

Assisted Execution

Michel Dubois and Yong Ho Song

CENG Technical Report 98-25

Department of Electrical Engineering - Systems
University of Southern California

Los Angeles, California 90089-2562
(213)740-4475

October 1998

1

Assisted Execution

Michel Dubois and Yong Ho Song

Department of Electrical Engineering - Systems
University of Southern California

Los Angeles, Cali fornia 90089-2562
(213)740-4475

Fax: (213) 740-7290
{dubois, yongho}@paris.usc.edu

Abstract

We introduce a new execution paradigm called assisted execution. In this model, a
set of auxiliary “assistant” threads, called nanothreads, is attached to each thread of an
application. Nanothreads are very lightweight threads which run on the same processor as
the main (application) thread and help execute the main thread as fast as possible. Nano-
threads exploit resources that are idled in the processor because of dependencies and
memory access delays.

Assisted execution has the potential to alter the current trade-offs between static
and dynamic execution mechanisms. Nanothreads can monitor and reconfigure the under-
lying hardware, can emulate hardware and can profile applications with li ttle or no inter-
ference to improve the program on-line or off-line.

We demonstrate the power of assisted execution with an important application,
namely data prefetching to fight the memory wall problem. Simulation results on several
SPEC95 benchmarks show that sequential and stride prefetching implemented with nano-
thread technology performs just as well as ideal hardware prefetchers.

Keywords: Multithreading, prefetching, ILP processors

2

Assisted Execution

Abstract

We introduce a new execution paradigm called assisted execution. In this model, a
set of auxiliary “assistant” threads, called nanothreads, is attached to each thread of an
application. Nanothreads are very lightweight threads which run on the same processor as
the main (application) thread and help execute the main thread as fast as possible. Nano-
threads exploit resources that are idled in the processor because of dependencies and
memory access delays.

Assisted execution has the potential to alter the current trade-offs between static
and dynamic execution mechanisms. Nanothreads can monitor and reconfigure the under-
lying hardware, can emulate hardware and can profile applications with li ttle or no inter-
ference to improve the program on-line or off-line.

We demonstrate the power of assisted execution with an important application,
namely data prefetching to fight the memory wall problem. Simulation results on several
SPEC95 benchmarks show that sequential and stride prefetching implemented with nano-
thread technology performs just as well as ideal hardware prefetchers.

1. Introduction

Dynamically-scheduled superscalar processors exploit instruction-level parallelism (ILP)

to speed-up the execution of programs. However, because of control and data dependencies and

memory access penalties, large amounts of hardware and compil ing efforts reap small perfor-

mance gains, often resulting in vast underutilization of the hardware. Processor multithreading,

and more specifically simultaneous multithreading, is a very promising approach to deal with

these technological trends. In this approach, several threads are scheduled at the same time and

compete for issue slots in the processor, reducing the impact of control and data dependencies in

each thread on the CPI [23][24].

When the threads belong to independent tasks each thread may run slower because of

resource conflicts with its peers; for example, running more independent threads on the same pro-

cessor leads to more cache misses and memory latency to hide, which, in turns, calls for more

threads. The threads may also be part of the same application, in which case the application runs

faster. However, if a compiler decomposes an application into N concurrent threads and if each

processor needs k threads to run efficiently, then the number of useful processors in a multipro-

cessor configuration is limited to N/k.

3

Another approach to exploit the abundant hardware resources of a multithreaded proces-

sor is to create more work to facilitate and accelerate the execution of each application thread.

This extra work is executed by a set of auxiliary “assistant” threads called nanothreads and

attached to each application thread. Nanothreads are very lightweight threads which run on the

same processor as the main (application) thread, share its memory and may share its registers and

its execution stack. Nanothreads exploit resources that are idled in the processor because of

dependencies and memory access delays. This new execution paradigm is called assisted execu-

tion.

Under assisted execution, the compiler or programmer can create nanothread code cus-

tomized to the dynamic properties of application programs. Nanothreads can monitor and recon-

figure the underlying hardware, can emulate hardware and can profile applications with lit tle or

no interference to improve the program on-line or off -line. In a nutshell , assisted execution has

the potential to alter the current trade-offs between static and dynamic execution mechanisms.

In this paper, we develop the concept of assisted execution and apply it to an important

problem: attacking the memory wall problem by stride and sequential prefetching. We first intro-

duce the execution model, and describe a possible architecture to support it in Section 2. Sections

3 and 4 elaborates on the architecture simulation model, and the sequential and stride prefetching

mechanisms. The experimental methodology is given in Section 5. The simulation results com-

paring nanothread-based and ideal hardware prefetchers are then presented and discussed in Sec-

tion 6. Finally, we review related work and conclude in Sections 7 and 8.

2. Execution Model and Architecture for Assisted Execution

2.1. Execution Model

We attach a collection of nanothreads to each main (application) thread. The main thread

carries the computation as in a traditional environment, while the nanothreads do all the work nec-

essary to monitor the main thread execution and possibly effect changes to improve its perfor-

mance. A main thread and its nanothreads run on the same processor. Nanothreads can be started

by main thread code or, as we wil l see, by nanotraps, a lightweight trapping mechanism. They

interact with the main thread by sharing memory, and possibly registers and execution stack.

4

Figure 1. Decomposition of a Process into Threads and Nanothreads

Figure 1 il lustrates the case where an application has been decomposed into N main

threads running on N processors and seven nanothreads are attached to each thread. Whereas the

figure seems to imply an homogeneous system, nothing prevents programmers to design nano-

threads customized to different compute nodes in an heterogeneous system.

In conventional multi threading [21], an active thread is characterized by the state of its

register file, its program counter, and its execution stack. Since we want the main thread and its

nanothreads to interact at the lowest possible level, while allowing them to execute different

instructions, they should be able to share memory, registers and execution stack, but should have

independent program counters. A possible organization for the integer register file is shown in

Figure 2 for a processor supporting 7 nanothreads. The threads have access to 32 general-purpose

registers; however 4 of these registers are private (registers 28 to 31), while 28 are shared (regis-

ters 0 to 27). Thus the total number of integer registers is 60. This organization gives some private

workspace to each thread. The same organization may apply to the floating-point register file.

Process

MainMain
Thread

NanothreadsNanothreads Nanothreads

 1 2 N

Processor 1 Processor 2 Processor N

......Thread Thread
Main

5

Figure 2. Possible Integer Register File Implementations

If the main thread and its nanothreads do not share execution stacks, they can execute

unrelated pieces of code and have some level of protection from each others’ execution. However,

this generality comes with a cost in increased complexity in terms of synchronization and sharing

registers across contexts. On the other hand, if the main thread and its nanothreads are restricted

to sharing the same execution stack these issues are greatly simpli fied but their functionality is

limited such that a nanothread can only execute within the scope of the function in which it is cre-

ated. Threads sharing the same execution stack are referred to as tightly-coupled whereas threads

having independent execution stacks are said to be loosely-coupled. In this paper a main thread

and its nanothreads are tightly-coupled.

To ill ustrate the problems, consider the simple Fortran DO-loop shown in Figure 3.

Assume that we create three nanothreads at the start of the loop to prefetch blocks of A, B, and C

and that the loop index N is allocated to a register, which is known and shared by the three nano-

threads. In Figure 3(a), tightly-coupled threads will do, since the main thread remains in the same

context and the nanothreads are simple enough that they do not use function or subroutine calls.

However, in Figure 3(b), a function FUNCT() is called in the main thread, which may use the

register allocated to N. Thus, if the threads are tightly-coupled, the main thread must prevent its

nanothreads from accessing N during the execution of the function. Moreover, if the prefetch

algorithm is somewhat complex and requires a function call i tself, sharing the same stack will

cause the execution to become unpredictable, because return addresses from different nanothreads

shared registers
(R0-R27)

R28-R31 (main thread)
R28-R31 (nanothread(0))
R28-R31 (nanothread(1))
R28-R31 (nanothread(2))
R28-R31 (nanothread(3))
R28-R31 (nanothread(4))
R28-R31 (nanothread(5))
R28-R31 (nanothread(6))

6

wil l be mixed on the shared stack.

Figure 3. Codes Illustrating the Need for Both Tightly and Loosely-coupled Threads

The example of Figure 3(a) also illustrates the need to synchronize the main thread and its

nanothreads. If the prefetching nanothreads are not executed fast enough, they could read the

index of subsequent loop iterations. General-purpose synchronization mechanisms between the

main thread and its nanothreads could include timestamps, synchronization registers, hardware

flags or memory-based locks.

2.2. Processor Architecture

Processor architectures in which multiple threads can run concurrently can support

assisted execution. For example, a microprocessor in which one nanothread can be tightly-cou-

pled with a main thread is described in [7]1. The processor is a VLIW (Very Long Instruction

Word) processor, and, whenever the processor stalls on the main thread, it automatically begins

fetching instructions from the nanothread. The modifications to the processor needed to support

the nanothread is minimal.

Our focus in this paper is on dynamically scheduled, ILP processors, exempli fied by the

MIPS R10000 [13], shown in Figure 4 with some modifications to support assisted execution. To

allow concurrent execution of one main thread and several nanothreads, the processor must have

one main PC statically dedicated to the main thread context and several nano-PCs, dynamically

allocated to nanothreads. In each cycle, the instruction fetch unit selects one of the active threads

and fetches several instructions at a time from that thread. Multiple instructions are decoded and

then sent to several instruction queues. Once its operands are available an instruction can be

issued to its execution unit. Instructions finish their execution in the retirement buffer where they

1. The term nanothread was adopted from this paper.

DO 100 N=1,200 DO 100 N=1,200
N_CREATE(Prefetch(A[N+1]) N_CREATE(Prefetch(A[N+1])
N_CREATE(Prefetch(B[N+1]) N_CREATE(Prefetch(B[N+1])
N_CREATE(Prefetch(C[N+1]) N_CREATE(Prefetch(C[N+1])
A[N]=B[N]+C[N] A[N]=B[N]+FUNCT(C[N])
C[N]=C[N-1] C[N]=C[N-1]
B[N]=A[N+1] B[N]=A[N+1]

100 CONTINUE 100 CONTINUE

(a) (b)

7

wait for their turn to retire in the program order of their thread.

Figure 4. ILP Processor with Support for Nanothreads

2.3. Nanotraps

To implement precise exceptions, the MIPS R10000 identifies the faulting instruction at

the retirement stage, prevents it from retiring and aborts all subsequent instructions in program

order. The time taken by an exception is divided into four major components. The first is the

delay from the exception event to the detection in the retirement stage. The second is the time

required to save the processor context so that the trap handler can run. The third is the execution

time of the exception handler, and the fourth is the time to restore the saved process context.

Because the overhead of traditional exceptions is so large in ILP processors, they must occur

rarely, which prevents their widespread use for dynamic execution mechanisms. Another restric-

tion is that only one exception handler can be executed at a time.

With the support for nanothreads, we implement nanotraps, a form of lightweight traps.

Nanotraps are triggered on selectable hardware events occurring in the main thread, such as cache

misses, cache invalidations, or completion signal from an autonomous hardware machine. When a

nanotrap is triggered somewhere in the processor, it is immediately taken by the hardware. The

hardware selects a nano-PC (if any one is free) and allocates it to the nanotrap handler. Since the

Instruction

Instruction
Fetch

PC Pool
mainPC+ ηPCs

Register
Set

ALU

ηTrap Feedback

Thread Scheduling Feedback

Data Cache
Cache

FPU

Interger Flow

Floating Point Flow

Register
Set

Renaming
LDSTU

Address Flow

ηTrap Handler
Address
Register

Instruction
Decode

Register Address
Queue

INT inst
Queue

FP Inst
Queue

Retirement

8

handler runs in a nanothread, the processor does not switch context at the occurrence of a nan-

otrap. Rather, the main thread continues executing in the pipeline if it can, while a nanothread

executes the nanotrap handler using resources not held by the main thread.

Nanotraps can be synchronous or asynchronous. In the synchronous case, the main thread

is blocked until the handler is finished. An asynchronous nanotrap simply spawns a new nano-

thread. Whether an asynchronous nanotrap is blocking or not depends on what happens when all

nano-PCs are busy at the time of the trap: It is blocking if the hardware stalls the main thread until

a nano-PC is available and it is non-blocking if the nanotrap is simply ignored. Blocking asyn-

chronous nanothreads are useful when the nanotrap cannot be ignored, for example if the nanotrap

responds to the overflow of an event counter. In many cases, such as prefetching, non-blocking

asynchronous nanotraps are suff icient.

To demonstrate the effectiveness of assisted execution, we have developed a simulator of

a processor for assisted execution. Then we have implemented and evaluated sequential and stride

prefetching schemes using prefetching nanothreads triggered by nanotraps. In the next section, we

describe the specific details of the architecture simulated.

3. Detailed Architecture Model

Referring to Figure 4, we first define some terms. An instruction is ready for execution

when all its register operands are available, either in a register or through forwarding. A ready

instruction in an instruction queue issues when it starts execution. Arithmetic instructions are

completed when their execution is finished in the assigned execution unit. Load instructions are

completed when the data is returned and forwarded to the dependent instructions. The target regis-

ter of an arithmetic or load instruction is not updated until the instruction retires in the retirement

unit. Instructions must retire in program order. Store instructions are completed when they retire

and update the cache.

In every cycle, the Instruction Fetch Stage (IFS) selects one PC, decides the number of

instructions to fetch, fetches the instructions, and sends them to the instruction decode stage. Two

simpli fications have been made in our model. First, instructions always hits in the instruction

cache and, second, branch prediction is perfect.

9

The instruction fetch scheduler selects a thread based on the number of active nanothreads

and the number of instructions in the processor for each active thread. If the number of main

thread instructions is more than 50% of the capacity of all i nstruction queues, or if the number of

main thread instructions in any instruction queue is larger than 2/3 of the queue capacity, IFS

selects a nanothread with the smallest number of instructions in the processor. The number of

instruction fetched in each cycle is less than or equal to the number of free slots in any one

instruction queue and its maximum is four.

The next stage is the Instruction Decode Stage (IDS), which decodes up to four instruc-

tions in every processor clock. When any instruction queue is full, the decoding stage stalls. The

Register Renaming and Enqueue Stage (RRES) resolves both Write-After-Write (WAW) depen-

dency and Write-After-Read (WAR) hazards by renaming registers using 128 integer registers

and 128 floating point registers.

Renamed instructions are attached to one of three different instruction queues: integer,

float-point and address. Each instruction queue contains up to 12 entries. Therefore, the maximum

number of instructions pending for execution is 36. Up to four instructions can be sent to the

instruction queues in each processor cycle.

In every cycle, up to five instructions are selected to issue to the execution units based on

a greedy algorithm that gives a higher priority to the oldest, ready-to-issue instruction. The

instruction issue scheduler also gives higher priority to nanothreads in the address queue in order

to drain them as fast as possible and avoid deadlocks.

Integer instructions and floating-point instructions can be issued out-of-order, as soon as

they are ready. As soon as its execution is completed, an arithmetic instruction releases any RAW

register dependency with subsequent instructions, leaves the instruction queue, and proceeds to

the retirement stage.

The address queue is managed in FCFS manner. No instruction in this queue can be issued

until all instructions in front of it have been issued and have computed their memory address.

Moreover a load cannot issue if a store with the same address is pending in front of it in the queue.

As soon as the data is returned, loads forward the results to dependent instructions. All l oad/store

instructions are kept in the address queue until they retire.

10

Instructions can be issued to each execution unit at the maximum rate of one every cycle.

The execution time of each type of instruction is shown in Table 1.

After their execution, instructions move to the retirement buffer where they wait their turn

to retire in the program order of their thread. Registers identify the next instruction to retire in

each thread. Each instruction is tagged with a thread identifier and a serial number. There is no

limit on the size of the retirement buffer and the number of retiring instructions in a processor

cycle.

3.1. Support for Nanotraps

To support nanotraps a special register called Nanotrap Handler Address Register

(NHAR) is added to the instruction fetch stage. NHAR keeps the start address of a common nan-

otrap handler. At the occurrence of a nanotrap, an inactive nano-PC (if any) is allocated to the

nanothread and initialized to the content of NHAR. The nano-PC is returned to the inactive pool

of PCs when a return from trap instruction (RETT) is executed in the nanothread.

Once dispatched the nanotrap handler must identify the source of the nanotrap. This is

done through a set of Nanotrap Status Registers (NSR). In this paper there is only one NSR, asso-

ciated with the second-level cache, but, in general we can imagine multiple NSRs, associated with

other resources in the machine. Moreover, whereas at most one nanotrap may occur in every cycle

in the second-level cache, multiple nanotraps could occur at the same time in the general case. We

therefore need a mechanism to serialize nanotraps and to give time to the hardware to react and

allocate a nanothread to each nanotrap without losing any. The mechanism is shown in Figure 5.

In every processor clock, the FIFO register is shifted forward. Whenever a new nanotrap

is detected through a valid NSR, the NSR is selected. While the NSR moves up in the FIFO, a

Table 1: Execution Time of instructions

Instruction Class Execution Time (in cycle)

Integer Instructions 1

Floating Point Instructions (except FDIV, FSQRT) 2

Floating Point Instructions (FDIV, FSQRT) 4

Address Instructions (FLC cache hit) 2

11

new nano PC is selected and initialized to the value in NHAR. When the NSR emerges from the

FIFO, the hardware is ready to store it in a nanothread-specific trap status register (NTSR). In the

next clock the newly activated nanothread is a candidate for instruction fetch. The FIFO in

Figure 5 gives the hardware four clocks to react to the nanotrap.

Figure 5. Nanotrap Status Hardware

3.2. Memory Subsystem

The memory subsystem contains separate instruction cache and data cache. The instruc-

tion cache is not simulated. This is equivalent to assuming that the instruction cache never misses.

The data cache is made of a First Level Cache (FLC) and a Second Level Cache (SLC). Both are

single-ported, write-back, direct-mapped with 32 byte blocks. FLC and SLC access times are 1

pclock and 6 pclocks respectively.

SLC is non-blocking. In a nonblocking cache there are two types of misses: primary and

secondary misses [9]. A primary miss triggers a block fetch from memory. A secondary miss does

not access memory because a primary miss for the same block is already in progress. All accesses

missing in SLC occupy a slot in a Pending Memory Access Queue (PMAQ). Accesses causing

secondary misses are merged with their corresponding primary miss in PMAQ. Up to 32 memory

accesses (including prefetches) may be in progress in the second-level cache at any one time. The

memory access latency is either 50 or 200 pclocks. Memory conflicts are not simulated.

4. Prefetching

We have experimented with both sequential and stride prefetching. Only load/store pri-

mary data misses in SLC may generate nanotraps. Prefetch instructions are sent to the address

NSR(1)

FIFO

select source k

NSR(k)…

MUX

NTSR(1) NTSR(n)…

DeMUXselect nanothread n

12

queue in the processor. However, contrary to other memory access instructions, they do not wait

in the queue until retirement. Rather, they are sent to the second level cache when they can be

issued and are removed from the address queue. If a prefetch instruction hits in SLC, it is dropped.

Otherwise, it is inserted in PMAQ as are other load/store misses.

4.1. Software sequential prefetching

In sequential prefetch, whenever a miss occurs in the second-level cache, the blocks fol-

lowing the missing block in the address space are prefetched into the cache. The number of

prefetched blocks can be adjusted for different programs, but remains constant for the entire exe-

cution of a given program. Software sequential prefetch executes the same nanothread code for

every miss. The NTSR must be loaded with the address of the missing access. The nanothread

does not read any register of the main thread and there is no need to synchronize.

The nanotrap handler code for sequential prefetching is shown in Figure6. By simply

increasing the faulting memory address (obtained from the NTSR) by the cache block size, the

trap handler generates a number of prefetches equal to prefetch count.

Figure 6. Software Sequential Prefetch Handler

4.2. Software stride prefetching

Stride prefetch relies on the compiler to tag memory instructions which may trigger a

prefetch on a miss and to identify the stride that should be used, as was done in [20]. Each tagged

memory access instruction in the program may have its own nanotrap code. The NSTR is thus

loaded with the value of the PC for the faulting instruction. The starting address of the prefetch is

calculated from the context of the main thread stored in registers or on the execution stack.

prefetch_address = faulting memory address;

do {
prefetch_address = prefetch_address + CACHE_LINE_SIZE;
issue prefetch from prefetch_address;

} while (--i > 0);
return from trap;

i = prefetch count;

13

Figure 7. Prologue of the Software Stride Prefetch Handler

The software stride prefetching handler is preceded by a prologue, shown in Figure7

which looks up a hash table using the PC value found in NTSR. If there is a valid entry in the hash

table, the faulting address qualifies for prefetching and the handler jumps to the code correspond-

ing to the specific PC value. If it does not, the handler terminates.

Figure 8. PC-specific Part of the Software Stride Prefetch Handler

The actions taken by the trap handler depends on the PC of the faulting instruction. The

part of the trap handler code that is PC-specific is shown in Figure 8. The compiler generates code

to compute the prefetch addresses based on the iteration count and the faulting address obtained

from the main thread context.

We have simply ignored the synchronization problem between the main thread and the

prefetching nanothread. It is therefore possible that some of the prefetches are fetching useless

blocks, but this does not affect program correctness. The hardware simply ignores prefetches that

cause protection traps. The number of prefetches is most of the time given by the default prefetch

count, as in sequential prefetch, except towards the end of the loop where the number of

prefetches depends on the number of iterations left.

pc = faulting PC;
start = start address of hash table;
index = pc & 0xfff;
hash_tbl_addr = start+index;
while (1) {

reads a hash table entry from hash_tbl_addr;
if (pc == address defined at hash_tbl_addr) goto trap_start_addr;
if (the entry is blank) break;
increase hash_tbl_addr;

}
return from trap;

prefetch_address is loaded from the context of main thread;

do {
prefetch_address = prefetch_address + stride distance;
issue prefetch from prefetch_address;

} while (--i > 0);
return from trap;

i = min(prefetch count, calculated stride count);

14

4.3. Ideal prefetchers

The purpose of the simulations is to evaluate the effectiveness of nanotraps in emulating

prefetching hardware. As a reference point, we also model ideal hardware prefetchers, which gen-

erate exactly the same prefetches as the software prefetcher in the second-level cache, but with no

overhead. This can be achieved by executing the software handlers at the time of a cache miss

outside of the simulator. Thus at the occurrence of a cache miss, the ideal prefetcher generates the

addresses to prefetch and inserts them in a prefetch address queue in zero simulation time. The

second-level cache then executes the prefetches one by one, inside the simulator.

5. Evaluation Methodology

We have run a detailed simulation model to experiment with assisted execution. The sim-

ulation environment is based on two separate simulators working together in a tightly-coupled

fashion. A trace-driven simulator, called superscalar, implements a superscalar processor

with support for assisted execution. It is driven by an execution-driven Sparc processor simulator,

called CacheMire-2 [1], which generates decoded instruction streams for main thread and nan-

othreads to superscalar. Superscalar sends requests for instructions to CacheMire-2

with instruction count and thread identifier in the instruction fetch stage. Then, CacheMire-2

executes the given thread by the given number of instructions and returns the decoded instructions

to superscalar.

5.1. Benchmarks

We have run seven benchmarks from the SPEC95 benchmark suite [22]: two SPECint95

applications (go, compress) and five SPECfp95 applications (swim, applu, su2cor,

mgrid, wave5). The code used for stride prefetching is generated by the Napai compiler devel-

oped at Halmstad University by Jonas Skeppstedt’s group [15]. This compiler produces highly

optimized code [20]. Each benchmark binary has a prologue and PC-specific trap handlers for

stride prefetching, as well as a separate file for the hash table. The hash table contains 4096

entries but, in most cases, only about 10% of the entries are defined and conflicts are rare. The

same benchmark binaries are used for the different prefetching strategies. For stride prefetching

schemes, the content of the hash table is read into the data area, and the address of the prologue is

15

saved in NHAR (Figure4) at the beginning of the simulation.

We simulate 100 million instructions of each benchmark (not counting nanothread code).

The cache sizes are scaled differently for each benchmark. They are given in Table2.

For each benchmark and each memory latency, we report the results for the best prefetch

count, which is shown in each figure.

5.2. Performance Metrics

The execution time is the main measure of performance. However, to gain better insight

into the behavior of each benchmark, we also measure memory blocking time, degree of bad

prefetch, nanotrap response time, nanothread activity, and thread concurrency.

The memory blocking time is the part of the execution time in which no instruction of the

main thread makes progress in the pipelines. The degree of bad prefetches is the fraction of

prefetched blocks that are never accessed before they are replaced or before the end of the simula-

tion. Nanotrap response time is the average time between a primary cache miss and the sending of

the first prefetch to the second level cache. Nanothread activity is the ratio between the number of

nanothread instructions and the number of main thread instructions executed. Thread concurrency

indicates the number of threads running concurrently. In every processor cycle, we record the

number of threads active in the processor. At the end of the simulation, we compute the fraction

of cycles that a given number of threads were active.

6. Simulation Results

6.1. Sequential Prefetch

Figure 9 compares systems with software and ideal sequential prefetching to the same sys-

tem with no prefetching. It appears that software sequential prefetch is as effective as the ideal

hardware prefetchers. We first comment on the effectiveness of prefetching on the benchmark

Table 2: Data Cache Sizes

applu compress go mgrid su2cor swim wave5

FLC Size 4 KB 16 KB 16 KB 4 KB 2 KB 2 KB 4 KB

SLC Size 32 KB 64 KB 64 KB 32 KB 8 KB 8 KB 16 KB

 16

execution tim
es.

F
igure 9. N

orm
alized E

xecution T
im

es and Instruction D
ependencies (Sequential P

refetch)

T
he effectiveness of sequential prefetching varies w

ith applications. W
hen an application

exhibits very little m
em

ory blocking there is little to be
 gained by prefetching. T

his is clearly the

(a) M
em

ory L
atency=50pclocks

(b) M
em

ory L
atency=200pclocks

N
o

rm
a

liz
e

d
 E

x
e

c
u

tio
n

 T
im

e

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

swim (no pf)

sw im (ideal #pf=4)

sw im (sw #pf=4)

su2cor (no pf)

su2cor (ideal #pf=4)

su2cor (sw #pf=4)

com press (no pf)

com press (ideal #pf=2)

com press (sw #pf=2)

applu (no pf)

applu (ideal #pf=4)

applu (sw #pf=4)

go (no pf)

go (ideal #pf=2)

go (sw #pf=2)

m grid (no pf)

m grid (ideal #pf=16)

m grid (sw #pf=16)

wave5 (no pf)

wave5 (ideal #pf=4)

wave5 (sw #pf=4)

Normalized Execution T ime

P
u

re
 E

xe
c

u
tio

n
 T

im
e

M
e

m
o

ry
 B

lo
c

kin
g

 T
im

e

N
o

rm
a

liz
e

d
 E

x
e

c
u

tio
n

 T
im

e

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

swim (no pf)

sw im (ideal #pf=4)

sw im (sw #pf=4)

su2cor (no pf)

su2cor (ideal #pf=4)

su2cor (sw #pf=4)

com press (no pf)

com press (ideal #pf=2)

com press (sw #pf=2)

applu (no pf)

applu (ideal #pf=4)

applu (sw #pf=4)

go (no pf)

go (ideal #pf=2)

go (sw #pf=2)

m grid (no pf)

m grid (ideal #pf=16)

m grid (sw #pf=16)

wave5 (no pf)

wave5 (ideal #pf=4)

wave5 (sw #pf=4)

Normalized Execution T ime

P
u

re
 E

xe
c

u
tio

n
 T

im
e

M
e

m
o

ry
 B

lo
c

kin
g

 T
im

e

17

case for swim. Because swim’s data miss rate is extremely low (see Table 3), its performance

improves less than 2% with prefetching. Two benchmarks, applu and mgrid, show larger

improvements due to prefetching. Even with a latency as low as 50 pclocks, the execution times

improves by up to 13% in the simulations with prefetching. Other programs show moderate

improvements. Similar trends were also observed and reported in [2].

The quali ty of the prefetches affects the performance directly. Table3 and Table4 show

the miss rates and the degree of bad prefetches for the latency of 50 pclocks. The miss rates of

ideal and software prefetching differ because the timing of the prefetches is different. For mgrid

the miss rate with prefetching is cut down to less than 20% and the degree of bad prefetches is rel-

atively low (54.63%) considering the prefetch count of 16. Even though sequential prefetching

does not use application-specific stride information when deciding the blocks to prefetch, it is

most effective for mgrid.

Sequential prefetching reduces execution time 1) by cutting the number of primary miss

and 2) by turning some primary misses into secondary misses. As shown in Figure10, in the case

of wave5, the number of primary data misses is sharply reduced under prefetching.

Figure 10. Normalized Primary Miss and Secondary Miss Counts (Latency=50pclocks)

For swim and wave5, the number of secondary misses increases under prefetch while the

Primary M iss vs. Secondary M iss

0

20

40

60

80

100

120

140

s
w

im
 (

n
o

 p
f)

s
w

im
 (

id
e

a
l #

p
f=

4
)

s
w

im
 (

s
w

 #
p

f=
4

)

s
u

2
c

o
r

(n
o

 p
f)

s
u

2
c

o
r

(i
d

e
a

l #
p

f=
4

)

s
u

2
c

o
r

(s
w

 #
p

f=
4

)

c
o

m
p

re
s

s
 (

n
o

 p
f)

c
o

m
p

re
s

s
 (

id
e

a
l #

p
f=

2
)

c
o

m
p

re
s

s
 (

s
w

 #
p

f=
2

)

a
p

p
lu

 (
n

o
 p

f)

a
p

p
lu

 (
id

e
a

l #
p

f=
4

)

a
p

p
lu

 (
s

w
 #

p
f=

4
)

g
o

 (
n

o
 p

f)

g
o

 (
id

e
a

l #
p

f=
2

)

g
o

 (
s

w
 #

p
f=

2
)

m
g

ri
d

 (
n

o
 p

f)

m
g

ri
d

 (
id

e
a

l #
p

f=
1

6
)

m
g

ri
d

 (
s

w
 #

p
f=

1
6

)

w
a

ve
5

 (
n

o
 p

f)

w
a

ve
5

 (
id

e
a

l #
p

f=
4

)

w
a

ve
5

 (
s

w
 #

p
f=

4
)

Primary Miss Secondary Miss

18

number of primary misses decreases. However, secondary misses do not affect performance

much. Most of the time, the average penalty seen by secondary misses in prefetching cases is

almost equal to the memory latency, which implies that most secondary cache misses tend to hap-

pen right after a primary cache miss on the same block. Accesses causing secondary misses must

still wait in the address queue until the preceding primary miss retires and would have to wait

even if they were hits. This explains why Applu with software prefetching experiences more sec-

ondary cache misses than with ideal prefetching but the execution time is not affected.

These observations agree with previously published results in different environments. It is

known, for example, that the execution time of ILP processors is not that sensitive to the penalty

experienced by individual memory access instructions [19]. Similarly, in [16] software-controlled

prefetching [14] is shown to be less effective in reducing the memory blocking component of exe-

cution time than in traditional processor.

6.2. Nanothread Activity

The nanothread activity is displayed in Table 5. This activity is quite low and we believe

that nanothreads could efficiently implement much more complex mechanisms than sequential

prefetching. Nanothreads work harder in favor of su2cor because most cache misses in

su2cor are primary misses (Figure 10) and its miss rate is high as shown in Table 3.

Table 3: Miss Rate (primary + secondary) (%) (Latency = 50 pclocks)

swim su2cor compress applu go mgrid wave5

No Prefetch 0.28 3.29 3.66 3.55 2.13 4.29 2.70

Ideal Prefetch 0.36 3.21 3.25 1.96 1.56 0.65 2.22

SW Prefetch 0.40 2.97 3.50 2.61 1.56 0.66 2.38

Table 4: Degree of Bad Prefetches (%) (Latency = 50 pclocks)

swim su2cor compress applu go mgrid wave5

Bad Prefetch 75.87 79.60 79.16 40.87 57.60 54.63 79.04

Table 5: Nanothread Activity (%)

swim su2cor compress applu go mgrid wave5

Activity 0.67 9.11 2.11 3.87 1.98 5.99 3.96

19

Nanothreads compete with the main thread in the instruction fetch scheduler and the

instruction issue scheduler, and cause structural hazards. However Figure 9 comparing the execu-

tion times of nanothread-based prefetching and ideal prefetching shows that these conflicts do not

slow down the main thread significantly, even in the case of su2cor. The reason is that most of

the time the main thread runs alone or concurrently with a few nanothreads. Table 6 shows the

thread concurrency. i thread means that the main thread plus (i -1) nanothreads are active. We

observe that the time during which less than three nanothreads are working with the main thread

covers 99% of the total execution time, and that the main thread runs alone more than 80% of the

time. Four nano-PC would have been sufficient to support sequential prefetching in this architec-

ture.

Table7 shows the nanotrap response time. The latency between the primary miss and the

first prefetch request in the ideal case is not affected directly by processor activity because the

prefetches are triggered and executed in the cache controller. The only delay in this case is the

queueing time in the prefetch queue and possible backup of PMAQ.

By contrast, prefetching nanothreads must first get through the instruction queues. If any

instruction queue is full at the occurrence of a nanotrap, the instruction fetch stage stalls and the

Table 6: Thread Concurrency (%)

swim su2cor compress applu go mgrid wave5

1 thread 95.59573 79.30909 92.72737 89.96152 91.65257 92.77511 88.23303

2 threads 3.09828 16.17952 3.65240 7.49005 7.96112 3.60884 5.34133

3 threads 0.56539 4.42414 2.77154 2.52565 0.29383 2.85355 4.92720

4 threads 0.66068 0.07493 0.60405 0.02088 0.04541 0.39372 1.35182

5 threads 0.07615 0.00905 0.24452 0.00119 0.02178 0.16088 0.12832

6 threads 0.00199 0.00243 0.00004 0.00008 0.01537 0.05362 0.01186

7 threads 0.00112 0.00039 0.00004 0.00027 0.00921 0.06212 0.00377

8 threads 0.00066 0.00045 0.00005 0.00036 0.00071 0.09215 0.00266

Table 7: Latency in pclocks until the First Prefetch (Memory Latency=50 pclocks).

swim su2cor compress applu go mgrid wave5

Ideal Prefetch 4.00 4.03 4.04 4.34 4.06 7.23 4.83

SW Prefetch 45.51 35.88 21.55 56.93 37.02 47.51 52.73

20

nanothread is also delayed. Hence, longer memory access latencies further delay the response

time of nanothreads. This delay may have some effects on the execution times

6.3. Stride Prefetch

The speedup due to prefetching is dependent upon the efficiency of the prefetching algo-

rithm. Table8 shows the comparison between four different prefetch configurations: no prefetch-

ing, ideal stride prefetching, software stride prefetching and software sequential prefetching for

the case of applu. When applicable, the numbers in parenthesis are relative to the corresponding

value for the system with no prefetch, except for the memory blocking time, which is relative to

the execution time of the system with no prefetch.

The nanothread response times are 194.4 and 237.9 pclocks for sequential and stride

prefetching respectively. The main reason why the response times are so long is that, most of the

time, instruction queues are saturated, especially the address queue. In applu, the average

address queue occupancy is about 11 entries out of the queue size of 12 entries throughout the

execution time. This implies that the address queue is very likely to be full when a cache miss

occurs, and the processor stalls. In this case, nanothread instructions can be fetched only after the

missing data returns from memory and the instruction retires to make room for other instructions.

The stride prefetching handler executes much more instructions than the sequential prefetch han-

dler, which explains the difference in prefetch latencies of these two approaches.

Among all the benchmarks applu is the one for which stride prefetching works best. As

Table 8: Comparison of Stride and Sequential Prefetch (for applu, Latency=200 pclocks)

applu No Prefetch Ideal Stride Software Stride Software Sequential

Execution time 145335277 (100.00%) 119257176 (82.06%) 119951074 (82.53%) 121273373 (83.44%)

Memory blocking time 69345696 (47.71%) 43201454 (29.73%) 43870084 (30.19%) 45068436 (31.01%)

Miss rate 3.55 (100.00%) 2.19 (61.69%) 2.21 (64.51%) 2.68 (75.49%)

Primary miss rate 2.14 (100.00%) 0.93 (43.46%) 1.04 (48.60%) 0.82 (38.32%)

Degree of bad prefetch (%) (NA) 18.3 19.3 40.3

Issue rate 0.688 (100.00%) 0.839 (121.95%) 0.834 (121.22%) 0.825 (119.91%)

Instruction dependency 7.559 (100.00%) 6.827 (90.32%) 6.739 (89,15%) 6.819 (90.21%)

Nanothread activity. (%) (NA) (NA) 7.941 3.873

Nanothread response time (NA) (NA) 237.9 194.4

21

indicated by the miss rate and the degree of bad prefetches, stride prefetching is more accurate

than sequential prefetching. Although the stride prefetching handler executes more instructions

than the sequential prefetching handler, this added work is mostly hidden by the highly concurrent

execution of instructions in the processor [16].

7. Related Work

The work previously published and relevant to this paper falls in three categories: memory

informing operations, prefetching and simultaneous multithreading.

Horowitz, et al. [8] proposed memory informing operations to help software observe the

memory referencing behavior by trapping on selected first-level cache misses and by taking

actions when needed in the trap handler. Through simulations, they showed that the overhead of

the memory informing trap handler is less than 40% of the total execution. One of the major rea-

sons that memory informing operations are penalized by this overhead is that the processor model

supports only one single thread at a time. Moreover, traps are expensive. In some sense we could

say that nanotraps implementing sequential and stride prefetching are extensions of the memory

informing operations to ILP processors with simultaneous multithreading. However, nanotraps

and nanothreads are more general since they are not restricted to deal with events caused by the

memory system.

Skeppstedt and Dubois [20] exploited the idea of memory informing operations in a tradi-

tional pipelined processor executing a single thread at a time to propose a hybrid software/hard-

ware stride prefetching scheme in multiprocessors. Second-level cache misses trigger traps which

either program and start an autonomous hardware stride prefetcher or issue the stride prefetches.

The trap handlers run while the processor waits on memory access misses in a sequentially con-

sistent system, which is not possible in an ILP processor. In this paper we have adopted the same

stride prefetching algorithm in nanothreads. With assisted execution, the scheme becomes feasi-

ble and eff icient in ILP processors.

Dahlgren and Stenstrom [4] compared sequential and stride prefetching for shared-mem-

ory multiprocessors. They showed that sequential prefetching outperforms stride prefetching for

many applications, because most strides are shorter than the block size if the cache block is large

enough and because sequential prefetching can exploit the locality of misses with non-stride

22

accesses. Because sequential prefetching raises the traff ic in the memory system stride prefetch-

ing may be superior to sequential prefetching under limited bandwidth. In a uniprocessor environ-

ment, where memory bandwidth issues are different, we have also observed that stride

prefetching is more accurate but is not always as good as sequential prefetch. In the best case for

stride prefetching, the case of applu, the software sequential prefetching is stil l very competi-

tive, as shown in Table8. However we did not simulate memory conflicts.

In [2], Charney and Puzak show instruction and data cache miss rates for the SPEC 95

benchmark suite on a traditional processor and evaluate two prefetching algorithms: next-sequen-

tial prefetching (NSP) and shadow-directory prefetching (SDP). The former approach is very sim-

ilar to our sequential prefetch algorithm. Since they skip the first billion instructions in the

program and simulated the next 500 million instructions, a direct comparison of their results with

ours is difficult. However, some observations are consistent with ours. They show that prefetch-

ing is less effective for compress and go because these applications lack a next-sequential miss

pattern. We also observed that the performance of these programs is worse as the prefetch count

increases. The degree of bad prefetch of compress is the highest among all the benchmarks

even with a small prefetch count. On the other hand, mgrid and applu do very well under the

NSP scheme as well as in nanothread based sequential prefetch.

Ranganathan, et al. [16] show that software-controlled non-binding prefetching can be

very effective for some applications in ILP processors. The overhead of prefetch instructions is

less than in traditional processors because the execution of prefetch instructions is overlapped

with other computation or memory accesses. Instead of adding prefetch instructions in the pro-

grams, we rely on nanotraps, which generate prefetches on cache misses only, tracking the

dynamic application behavior. The effect of data misses in out-of-order superscalar processors

was also studied by André Seznec and Fabien Lloansi [19].

The original goal of multithreaded processors was to eliminate processor blocking time

due to program dependencies, which leads to a vast waste of hardware resources. Simultaneous

multithreaded (SMT) processors were introduced by Tullsen et al. in [23]. SMT relies on the abil -

ity of parallelizing compiler to produce enough threads to exploit the processor resources and on

the degree of parallelism embedded in application programs [5] [24] [6]. Pedro Marcuello and

Antonio Gonzalez’s multithreaded processor exploits the parallelism found in highly predictable

23

branches such as loops without relying on special instructions or parallelizing compilers [12]. The

assisted execution model is based on the general SMT model in that multiple threads runs concur-

rently by sharing the given processor resources but the parallelism comes from work added to the

computation.

8. Conclusions and Future Research

Assisted execution is a new execution paradigm. Assistant threads called nanothreads are

attached to application threads. In the context of ILP processors and simultaneous multithreading,

these nanothreads can boost the execution speed of the main thread while their instruction over-

head is hidden by the concurrent execution of instructions in the processor. Assisted execution

generalizes previous proposals such as memory informing operations and hybrid software/hard-

ware prefetching strategies and provides a framework in which they can be more eff icient.

Static, compile-time execution mechanisms are often preferred because dynamic mecha-

nisms require additional work, which can easily offset their potential gains. We believe that

assisted execution offers brand new opportunities for dynamic mechanisms. In a multiprocessor

environment, nanotraps can be used to execute coherence protocol handlers [10]. By monitoring

and predicting data and instruction access patterns based on compile-time knowledge nanothread

may help reduce the cost of conditional branches and of data access penalties in irregular applica-

tions. Systems with adaptive hardware such as adaptive protocols, variable cache block size, or

configurable interconnects may become feasible, since the overhead of monitoring and configur-

ing is hidden in nanothreads. Dynamic execution profil ing and software reconfiguration can also

be done eff iciently with nanothreads; in this approach called adaptive execution in [18], profiling

information is gathered dynamically and is fedback to the main thread to affect its execution by

selecting a different code segment. Finally, nanothreads could be used for other purposes than

enhancing performance, such as low-overhead online diagnosis, and fault-tolerance by low-over-

head online fault detection and hardware reconfiguration.

For the nanothread algorithms evaluated in this paper, synchronization was not a problem.

In general however eff icient synchronization mechanisms between nanothreads and main thread

must be designed and evaluated, in the light of more complex dynamic execution mechanisms.

Another problem not addressed in this paper is the programming problem. Namely we

24

need to create a programming environment in which nanothreads can be developed and attached

to main threads. Whether a compiler can do this automatically is of course the main challenge.

Acknowledgment

This work was funded by the National Science Foundation under Grant No. MIP-

9633542. We want to thank Mary Hall of the Information Science Institute and Rafael Saavedra

from the Computer Science Department at U.S.C. for many lively discussions on the topic of

assisted execution and for helping in shaping the main ideas in this paper. Also, Jonas Skeppstedt

from Halmstad University (Sweden) provided us with compiled code without which this work

would have been impossible.

9. References

[1] M. Brorsson, F. Dahlgren, H. Nilsson, and P. Stenström, “The CacheMire Test Bench - A
Flexible and Effective Approach for Simulation of Multiprocessors,” Proceedings of 26th Annual
Simulation Symposium, pp. 41-49, March 1993.

[2] M. J. Charney and T. R. Puzak, “Prefetching and memory system behavior of the SPEC95
benchmark suite,” Performance analysis and its impact on design, Vol. 41, No. 3, 1997

[3] T-F Chen and J-L Baer, “A Performance Study of Software and Hardware Prefetching
Schemes,” Proceedings of the 21th International Symposium on Computer Architecture, pp. 223-
232, May 1994.

[4] F. Dahlgren and P. Stenström, “Evaluation of Hardware-Based Stride and Sequential
Prefetching in Shared-Memory Multiprocessors,” IEEE Transactions on Parallel and Distributed
Systems, Vol. 7, No. 4, pp. 385-398, April 1996.

[5] S. J. Eggers, et al., “Simultaneous Multithreading: A Platform for Next-generation Processors,”
IEEE Micro, pp. 12-18, September/October 1997.

[6] B. Goossens, “Tipi: The Threads Processor,” MTEAC ‘98 Conference, 1998.

[7] L. Gwenlapp, “Dansoft Develops VLIW Design,” Microprocessor Report, Vol. 11, No. 2, Feb.
17, 1997, pp. 18-22.

[8] M. Horowitz, M. Martonosi, T. C. Mowry, and M. D. Smith, “ Informing Memory Operations:
Providing Memory Performance Feedback in Modern Processors,” Proceedings of the 23rd
Annual International Symposium on Computer Architecture, pp. 260-270, May 1996.

[9] D. Kroft, ”Lockup-free Instruction Fetch/Prefetch Cache Organization,” Proc. of the 8th Int.
Symposium on Computer Architecture, pp. 81-87, May 1981.

[10] J. Kuskin et al. The Standford FLASH Multiprocessor. Proc. of the 21st Annual International
Symposium on Computer Architecture, pages 302-313, April 1994.

[11] C. Luk and T.C. Mowry, “Compiler-Based Prefetching for Recursive Data Structures,”
Proceedings of ASPLOS’96, Oct. 1996.

25

[12] P. Marcuello and A. González, “Control and Data Dependence Speculation in Multithreaded
Processors,” MTEAC ‘98 Conference, 1998.

[13] MIPS Technologies Inc., “R10000 Microprocessor User’s Manual-Version 2.0,” December
1996.

[14] T. Mowry. Tolerating Latency Through Software-Controlled Data Prefetching. PhD thesis,
Stanford University, Computer Systems Laboratory, Stanford, CA, March 1996.

[15] “The Napai Compiler Project” Halmstad University, Sweden, http://www.hh.se/staff /jonas/
napai/index.html.

[16] P. Ranganathan, V. S. Pai, H. Abdel-Shafi, and S. V. Adve. “The Interaction of Software
Prefetching with ILP Processors in Shared-Memory System,” Proceedings of the 24th Annual
International Symposium on Computer Architecture, June 1997.

[17] S.K. Reinhardt, J.R. Larus, and D.A. Wood. Tempest and Typhoon: User-Level Shared
Memory. Proc. of the 21st Annual International Symposium on Computer Architecture, pages 325-
337, April 1994.

[18] R.H. Saavedra and D. Park, “ Improving the Effectiveness of Software Prefetching with
Adaptive Execution, “ 1996 Parallel Architecture and Compilation Techniques (PACT’96), Oct.
1996.

[19] A. Seznec and F. Lloansi, “About Effective Cache Miss Penalty on Out-Of-Order Superscalar
Processors,” TR IRISA-970, November 1995.

[20] J. Skeppstedt and M. Dubois, “Hybrid Compiler/Hardware Prefetching for Multiprocessors
Using Low-Overhead Cache Miss Traps,” Proc. of the 1997 Int. Conf. on Parallel Processing,
pp.298-305.

[21] P. Song, “Multithreading Comes of Age,” Microprocessor Report, Vol. 11, No. 9, Jul. 14,
1997, pp. 13-18.

[22] The SPEC Corporation, The SPEC95 Benchmark Suite, 1995.

[23] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous Multithreading: Maximizing On-
Chip Parallelism,” Proceedings of the 22rd Annual International Symposium on Computer
Architecture, pp. 392-403, June 1995.

[24] D. M. Tullsen, et al., “Exploiting Choice: Instruction Fetch and Issue on an Implementable
Simultaneous Multithreading Processor,” Proceedings of the 23rd Annual International
Symposium on Computer Architecture, pp.191-202, May 1996.

