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Abstract 

Prefetching is one approach to reducing the latency of memory op- 
erations in modem computer systems. In this paper, we describe 
the Markov prefetcher. This prefetcher acts as an interface between 
the on-chip and off-chip cache, and can be added to existing com- 
puter designs. The Markov prefetcher is distinguished by prefetch- 
ing rnuftiple referencepredictions from the memory subsystem, and 
then prioritizing the delivery of those references to the processor. 

This design results in a prefetching system that provides good 
coverage, is accurate and produces timely results that can be ef- 
fectively used by the processor. In our cycle-level simulations, the 
Markov Prefetcher reduces the. overall execution stalls due to in- 
struction and data memory operations by an average of 54% for 
various commercial benchmarks while only using two thirds the 
memory of a demand-fetch cache organization. 

1 Introduction 

Processors normally fetch memory using a demand-fetch model: 
when the processor issues a load instruction, the specified datum is 
fetched from memory. If the datum is not in the cache, a request 
is made lo the external memory system to fetch the datum. By 
comparison, a memory prefetching mechanism attempts to provide 
data before the processor requests that data. We assume that the the 
data is placed in a prefetch buffer where it can be accessed by the 
processor, or uses some other mechanism to perform a non-binding 
prefetch that avoids disturbing the current cache contents. 

There are three important metrics used to compare memory 
prefetchers: coverage, accuracy and timeliness. Coverage indi- 
cates the fraction of memory requests that were supplied by the 
prefetcher rather than being demand-fetched. Accuracy indicates 
the fraction of the prefetched cache lines offered to the processor 
that were actually used. Unless prefetched memory references are 
provided to the processor before they are needed, the processor may 
still stall during execution. Timeliness indicates if the data offered 
by the prefetcher arrives before it is needed, but not so early that the 
data must be discarded before it can be used. The ideal prefetcher 
has large coverage, large accuracy and produces timely data - the 
prefetcher offers the processor all the data it needs, only the data it 
needs and before the processor needs the data. 
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We believe prefetching mechanisms are designed in a two-step 
process: first, the architect envisions a “model” describing the 
way that programs behave when accessing memory, and then at- 
tempts to construct a physical realization of that model that pro. 
vides suitable prefetch coverage. In this paper, we describe a hard- 
ware prefetch mechanism that offers better performance than other 
prefetch mechanisms. In memory-level simulations, WC find that 
this prefetching mechanism can reduce the memory overhead to 
the cycles-per-instruction by 54%, greatly reducing the memory 
stalls encountered by our model processor. Moreover, although 
we devote one MByte of memory to the prefctcher data shuc1urcs, 
our prefetcher reduces the memory stalls while reducing the to- 
tal amount of memory devoted to the combination of the prefctchcr 
and second level cache- using 3 MBytes of memory, ourprefetchcr 
outperforms a demand-fetch memory system that uses 4 MBytes of 
memory. 

We first describe the memory access model assumed by our 
prefetcher and how the prefetcher is physically implcmentcd. WC 
then briefly survey alternative prefetcher designs, WC follow this 
by with a description of the experimental design and analysis WC 

used to estimate the performance of this prefetcher. 

2 Prefetcher Design and Implementation 

Hardware prefetching is a prediction process: given some curfcnt 
prediction state, the prefetcher guesses what a future memory rcf- 
erence may be and requests that location from the memory subsys- 
tem. There are a number of possible sources of prediction infor- 
mation. One such source is the address reference stream, or the 
sequence of addresses referenced by the processor. Howcvcr, using 
this prediction source requires that the prefetching hardware be on 
the same chip as the processor. The prefetcher would need to be 
very efficient, since it may then need lo analyze many rcfcrcnccs 
per cycle. 

The prefetchers we examine use the tniss address streatn as n 
prediction source. These references are presented to the external 
memory subsystem and, due lo the first-level caches, these miss ref- 
erences occur much less frequently than memory references. Pig 
ure 1 shows a schematic design for the prefctcher, which can be 
built as an external part of the memory subsystem. We’ll set thnt 
this is important because the prefetcher may need lo use considcr- 
able state information lo be effective. As shown in Figure 1, WC 

assume the processor has on-chip prefetch buffers that are exam- 
ined concurrently with the first level caches. Thus, prefetchcd data 
items do not displace data resident in the cache. The prefetchcd 
data only contends with the normal demand-fetched memory rcfer- 
ences for the processor bandwidth. 

Prefetch mechanisms usually assume that programs ~CCCSS 



Figure 1: System design 

A,B,C,D,C,E,A,C,F,F,E,A,A,B,C,D,E,A,B,C,D,C 

Figure 2: Sample miss address reference string. Each letter indi- 
cates a cache miss to a different memory location. 

Figure 3: Markov model representing the previous reference string 
via transition probabilities. 

memory using a particular pattern or access model. For exam- 
ple, stream buffers [7] assume that memory is accessed as a linear 
stream, possibly with a non-unit stride. Once an access model has 
been determined, architects design a hardware mechanism to cap- 
ture or approximate that reference stream. In the next section, we 
describe the access model we assume and a hardware implementa- 
tion that captures that access model. 

2.1 Modeling Memory References via Markov Processes 

We assume that the miss reference stream can be approximated 
by an observed Markov model. Assume that our miss reference 
stream is that shown in Figure 2. In this example, different mem- 
ory locations are identified by different letters. Thus, this refer- 
ence sequence indicates a missing reference to memory location 
“A”, followed by a miss for “B” and so on. Using this reference 
string, we can build a Markov model, shown in Figure 3, that ap- 
proximates the reference string using a transition frequency. Each 
transition from node X to node Y in the diagram is assigned a 
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weight representing the fraction of all references X that are fol- 
lowed by a reference Y. For example, there are five references to 
node A in the the example miss reference sequence. Of these, we 
see the pattern “A, A” 20% of the time, the pattern “A, C” 20% 
of the time and the pattern “A, B” 60% of the time. This exam- 
ple uses one previous reference to predict the next reference. In- 
tuitively, if the program were to execute again and issue the same 
memory references, the Markov model could be used to predict the 
miss reference following each missing reference. For example, on 
re-execution, the appearance of an A may lead the hardware to pre- 
dict that A, C or B will be the next missing reference and issue 
prefetch requests for each address. In general, a n-history Markov 
model can use more history information - for example, given the 
training sequence A, B, C, the prefetcher would predict C if the 
miss sequence A, B was seen. We have examined the performance 
of general n-history models and found little added benefit from the 
additional information, and thus focus on l-history models in this 
paper. 

2.2 Realizing the Markov Prefetcher in Hardware 

There are several problems encountered in assuming a “pure” 
Markov model of memory references. In practice programs don’t 
repeat exactly the same reference patterns from one execution to 
another, and the transition probabilities “learned” in one execution 
may not benefit another. Furthermore, it is difficult to efficiently 
represent a pure Markov model in hardware because each node may 
have an arbitrary degree and the transition probabilities are repre- 
sented as real values. Lastly, programs reference millions of ad- 
dresses and it may not be possible to record all references in a sin- 
gle table. Despite these drawbacks, our later data will show that a 
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“Markov-like” model of memory references is an effective prefetch 
mechanism. Thus, we need to make a set of design choices that ad- 
dress the problem of representing a Markov transition diagram in 
hardware. We first describe the design of the Markov predictor and 
then justify those decisions with simulation studies. 

The first decision is to continuously rebuild and use the Markov 
model as a program is executing. Thus, the approximate Markov 
model captures the past activi~ of all programs on a system and 
uses that information to predict the future references. We limit the 
number of possible nodes in the transition diagram and limit their 
maximal out-degree. More concretely, we represent the Markov 
transition diagram using a table such as shown in Figure 4. In this 

sample configuration, each state in the Markov model occupies a 
single line in the prediction table, and can have up two to four tran- 
sitions to other states. The total size of the table is determined by 
the memory available to the prefetcher. When the current miss ad- 
dress matches the index address in the prefetch table, all of the next 
address prediction registers are eligible to issue a prefetch, subject 
to mechanisms described later intended to improve prefetch accu- 
racy. However, not all possibte prefetches actually result in a trans- 
fer from the L2 cache. Each prefetch request has an associated pri- 
ority. Prefetch addresses are stored in the prefetch request queue, 
and higher priority requests can dislodge lower-priority requests. 
The prefetch request queue contends with the processor for the L2 
cache, and the demand fetches from the processor have higher pri- 
ority. Thus, after a series of prefetches, the prefetch request queue 
may be full, and lower-priority requests will be discarded. 

Once a fetch request is satisfied by the L2 cache, it is placed 
in the on-chip prefetch buffers. Demand-fetch requests are directly 
stored in the cache. We model the on-chip prefetch buffers as a 
16 entry fully associative FIFO buffer. When the processor queries 
it, al1 entries are associatively searched in one cycle. If a match is 
found, it is relocated to the head of the FIFO, and all the entries 
from the head to the vacated slot are shifted down by one. The 
FIFO is also searched when updated to avoid duplicate entries. If 
there are no duplicates when adding an entry, an empty slot is filled, 
or if there are no empty slots the last slot (the least recently used 
entry) is replaced. This design is similar to the stream buffer design 
of Farkas et.& [6]. The primary difference is that in 161, the entire 
buffer is shifted, discarding all the entries above the matching one. 

There are many other parameters that affect the performance of 
this hardware configuration. We used trace-driven simulation and a 
memory-level performance model to determine the importance of 
those parameters and to compare the performance of the Markov 
prefetcher to previously suggested prefetchers. We next describe 
prior work on prefetchers and then describe the experimental de- 
sign to compare the performance of Markov prefetchers to previous 
designs. We then show the effect of the various parameters in the 
Markov prefetcher implementation. 

3 Prior Work 

Hardware and software prefetching schemes have been devised that 
are effective on structured workloads [14, 4, 12, 81. However re- 
search on prefetching for unstructured workloads is not nearly as 
common and only recently have results in this area begun to ap- 
pear [17,3, 9, 131. The section on correlation-bused preferching 
is especially relevant since Markov prefetching is an evolution of 
correlation based prefetching. 

Static predictors Almost all static predictors rely on the com- 
piler to determine possible Ll cache misses and embed the infor- 
mation into the code in the form of prefetch instructions. Mowry 
ef.al. [12] show that structured scientific codes are very amenable 

to this approach. However, they also show that their techniques 
failed to improve performance of the pointer intensive applications 
used in their study. In terms of hardware resources, compiler based 
schemes are inexpensive to implement. However, since prediction 
information is embedded in the progmm at compile time, com- 
piler based schemes lack the flexibility to account for the dynamic 
behavior of a workload. Compiler based techniques have been 
proposed which insert prefetch instructions at sites where pointer 
dereferences are anticipated. Lipasti et. al. [9] developed heuris- 
tics that consider pointers passed Bs arguments on procedure calls 

‘and insert prefetches at the call sites for the data referenced by the 
pointers. Ozawa er.ul. [13] classify loads whose data address comes 
from a previous load as fist accesses, and perform code motions to 
separate them from the instructions that use the data fetched by list 
accesses. 

Stride Prefetchers Chen and Baer investigate a mechanism for 
prefetching data references characterized by regular strides [4]* 
Their scheme is based on a reference prediction table (RPT) and 
look-uheud program counter (LPC). The RPT is a cache, tagged 
with the instruction address of load instructions. The entries in 
the RPT hold the previous address referenced by the correspond- 
ing load instruction, the offset of that address from the previous 
data address referenced by that instruction, and some flags. When 
a load instruction is executed that matches an entry in the RPT, the 
offset of the data address of that load from the previous data ad- 
dress stored in the RPT is calculated. When this matches the offset 
stored in the table, a prefetch is launched for the data address one 
offset ahead of the current data address. In [4], the rejerence ud- 
dress stream was used to index the reference prediction table, In 
practice, we found little performance difference between using the 
reference addresses or the miss address stream. Our later simula- 
tions of stride prefetchers use the miss address stream. 

Stream Buffers Jouppi introduced sfreum b@ers ils one of 
two significant methods to improved direct mapped cache perfor- 
mance [7]. In contrast to stride prefetchers, stream buffers arc 
designed to prefetch sequential streams of cache lines, indepcn- 
dent of program context. The design presented by Jouppi is un- 
able to detect streams containing non-unit strides. Palacharla and 
Kessler [14] extended the stream buffer mechanism to also detect 
non-unit strides without having direct access to the program con- 
text. They also introduced a noise rejection scheme for improving 
the accuracy of stream buffers. Farkas et-al. [6] further enhanced 
stream buffers by providing them with an associative lookup capa- 
bility and a mechanism for detecting and eliminating the allocation 
of stream buffers to duplicate streams. Later, we compare the per- 
formance of the design of Farkas et. al. to Markov prefetchcrs. 

Stream buffers are used like a prefetch fill buffer for servicing 
Ll cache misses in this paper. Prefetches are placed in the stream 
buffer itself rather than a separate prefetch buffer. Stream buffers 
are allocated on Ll cache misses. If any stream buffer contains an 
entry that matches the current Ll miss reference address, it is taken 
from the stream buffer, the entries below the one removed arc all 
shifted up to the head of the buffer, and prefetches are launched lo 
sequentially consecutive cache line addresses to fill the vacancies 
that open up in the bottom part of the stream buffer. If thcrc is 
no match in any stream buffer, a new stream buffer is allocated to 

the new stream. In the model employed in this paper, an empty or 
least recently used buffer is selected for replacement. The noise 
rejection scheme introduced by Palacharla [14] is also employed in 
the allocation of stream buffers used in this research. It is a simple 
filtering mechanism that waits for two consecutive Ll misses to 

sequential cache line addresses before allocating a stream buffer 10 



the stream. 
Stride prefetchers and stream buffers complement one another 

is various ways. Stream buffers generally exhibit greater prefetch 
coverage than stride prefetchers, but also are much more inaccu- 
rate, even when using allocation filters. However, while detecting 
non-unit strides is natural for stride prefetchers, providing non-unit 
stride detection to stream buffers is more difficult [63. 

Stream buffers tend to be more efficient in use of resources than 
stride prefetchers. For example, given the following program frag- 
ment: 

for (i = 0; i < N; ++il 
1 

b = x[i+201; 
0 = x[i+221; 

a stride prefetcher will consume two resources in the stride detec- 
tion table, while only one stream buffer would be allocated. In our 
studies we have found that using a stride prefetcher in series with 
stream buffers works well. That is, we allow the more accurate 
stride prefetcher to issue a prefetch first if it is able and otherwise 
allocate a stream buffer. The combination provides better coverage 
than either mechanism alone, and is generally more accurate than 
stream buffers alone (although less accurate.than a stride prefetcher 
alone). 

Indirect Stream Detectors Mehrota [l l] describes a hardware 
data prefetching scheme based on the recursion that occurs in 
linked list traversals. We also simulated this design, but do 
not present the performance since it was uniformly worse than 
correlation-based prefetching. 

Correlation-Based Prefetching Markov prefetching is a contin- 
uing evolution of what has been called correlation-bused preferch- 
ing [3]. The basic concept of correlation-based prefetching was 
introduced by Baer [2] in the context of paged virtual memory sys- 
tems. Baer associated a single prefetch address with each mem- 
ory address referenced and developed algorithms for updating the 
prefetch address based upon observed reference patterns. When a 
reference occurs, the associated prefetch address is checked for res- 
idence in physical memory. If the prefetch page is not resident, then 
it is paged in. This pairing of two temporally related related events, 
such as a current address with a prefetch address, is the essence of 
correlation-based prefetching. The first address of the pair is re- 
ferred to as the parent or key that is used to select a child prefetch 
address. 

The first instance of correlation-based prefetching being ap- 
plied to data prefetching is presented in a patent application by 
Pomerene and Puzak [15]. A hardware cache is used to hold the 
parent-child information. A further innovation they introduce is to 
incorporate other information into the parent key. They suggest the 
use of bits from the instruction causing the miss, and also bits from 
the last data address referenced. They also introduce a confirma- 
tion mechanism that only activates new pairs when data that would 
have been prefetched would also have been used. This mechanism 
is very much like the aZlocation filters introduced by Palacharla 
er.al. [14] to improve the accuracy of stream buffers and serves a 
similar purpose here. 

Charney and Reeves [3] extend the Pomerene and Puzak mech- 
anism and apply it to the Ll miss reference stream rather than di- 
rectly to the load/store stream. Besides being the first to publish 
results on the Pomerene and Puzak scheme, this work improved 
upon the mechanism in two significant ways. One was to intro- 
duce greater lead time into the prefetching with the use of a FIFO 

history buffer. Instead of entering parent-child pairs into the pair 
cache, ancestors older than the parent can be paired with the child 
and entered in the pair cache. Although no results are reported in 
the impact this had on CPU stalls, it was demonstrated that prefetch 
lead time could be significantly improved at the expense of lower 
prefetch accuracy. The other contribution was a study of various 
alternate structures for the parent key. This study focused pri- 
marily on using different combinations of bits from the instruction 
and data addresses of Ll miss references. In general, there was 
marginal improvement in prefetch accuracy or coverage in those 
attempts. 

Another important contribution by Charney and Reeves was to 
show that stride based prefetching could be combined with cor- 
relation based prefetching to provide significant improvements in 
prefetch coverage over using either approach alone, .on certain 
benchmarks. In this scheme, a stride prefetcher is placed at the 
front end of a correlation-based prefetcher. If the stride prefetcher 
could make a prediction it would, and the miss references associ- 
ated with the stride prediction would be filtered out of the miss ref- 
erence stream presented to the correlation-based prefetcher. Cover- 
age improved for two reasons. One is correlation-prefetchers (and 
Markov prefetchers) must see a miss reference repeat before it can 
predict a future miss reference. Stride prefetchers do not have that 
limitation. The other is that better utilization of the pair cache is 
achievable when the stride references are filtered out. For the work- 
loads used in this paper, we find that there are insufficient stride 
references in the applications we examined for this scheme to offer 
much improvement in prefetch coverage. However, in the case of 
very “stridy” workloads, it seems clear this approach is advanta- 
geous. 

Alexander and Kedem [I] proposed a mechanism similar to 
correlation-based prefetching but used a distributed prediction ta- 
ble. In their variation, a correlation-based table was used to predict 
bit-line accesses in an Enhanced DRAM, and was used to prefetch 
individual bit lines from the DRAM to the SRAM array. 

4 Experimental Design and Simulation Study 

There are three important factors that influence the performance of 
a prefetching scheme: coverage, accuracy and timeliness. Prefetch 
coverage and accuracy are less dependent on a specific mem- 
ory system configuration, while timeliness depends greatly on the 
memory reference penalties of a particular system. In this study, 
we use a single metric, the fraction of first-level cache misses, to 
characterize both coverage and accuracy. For each application, we 
record the number of demand-cache misses encountered without 
any prefetching and normalize these values. Then, we measure 
and normalize the number of cache misses for different prefetch- 
ing schemes. We define “coverage” to be the fraction of the miss 
references satisfied by the prefetch mechanism. A prefetch mech- 
anism will fetch more data from memory than a simple demand- 
fetch mechanism, and many of those references may be mispre- 
dieted fetches. We record the additional references relative to the 
normalized demand-fetch references, and define this to be a mea- 
sure of the inaccuracy of a prefetcher. We measured timeliness 
by simulating a non-speculative processor with a detailed memory 
model and comparing the memory cycles-per-instruction (MCPI). 
This represents the average number of CPU stalls attributed to the 
memory subsystem. Both simulation studies used the same cache 
configurations, described below. 

We assume that all non-memory instructions execute in one cy- 
cle. The model processor has a single-cycle on-chip SKB Ll data 
cache and an 8KB Ll instruction cache. Each cache has 8-entry 
single-cycle victim buffers and 32-byte lines. The Ll data cache 



also has a single-cycle &entry write buffer and uses a write-around 
policy. The second-level (L2) cache were multi-cycle, multi-bank, 
direct mapped, lockup-free 4MB I and D caches, with 128 byte 
lines. The L2 data cache uses a write-back with write allocate pol- 
icy and had one S-entry address request queue per bank. We model 
four synchronous SRAM cache banks in the baseline model. The 
address and data busses have a latency of four cycles. When com- 
bined with the four cycle memory latency, and the four cycles to re- 
turn the data to the processor, the total cache miss penalty is twelve 
cycles, but new requests can be pipelined every four cycles. Each 
cache bank has a separate address bus to each L2 cache bank but 
just one L2 data bus shared by all banks. Thus, there is never ad- 
dress bus contention, but there may be considerable contention for 
the data bus. The Ll-L2 bus bandwidth is 8 bytes/cycle. We used a 
multi-cycle, multi-banked memory model with one 8 entry address 
request queue per bank and 4 memory banks. Address and data 
busses have a latency of 4 cycles. The access latency of a bank is 
24 cycles and the L2-L3 bus bandwidth is 4 bytes/cycle. 

When simulating stream buffers, we used eight three-entry 
stream buffers, with associative lookup, non-overlapping stream 
allocation, and allocation filters. Each stream buffer has single cy- 
cle access. When simulating stride prefetchers, we used a stride 
prefetcher with a 16 entry fully associative stride detection table. 
Access is also single cycle. We also experimented with larger stride 
tables using four-way set associative tables taking 3ZKBytes of 
storage. There was no advantage to tables larger than 2KBytes 
for the traces we considered, and there was little difference be- 
tween a Cway associative table larger than ZKBytes or the 16- 
entry fully-associative table. In earlier work on stream buffers, 
Farkas et. al. [63 used four three-entry stream buffers. We used 
eight because there was a small, but noticable improvement in cov- 
erage up to that point. We also varied the number of entries in the 
stream buffer and reached the same conclusions stated in [6]: be- 
low three entries, prefetches have insufficient lead time and above 
three entries, accuracy begins to fall off rapidly.. 

The Correlation and Markov prefetchers are combined with the 
second-level cache. When modeling the Correlation and Markov 
prefetchers, we used a bounded or constant amount of storage for 
the combined prefetch and cache subsystem, but that was not pos- 
sible while continuing to use direct mapped caches. Thus, we con- 
figured the Markov and Correlation prefetchers to use less memory 
than the corresponding demand-fetch cache or the stride and stream 
prefetchers. For the Markov and Correlation prefetchers, we used 
a one MByte data prefetch table and a 2MByte data cache. For 
the demand-fetch model, we used a 4-MByte data cache. In other 
words, the prefetch implementations would require two thirds the 
memory of stride or stream prefetchers when implemented. For 
the data cache, we also used a 2MB instruction cache and 1MByte 
prefetch table for the prefetch configurations, and a 4-MBbyte in- 
struction cache for the demand-fetch model. 

4.1 Benchmark Applications 

There is a deficiency in the most widely used benchmarks for sim- 
ulation studies (e.g. the SPEC programs suite). Past research has 
indicated that operating system activity and multi-programming 
can significantly effect cache performance [lo, 51. However, little 
has been reported on the impact these factors have on prefetching 
strategies. At the same time, the cache performance on such work- 
loads tends to be significantly worse than other workloads, making 
the need for latency reducing methods such as prefetching even 
more important. 

Many important technical and commercial applications give 
rise to unstructured workloads. Technical applications involving 
Iarge sparse arrays of data often store such data in a compressed 
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format and access that data via indirection arrays (i.e. a[@]]). USU- 
ally the organization of sparse arrays is not known till run time 
and may evolve during execution. Another common source of un- 
structured access patterns in technical and commercial workloads 
is the use of pointer connected structures. Large graphs or trees of 
structures are often dynamically generated and may evolve during 
execution. Algorithms in the application may jump from one pnrt 
of a tree or graph to another. Consequently, pointers are not nl- 
ways accurate indicators of access patterns. Unstructured tcchnicnl 
workloads include such important examples as event driven simu- 
lators and wire routing tools for VLSI design, unstructured grid nl- 
gorithms in computational fluid dynamics, modeling of molcculnr 
dynamics, DRAM device level simulation, and structural dynamics 
analysis. Commercial environments tend to be unstructured be- 
cause of high process switch rates, high random I/O rates, and they 
typically involve a large number of user processes [lo]. Transnc- 
tion processing also utilize searching and sorting algorithms that 
give rise to unstructured access patterns. Examples of commercinl 
workloads include: transaction processing, multi-user software dc- 
velopment environments, network and file server kemcls, desktop 
publishing tools, and compilers. 

The simulations of this work are based on address traces of 
technical and commercial industry-standard benchmarks, They 
were captured on an IBM REV6000 running AIX using a propri- 
etary tracing tool developed at IBM. Cache performance charac- 
teristics on most of the traces we used were presented by Maynard 
et.& [IO]. The traces include both instruction and data refcrenccs 
obtained throughout the execution of multiple processes contnin- 
ing kernel, user and shared library activity. Four of the traces used 
were generated from unstructured technical codes, and four wcrc 
from commercially oriented workloads. Table 1 provides a brief 
summary of all eight. More information on the benchmarks can bc 
found in [IO] and the appendix. 

Table 2 shows statistics indicative of the impact of these diffcr- 
ences. The first two columns show the percentage of the instruc- 
tions that are branches and the percentage of these that arc taken 
branches. An analysis of branching behavior helps explain one of 
the reasons I-cache miss rates tend to be higher for commercinl 
workloads than technical workloads. Typical technical worklonds 
are dominated by short to medium length loops. For such a work- 
load where most branch instructions return control to the hend of 
the loop, the percentage of taken branches is much higher, Also, 
if the longest instruction loops fit in the I-cache, the I-cache miss 
rate is very low. In contrast, the percentage of taken branches in 
commercial workloads is relatively low, indicating that these work- 
loads execute relatively few iterations per loop. The lack of domi- 
nant loops is why these commercial workloads have a lower prob- 
ability of re-executing recent instructions, leading to higher miss 
rates [IO]. We note that Spice is anomalous in this trend, yet still 
has a very low I-miss rate. As with all the SPEC92 and SPEC95 
benchmarks, the instruction working set for Spice is very small and 
fits comfortably in the I-cache. 

The average sequential block size also shows the “branchy” nn- 
ture of commercial workloads. Block sizes in commercial work- 
loads tend to be much shorter than in technical codes. The lnst col- 
umn in Figure 2 shows the fraction of the total number of instruc- 
tions executed in theoperating system. These numbers indicate that 
much of the work in commercial workloads is actually done by the 
operating system. One reason for this is the relatively high usngc is 
that there is frequent movement of small amounts of data between 
the different levels of the system, with few arithmetic operations on 
the data. In technical workloads, the operating system brings dnln 
into application space, and the application performs extensive nrith- 
metic manipulation before handing it back to the operating system 
to store. 



Benchmark Description 

Sdet Multi-User software development environment 
from the SPEC SDM benchmark suite. 

Laddis NFS file server: basis of the SPEC 
system-level File Server (SFS) benchmark suite. 

Netperf TCP/lP benchmark for system 
communication performance. 

TPCB Transaction Processing Performance Council-B 
benchmark; users connected in client-server 

configurations, data base server traced. 
Abaqus Structural dynamics analysis tool 

(HKS Inc.) 
G92 Computation Chemistry Code 

(Gaussian Inc.) 
MM4 Local-Weather model (PWNCAR) 
Spice Electronic circuit simulation 

(from SPEC92, kernel activity not traced). 

Table 1: Workloads Focus 

1 Benchmark 1 % 1 %Branches 1 Avg Sea 1 % Instrs I 

Sdet 
Laddis 
Netperf 
TPCB 

Branches Taken 

17.8 66.5 
18.9 68.7 
18.6 66.2 
16.7 68.1 

Block Size in OS 

8.4 50 
7.7 100 
8.1 97 
8.9 42 

--- 
.- 

Abaqus 23.9 97.3 4.3 7 
G92 39.6 97.6 2.6 0 

MM4 8.5 74.4 15.8 4 

Spice 16.8 39.7 15.0 0 

Table 2: Workload Characteristics 

1 Program 1 I-Refs 1 D-Refs 1 Ll-I 1 Ll-D I L2-I I L2-D 1 
I 1 (ME.) 1 (Mil) 1 MR MR MR MR 

.067 .102 
1 , I 

.Wl .OlO 
11.2 .I01 .203 001 -009 

Sdet 32.1 1 11.1 1 
Laddis 32.5 , 

Netperf 32.9 11.0 .145 .153 001 .017 
TPCB 31.5 11.4 .I30 .198 .002 .027 

Abaqus 77.4 26.3 .054 .I88 001 .028 
G92 58.8 19.2 .041 .170 A03 .013 

MM4 ?I8 a .7 1 .026 I -412 I .004 I -054 i - -_. - . - - . - I 
Spice ) 37.1 1 l-1.9 1 0001 I .I44 ) 000 ( IO01 

Table 3: 8KB Cache Reference Counts and Miss Rates 

Table 3 provides a summary of the number of instruction and 
data references in each trace and the miss rates obtained with the 
memory subsystem described above. 

5 Performance Comparison 

Most of the physical parameters influencing the performance of the 
Markov predictor have been specified in the simulation environ- 
ment. However, there are two important parameters that simplify 
the implementation of a “pure Markov” model. A node or state in 
a pure Markov model can have an arbitrary fan-out, and each out- 
going edge has a transition probability that indicates the likelihood 
of moving to a particular next state. This transition probability is 
used to prioritize memory prefetches. 

We choose to limit the fanout for each state in the prediction ta- 
ble and to approximate the transition probabilities using an LRU 
mechanism. Figure 5 shows the effect of varying the maximal 
fanout for one, two, four and eight prefetch address predictors. 
This graph shows both the prediction accuracy and coverage on 
a single axis. The vertical axis is the percentage of cache misses 
normalized to the same application and cache organization using a 
demand-fetch organization. Four bars, indicating the different con- 
figurations being considered, are shown for each application. Each 
bar has three components. The lower component represents the 
coverage, or the fraction of miss references that were prefetched 
and then used by the processor. Larger values are better, but never 
exceed 100% of the normalized miss references. The middle com- 
ponent represents the fraction of miss references that were not satis- 
fied by prefetch references and had to be demand-fetched. The up- 
per component represents the fraction of miss references that were 
incorrectly predicted and result in wasted bandwidth. Smaller val- 
ues are better for this component. The upper component indicates 
the accrmcy of the prefetcher, because a more accurate prefetcher 
would fetch fewer references that were not used. 

Clearly, the accuracy decreases and the coverage increases as 
more prefetch address predictors are added, because every pre- 
dicted address can be fetched fetched when a matching parent key 
is found in the prefetch table. A larger number of prefetch ad- 
dresses results in a considerably decreased accuracy with little im- 
provement in coverage. For example, when the TCPB benchmark 
is simulated, the prefetcher fetches twice as many wasted cache 
lines when using eight rather than four prefetch predictors, but only 
increases the coverage by ~10%. In most applications that we ex- 
amined, four prefetch predictors provided a reasonable balance be- 
tween coverage and accuracy for the data cache, and we use that 
configuration for the remainder of the paper. Only two prefetch- 
ers were needed for the instruction cache, because there are fewer 
successors for a given instruction reference. 

Since the performance of the Markov prefetcher is dependent 
on the size of the prefetcher tables, we also investigated a two-tiered 
allocation strategy, where records are initially allocated to a table 
with two prefetch address predictors. If more than two addresses 
are needed, the entry is moved to a separate four-entry table. Al- 
though we do not report the results here, this design afforded better 
performance for a given table size at the expense of a slightly more 
complex design. 

As mentioned, every predicted prefetch address is fetched when 
the parent key is found in the prefetcher. To improve performance, 
individual references are prioritized based on the likelihood of sat- 
isfying the request. We considered two methods to prioritize the 
references. In the first, we used the true transition probability and in 
the second, we used a simple LRU algorithm. The LRU algorithm 
out-performed the true transition probability in every application, 
and is much easier to implement. Table 4 shows the reference fre- 
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Figure 5: Changes in prefetch accuracy and coverage for the Markov prefetcher as the number of prefetch addresses is increased. Each bar 
shows the normalized percentage of Ll data cache misses when using one, two, four or eight prefetch address predictors. 

quency for each predictor address in a Markov prefetchcr with four 
prediction addresses. The columns represent the relative age of the 
predictor reference and predictor “0” is always the most rcccntly 
used address predictor. For example, 34.2% of the refcrcnccs cor- 
rectly prefetched for the Sdet application were predicted by the first 
predictor address. The large difference in reference frequency for 
the first and second predictors indicates that an LRU policy is very 
effective. 

The LRU prioritization also orders the data to improve the lead 
time, or the time until the data is needed in our model memory sim- 
ulator. Table 5 shows the average number of cycles bctwccn lhc 
time a prefetch is issued and when it is used, for those prefclch rc- 
quests that are actually used. Larger values indicate a longer “lcad 
time”, meaning there is more time to actually provide the data 10 

the processor. In each case, the lead time increases from the most 
recently used reference (the first column) to the least recently used 
(the last column). This indicates that the LRU prioritization method 
not only requests the most frequently needed items, but that it also 

requests those that are needed soonest. 
We compared the performance of the Markov prefetchcr using 

four prefetch addresses and an LRU prioritization policy agninst 
other prefetch mechanisms. Figure 6 shows the normalized mcm- 
ory transfers for the different methods. From left to right, cacb 

column shows the performance for: stream pmfctching, stride 
prefetching correlation prefetching, Markov prcfetching, stride, 
stream and Markov in parallel and stride, stream and Markov in 
series. The stride, stream and correlation prefetchers are simulnted 
as described in $3. 

Figure 6 shows that stream prefetchers provide bctlcr cover- 
age than stride prefetchers, but do so by using considerably more 
bandwidth. The correlation prefetcher (column 3) provides still 
better coverage and the Markov prefetcher (column 4) provides 
the best coverage over the set of applications. However, as with 
stream buffers, this increase in coverage comes at the price of in- 

G92’ 1 0.501 1 0.256 1 0.153 1 t 
MM4 I 0.691 I 0.202 I 0.093 I 0.062 1 .i ‘. I 
Spice 1 0.606 1 0.262 1 0.082 1 0.034 

Table 4: Reference frequency for each data cache prediction ad- 
dress entry for different applications 

Benchmark Address Predictor 
01 II 21 3 

Table 5: Reference lead time for each data cache prediction address 
entry for different applications. 

‘.’ i 
1 I 
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Figure 7: Memory reference overhead for different bandwidth reduction techniques. In this figure, the vertical axis shows the the fraction of 
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memory references if the Ll-cache is queried prior to prefetching. 



creased memory bandwidth demands, often five-fold that of the 
stream buffers. The last two columns indicate alternative designs 
that attempt to either improve coverage or improve accuracy. In the 
fifth column, we use a combination of stride, stream and Markov 
prefetchers in parallel. This typically results in a large increase 
in mispredicted references that waste bandwidth, but with a mod- 
est improvement in coverage. At times, the coverage actually de- 
creases. When the predictors are used in series, the coverage im- 
proves again, but by a smaller amount. Likewise, the mispredic- 
tions increase, wasting more bandwidth In part, this occurs be- 
cause references handled by the stream and stride mechanisms are 
not used to “train” the Markov predictor, since they are not misses. 
A more important factor in the “parallel” configuration is interfer- 
ence and contention for the prefetch buffers. For example, both 
the stream buffer and the Markov prefetcher may predict a specific, 
yet different address. These differing predicitons must contend for 
a small number of prefetch buffers and the limited memory band- 
width. 

5.1 Limiting the Prefetch Bandwidth 

In general, the increased need for bandwidth provides the great- 
est limitation to effective prefetcher implementations. The addi- 
tional demand increases contention for the processor bus, possibly 
blocking demand fetches or later prefetched requests. We examined 
four techniques to improve the accuracy of the Markov prefetcher 
and thus reduce the bandwidth consumed by prefetching. Figure 7 
shows the performance of these techniques using a variant of the 
previous presentations. In this figure, we show that fraction of sub- 
block cache misses, where each sub-block is a four-byte word. In 
the group for each program, the first bar is for demand fetching, 
where no prefetching is used. Figure 7 indicates that ~50% of the 
bandwidth for demand-fetched references is wasted, because the 
part of the data stored in the 32-byte cache line is not references. 
The second bar shows the same information for Markov prefetch- 
ing, using four addresses predictors and an LRU prioritization pol- 
icy. The third bar shows the bandwidth reduction that occurs when 
a simple ‘noise rejection” filter is used. This filter was proposed 
by Pomerene and Puzak [15] and also examined by Chamey and 
Reeves [3]. It is similar to the filter used by Kessler [14] to im- 
prove the accuracy of stream buffers - a prefetch request is not dis- 
patched until the prefetch pattern has been seen twice. The fourth 
column shows the performance for accurucy based adaptivity. In 
this scheme, two bit saturation counters are added to each predic- 
tion address, and a link back to the prediction address that was used 
to make a prefetch is added to each prefetch buffer entry. When a 
prefetch is discarded from the prefetch buffer without ever being 
used, the corresponding counter in the prediction address is incre- 
mented. When a prefetch in the prefetch buffer is used, the corre- 
sponding counter is decremented. When the sign bit of the counter 
is set, the associated prefetch address is disabled. Prefetch requests 
from disabled prefetches are placed in a “pseudo-prefetch buffer” 
so the predictions can be compared against actual prefetch requests, 
allowing a “disabled” prefetcher to become enabled once again. 
The fifth column shows the effect of using an automatic cuche-no- 
allocate (CNA) policy to reduce the portion of the cache line that 
is actually placed in the prefetch buffer. This design is based on the 
CNA mechanism of Tyson et. al. [16]. As in [16], we use a table 
of two bit counters to determine if a specific memory instruction 
should use a CNA policy. The prefetcher records information both 
about the predicted address and the instruction predicted to issue 
the memory reference. If that instruction is marked CNA, only the 
requested word, rather than the full cache line, is prefetched. The 
last bar in each group shows the effect of querying the Ll-cache 
prior to prefetching. Some number of prefetch requests are already 

valid in the cache, but the external prefetch mechanism may not 
know that unless an external shadow tag table is used. 

Of these techniques, only querying the Ll cache can be im- 
plemented as a completely external subsystem. The others require 
modifications to the prefetch mechanisms or interaction between 
the prefetcher and the processor. In general the CNA-based adap 
tivity provides the greatest performance improvement, but the CNA 
mechanism isn’t directly applicable to the instruction cache. In- 
struction references tend to use most of a cache line, and tcch- 
niques that either accept or reject and entire cache lines (such as 
the accuracy-based adaptivity) work better than the CNA method, 
which prefetches only a portion of the cache line. Figure 7 SLOWS 
that the CNA mechanism changes the number of cache misses used 
as a “baseline” for some programs (G92, MM4 and Spice). The 
CNA mechanism improves the basic cache performance for MM4, 
but decreases the performance for G92 and SPICE. This is an arti- 
fact of the CNA bandwidth reduction technique [ 161. 

5.2 Comparison Using a Memory-system Simulntor 

We have seen that the Markov predictor provides better prefctch 
coverage than the other prefetchers we examined. We used a 
memory-level simulator to determine if that improved coverage 
resulted in better performance for the memory subsystem. Our 
memory simulator models the contention for the system resources 
shown in Figure 1. In particular, we wanted to insure that the ad- 
ditional bandwidth consumed by the Markov prefetcher did not re- 
duce the overall memory performance. 

Figure 8(a) shows the memory CPI when different prefclchcrs 
are used for only the data cache and Figure 8(b) shows the memory 
CPI when prefetchers are used for the instruction and data caches, 
In each case, we used the accuracy-based adaptivity bandwidth fil- 
ter for each Markov prefetcher. The correlation prefetcher uscs 
the filter suggested by Charney and Reeves, and the stream buffers 
use the filter proposed by Kessler. From left-to-right, the individ- 
ual bars indicate the performance of stream, stride, correlation and 
Markov prefeichers. The segments of each bar indicate the fraction 
of the overall MCPI attributed to individual parts of the memory 
system. From bottom to top, the segments indicates the delay due 
to fetching instructions into the Ll cache, fetching data into the 
Ll cache, fetching data into the L2 cache and the additional delay 
incurred by a pure demand-fetch model. 

The Markov prefetcher provides the best performance across nll 
the applications, particularly when applied to both the instruction 
and data caches. Recall that the correlation and Markov prcfctch- 
ers requirefewer resources than the stream and stride buffers - the 
Markov prefetcher used a 2MByte cache and a 1MByte prcfetch 
table, VS. the 4MByte cache used in the demand-fetch model. 

6 Conclusion 

We have presented the Markov prefetcher, and simulated its pcr- 
formance over a number of significant applications. Although 
the Markov prefetcher can be characterized as an extension to 
the correlation prefetcher previously described by Pomerene nnd 
Puzak [15] and Chamey and Reeves [3], there arc a number of de- 
sign issues presented by the Markov prefetcher. The prcfetchcr 
must be able to launch multiple prefetch requests and prioritize 
them, and the prefetcher must consider some mechanism to limit 
the bandwidth devoted to prefetching. 

Our study has shown that a simple, effective and realizable 
Markov prefetcher can be built as an off-chip component of the 
memory subsystem. The design we present takes fewer resources 
than a normal demand-fetch cache, yet reduced the memory CPI 
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by an average of 54% over the applications we examined. The 
Markov prefetchers we examined provide better prefetch coverage 
and more timely prefetches than other prefetchers at the expense 
of reduce accuracy. However, the combination of bandwidth re- 
duction filters and prioritization of the prefetch requests makes the 
Markov prefetcher the most effective prefetcher we examined. 

There are a number of ways the Markov prefetcher can be im- 
proved. In particular, both the Markov and correlation prefetchers 
must observe a reference sequence prior to predicting references. 
It would be desirable to abstract a reference pattern from several 
instances of reference sequences. Likewise, it would be useful to 
have some mechanism to issue prefetch requests for patterns or se- 
quences that have not yet occurred, eliminating the training period 
needed by the Markov predictor. 
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A.Benchmark Descriptions 

The System Evaluation Corpomtion (SPEC SDM) suite includes 
two benchmarks: Sdet and Kenbus. Sdet is intended to represent a 
general purpose computing environment. A large number of users 
run concurrently with commands separated by little or no think 
time. Commands executed by the users include: edit, compile, 
bind, ksh, grep, Is, cp, rm and mkdir. The benchmark is run with 
multiple user levels to show throughput as a function of number of 
users. The benchmark is traced consists of 64 users and includes 
kernel, user and shared library activity. 

The Laddis benchmark measures the capacity of a file scrvcr 
running NFS. It is essentially are-packaging of the NHFSSTONES 
benchmark created by Legato Systems. It runs by having one of 
more client workstations submit NFS requests to the server. The 
requests must be completed with an average response time of 50 
milliseconds. The benchmark was run using a single client with 
a load of 20 transactions per second, and six processes submitting 
requests. 

The Netperf benchmark measures the performance of system 
communications. It important because it mimics interactive nct- 
work environments, such as telnet, where response time is critical, 
As currently implemented Netperfprovides a simple reprcsenladon 
of interactive workloads and data xfers. The benchmark traced con- 
sisted of a single machine sending packets to it self. In this sccnnrio 
a single one byte packet was “ping-ponged” between two processes 
10,000 times. The metric was the latency of the transfers in clapscd 
time. 

The Transaction Processing Performance Council (TPC) 
benchmarks are the best known and most frequently cited measures 

. of commercial performance. The TPC is a collection of reprcscn- 
tatives from many system and database vendors. At the time of 
this writing the TPC has released three benchmarks called TPC-A, 
TPC-B and TPC-C, along with rules for running them and for rc- 
porting results. Although some simulations in this thesis rescnrch 
were executed with all three benchmarks, only one was selected 
for every test case: TPC-B. TPC-B simulates a banking applica- 
tion where users submit many simple debit or credit transactions 



from automated teller machines. The system is expected to respond 
within two seconds. The number of users and size of the database 
are scaled with the reported performance metric: transactions per 
second (TPS). For example, a system which reports a TPS rating of 
80 would have a database roughly eight times as large as a system 
with a rating of 10. The benchmark used in this thesis was traced 
with 60 users in a client-server configuration. 

Abaqus is a structural dynamics analysis product, like NAS- 
TRAN and ANSYS. This particular application is from the set of 
timing runs provided by HKS, Inc.. It is described as: ‘This is a 
large linear analysis consisting of a 40x40 mesh of shell elements 
of type SSR5. The total number of degrees of freedom is 39366; the 
maximum wavefront is 522 and the RMS wavefront is 503. Most 
of the time is spent in the inner loop in the solver, so that computers 
with fast vector processors should run this problem quickly.” 

G92 is a computational chemistry application from the Gaus- 
sian ‘92 Application Test Suite from Gaussian,Inc. Since the run- 
time of this test is about 8 minutes and consists of many processes 
(none running concurrently with the other), the tracing effort con- 
centrated on user mode only of the top two processes: 1703.exe and 
11002.exe. These processes accounted for over 70% of the total 
runtime and almost 77% of the total user-mode runtime. 

MM4 is a local-weather model owned by NOAA (National 
Oceanic and Atmospheric- Administration). It uses Navier-Stokes 
equations to solve a finite element grid. 

Spice is a floating point intensive electronic circuit simulation 
benchmark from the SPEC92 suite. Only the user activity was 
traced for this benchmark. 
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