
Prefetching using Markov Predictors

Doug Joseph
IBM T. J. Watson Research Lab

P.O. Box 218
IBM. T. J. Watson Research

Yorktown Heights, NY 10598
djoseph@watson.ibm.com

Abstract

Prefetching is one approach to reducing the latency of memory op-
erations in modem computer systems. In this paper, we describe
the Markov prefetcher. This prefetcher acts as an interface between
the on-chip and off-chip cache, and can be added to existing com-
puter designs. The Markov prefetcher is distinguished by prefetch-
ing rnuftiple referencepredictions from the memory subsystem, and
then prioritizing the delivery of those references to the processor.

This design results in a prefetching system that provides good
coverage, is accurate and produces timely results that can be ef-
fectively used by the processor. In our cycle-level simulations, the
Markov Prefetcher reduces the. overall execution stalls due to in-
struction and data memory operations by an average of 54% for
various commercial benchmarks while only using two thirds the
memory of a demand-fetch cache organization.

1 Introduction

Processors normally fetch memory using a demand-fetch model:
when the processor issues a load instruction, the specified datum is
fetched from memory. If the datum is not in the cache, a request
is made lo the external memory system to fetch the datum. By
comparison, a memory prefetching mechanism attempts to provide
data before the processor requests that data. We assume that the the
data is placed in a prefetch buffer where it can be accessed by the
processor, or uses some other mechanism to perform a non-binding
prefetch that avoids disturbing the current cache contents.

There are three important metrics used to compare memory
prefetchers: coverage, accuracy and timeliness. Coverage indi-
cates the fraction of memory requests that were supplied by the
prefetcher rather than being demand-fetched. Accuracy indicates
the fraction of the prefetched cache lines offered to the processor
that were actually used. Unless prefetched memory references are
provided to the processor before they are needed, the processor may
still stall during execution. Timeliness indicates if the data offered
by the prefetcher arrives before it is needed, but not so early that the
data must be discarded before it can be used. The ideal prefetcher
has large coverage, large accuracy and produces timely data - the
prefetcher offers the processor all the data it needs, only the data it
needs and before the processor needs the data.

Permission to make digital/hard copy of part or all this work for

personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-

tage, the copyright notice, the title of the publication and its date

appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to

redistribute to lists, requires prior specific permission and/or a fee.

ISCA ‘97 Denver, CO, USA

0 1997 ACM 0-89791-901-7/97/0006...$3.50

Dirk Grnnwald
Department of Computer Science

University of Colorado
Boulder, Colorado, 80309-0430

grunwald@cs.colorado.edu

We believe prefetching mechanisms are designed in a two-step
process: first, the architect envisions a “model” describing the
way that programs behave when accessing memory, and then at-
tempts to construct a physical realization of that model that pro.
vides suitable prefetch coverage. In this paper, we describe a hard-
ware prefetch mechanism that offers better performance than other
prefetch mechanisms. In memory-level simulations, WC find that
this prefetching mechanism can reduce the memory overhead to
the cycles-per-instruction by 54%, greatly reducing the memory
stalls encountered by our model processor. Moreover, although
we devote one MByte of memory to the prefctcher data shuc1urcs,
our prefetcher reduces the memory stalls while reducing the to-
tal amount of memory devoted to the combination of the prefctchcr
and second level cache- using 3 MBytes of memory, ourprefetchcr
outperforms a demand-fetch memory system that uses 4 MBytes of
memory.

We first describe the memory access model assumed by our
prefetcher and how the prefetcher is physically implcmentcd. WC
then briefly survey alternative prefetcher designs, WC follow this
by with a description of the experimental design and analysis WC

used to estimate the performance of this prefetcher.

2 Prefetcher Design and Implementation

Hardware prefetching is a prediction process: given some curfcnt
prediction state, the prefetcher guesses what a future memory rcf-
erence may be and requests that location from the memory subsys-
tem. There are a number of possible sources of prediction infor-
mation. One such source is the address reference stream, or the
sequence of addresses referenced by the processor. Howcvcr, using
this prediction source requires that the prefetching hardware be on
the same chip as the processor. The prefetcher would need to be
very efficient, since it may then need lo analyze many rcfcrcnccs
per cycle.

The prefetchers we examine use the tniss address streatn as n
prediction source. These references are presented to the external
memory subsystem and, due lo the first-level caches, these miss ref-
erences occur much less frequently than memory references. Pig
ure 1 shows a schematic design for the prefctcher, which can be
built as an external part of the memory subsystem. We’ll set thnt
this is important because the prefetcher may need lo use considcr-
able state information lo be effective. As shown in Figure 1, WC

assume the processor has on-chip prefetch buffers that are exam-
ined concurrently with the first level caches. Thus, prefetchcd data
items do not displace data resident in the cache. The prefetchcd
data only contends with the normal demand-fetched memory rcfer-
ences for the processor bandwidth.

Prefetch mechanisms usually assume that programs ~CCCSS

Figure 1: System design

A,B,C,D,C,E,A,C,F,F,E,A,A,B,C,D,E,A,B,C,D,C

Figure 2: Sample miss address reference string. Each letter indi-
cates a cache miss to a different memory location.

Figure 3: Markov model representing the previous reference string
via transition probabilities.

memory using a particular pattern or access model. For exam-
ple, stream buffers [7] assume that memory is accessed as a linear
stream, possibly with a non-unit stride. Once an access model has
been determined, architects design a hardware mechanism to cap-
ture or approximate that reference stream. In the next section, we
describe the access model we assume and a hardware implementa-
tion that captures that access model.

2.1 Modeling Memory References via Markov Processes

We assume that the miss reference stream can be approximated
by an observed Markov model. Assume that our miss reference
stream is that shown in Figure 2. In this example, different mem-
ory locations are identified by different letters. Thus, this refer-
ence sequence indicates a missing reference to memory location
“A”, followed by a miss for “B” and so on. Using this reference
string, we can build a Markov model, shown in Figure 3, that ap-
proximates the reference string using a transition frequency. Each
transition from node X to node Y in the diagram is assigned a

253

Current
Miss Reference

Address

Next Address
Prediction Registers

Miss Addr 1 1 I” Pred 1 2” Pred 1 3ti Pred 1’4”‘Pred 1
,... I” Pred 2”dPred 3tiPred 4tiPred ’
,... I’ Pred 2& Pred 3d Pred 4” Pred

Miss Addr N 1’ Pred 2”d Pred 3”’ Pred 4”’ Pred

1 Prefetch Request 1

Prefetch
Request
Queue

II
* CPU Address

Figure 4: Hardware Used to Approximate Markov Prediction
Prefetcher

weight representing the fraction of all references X that are fol-
lowed by a reference Y. For example, there are five references to
node A in the the example miss reference sequence. Of these, we
see the pattern “A, A” 20% of the time, the pattern “A, C” 20%
of the time and the pattern “A, B” 60% of the time. This exam-
ple uses one previous reference to predict the next reference. In-
tuitively, if the program were to execute again and issue the same
memory references, the Markov model could be used to predict the
miss reference following each missing reference. For example, on
re-execution, the appearance of an A may lead the hardware to pre-
dict that A, C or B will be the next missing reference and issue
prefetch requests for each address. In general, a n-history Markov
model can use more history information - for example, given the
training sequence A, B, C, the prefetcher would predict C if the
miss sequence A, B was seen. We have examined the performance
of general n-history models and found little added benefit from the
additional information, and thus focus on l-history models in this
paper.

2.2 Realizing the Markov Prefetcher in Hardware

There are several problems encountered in assuming a “pure”
Markov model of memory references. In practice programs don’t
repeat exactly the same reference patterns from one execution to
another, and the transition probabilities “learned” in one execution
may not benefit another. Furthermore, it is difficult to efficiently
represent a pure Markov model in hardware because each node may
have an arbitrary degree and the transition probabilities are repre-
sented as real values. Lastly, programs reference millions of ad-
dresses and it may not be possible to record all references in a sin-
gle table. Despite these drawbacks, our later data will show that a

r -

“Markov-like” model of memory references is an effective prefetch
mechanism. Thus, we need to make a set of design choices that ad-
dress the problem of representing a Markov transition diagram in
hardware. We first describe the design of the Markov predictor and
then justify those decisions with simulation studies.

The first decision is to continuously rebuild and use the Markov
model as a program is executing. Thus, the approximate Markov
model captures the past activi~ of all programs on a system and
uses that information to predict the future references. We limit the
number of possible nodes in the transition diagram and limit their
maximal out-degree. More concretely, we represent the Markov
transition diagram using a table such as shown in Figure 4. In this

sample configuration, each state in the Markov model occupies a
single line in the prediction table, and can have up two to four tran-
sitions to other states. The total size of the table is determined by
the memory available to the prefetcher. When the current miss ad-
dress matches the index address in the prefetch table, all of the next
address prediction registers are eligible to issue a prefetch, subject
to mechanisms described later intended to improve prefetch accu-
racy. However, not all possibte prefetches actually result in a trans-
fer from the L2 cache. Each prefetch request has an associated pri-
ority. Prefetch addresses are stored in the prefetch request queue,
and higher priority requests can dislodge lower-priority requests.
The prefetch request queue contends with the processor for the L2
cache, and the demand fetches from the processor have higher pri-
ority. Thus, after a series of prefetches, the prefetch request queue
may be full, and lower-priority requests will be discarded.

Once a fetch request is satisfied by the L2 cache, it is placed
in the on-chip prefetch buffers. Demand-fetch requests are directly
stored in the cache. We model the on-chip prefetch buffers as a
16 entry fully associative FIFO buffer. When the processor queries
it, al1 entries are associatively searched in one cycle. If a match is
found, it is relocated to the head of the FIFO, and all the entries
from the head to the vacated slot are shifted down by one. The
FIFO is also searched when updated to avoid duplicate entries. If
there are no duplicates when adding an entry, an empty slot is filled,
or if there are no empty slots the last slot (the least recently used
entry) is replaced. This design is similar to the stream buffer design
of Farkas et.& [6]. The primary difference is that in 161, the entire
buffer is shifted, discarding all the entries above the matching one.

There are many other parameters that affect the performance of
this hardware configuration. We used trace-driven simulation and a
memory-level performance model to determine the importance of
those parameters and to compare the performance of the Markov
prefetcher to previously suggested prefetchers. We next describe
prior work on prefetchers and then describe the experimental de-
sign to compare the performance of Markov prefetchers to previous
designs. We then show the effect of the various parameters in the
Markov prefetcher implementation.

3 Prior Work

Hardware and software prefetching schemes have been devised that
are effective on structured workloads [14, 4, 12, 81. However re-
search on prefetching for unstructured workloads is not nearly as
common and only recently have results in this area begun to ap-
pear [17,3, 9, 131. The section on correlation-bused preferching
is especially relevant since Markov prefetching is an evolution of
correlation based prefetching.

Static predictors Almost all static predictors rely on the com-
piler to determine possible Ll cache misses and embed the infor-
mation into the code in the form of prefetch instructions. Mowry
ef.al. [12] show that structured scientific codes are very amenable

to this approach. However, they also show that their techniques
failed to improve performance of the pointer intensive applications
used in their study. In terms of hardware resources, compiler based
schemes are inexpensive to implement. However, since prediction
information is embedded in the progmm at compile time, com-
piler based schemes lack the flexibility to account for the dynamic
behavior of a workload. Compiler based techniques have been
proposed which insert prefetch instructions at sites where pointer
dereferences are anticipated. Lipasti et. al. [9] developed heuris-
tics that consider pointers passed Bs arguments on procedure calls

‘and insert prefetches at the call sites for the data referenced by the
pointers. Ozawa er.ul. [13] classify loads whose data address comes
from a previous load as fist accesses, and perform code motions to
separate them from the instructions that use the data fetched by list
accesses.

Stride Prefetchers Chen and Baer investigate a mechanism for
prefetching data references characterized by regular strides [4]*
Their scheme is based on a reference prediction table (RPT) and
look-uheud program counter (LPC). The RPT is a cache, tagged
with the instruction address of load instructions. The entries in
the RPT hold the previous address referenced by the correspond-
ing load instruction, the offset of that address from the previous
data address referenced by that instruction, and some flags. When
a load instruction is executed that matches an entry in the RPT, the
offset of the data address of that load from the previous data ad-
dress stored in the RPT is calculated. When this matches the offset
stored in the table, a prefetch is launched for the data address one
offset ahead of the current data address. In [4], the rejerence ud-
dress stream was used to index the reference prediction table, In
practice, we found little performance difference between using the
reference addresses or the miss address stream. Our later simula-
tions of stride prefetchers use the miss address stream.

Stream Buffers Jouppi introduced sfreum b@ers ils one of
two significant methods to improved direct mapped cache perfor-
mance [7]. In contrast to stride prefetchers, stream buffers arc
designed to prefetch sequential streams of cache lines, indepcn-
dent of program context. The design presented by Jouppi is un-
able to detect streams containing non-unit strides. Palacharla and
Kessler [14] extended the stream buffer mechanism to also detect
non-unit strides without having direct access to the program con-
text. They also introduced a noise rejection scheme for improving
the accuracy of stream buffers. Farkas et-al. [6] further enhanced
stream buffers by providing them with an associative lookup capa-
bility and a mechanism for detecting and eliminating the allocation
of stream buffers to duplicate streams. Later, we compare the per-
formance of the design of Farkas et. al. to Markov prefetchcrs.

Stream buffers are used like a prefetch fill buffer for servicing
Ll cache misses in this paper. Prefetches are placed in the stream
buffer itself rather than a separate prefetch buffer. Stream buffers
are allocated on Ll cache misses. If any stream buffer contains an
entry that matches the current Ll miss reference address, it is taken
from the stream buffer, the entries below the one removed arc all
shifted up to the head of the buffer, and prefetches are launched lo
sequentially consecutive cache line addresses to fill the vacancies
that open up in the bottom part of the stream buffer. If thcrc is
no match in any stream buffer, a new stream buffer is allocated to

the new stream. In the model employed in this paper, an empty or
least recently used buffer is selected for replacement. The noise
rejection scheme introduced by Palacharla [14] is also employed in
the allocation of stream buffers used in this research. It is a simple
filtering mechanism that waits for two consecutive Ll misses to

sequential cache line addresses before allocating a stream buffer 10

the stream.
Stride prefetchers and stream buffers complement one another

is various ways. Stream buffers generally exhibit greater prefetch
coverage than stride prefetchers, but also are much more inaccu-
rate, even when using allocation filters. However, while detecting
non-unit strides is natural for stride prefetchers, providing non-unit
stride detection to stream buffers is more difficult [63.

Stream buffers tend to be more efficient in use of resources than
stride prefetchers. For example, given the following program frag-
ment:

for (i = 0; i < N; ++il
1

b = x[i+201;
0 = x[i+221;

a stride prefetcher will consume two resources in the stride detec-
tion table, while only one stream buffer would be allocated. In our
studies we have found that using a stride prefetcher in series with
stream buffers works well. That is, we allow the more accurate
stride prefetcher to issue a prefetch first if it is able and otherwise
allocate a stream buffer. The combination provides better coverage
than either mechanism alone, and is generally more accurate than
stream buffers alone (although less accurate.than a stride prefetcher
alone).

Indirect Stream Detectors Mehrota [l l] describes a hardware
data prefetching scheme based on the recursion that occurs in
linked list traversals. We also simulated this design, but do
not present the performance since it was uniformly worse than
correlation-based prefetching.

Correlation-Based Prefetching Markov prefetching is a contin-
uing evolution of what has been called correlation-bused preferch-
ing [3]. The basic concept of correlation-based prefetching was
introduced by Baer [2] in the context of paged virtual memory sys-
tems. Baer associated a single prefetch address with each mem-
ory address referenced and developed algorithms for updating the
prefetch address based upon observed reference patterns. When a
reference occurs, the associated prefetch address is checked for res-
idence in physical memory. If the prefetch page is not resident, then
it is paged in. This pairing of two temporally related related events,
such as a current address with a prefetch address, is the essence of
correlation-based prefetching. The first address of the pair is re-
ferred to as the parent or key that is used to select a child prefetch
address.

The first instance of correlation-based prefetching being ap-
plied to data prefetching is presented in a patent application by
Pomerene and Puzak [15]. A hardware cache is used to hold the
parent-child information. A further innovation they introduce is to
incorporate other information into the parent key. They suggest the
use of bits from the instruction causing the miss, and also bits from
the last data address referenced. They also introduce a confirma-
tion mechanism that only activates new pairs when data that would
have been prefetched would also have been used. This mechanism
is very much like the aZlocation filters introduced by Palacharla
er.al. [14] to improve the accuracy of stream buffers and serves a
similar purpose here.

Charney and Reeves [3] extend the Pomerene and Puzak mech-
anism and apply it to the Ll miss reference stream rather than di-
rectly to the load/store stream. Besides being the first to publish
results on the Pomerene and Puzak scheme, this work improved
upon the mechanism in two significant ways. One was to intro-
duce greater lead time into the prefetching with the use of a FIFO

history buffer. Instead of entering parent-child pairs into the pair
cache, ancestors older than the parent can be paired with the child
and entered in the pair cache. Although no results are reported in
the impact this had on CPU stalls, it was demonstrated that prefetch
lead time could be significantly improved at the expense of lower
prefetch accuracy. The other contribution was a study of various
alternate structures for the parent key. This study focused pri-
marily on using different combinations of bits from the instruction
and data addresses of Ll miss references. In general, there was
marginal improvement in prefetch accuracy or coverage in those
attempts.

Another important contribution by Charney and Reeves was to
show that stride based prefetching could be combined with cor-
relation based prefetching to provide significant improvements in
prefetch coverage over using either approach alone, .on certain
benchmarks. In this scheme, a stride prefetcher is placed at the
front end of a correlation-based prefetcher. If the stride prefetcher
could make a prediction it would, and the miss references associ-
ated with the stride prediction would be filtered out of the miss ref-
erence stream presented to the correlation-based prefetcher. Cover-
age improved for two reasons. One is correlation-prefetchers (and
Markov prefetchers) must see a miss reference repeat before it can
predict a future miss reference. Stride prefetchers do not have that
limitation. The other is that better utilization of the pair cache is
achievable when the stride references are filtered out. For the work-
loads used in this paper, we find that there are insufficient stride
references in the applications we examined for this scheme to offer
much improvement in prefetch coverage. However, in the case of
very “stridy” workloads, it seems clear this approach is advanta-
geous.

Alexander and Kedem [I] proposed a mechanism similar to
correlation-based prefetching but used a distributed prediction ta-
ble. In their variation, a correlation-based table was used to predict
bit-line accesses in an Enhanced DRAM, and was used to prefetch
individual bit lines from the DRAM to the SRAM array.

4 Experimental Design and Simulation Study

There are three important factors that influence the performance of
a prefetching scheme: coverage, accuracy and timeliness. Prefetch
coverage and accuracy are less dependent on a specific mem-
ory system configuration, while timeliness depends greatly on the
memory reference penalties of a particular system. In this study,
we use a single metric, the fraction of first-level cache misses, to
characterize both coverage and accuracy. For each application, we
record the number of demand-cache misses encountered without
any prefetching and normalize these values. Then, we measure
and normalize the number of cache misses for different prefetch-
ing schemes. We define “coverage” to be the fraction of the miss
references satisfied by the prefetch mechanism. A prefetch mech-
anism will fetch more data from memory than a simple demand-
fetch mechanism, and many of those references may be mispre-
dieted fetches. We record the additional references relative to the
normalized demand-fetch references, and define this to be a mea-
sure of the inaccuracy of a prefetcher. We measured timeliness
by simulating a non-speculative processor with a detailed memory
model and comparing the memory cycles-per-instruction (MCPI).
This represents the average number of CPU stalls attributed to the
memory subsystem. Both simulation studies used the same cache
configurations, described below.

We assume that all non-memory instructions execute in one cy-
cle. The model processor has a single-cycle on-chip SKB Ll data
cache and an 8KB Ll instruction cache. Each cache has 8-entry
single-cycle victim buffers and 32-byte lines. The Ll data cache

also has a single-cycle &entry write buffer and uses a write-around
policy. The second-level (L2) cache were multi-cycle, multi-bank,
direct mapped, lockup-free 4MB I and D caches, with 128 byte
lines. The L2 data cache uses a write-back with write allocate pol-
icy and had one S-entry address request queue per bank. We model
four synchronous SRAM cache banks in the baseline model. The
address and data busses have a latency of four cycles. When com-
bined with the four cycle memory latency, and the four cycles to re-
turn the data to the processor, the total cache miss penalty is twelve
cycles, but new requests can be pipelined every four cycles. Each
cache bank has a separate address bus to each L2 cache bank but
just one L2 data bus shared by all banks. Thus, there is never ad-
dress bus contention, but there may be considerable contention for
the data bus. The Ll-L2 bus bandwidth is 8 bytes/cycle. We used a
multi-cycle, multi-banked memory model with one 8 entry address
request queue per bank and 4 memory banks. Address and data
busses have a latency of 4 cycles. The access latency of a bank is
24 cycles and the L2-L3 bus bandwidth is 4 bytes/cycle.

When simulating stream buffers, we used eight three-entry
stream buffers, with associative lookup, non-overlapping stream
allocation, and allocation filters. Each stream buffer has single cy-
cle access. When simulating stride prefetchers, we used a stride
prefetcher with a 16 entry fully associative stride detection table.
Access is also single cycle. We also experimented with larger stride
tables using four-way set associative tables taking 3ZKBytes of
storage. There was no advantage to tables larger than 2KBytes
for the traces we considered, and there was little difference be-
tween a Cway associative table larger than ZKBytes or the 16-
entry fully-associative table. In earlier work on stream buffers,
Farkas et. al. [63 used four three-entry stream buffers. We used
eight because there was a small, but noticable improvement in cov-
erage up to that point. We also varied the number of entries in the
stream buffer and reached the same conclusions stated in [6]: be-
low three entries, prefetches have insufficient lead time and above
three entries, accuracy begins to fall off rapidly..

The Correlation and Markov prefetchers are combined with the
second-level cache. When modeling the Correlation and Markov
prefetchers, we used a bounded or constant amount of storage for
the combined prefetch and cache subsystem, but that was not pos-
sible while continuing to use direct mapped caches. Thus, we con-
figured the Markov and Correlation prefetchers to use less memory
than the corresponding demand-fetch cache or the stride and stream
prefetchers. For the Markov and Correlation prefetchers, we used
a one MByte data prefetch table and a 2MByte data cache. For
the demand-fetch model, we used a 4-MByte data cache. In other
words, the prefetch implementations would require two thirds the
memory of stride or stream prefetchers when implemented. For
the data cache, we also used a 2MB instruction cache and 1MByte
prefetch table for the prefetch configurations, and a 4-MBbyte in-
struction cache for the demand-fetch model.

4.1 Benchmark Applications

There is a deficiency in the most widely used benchmarks for sim-
ulation studies (e.g. the SPEC programs suite). Past research has
indicated that operating system activity and multi-programming
can significantly effect cache performance [lo, 51. However, little
has been reported on the impact these factors have on prefetching
strategies. At the same time, the cache performance on such work-
loads tends to be significantly worse than other workloads, making
the need for latency reducing methods such as prefetching even
more important.

Many important technical and commercial applications give
rise to unstructured workloads. Technical applications involving
Iarge sparse arrays of data often store such data in a compressed

256

format and access that data via indirection arrays (i.e. a[@]]). USU-
ally the organization of sparse arrays is not known till run time
and may evolve during execution. Another common source of un-
structured access patterns in technical and commercial workloads
is the use of pointer connected structures. Large graphs or trees of
structures are often dynamically generated and may evolve during
execution. Algorithms in the application may jump from one pnrt
of a tree or graph to another. Consequently, pointers are not nl-
ways accurate indicators of access patterns. Unstructured tcchnicnl
workloads include such important examples as event driven simu-
lators and wire routing tools for VLSI design, unstructured grid nl-
gorithms in computational fluid dynamics, modeling of molcculnr
dynamics, DRAM device level simulation, and structural dynamics
analysis. Commercial environments tend to be unstructured be-
cause of high process switch rates, high random I/O rates, and they
typically involve a large number of user processes [lo]. Transnc-
tion processing also utilize searching and sorting algorithms that
give rise to unstructured access patterns. Examples of commercinl
workloads include: transaction processing, multi-user software dc-
velopment environments, network and file server kemcls, desktop
publishing tools, and compilers.

The simulations of this work are based on address traces of
technical and commercial industry-standard benchmarks, They
were captured on an IBM REV6000 running AIX using a propri-
etary tracing tool developed at IBM. Cache performance charac-
teristics on most of the traces we used were presented by Maynard
et.& [IO]. The traces include both instruction and data refcrenccs
obtained throughout the execution of multiple processes contnin-
ing kernel, user and shared library activity. Four of the traces used
were generated from unstructured technical codes, and four wcrc
from commercially oriented workloads. Table 1 provides a brief
summary of all eight. More information on the benchmarks can bc
found in [IO] and the appendix.

Table 2 shows statistics indicative of the impact of these diffcr-
ences. The first two columns show the percentage of the instruc-
tions that are branches and the percentage of these that arc taken
branches. An analysis of branching behavior helps explain one of
the reasons I-cache miss rates tend to be higher for commercinl
workloads than technical workloads. Typical technical worklonds
are dominated by short to medium length loops. For such a work-
load where most branch instructions return control to the hend of
the loop, the percentage of taken branches is much higher, Also,
if the longest instruction loops fit in the I-cache, the I-cache miss
rate is very low. In contrast, the percentage of taken branches in
commercial workloads is relatively low, indicating that these work-
loads execute relatively few iterations per loop. The lack of domi-
nant loops is why these commercial workloads have a lower prob-
ability of re-executing recent instructions, leading to higher miss
rates [IO]. We note that Spice is anomalous in this trend, yet still
has a very low I-miss rate. As with all the SPEC92 and SPEC95
benchmarks, the instruction working set for Spice is very small and
fits comfortably in the I-cache.

The average sequential block size also shows the “branchy” nn-
ture of commercial workloads. Block sizes in commercial work-
loads tend to be much shorter than in technical codes. The lnst col-
umn in Figure 2 shows the fraction of the total number of instruc-
tions executed in theoperating system. These numbers indicate that
much of the work in commercial workloads is actually done by the
operating system. One reason for this is the relatively high usngc is
that there is frequent movement of small amounts of data between
the different levels of the system, with few arithmetic operations on
the data. In technical workloads, the operating system brings dnln
into application space, and the application performs extensive nrith-
metic manipulation before handing it back to the operating system
to store.

Benchmark Description

Sdet Multi-User software development environment
from the SPEC SDM benchmark suite.

Laddis NFS file server: basis of the SPEC
system-level File Server (SFS) benchmark suite.

Netperf TCP/lP benchmark for system
communication performance.

TPCB Transaction Processing Performance Council-B
benchmark; users connected in client-server

configurations, data base server traced.
Abaqus Structural dynamics analysis tool

(HKS Inc.)
G92 Computation Chemistry Code

(Gaussian Inc.)
MM4 Local-Weather model (PWNCAR)
Spice Electronic circuit simulation

(from SPEC92, kernel activity not traced).

Table 1: Workloads Focus

1 Benchmark 1 % 1 %Branches 1 Avg Sea 1 % Instrs I

Sdet
Laddis
Netperf
TPCB

Branches Taken

17.8 66.5
18.9 68.7
18.6 66.2
16.7 68.1

Block Size in OS

8.4 50
7.7 100
8.1 97
8.9 42

.-

Abaqus 23.9 97.3 4.3 7
G92 39.6 97.6 2.6 0

MM4 8.5 74.4 15.8 4

Spice 16.8 39.7 15.0 0

Table 2: Workload Characteristics

1 Program 1 I-Refs 1 D-Refs 1 Ll-I 1 Ll-D I L2-I I L2-D 1
I 1 (ME.) 1 (Mil) 1 MR MR MR MR

.067 .102
1 , I

.Wl .OlO
11.2 .I01 .203 001 -009

Sdet 32.1 1 11.1 1
Laddis 32.5 ,

Netperf 32.9 11.0 .145 .153 001 .017
TPCB 31.5 11.4 .I30 .198 .002 .027

Abaqus 77.4 26.3 .054 .I88 001 .028
G92 58.8 19.2 .041 .170 A03 .013

MM4 ?I8 a .7 1 .026 I -412 I .004 I -054 i - -_. - . - - . - I
Spice) 37.1 1 l-1.9 1 0001 I .I44) 000 (IO01

Table 3: 8KB Cache Reference Counts and Miss Rates

Table 3 provides a summary of the number of instruction and
data references in each trace and the miss rates obtained with the
memory subsystem described above.

5 Performance Comparison

Most of the physical parameters influencing the performance of the
Markov predictor have been specified in the simulation environ-
ment. However, there are two important parameters that simplify
the implementation of a “pure Markov” model. A node or state in
a pure Markov model can have an arbitrary fan-out, and each out-
going edge has a transition probability that indicates the likelihood
of moving to a particular next state. This transition probability is
used to prioritize memory prefetches.

We choose to limit the fanout for each state in the prediction ta-
ble and to approximate the transition probabilities using an LRU
mechanism. Figure 5 shows the effect of varying the maximal
fanout for one, two, four and eight prefetch address predictors.
This graph shows both the prediction accuracy and coverage on
a single axis. The vertical axis is the percentage of cache misses
normalized to the same application and cache organization using a
demand-fetch organization. Four bars, indicating the different con-
figurations being considered, are shown for each application. Each
bar has three components. The lower component represents the
coverage, or the fraction of miss references that were prefetched
and then used by the processor. Larger values are better, but never
exceed 100% of the normalized miss references. The middle com-
ponent represents the fraction of miss references that were not satis-
fied by prefetch references and had to be demand-fetched. The up-
per component represents the fraction of miss references that were
incorrectly predicted and result in wasted bandwidth. Smaller val-
ues are better for this component. The upper component indicates
the accrmcy of the prefetcher, because a more accurate prefetcher
would fetch fewer references that were not used.

Clearly, the accuracy decreases and the coverage increases as
more prefetch address predictors are added, because every pre-
dicted address can be fetched fetched when a matching parent key
is found in the prefetch table. A larger number of prefetch ad-
dresses results in a considerably decreased accuracy with little im-
provement in coverage. For example, when the TCPB benchmark
is simulated, the prefetcher fetches twice as many wasted cache
lines when using eight rather than four prefetch predictors, but only
increases the coverage by ~10%. In most applications that we ex-
amined, four prefetch predictors provided a reasonable balance be-
tween coverage and accuracy for the data cache, and we use that
configuration for the remainder of the paper. Only two prefetch-
ers were needed for the instruction cache, because there are fewer
successors for a given instruction reference.

Since the performance of the Markov prefetcher is dependent
on the size of the prefetcher tables, we also investigated a two-tiered
allocation strategy, where records are initially allocated to a table
with two prefetch address predictors. If more than two addresses
are needed, the entry is moved to a separate four-entry table. Al-
though we do not report the results here, this design afforded better
performance for a given table size at the expense of a slightly more
complex design.

As mentioned, every predicted prefetch address is fetched when
the parent key is found in the prefetcher. To improve performance,
individual references are prioritized based on the likelihood of sat-
isfying the request. We considered two methods to prioritize the
references. In the first, we used the true transition probability and in
the second, we used a simple LRU algorithm. The LRU algorithm
out-performed the true transition probability in every application,
and is much easier to implement. Table 4 shows the reference fre-

400%

350%

u) 300%

i!
‘5 250%
2

8 200%
‘ij

5 150%
‘ii
2
IL 100%

50%

0%

,.__._.......__._......._......................
-7’

n Miss Predicted

,

Number of
Prefetch

* ‘Predictors. . . . ’ ’

Figure 5: Changes in prefetch accuracy and coverage for the Markov prefetcher as the number of prefetch addresses is increased. Each bar
shows the normalized percentage of Ll data cache misses when using one, two, four or eight prefetch address predictors.

quency for each predictor address in a Markov prefetchcr with four
prediction addresses. The columns represent the relative age of the
predictor reference and predictor “0” is always the most rcccntly
used address predictor. For example, 34.2% of the refcrcnccs cor-
rectly prefetched for the Sdet application were predicted by the first
predictor address. The large difference in reference frequency for
the first and second predictors indicates that an LRU policy is very
effective.

The LRU prioritization also orders the data to improve the lead
time, or the time until the data is needed in our model memory sim-
ulator. Table 5 shows the average number of cycles bctwccn lhc
time a prefetch is issued and when it is used, for those prefclch rc-
quests that are actually used. Larger values indicate a longer “lcad
time”, meaning there is more time to actually provide the data 10

the processor. In each case, the lead time increases from the most
recently used reference (the first column) to the least recently used
(the last column). This indicates that the LRU prioritization method
not only requests the most frequently needed items, but that it also

requests those that are needed soonest.
We compared the performance of the Markov prefetchcr using

four prefetch addresses and an LRU prioritization policy agninst
other prefetch mechanisms. Figure 6 shows the normalized mcm-
ory transfers for the different methods. From left to right, cacb

column shows the performance for: stream pmfctching, stride
prefetching correlation prefetching, Markov prcfetching, stride,
stream and Markov in parallel and stride, stream and Markov in
series. The stride, stream and correlation prefetchers are simulnted
as described in $3.

Figure 6 shows that stream prefetchers provide bctlcr cover-
age than stride prefetchers, but do so by using considerably more
bandwidth. The correlation prefetcher (column 3) provides still
better coverage and the Markov prefetcher (column 4) provides
the best coverage over the set of applications. However, as with
stream buffers, this increase in coverage comes at the price of in-

G92’ 1 0.501 1 0.256 1 0.153 1 t
MM4 I 0.691 I 0.202 I 0.093 I 0.062 1 .i ‘. I
Spice 1 0.606 1 0.262 1 0.082 1 0.034

Table 4: Reference frequency for each data cache prediction ad-
dress entry for different applications

Benchmark Address Predictor
01 II 21 3

Table 5: Reference lead time for each data cache prediction address
entry for different applications.

‘.’ i
1 I

250%

200%

$
u)
L!?
I
0 150%
s
3
0
b
5 100%

;’
s
t

50%

0%
Sdet La.1 lis NC ztpert T PB P ,baqus G9i!

Cl Not Predicted

SPICE

Figure 6: Simulation-based study comparing prefetcher accuracy. From left to right, each column shows the performance for: stream
prefetching, stride prefetching correlation prefetching, Markov prefetching, stride, stream and Markov in parallel and stride, stream and
Markov in series.

4n

s
.” 300%
I

2 250%
zii
0
% 200%

I W Mispredicted

I .- .- -- I-.-. q NotPredicted ._ . ._.

1 R Predicted 1

Abaqu G9 MM4 SPIC

Figure 7: Memory reference overhead for different bandwidth reduction techniques. In this figure, the vertical axis shows the the fraction of
words transfered, rather than cache lines. In the group for each program, the first bar is for demand fetching (no prefetched), followed by
Markov prefetching, Markov prefetching with noise rejection, accuracy-based adaptivity and CNA-based adaptivity. The last bar shows the
memory references if the Ll-cache is queried prior to prefetching.

creased memory bandwidth demands, often five-fold that of the
stream buffers. The last two columns indicate alternative designs
that attempt to either improve coverage or improve accuracy. In the
fifth column, we use a combination of stride, stream and Markov
prefetchers in parallel. This typically results in a large increase
in mispredicted references that waste bandwidth, but with a mod-
est improvement in coverage. At times, the coverage actually de-
creases. When the predictors are used in series, the coverage im-
proves again, but by a smaller amount. Likewise, the mispredic-
tions increase, wasting more bandwidth In part, this occurs be-
cause references handled by the stream and stride mechanisms are
not used to “train” the Markov predictor, since they are not misses.
A more important factor in the “parallel” configuration is interfer-
ence and contention for the prefetch buffers. For example, both
the stream buffer and the Markov prefetcher may predict a specific,
yet different address. These differing predicitons must contend for
a small number of prefetch buffers and the limited memory band-
width.

5.1 Limiting the Prefetch Bandwidth

In general, the increased need for bandwidth provides the great-
est limitation to effective prefetcher implementations. The addi-
tional demand increases contention for the processor bus, possibly
blocking demand fetches or later prefetched requests. We examined
four techniques to improve the accuracy of the Markov prefetcher
and thus reduce the bandwidth consumed by prefetching. Figure 7
shows the performance of these techniques using a variant of the
previous presentations. In this figure, we show that fraction of sub-
block cache misses, where each sub-block is a four-byte word. In
the group for each program, the first bar is for demand fetching,
where no prefetching is used. Figure 7 indicates that ~50% of the
bandwidth for demand-fetched references is wasted, because the
part of the data stored in the 32-byte cache line is not references.
The second bar shows the same information for Markov prefetch-
ing, using four addresses predictors and an LRU prioritization pol-
icy. The third bar shows the bandwidth reduction that occurs when
a simple ‘noise rejection” filter is used. This filter was proposed
by Pomerene and Puzak [15] and also examined by Chamey and
Reeves [3]. It is similar to the filter used by Kessler [14] to im-
prove the accuracy of stream buffers - a prefetch request is not dis-
patched until the prefetch pattern has been seen twice. The fourth
column shows the performance for accurucy based adaptivity. In
this scheme, two bit saturation counters are added to each predic-
tion address, and a link back to the prediction address that was used
to make a prefetch is added to each prefetch buffer entry. When a
prefetch is discarded from the prefetch buffer without ever being
used, the corresponding counter in the prediction address is incre-
mented. When a prefetch in the prefetch buffer is used, the corre-
sponding counter is decremented. When the sign bit of the counter
is set, the associated prefetch address is disabled. Prefetch requests
from disabled prefetches are placed in a “pseudo-prefetch buffer”
so the predictions can be compared against actual prefetch requests,
allowing a “disabled” prefetcher to become enabled once again.
The fifth column shows the effect of using an automatic cuche-no-
allocate (CNA) policy to reduce the portion of the cache line that
is actually placed in the prefetch buffer. This design is based on the
CNA mechanism of Tyson et. al. [16]. As in [16], we use a table
of two bit counters to determine if a specific memory instruction
should use a CNA policy. The prefetcher records information both
about the predicted address and the instruction predicted to issue
the memory reference. If that instruction is marked CNA, only the
requested word, rather than the full cache line, is prefetched. The
last bar in each group shows the effect of querying the Ll-cache
prior to prefetching. Some number of prefetch requests are already

valid in the cache, but the external prefetch mechanism may not
know that unless an external shadow tag table is used.

Of these techniques, only querying the Ll cache can be im-
plemented as a completely external subsystem. The others require
modifications to the prefetch mechanisms or interaction between
the prefetcher and the processor. In general the CNA-based adap
tivity provides the greatest performance improvement, but the CNA
mechanism isn’t directly applicable to the instruction cache. In-
struction references tend to use most of a cache line, and tcch-
niques that either accept or reject and entire cache lines (such as
the accuracy-based adaptivity) work better than the CNA method,
which prefetches only a portion of the cache line. Figure 7 SLOWS
that the CNA mechanism changes the number of cache misses used
as a “baseline” for some programs (G92, MM4 and Spice). The
CNA mechanism improves the basic cache performance for MM4,
but decreases the performance for G92 and SPICE. This is an arti-
fact of the CNA bandwidth reduction technique [161.

5.2 Comparison Using a Memory-system Simulntor

We have seen that the Markov predictor provides better prefctch
coverage than the other prefetchers we examined. We used a
memory-level simulator to determine if that improved coverage
resulted in better performance for the memory subsystem. Our
memory simulator models the contention for the system resources
shown in Figure 1. In particular, we wanted to insure that the ad-
ditional bandwidth consumed by the Markov prefetcher did not re-
duce the overall memory performance.

Figure 8(a) shows the memory CPI when different prefclchcrs
are used for only the data cache and Figure 8(b) shows the memory
CPI when prefetchers are used for the instruction and data caches,
In each case, we used the accuracy-based adaptivity bandwidth fil-
ter for each Markov prefetcher. The correlation prefetcher uscs
the filter suggested by Charney and Reeves, and the stream buffers
use the filter proposed by Kessler. From left-to-right, the individ-
ual bars indicate the performance of stream, stride, correlation and
Markov prefeichers. The segments of each bar indicate the fraction
of the overall MCPI attributed to individual parts of the memory
system. From bottom to top, the segments indicates the delay due
to fetching instructions into the Ll cache, fetching data into the
Ll cache, fetching data into the L2 cache and the additional delay
incurred by a pure demand-fetch model.

The Markov prefetcher provides the best performance across nll
the applications, particularly when applied to both the instruction
and data caches. Recall that the correlation and Markov prcfctch-
ers requirefewer resources than the stream and stride buffers - the
Markov prefetcher used a 2MByte cache and a 1MByte prcfetch
table, VS. the 4MByte cache used in the demand-fetch model.

6 Conclusion

We have presented the Markov prefetcher, and simulated its pcr-
formance over a number of significant applications. Although
the Markov prefetcher can be characterized as an extension to
the correlation prefetcher previously described by Pomerene nnd
Puzak [15] and Chamey and Reeves [3], there arc a number of de-
sign issues presented by the Markov prefetcher. The prcfetchcr
must be able to launch multiple prefetch requests and prioritize
them, and the prefetcher must consider some mechanism to limit
the bandwidth devoted to prefetching.

Our study has shown that a simple, effective and realizable
Markov prefetcher can be built as an off-chip component of the
memory subsystem. The design we present takes fewer resources
than a normal demand-fetch cache, yet reduced the memory CPI

450%

g 400%

zz

g 350%

E
2 300%

0

2 2 250%

2 200%

2

e 150%
+

$ 100%

t
5
ZI 50%
0

.

0%

I ̂ , . .

0 Base .
rJL2

. .._I_... LJ q LlD

q LII

.

. . . .

.

. 1

SPICE

(b) Data and Instruction References

(b) Data and Instruction References

Figure 8: The average number of CPU stalls attributed to the memory subsystem (MPCI) when using different prefetchers for just the data
references and both data and instructions. Across each application, the vertical bars indicate the MCPI for a demand-fetch model. From
left-to-right, the individual bars indicate the performance of stream, stride, correlation and Markov prefetchers. The segments of each bar
indicate the fraction of the overall MCPI attributed to individual parts of the memory system.

261

by an average of 54% over the applications we examined. The
Markov prefetchers we examined provide better prefetch coverage
and more timely prefetches than other prefetchers at the expense
of reduce accuracy. However, the combination of bandwidth re-
duction filters and prioritization of the prefetch requests makes the
Markov prefetcher the most effective prefetcher we examined.

There are a number of ways the Markov prefetcher can be im-
proved. In particular, both the Markov and correlation prefetchers
must observe a reference sequence prior to predicting references.
It would be desirable to abstract a reference pattern from several
instances of reference sequences. Likewise, it would be useful to
have some mechanism to issue prefetch requests for patterns or se-
quences that have not yet occurred, eliminating the training period
needed by the Markov predictor.

References

[I] T. Alexander and G. Kedem. Distributed predictive cache de-
sign for high performance memory system. In Second Inter-
national Symposium on High-Performance Computer Archi-
tecture, Feb 1996.

[2] J.L. Baer. Dynamic improvements of locality in virtual mem-
ory systems. IEEE Transactions on Sojware Engineering, 2,
March 1976.

[3] M.J. Chantey and A.P. Reeves. Generalized correlation based
hardware prefetching. Technical Report EE-CEG-95-1, Cor-
nell University, Feb 1995.

[4] T.F. Chen and J.L. Baer. Reducing memory latency via non-
blocking and prefetching caches. In ASPLOS-V, pages 51-61,
Ott 1992.

[5] 2. Cvetanovic and D. Bhandakar. Characterization of alpha
axp using tp and spec workloads. In 21th Annual Interna-
tional Symposium on Computer Architecture, pages 60-70,
April 1994.

[6] K.I. Farkas and N.I? Jouppi. Complexity/performance tmde-
offs with non-blocking loads. In 21th Annual International
Symposium on Computer Architecture, pages 21 l-222, April
1994.

[7] N. Jouppi. Improving direct-mapped cache performance by
the addition of a small fully associative cache and prefetch
buffers. In 17th International Symposium on Computer Ar-
chitecture, May 1990.

[S] A.C. Klaiber and H.M. Levy. An architecture for software
controlled data prefetching. In I8th International Symposium
on Computer Architecture, May 1991.

[9] M;H. Lipasti and et.al. Spaid: Software prefetching in pointer
and call intensive enviomments. In Proceedings of 28th An-
nual International Symposium on Microarchitecture, pages
231-236, Nov 1995.

[lo] A.M. Maynard, C.M. Donnelly, and B.R. Olszewski. Con-
trasting characteristics and cache performance of technical
and multi-user commercial workIoads. In ASPOS-VI, Apr
1994.

[ll] S. Mehrota and H. Luddy. Examination of a memory ac-
cess classification scheme for pointer-intensive and numeric
programs. Technical Report CRSD tech report 1351, CRSD
University of Illinois, Dee 1995.

262

[12] T.C. Mowry, M.S. Lam, and A. Gupta. Design and evaluation
of a compiler algorithm for prefetching. In ASPLOS-V, pages
62-73,Oct 1992.

[13] T. Ozawa and et.al. Cache miss heuristics an preloading tcch-
niques for general-purpose programs. In Proceedings of28th
Annual International Symposium on Microarchitectttre, pages
243-248, Nov 1995.

[14] S. Palacharla and R.E. Kessler. Evaluating stream buffers
as a secondary cache replacement. In 21th Anntral Internal
tional Symposium on Computer Architectttre, pages 2433,
April 1994.

[15] J. Pomerene and et.al. Prefetching system for a cache having n
second directory for sequentially accessed blocks. Tcchnicnl
Report 4807110, U.S. Patent Office, Feb 1989.

[16] Gary Tyson, Matt Farrens, and Andrew Pleszkun. A modifted
approach to data cache management. In Proceedings of 26th
Annual International Symposium on Microarchitecttrre, pnges
93-105, Nov 1995.

[17] Z. Zhang and T. Torrellas. Speeding up irrcgulnr applicn-
tions in shared memory multiprocessors: Memory binding
and group prefetching. In 22r/t Anmral International Sym-
posium on Computer Architecture, pages 1-19, June 1995.

A.Benchmark Descriptions

The System Evaluation Corpomtion (SPEC SDM) suite includes
two benchmarks: Sdet and Kenbus. Sdet is intended to represent a
general purpose computing environment. A large number of users
run concurrently with commands separated by little or no think
time. Commands executed by the users include: edit, compile,
bind, ksh, grep, Is, cp, rm and mkdir. The benchmark is run with
multiple user levels to show throughput as a function of number of
users. The benchmark is traced consists of 64 users and includes
kernel, user and shared library activity.

The Laddis benchmark measures the capacity of a file scrvcr
running NFS. It is essentially are-packaging of the NHFSSTONES
benchmark created by Legato Systems. It runs by having one of
more client workstations submit NFS requests to the server. The
requests must be completed with an average response time of 50
milliseconds. The benchmark was run using a single client with
a load of 20 transactions per second, and six processes submitting
requests.

The Netperf benchmark measures the performance of system
communications. It important because it mimics interactive nct-
work environments, such as telnet, where response time is critical,
As currently implemented Netperfprovides a simple reprcsenladon
of interactive workloads and data xfers. The benchmark traced con-
sisted of a single machine sending packets to it self. In this sccnnrio
a single one byte packet was “ping-ponged” between two processes
10,000 times. The metric was the latency of the transfers in clapscd
time.

The Transaction Processing Performance Council (TPC)
benchmarks are the best known and most frequently cited measures

. of commercial performance. The TPC is a collection of reprcscn-
tatives from many system and database vendors. At the time of
this writing the TPC has released three benchmarks called TPC-A,
TPC-B and TPC-C, along with rules for running them and for rc-
porting results. Although some simulations in this thesis rescnrch
were executed with all three benchmarks, only one was selected
for every test case: TPC-B. TPC-B simulates a banking applica-
tion where users submit many simple debit or credit transactions

from automated teller machines. The system is expected to respond
within two seconds. The number of users and size of the database
are scaled with the reported performance metric: transactions per
second (TPS). For example, a system which reports a TPS rating of
80 would have a database roughly eight times as large as a system
with a rating of 10. The benchmark used in this thesis was traced
with 60 users in a client-server configuration.

Abaqus is a structural dynamics analysis product, like NAS-
TRAN and ANSYS. This particular application is from the set of
timing runs provided by HKS, Inc.. It is described as: ‘This is a
large linear analysis consisting of a 40x40 mesh of shell elements
of type SSR5. The total number of degrees of freedom is 39366; the
maximum wavefront is 522 and the RMS wavefront is 503. Most
of the time is spent in the inner loop in the solver, so that computers
with fast vector processors should run this problem quickly.”

G92 is a computational chemistry application from the Gaus-
sian ‘92 Application Test Suite from Gaussian,Inc. Since the run-
time of this test is about 8 minutes and consists of many processes
(none running concurrently with the other), the tracing effort con-
centrated on user mode only of the top two processes: 1703.exe and
11002.exe. These processes accounted for over 70% of the total
runtime and almost 77% of the total user-mode runtime.

MM4 is a local-weather model owned by NOAA (National
Oceanic and Atmospheric- Administration). It uses Navier-Stokes
equations to solve a finite element grid.

Spice is a floating point intensive electronic circuit simulation
benchmark from the SPEC92 suite. Only the user activity was
traced for this benchmark.

263

