attacker to flip bits in a (victim) memory page

by repeatedly reading from other (aggressor) memory pages.

More precisely, repeated activations of rows of physical

memory (due to repeated memory read operations) trigger

the vulnerability. The bit flips are deterministic: once we

identify a vulnerable memory location, it is possible to

reproduce the bit flip patterns by reading again the same

set of aggressor pages.

We report on the first reliable remote exploit for the

Rowhammer vulnerability running entirely in Microsoft

Edge. The exploit does not rely on any software vulnerability

for reliable exploitation. It only relies on our alignment

probing primitive and our birthday heap spray primitive to

leak code and heap pointers (respectively), which we later

use to create a counterfeit object. Our counterfeit object

provides an attacker with read/write access to Microsoft

Edge’s virtual memory address space.

To reliably craft our end-to-end exploit, we had to

overcome several challenges, which we now detail in the

remainder of the section. First, we describe how we triggered

the Rowhammer vulnerability in Microsoft Edge running on

Windows 10. Next, we describe how we used our dedu-

plication primitives to craft a (large) counterfeit JavaScript

object inside the data area of a valid (small) target object.

Finally, we describe how we used Rowhammer to pivot

from a reference to a valid target object to our counterfeit

object, resulting in arbitrary memory read/write capabilities

in Microsoft Edge.

A. Rowhammer Variations

In the literature, there are two main variations on the

Rowhammer attack. Single-sided Rowhammer repeatedly

activates a single row to corrupt its neighbouring rows’ cells.

Double-sided Rowhammer targets a single row by repeatedly

activating both its neighbouring rows. Prior research shows

that double-sided Rowhammer is generally more effective

than single-sided Rowhammer [33].

The authors of Rowhammer.js [17], an implementation of

the Rowhammer attack in JavaScript, rely on Linux’ anony-

mous huge page support. A huge page in a default Linux

installation is allocated using 2 MB of contiguous physi-

cal memory—which spans across multiple DRAM rows.

Hence, huge pages make it possible to perform double-sided

Rowhammer from JavaScript. Unfortunately, we cannot rely

on huge pages in our attack since Microsoft Edge does not

explicitly request huge pages from the Windows kernel.

Another option we considered was to rely on large alloca-

tions. We expected Windows to allocate contiguous blocks of

physical memory when requesting large amounts of memory

from JavaScript. However, Windows hands out pages from

multiple memory pools in a round robin fashion. The mem-

ory pages in each of these pools belong to the same CPU

cache set [29], which means that large allocations are not

backed by contiguous physical pages. We later made use of

this observation to efficiently create cache eviction sets, but

it is not immediately clear how we could use these memory

pools to find memory pages that belong to adjunct memory

rows and perform double-sided Rowhammer. Hence, we

ultimately opted for single-sided Rowhammer in JavaScript.

B. Finding a Cache Eviction Set on Windows

The most effective way to hammer a row is to use the

clflush instruction, which allows one to keep reading

from main memory instead of the CPU cache. Another

option is to find eviction sets for a specific memory location

and exploit them to bypass the cache.

Since the clflush instruction is not available in

JavaScript, we need to rely on eviction sets to perform

Rowhammer. Earlier, we discovered that Windows hands

out physical pages based on the underlying cache sets. As a

result, the addresses that are 128 KB apart are often in the

same cache set. We use this property to quickly find cache

eviction sets for memory locations that we intend to hammer.

Modern Intel processors after Sandy Bridge introduced a

complex hash function to further partition the cache into

slices [19], [26]. An address belongs to an eviction set if

the address and the eviction set belong to the same cache

slice. We use a cache reduction algorithm similar to [17] to

find minimal eviction sets2 in a fraction of a second.

To prevent our test code from interfering with our cache

sets, we created two identical routines to perform Rowham-

mer and determine cache sets. The routines are placed one

page apart in memory, which ensures the two routines are

located on different cache sets. If one of the two routines

interferes with an eviction set, the other one does not. In

order to find our eviction set, we run our test on both routines

and pick the fastest result. Likewise, before hammering, the

fastest test run determines which routine to use.

C. Finding Bit Flips

In order to find a vulnerable memory location, we allocate

a large Array filled with doubles. We make sure these

doubles are encoded using the XOR pattern described in

Section IV-B by explicitly placing some references in the

Array. This allows us to encode a double value such that all

bits are set to 13. We then find eviction sets and hammer 32

pages at a time. We read from each page two million times

2Minimal eviction sets contain N + 1 entries for an N-way L3 cache.
3The double value 5.5626846462679985e-309 has all bits set considering

the XOR pattern discussed in Section IV-B.
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before moving to the next page. After hammering each set

of 32 pages, we check the entire Array for bit flips.

After scanning a sufficient number of pages, we know

which bits can be flipped at which offsets. Next, we need to

determine what to place in the vulnerable memory locations

to craft our exploit. For this purpose, our goal is to place

some data in our Array which, after a bit flip, can yield

a reference to a controlled counterfeit object. We now first

describe how to obtain a bit-flipped reference to a counterfeit

object and then how to craft a counterfeit object to achieve

arbitrary memory read/write capabilities.

D. Exploiting Bit Flips

We developed two possible techniques to exploit bit flips

in Microsoft Edge:

1) Type flipping: Given the double representation de-

scribed in Section IV-B, a high-to-low (i.e., 1-to-0) bit flip

in the 11-bit exponent of a double element in our large

Array allows us to craft a reference to any address, including

that of our counterfeit object’s header. In essence, this bit

flip changes an attacker-controlled double number into a

reference that points to an attacker-crafted counterfeit object.

2) Pivoting: Another option is to directly corrupt an

existing valid reference. For this purpose, we can store

a reference to a valid target object in a vulnerable array

location. By corrupting the lower bits of the reference, we

can then pivot to our counterfeit object’s header. Assuming

an exploitable high-to-low bit flip, our corrupted reference

will point to a lower location in memory. If we fabricate our

counterfeit object’s header at this location, we can then use

the corrupted reference to access any memory addressable

by the counterfeit object. Recall from Section V-C1 that

we sprayed our target objects close to each other. By

corrupting a reference to one of these (small) objects, we

obtain a reference to the middle of the previous valid target

object. Since we control the memory contents pointed by

the corrupted reference (our small target objects use in-band

data), we can fabricate our counterfeit object at that location.

These two attacks make it possible to exploit 23 out of

every 64 high-to-low bit flips (i.e., 36% of the bit flips are

exploitable). We now describe how we create our counterfeit

object before summarizing our attack.

E. Creating a Counterfeit JavaScript Object

To craft a valid large counterfeit object, we rely on

the code pointer to the Chakra’s binary we leaked using

our alignment probing primitive, and on the heap pointer

we leaked using our birthday heap spray primitive. Our

counterfeit object (of type Uint8Array) resides inside a

JavaScript Array containing only IEEE754 double values. As

discussed in Section IV-B, this type of array does not XOR

its values with a constant, allowing us to easily craft arbitrary

pointers inside the array (or any other non-NaN value).

To craft our counterfeit Uint8Array object, we need a

valid vtable pointer. We obtain the latter by simply adding a

fixed offset to our leaked code pointer. Other important fields

in the Uint8Array object are its size and a pointer to its

out-of-band data buffer. We obtain the latter by simply using

our leaked heap address. These fields are sufficient to allow

a compiled JavaScript routine to use our Uint8Array
object. The generated assembler performs a type comparison

on the vtable pointer field and performs bound checking on

the size field. Note that the crafted counterfeit object does

not violate any of the CFI rules in Microsoft Edge [42].

At this stage, since we control the out-of-band data buffer

location our counterfeit Uint8Array points to, we can

read or write from anywhere in the Microsoft Edge’s address

space with valid virtual mappings. To reliably identify all

the valid mappings, we can first use our counterfeit object

to dump the contents of the current heap and find heap, stack

or code pointers that disclose additional virtual mapping

locations in the address space. We can now get access

to the newly discovered locations by crafting additional

counterfeit objects (using the current counterfeit object) and

discover new pointers. Alternating disclosure steps with

pointer chasing steps allows us to incrementally disclose the

valid virtual mappings and control the entirety of the address

space, as also shown in prior work [11], [13], [25], [35].

F. Dealing with Garbage Collection

Using the counterfeit objects directly (as done above)

provides us with arbitrary read/write access to Microsoft

Edge’s address space, but as soon as a garbage collection

pass checks our counterfeit object, the browser may crash

due to inconsistent state in the garbage collector.

To avoid this scenario, we have to minimize the amount

of time that we use the counterfeit object directly. For this

purpose, we only use the counterfeit object to corrupt the
header of other valid objects and we immediately restore the

(corrupted) reference to our counterfeit object afterwards.

To this end, we use the (leaked) pointer to a valid

target object’s header as the backing data buffer of our

crafted counterfeit Uint8Array object. This allows us to

corrupt the size field of the target (array) object and operate

out-of-bounds accesses from the corresponding valid array

references. This again grants us arbitrary memory read/write

access to the underlying heap and, using the incremental dis-

closure strategy described earlier, to the entirety of Microsoft

Edge’s address space.

G. Putting the Pieces Together

Using Figure 8, we now summarize the steps of our

end-to-end Rowhammer attack with the pivoting technique

described in Section VI-D. The attack using the type flipping

technique is similar and we omit it for brevity.

As shown in Figure 8-A, at this stage of the attack, we

have access to a bit flip inside a controlled array. We can
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Figure 8. By flipping a bit in an object pointer, we can pivot to
the attacker’s counterfeit object. First, we identify a vulnerable memory
location within an array (A). After finding an exploitable bit flip, we store
a valid object reference at the vulnerable memory location and pivot to a
counterfeit object with Rowhammer (B).

now trigger the bit flip and pivot to our counterfeit object.

For this purpose, we store a reference to a valid object at the

vulnerable location inside the large double array we created

earlier (Section VI-C). We choose our valid object in a way

that, when triggering a bit flip, its reference points to our

counterfeit object, as shown in Figure 8-B.

With the arbitrary read/write primitive provided by our

counterfeit object, gaining code execution is achievable even

under a strong CFI implementation, as shown by [10].

1) Time and memory requirements: To leak the code and

heap pointers necessary for our Rowhammer attack, we need

508 MB of memory and 30 minutes for two deduplication

passes, as reported in Table I (assuming a known version of

chakra.dll). In addition, for the Rowhammer attack, we

need 1 GB of memory to find bit flips and 32 MB of memory

for our cache eviction sets. The time to find an exploitable

bit flip, finally, depends on the vulnerable DRAM chips

considered, with prior large-scale studies reporting times

ranging anywhere from seconds to hours in practice [23].

H. Discussion

In this section, we showed how an attacker can use our

deduplication primitives to leak enough information from the

browser and craft a reliable Rowhammer exploit. Our exploit

does not rely on any software vulnerability and runs entirely

in the browser, increasing its impact significantly. We later

show how an in-browser attacker can use our primitives

to also attack a process outside the browser sandbox and

present mitigation strategies in Section VIII.

Finally, we note that, to trigger bit flips using Rowham-

mer, we had to increase our DRAM’s refresh time, similar

to Rowhammer.js [17]. However, we believe that more

vulnerable DRAMs will readily be exploitable without mod-

ifying the default settings. We are currently investigating the

possibility of double-sided Rowhammer in Microsoft Edge

using additional side channels and more elaborate techniques

to induce bit flips with the default DRAM settings.

VII. SYSTEM-WIDE EXPLOITATION

In the previous sections, we focused on a JavaScript-

enabled attacker using our primitives to conduct an advanced

exploitation campaign inside the browser. In this section, we

show how the same attacker can break out of the browser

sandbox and use our primitives for system-wide exploitation

targeting unrelated processes on the same system. We focus

our analysis on network servers, which accept untrusted

input from the network and thus provide an attacker with

an entry point to control memory alignment and reuse.

We consider an attacker running JavaScript in the browser

and seeking to fulfill three system-wide goals: (i) fingerprint-

ing the target network server version running on the same

system; (ii) disclosing the password hash of the admin
network server user; (iii) disclosing the heap (randomized

using 64 bit ASLR) by leaking a heap pointer. We show

that crafting our primitives to conduct all such attacks is

remarkably easy for our attacker, despite the seemingly

constrained attack environment. This is just by exploiting the

strong spatial and temporal memory locality characteristics

of typical high-performance network servers.

For our attacks, we use the popular nginx web server

(v0.8.54) as an example. We use the 64 bit version of nginx

running in Cygwin as a reference for simplicity, but beta

nginx versions using the native Windows API are also

available. We configure nginx with a single root-level (\0-

terminated) password file containing a randomly generated

HTTP password hash for the admin user and with 8 KB

request-dedicated memory pools (request_pool_size
configuration file directive). Using 8 KB pools (4 KB by

default in our nginx version) is a plausible choice in practice,

given that the maximum HTTP request header length is 8 KB

and part of the header data is stored in a single pool. Before

detailing the proposed deduplication-based attacks, we now

briefly summarize nginx’ memory allocation behavior.

A. Memory Allocation Behavior

nginx implements two custom memory allocators on top

of the standard malloc implementation, a slab allocator

and a region-based (or pool) allocator [9]. We focus our

analysis here on nginx’ pool allocator, given that it manages

both user (and thus attacker-controllable) data and security-

sensitive data, and also tends to allocate many small objects

consecutively in memory.

The pool allocator maintains a number of independent

pools, each containing logically and temporally related

objects. Clients are provided with create, alloc, and

destroy primitives to respectively create a new pool,

allocate objects in it, and destroy an existing pool (with all

the allocated objects). Each pool internally maintains two

singly linked lists of data blocks (ngx_pool_t) and large

blocks (ngx_pool_large_t). The latter are only used

for large chunks (larger than 4 KB)—rarely allocated during

regular execution—so we focus our analysis on the former.
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Figure 9. Aligned and unaligned objects allocated in a single nginx pool.

Figure 9 exemplifies how nginx manages data blocks in

a single pool and (small) objects with the contained data

blocks. Each data block is allocated through the standard

malloc allocator, using a fixed 8 KB size and a 16 byte

alignment. The data block is prepended with a 40 byte pool

header, while the rest of the block is entirely dedicated

to object allocations. Within a block, objects are allocated

consecutively similar to a simple buffer allocator. For this

purpose, the pool header maintains the pointer to the next

free chunk in the corresponding data block.

The pool allocator offers two allocation primitives to

allocate objects in each pool: pnalloc (which allocates

unaligned objects at the byte boundary) and palloc (which

allocates aligned objects at the 8 byte boundary). Whatever

the allocation primitive, the allocator checks if there is space

available for the requested object size in the current (i.e.,

last allocated) data block. If sufficient space is available,

the object is allocated right after the last allocated object.

Otherwise (provided no space is available in other data

blocks), the allocator mallocs and appends a new data

block to the pool’s data block list. In such a case, the object

is allocated in the new data block right after the header.

Note that, once allocated, an object (or a data block) lives

until the pool is destroyed, as the allocator offers no object-

or block-level deallocation primitives. This simple design is

ideal to allocate logically related objects with a limited and

well-determined lifetime. Among others, nginx maintains

one pool for each connection (connection pool) and one pool

for each HTTP request (request pool). The request pool,

in particular, contains much client-controlled and security-

sensitive data, which an attacker can abuse to fulfill its goals,

as we show in Section VII-D and Section VII-E.

B. Controlling the Heap

To craft our primitives, an attacker needs to control the

layout of data in memory and ensure that the target data are

not overwritten before a deduplication pass occurs. While

this is trivial to implement in the attacker-controlled memory

area in a browser, it is slightly more complicated for server

programs with many concurrent connections and allocators

that promote memory reuse for efficiency.

Despite the challenges, we now show how an attacker can

spray the heap of a network server such as nginx to reliably

force the memory allocator to generate a long-lived page-

sized data pattern in memory. The pattern contains attacker-

controlled data followed by a target secret. In particular, we

show an attacker can fulfill two goals: (i) achieving a target

pattern alignment to retain a controlled number of secret

bytes before the page boundary, and (ii) ensuring that the

target pattern is not overwritten by other data.

To achieve our first goal, we can simply spray the heap

using thousands of parallel HTTP requests, ensuring some

of the generated patterns will land on a target alignment

within a page with high probability. To verify this intuition,

we issued 100,000 HTTP requests using 1,000 concurrent

connections to nginx. Our results confirmed that we can

easily gain 22 unique patterns with a given target alignment

on the heap (median of 11 runs) in a matter of seconds.

To achieve our second goal, we need to prevent at least

some of the pages hosting the generated pattern from being

overwritten by other data. This is not possible within the

same HTTP request (the request pool allows for no internal

reuse by construction), but it is, in principle, possible after

the server has finished handling the request. Since each data

block is allocated through the standard malloc allocator,

reuse patterns depend on the underlying system allocator.

Standard malloc allocators are based on free lists of

memory blocks (e.g, ptmalloc [5]) and maintain per-size free

lists in MRU (Most Recently Used) fashion. This strategy

strongly encourages reuse patterns across blocks of the same

size. Since the size of the data block in the request pool is

unique in nginx during regular execution, this essentially

translates to attacker-controlled request data blocks being

likely only reused by other requests’ data blocks. Some in-

terference may occur with allocators coalescing neighboring

free blocks, but the interference is low in practice, especially

for common server programs such as nginx which use very

few fixed and sparse allocation sizes.

Hence, the main question that we need to answer is

whether patterns with the target alignment are overwritten

by requests from other clients. Since the underlying memory

allocators maintain their free lists using MRU, we expect

that under normal load only the most recently used blocks

are reused. As a result, an attacker flooding the server with

an unusually large number of parallel requests can force the

allocator to reach regions of the deep heap which are almost

never used during regular execution. To verify this intuition,

this time we issued 100,000 HTTP requests using 100

(compared to the previous 1,000) concurrent connections to

nginx. Our results confirmed that only three unique patterns

with a given target alignment (median of 11 runs) could

be found on the heap, overwriting only the 14% of the

patterns sprayed on the heap by an attacker using an order

of magnitude larger number of concurrent requests.

We use our heap spraying technique when disclosing

password hashes in Section VII-D and heap pointers in

Section VII-E.

C. Server Fingerprinting

To fingerprint a running nginx instance, an attacker needs

to find one or more unique non-file-backed memory pages

to deduplicate. We note that there may be other ways to
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Figure 10. nginx password hash disclosure using alignment probing.

fingerprint running server programs, for instance, by sending

a network request on well-known ports and looking for

unique response patterns. In some cases, this is, however,

not possible or not version-accurate. In addition, server

fingerprinting is much more efficient with memory dedupli-

cation. In a single pass, an attacker can efficiently look for

many running vulnerable programs or simply for programs

with high exposure to deduplication-based attacks from a

database. We stress that none of the attacks presented here

exploit any software vulnerabilities.

In many running programs, it is easy for an attacker to

find memory pages for fingerprinting purposes in the data

section. Many of such pages are written to in a predictable

way during the early stages of execution and never change

again once the program reaches a steady state. Such access

patterns are particularly common for server programs, which

initialize most of their data structures during initialization

and exhibit read-only behavior on a large fraction of them

after reaching a steady state [15].

To confirm our intuition in nginx, we compared the con-

tents of all the pages in its data segment after initialization

(baseline) against the content of the same pages after running

all the tests of the publicly available nginx test suite [4]. Our

results showed that three out of the total eight data pages

always remain identical, despite the test suite relying on a

very different (and peculiar) nginx configuration compared

to the standard one used in our original baseline. The at-

tacker can abuse any of these three data pages (e.g., the data

page at offset 0x2000), or all of them for redundancy, to

detect our version of nginx running next to the host browser

on the same system. Once the attacker has fingerprinted the

target version, she can start sending network requests from

a remote client (after scanning for the server port) to craft

our primitives.

D. Password Disclosure

To disclose the HTTP password hash of the admin user

using our alignment probing primitive, an attacker needs to

first control the alignment of the password hash in memory

and predict neighboring data. For both conditions to happen,

the attacker needs to control data which is logically allocated

close to the target password hash and predict the memory

allocation behavior. Both constraints are easy to satisfy in

network servers.

To satisfy the first constraint, an attacker can rely on the

input password provided in the HTTP request as control

data. The intuition is that the target password hash is gener-

ally allocated close to the input password for authentication

purposes. We confirmed this intuition in nginx (which stores

the target password hash right next to the input password),

but also in other common network servers such as vsftpd,

proftpd, pure-ftpd, and sshd. To satisfy the second constraint,

we rely on our heap spraying technique discussed in Sec-

tion VII-B.

In nginx, the target password hash is allocated in

the request pool right after the input password and

with no alignment restrictions. In particular, on a typ-

ical (and short) HTTP authentication request for the

admin user with the last (Authorization) header in-

cluding the input password (such as the one issued by

wget --user=admin --password=PA$$W0RD), ng-

inx allocates only a single data block in the request pool.

The data block consecutively stores the 40 byte pool header,

around 1 KB worth of request-dependent data objects, the

input password, and the target password hash. The input

password is base64-encoded by the client and stored in

decoded form in memory by nginx. The target password

hash is by default stored in memory by nginx as follows:

$apr1$S$H, where apr1 is the format (MD5), S is the

8 byte salt, and H is the 22 byte base64-encoded password

hash value.

To craft a alignment probing primitive, an attacker can

arbitrarily increase the size of the input password (up to

4 KB) one byte at the time (even invalid base64 strings are

tolerated by nginx). This would progressively shift the target

password hash in memory, allowing the attacker to control

its alignment and mount a deduplication-based disclosure

attack. As a result of input password decoding and some

data redundancy, however, a given target password hash can

only be shifted at the 3 byte granularity by increasing the

input size. Nevertheless, this is sufficient for an attacker to

incrementally disclose three bytes of the password hash at

the time. Figure 10 outlines the different stages of the attack.

To start off the attack, an attacker can send a HTTP

request with a known (decoded) password pattern of 4,087

bytes. If this pattern happens to be allocated at the page

boundary, then the remaining nine bytes of the page will be

filled with the $apr1$ string followed by the first three

bytes of the salt within the same data block. Once the

crafted page-aligned pattern is in memory, the attacker can

use memory deduplication to disclose the first three bytes

of the salt in a single pass. Given that the target password

hash is encoded using 6 bit base64 symbols, this requires

crafting 218 probe pages. The attacker can then proceed to

incrementally disclose the other bytes of the salt first and

the password hash then, by gradually reducing the input
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Figure 11. nginx heap disclosure using partial reuse.

password size in the HTTP request and shifting the target

password hash towards lower addresses three bytes at a time.

There are three issues with this naive version of the

attack: (i) the target pattern is not necessarily page-aligned,

(ii) the target pattern may be overwritten by requests from

other clients, and (iii) 218 probe pages require 1 GB of

memory without redundancy, which is large and prone to

noise. To address all these issues, we rely on our heap

spraying technique. Instead of issuing one request, we issue

100,000 request with our target alignment over 1,000 open

connections. This allows us to reach the deep heap with

our desired alignment, addressing (i) and (ii). Furthermore,

thanks to the abundant redundancy when spraying the heap,

the attacker can easily find many page-aligned patterns

with all the three possible target password hash alignments.

This enables a resource-constrained attacker to disclose two

(rather than three) bytes of the password hash at the time,

reducing the required memory to only 16 MB in exchange

for extra deduplication passes (15 instead of 10).

E. Heap Disclosure

To leak a heap pointer (randomized using 64 bit ASLR),

the alignment probing primitive used earlier is insufficient.

Given that pointers are always stored in aligned objects

within a data block, the attacker would be, in principle, left

with guessing eight bytes at the time. In practice, Windows

ASLR only uses 24 bits of entropy for the base of the heap,

resulting in 36 bits of uncertainty in the lowest five bytes

of arbitrary heap pointers. This is still problematic for our

alignment probing primitive.

To lower the entropy, however, the attacker can deploy

our partial reuse primitive by exploiting predictable memory

reuse patterns. Our primitive further requires the attacker

to control the alignment of a target heap pointer and some

known pattern in memory. All these requirements are easy to

satisfy when abusing nginx’ pool allocator. To exemplify our

attack, we consider the same HTTP authentication request

as in our password hash disclosure attack, but we assume a

(randomly crafted) invalid user in the request.

When an invalid user is specified, nginx refuses to load the

target password hash into memory right after the provided

input password (as done normally) and logs an error. The er-

ror logging function (ngx_http_write_filter), how-

ever, immediately allocates a 8 byte-aligned buffer object

(ngx_buf_t) of 52 bytes and an unaligned log buffer in the

request pool. Since the allocation behavior is deterministic,

the attacker can control memory reuse patterns and partially

overwrite pointers inside the buffer object to lower their

entropy and incrementally disclose heap addresses. We use

the first (pointer) field (pos) in the ngx_buf_t buffer

object as a reference to demonstrate the attack, whose stages

are outlined in Figure 11.

To start off the attack, the attacker can specify an input

password with a known (decoded) pattern of 4,088 bytes.

By spraying the heap, many instances of this pattern will

be allocated at the page boundary, with the remaining eight

bytes of the page filled with the pos pointer. The attacker

can then send a second request of 4,091 bytes, which, in all

the page-aligned pattern instances, will reuse (and override)

the lowest three bytes of the old pos pointer data, while

forcing the pool allocator to align the new pos pointer to

eight bytes after the page boundary. This strategy leaves

only 16 bits of uncertainty left in the old pointer (the first

byte and the last three bytes are now known), sufficiently

lowering the entropy to disclose two pointer bytes in a single

memory deduplication pass.

In a second stage, the attacker can repeat the first step

above to disclose the remaining lowest three bytes (the rest

are now known). To lower the entropy, the attacker can

rely on the fact that the pos pointer is always pointed

into the beginning of the log buffer, i.e., exactly 52 bytes

away. In other words, a pos pointer allocated right before

the page boundary will always contain the value 0x30 in

its lowest 12 bits. This leaves only 12 bits of uncertainty

left in the target pointer, which the attacker can easily

disclose in a second memory deduplication pass. In total,

to disclose a heap pointer we require 256 MB of memory

without redundancy and two deduplication passes.

F. Dealing with Noise

We fingerprinted nginx as described using three unique

data pages, providing us with a redundancy factor of three to

battle noise. The password hash and heap disclosure attacks

described above, however, have no redundancy.

To add redundancy to our two attacks, we rely on the

attacker’s ability to control the content of the request and

create different target patterns in memory. To this end, we

can simply issue our requests using three different request

types (e.g., using different input passwords) in a round-

robin fashion. As discussed in Section VII-B, on average, 19

pattern pages remain in the deep heap with the desired target

alignment in a steady state. Given three different request

types, on average, we still obtain 6.3 memory pages in the

deep heap, each with the desired target alignment but with a

different attacker-controlled pattern. On the JavaScript side,

the attacker can now use this redundancy to create additional

pages (that target different patterns) to increase the reliability

of the attacks.
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Attack Memory Dedup passes Time

Fingerprinting 12 KB 1 15 Minutes
Password disclosure 48 MB 15 225 Minutes
Heap disclosure 768 MB 2 30 Minutes

Table II
TIME AND MEMORY REQUIREMENTS FOR OUR DEDUPLICATION-BASED

ATTACKS AGAINST NGINX.

G. Time and Memory Requirements

Table II summarizes the time and memory requirements

for our three deduplication-based attacks against nginx. The

reported numbers assume a redundancy factor of three to

deal with noise.

VIII. MITIGATION

The main motivation behind memory deduplication is to

eliminate memory pages with similar content and use physi-

cal memory more efficiently. To maximize the deduplication

rate, a memory deduplication system seeks to identify can-

didates with any possible content. The implicit assumption

here is that many different page contents contribute to the

deduplication rate. However, this property also allowed us

to craft the powerful attack primitives detailed in the paper.

We now show this assumption is overly conservative in the

practical cases of interest. More specifically, we show that

only deduplicating zero pages is sufficient to achieve a nearly

optimal deduplication rate, while completely eliminating

the ability to program memory deduplication and perform

dangerous computations. Table III compares the achievable

deduplication rate of full deduplication with that of zero

page deduplication in Microsoft Edge, measured in percent-

age of saved memory. In each experiment, we opened eight

tabs visiting the most popular websites4. We then changed

the number of websites across tabs to emulate the user’s

behavior and measure its impact on the deduplication rate.

We call this metric “Website Diversity”. For example, with

diversity of eight, each tab opens a different website, and

with diversity of one, each tab opens the same website. Ac-

cording to our measurements, deduplicating zero pages alone

can retain between 84% and 93% of the deduplication rate

of full deduplication. We hence recommend deduplicating

zero pages alone for sensitive, network-facing applications

such as browsers. In highly security-sensitive environments,

full memory deduplication is generally not advisable.

IX. RELATED WORK

We discuss previous work on side channels over shared

caches (Section IX-A) and deduplication (Section IX-B). We

then look at the Rowhammer vulnerability (Section IX-C)

we used in our end-to-end attack on Microsoft Edge.

4https://en.wikipedia.org/wiki/List_of_most_popular_websites

Website Diversity Full Deduplication Zero Pages Only
1 0.13 0.12
2 0.13 0.11
4 0.14 0.13
8 0.14 0.12

Table III
FULL DEDUPLICATION RATE VERSUS DEDUPLICATION RATE OF ZERO

PAGES ALONE UNDER DIFFERENT SETTINGS IN MICROSOFT EDGE.

A. Side Channels over Shared Caches

Recently accessed memory locations remain in the last-

level cache (LLC) shared across different cores. Accessing

cached locations is considerably faster than loading them di-

rectly from memory. This timing difference has been abused

to create a side channel and disclose sensitive information.

The FLUSH+RELOAD attack [40] leaks data from a sen-

sitive process, such as one using cryptographic primitives,

by exploiting the timing differences when accessing cached

data. Irazoqui et al. [21] improve this attack, retrieving

cryptographic keys in the cloud with a combination of

FLUSH+RELOAD and a memory deduplication side channel.

Using a similar attack, Zhang et al. [43] leak sensitive data

to hijack user accounts and break SAML single sign-on.

The “RELOAD” part of the FLUSH+RELOAD attack as-

sumes the attacker has access to victims’ code pages ei-

ther via the shared page cache or some form of memory

deduplication. The PRIME+PROBE attack [30], [24] lifts

this requirement by only relying on cache misses from

the attacker’s process to infer the behavior of the victim’s

process when processing secret data.

Oren et al. [29] use the PRIME+PROBE attack in a

sandboxed browser tab to leak sensitive information (e.g.,

key presses) from a user’s browser. By performing three

types of PRIME+PROBE attacks on the CPU caches and

the TLB, Hund et al. [19] map the entire address space of

a running Windows kernel, breaking kernel-level ASLR.

To perform PRIME+PROBE, the attacker needs the map-

ping of memory locations to cache sets. This mapping

is complex and difficult to reverse engineer in modern

Intel processors [19]. Maurice et al. [26] use performance

counters to simplify the reverse engineering process. As

discussed in Section VI-B, we instead rely on the behavior

of Windows’ page allocator to quickly construct the cache

eviction sets for our Rowhammer exploit. To the best of our

knowledge, this is the first example of an attack using a side

channel other than timing to construct such eviction sets in

a sandboxed browser.

In response to numerous cache side-channel attacks, Kim

et al. [22] propose a low-overhead cache isolation technique

to avoid cross-talk over shared caches. By dynamically

switching between diversified versions of a program, Crane

et al. [12] change the mapping of program locations to cache

sets, making it difficult to perform cache attacks. These

techniques, however, have not (yet) become mainstream.
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B. Side Channels over Deduplication

Side channels over data deduplication systems can be

created over stable storage or main memory.

1) Stable storage: File-based storage deduplication has

been previously shown to provide a side channel to leak

information on existing files and their content [18], [28]. The

first instance warning users about this issue is a Microsoft

Knowledge Base article that mentions a malicious user can

use the deduplication side channel to leak secret information

over shared deduplicated storage [1].

Harnik et al. [18] show that file deduplication at the

provider’s site can allow an attacker to fingerprint which

files the provider stores and brute force their content if a

major fraction of each file is already known. Mulazzani et

al. [28] implement a similar attack on Dropbox, a popular

cloud file storage service.

2) Main memory: There are several cross-VM attacks

that rely on VMM-based memory deduplication to finger-

print operating systems [31] or applications [36], detect

cryptographic libraries [20], and create covert channels for

stealthy backdoors [38]. Gruss et al. [16] show it is possible

to perform a similar attack in a sandboxed browser tab to

detect running applications and open websites.

CAIN [8] can leak randomized code pointers of neigh-

boring VMs using the memory deduplication side channel

incorporated into VMMs. CAIN, however, needs to brute

force all possible pointer values to break ASLR. Rather than

relying on memory deduplication, Xu et al. [39] show that

malicious VMMs can purposefully force page faults in a VM

with encrypted memory to retrieve sensitive information.

All these previously published attacks rely on the assump-

tion that programming memory deduplication only allows

for a single-bit side channel per page. As we showed in this

paper, by controlling the alignment/reuse of data in memory

or mounting birthday attacks, memory deduplication can be

programmed to leak high-entropy information much more

efficiently. For example, by applying our alignment probing

primitive to JIT code, we can leak code pointers with sig-

nificantly lower memory requirements than a purely brute-

force approach; by using our partial reuse primitive and

our birthday heap spray primitive, we can leak high-entropy

heap data pointers inside a server and a browser program

(respectively) for the first time through a side channel.

C. Rowhammer Timeline

The Rowhammer bug was first publicly disclosed by

Kim et al. [23] in June 2014. While the authors originally

speculated on the security aspects of Rowhammer, it was not

clear whether it was possible to fully exploit Rowhammer

until later. Only in March 2015, Seaborn and Dullien [33]

published a working Linux kernel privilege escalation ex-

ploit using Rowhammer. Their native exploit relies on the

ability to spray physical memory with page-table entries, so

that a single bit flip can probabilistically grant an attacker-

controlled process access to memory storing its own page-

table information. Once the process can manipulate its own

page tables, the attacker gains arbitrary read and write

capabilities over the entire physical memory of the machine.

In July 2015, Gruss et al. [17] demonstrated the ability to

flip bits inside the browser using Rowhammer.
In this paper, we showed that our memory deduplication

primitives can provide us with derandomized pointers to

code and heap. We used these pointers to craft the first

reliable remote Rowhammer exploit in JavaScript.

X. CONCLUSIONS

Adding more and more functionality to operating systems

leads to an ever-expanding attack surface. Even ostensibly

harmless features like memory deduplication may prove

to be extremely dangerous in the hands of an advanced

attacker. In this paper, we have shown that deduplication-

based primitives can do much more harm than merely

providing a slow side channel. An attacker can use our

primitives to leak password hashes, randomized code and

heap pointers, and start off reliable Rowhammer attacks. We

find it extremely worrying that an attacker who simply times

write operations and then reads from an unrelated addresses

can reliably “own” a system with all defenses up, even if

the software is entirely free of bugs. Our conclusion is that

we should introduce complex features in an operating system

only with the greatest care (and after a thorough examination

for side channels), and that full memory deduplication inside

the operating system is a dangerous feature that is best

turned off. In addition, we have shown that full deduplication

is an overly conservative choice in the practical cases of

interest and that deduplicating only zero pages can retain

most of the memory-saving benefits of full deduplication

while addressing its alarming security problems.
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