

Programming
Massively Parallel

Processors

This page intentionally left blank

Programming
Massively Parallel

Processors
A Hands-on Approach

Second Edition

David B. Kirk and Wen-mei W. Hwu

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann is an imprint of Elsevier

Acquiring Editor: Todd Green

Editorial Project Manager: Nathaniel McFadden

Project Manager: Priya Kumaraguruparan

Designer: Alan Studholme

Morgan Kaufmann is an imprint of Elsevier

225 Wyman Street, Waltham, MA, 02451, USA

r 2013, 2010 David B. Kirk/NVIDIA Corporation and Wen-mei Hwu. Published by

Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or any information storage

and retrieval system, without permission in writing from the publisher. Details on how

to seek permission, further information about the Publisher’s permissions policies and our

arrangements with organizations such as the Copyright Clearance Center and the Copyright

Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright

by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research

and experience broaden our understanding, changes in research methods or professional

practices, may become necessary. Practitioners and researchers must always rely on their

own experience and knowledge in evaluating and using any information or methods described

herein. In using such information or methods they should be mindful of their own safety and

the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors,

or editors, assume any liability for any injury and/or damage to persons or property as a

matter of products liability,negligence or otherwise, or from any use or operation of any

methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Application submitted

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-415992-1

Printed in the United States of America

13 14 15 16 17 10 9 8 7 6 5 4 3 2 1

For information on all MK publications visit our website at www.mkp.com

http://www.elsevier.com/permissions
http://store.elsevier.com

Contents

Preface ... xiii
Acknowledgements ..xix
Dedication ...xxi

CHAPTER 1 Introduction ...1

1.1 Heterogeneous Parallel Computing ..2

1.2 Architecture of a Modern GPU ..8

1.3 Why More Speed or Parallelism?...10

1.4 Speeding Up Real Applications..12

1.5 Parallel Programming Languages and Models.............................14

1.6 Overarching Goals ..16

1.7 Organization of the Book ...17

References ...21

CHAPTER 2 History of GPU Computing ..23
2.1 Evolution of Graphics Pipelines ...23

The Era of Fixed-Function Graphics Pipelines............................24

Evolution of Programmable Real-Time Graphics........................28

Unified Graphics and Computing Processors31

2.2 GPGPU: An Intermediate Step...33

2.3 GPU Computing..34

Scalable GPUs...35

Recent Developments ...36

Future Trends ..37

References and Further Reading ..37

CHAPTER 3 Introduction to Data Parallelism and CUDA C41

3.1 Data Parallelism ..42

3.2 CUDA Program Structure...43

3.3 A Vector Addition Kernel ..45

3.4 Device Global Memory and Data Transfer48

3.5 Kernel Functions and Threading ..53

3.6 Summary ...58

Function Declarations ...59

Kernel Launch...59

Predefined Variables ...59

Runtime API ...60

3.7 Exercises..60

References ...62

v

CHAPTER 4 Data-Parallel Execution Model ...63
4.1 Cuda Thread Organization..64

4.2 Mapping Threads to Multidimensional Data................................68

4.3 Matrix-Matrix Multiplication—A More Complex

Kernel ..74

4.4 Synchronization and Transparent Scalability81

4.5 Assigning Resources to Blocks ..83

4.6 Querying Device Properties..85

4.7 Thread Scheduling and Latency Tolerance..................................87

4.8 Summary ...91

4.9 Exercises..91

CHAPTER 5 CUDA Memories ...95
5.1 Importance of Memory Access Efficiency...................................96

5.2 CUDA Device Memory Types ...97

5.3 A Strategy for Reducing Global Memory Traffic......................105

5.4 A Tiled Matrix�Matrix Multiplication Kernel109

5.5 Memory as a Limiting Factor to Parallelism115

5.6 Summary ...118

5.7 Exercises..119

CHAPTER 6 Performance Considerations ...123
6.1 Warps and Thread Execution ...124

6.2 Global Memory Bandwidth ..132

6.3 Dynamic Partitioning of Execution Resources141

6.4 Instruction Mix and Thread Granularity143

6.5 Summary ...145

6.6 Exercises..145

References ...149

CHAPTER 7 Floating-Point Considerations ...151
7.1 Floating-Point Format ...152

Normalized Representation of M..152

Excess Encoding of E ...153

7.2 Representable Numbers ..155

7.3 Special Bit Patterns and Precision in IEEE Format...................160

7.4 Arithmetic Accuracy and Rounding ...161

7.5 Algorithm Considerations ...162

7.6 Numerical Stability ...164

7.7 Summary ...169

7.8 Exercises..170

References ...171

vi Contents

CHAPTER 8 Parallel Patterns: Convolution ..173
8.1 Background ...174

8.2 1D Parallel Convolution—A Basic Algorithm179

8.3 Constant Memory and Caching ..181

8.4 Tiled 1D Convolution with Halo Elements..............................185

8.5 A Simpler Tiled 1D Convolution—General Caching..............192

8.6 Summary ...193

8.7 Exercises..194

CHAPTER 9 Parallel Patterns: Prefix Sum..197

9.1 Background ...198

9.2 A Simple Parallel Scan ...200

9.3 Work Efficiency Considerations...204

9.4 A Work-Efficient Parallel Scan..205

9.5 Parallel Scan for Arbitrary-Length Inputs................................210

9.6 Summary ...214

9.7 Exercises..215

Reference ..216

CHAPTER 10 Parallel Patterns: Sparse Matrix�Vector
Multiplication ...217

10.1 Background ...218

10.2 Parallel SpMV Using CSR ...222

10.3 Padding and Transposition..224

10.4 Using Hybrid to Control Padding...226

10.5 Sorting and Partitioning for Regularization230

10.6 Summary ...232

10.7 Exercises..233

References ...234

CHAPTER 11 Application Case Study: Advanced MRI
Reconstruction ...235

11.1 Application Background ...236

11.2 Iterative Reconstruction ..239

11.3 Computing FHD ..241

Step 1: Determine the Kernel Parallelism Structure................243

Step 2: Getting Around the Memory Bandwidth Limitation249

Step 3: Using Hardware Trigonometry Functions255

Step 4: Experimental Performance Tuning259

11.4 Final Evaluation ..260

11.5 Exercises..262

References ...264

viiContents

CHAPTER 12 Application Case Study: Molecular
Visualization and Analysis ..265

12.1 Application Background ...266

12.2 A Simple Kernel Implementation...268

12.3 Thread Granularity Adjustment ..272

12.4 Memory Coalescing ..274

12.5 Summary ...277

12.6 Exercises..279

References ...279

CHAPTER 13 Parallel Programming and Computational
Thinking ...281

13.1 Goals of Parallel Computing ..282

13.2 Problem Decomposition..283

13.3 Algorithm Selection ..287

13.4 Computational Thinking ...293

13.5 Summary ...294

13.6 Exercises..294

References ...295

CHAPTER 14 An Introduction to OpenCLTM ..297

14.1 Background ...297

14.2 Data Parallelism Model ..299

14.3 Device Architecture ..301

14.4 Kernel Functions ...303

14.5 Device Management and Kernel Launch304

14.6 Electrostatic Potential Map in OpenCL307

14.7 Summary ...311

14.8 Exercises..312

References ...313

CHAPTER 15 Parallel Programming with OpenACC...........................315
15.1 OpenACC Versus CUDA C ...315

15.2 Execution Model ...318

15.3 Memory Model ...319

15.4 Basic OpenACC Programs ...320

Parallel Construct..320

Loop Construct..322

Kernels Construct..327

Data Management ...331

Asynchronous Computation and Data Transfer335

15.5 Future Directions of OpenACC..336

15.6 Exercises..337

viii Contents

CHAPTER 16 Thrust: A Productivity-Oriented Library for CUDA....... 339
16.1 Background ...339

16.2 Motivation ...342

16.3 Basic Thrust Features..343

Iterators and Memory Space...344

Interoperability..345

16.4 Generic Programming ...347

16.5 Benefits of Abstraction ...349

16.6 Programmer Productivity ..349

Robustness...350

Real-World Performance ..350

16.7 Best Practices ..352

Fusion ..353

Structure of Arrays..354

Implicit Ranges ...356

16.8 Exercises..357

References ...358

CHAPTER 17 CUDA FORTRAN ..359

17.1 CUDA FORTRAN and CUDA C Differences.........................360

17.2 A First CUDA FORTRAN Program ..361

17.3 Multidimensional Array in CUDA FORTRAN363

17.4 Overloading Host/Device Routines With Generic

Interfaces ...364

17.5 Calling CUDA C Via Iso_C_Binding367
17.6 Kernel Loop Directives and Reduction Operations369

17.7 Dynamic Shared Memory ...370

17.8 Asynchronous Data Transfers...371

17.9 Compilation and Profiling ..377

17.10 Calling Thrust from CUDA FORTRAN..................................378

17.11 Exercises ...382

CHAPTER 18 An Introduction to C11 AMP383

18.1 Core C11 Amp Features..384

18.2 Details of the C11 AMP Execution Model391

Explicit and Implicit Data Copies ..391

Asynchronous Operation...393

Section Summary ..395

18.3 Managing Accelerators ...395

18.4 Tiled Execution ...398

18.5 C11 AMP Graphics Features ..401

18.6 Summary ...405

18.7 Exercises..405

ixContents

CHAPTER 19 Programming a Heterogeneous
Computing Cluster ..407

19.1 Background ...408

19.2 A Running Example..408

19.3 MPI Basics ..410

19.4 MPI Point-to-Point Communication Types414

19.5 Overlapping Computation and Communication.......................421

19.6 MPI Collective Communication ...431

19.7 Summary ...431

19.8 Exercises..432

Reference ..433

CHAPTER 20 CUDA Dynamic Parallelism..435

20.1 Background ...436

20.2 Dynamic Parallelism Overview..438

20.3 Important Details...439

Launch Environment Configuration ...439

API Errors and Launch Failures ...439

Events ..439

Streams ..440

Synchronization Scope..441

20.4 Memory Visibility...442

Global Memory ...442

Zero-Copy Memory ..442

Constant Memory..442

Texture Memory ...443

20.5 A Simple Example ..444

20.6 Runtime Limitations ...446

Memory Footprint ...446

Nesting Depth ...448

Memory Allocation and Lifetime...448

ECC Errors ..449

Streams ..449

Events ..449

Launch Pool ..449

20.7 A More Complex Example...449

Linear Bezier Curves ..450

Quadratic Bezier Curves...450

Bezier Curve Calculation (Predynamic Parallelism)450

Bezier Curve Calculation (with Dynamic Parallelism)453

20.8 Summary ...456

Reference ..457

x Contents

CHAPTER 21 Conclusion and Future Outlook459
21.1 Goals Revisited ...459

21.2 Memory Model Evolution ..461

21.3 Kernel Execution Control Evolution ..464

21.4 Core Performance ...467

21.5 Programming Environment...467

21.6 Future Outlook ..468

References ...469

Appendix A: Matrix Multiplication Host-Only Version Source Code471

Appendix B: GPU Compute Capabilities ...481

Index...487

xiContents

This page intentionally left blank

Preface

We are proud to introduce the second edition of Programming Massively Parallel

Processors: A Hands-on Approach. Mass-market computing systems that combine

multicore computer processing units (CPUs) and many-thread GPUs have brought

terascale computing to laptops and petascale computing to clusters. Armed with such

computing power, we are at the dawn of pervasive use of computational experiments

for science, engineering, health, and business disciplines. Many will be able to

achieve breakthroughs in their disciplines using computational experiments that are

of an unprecedented level of scale, accuracy, controllability, and observability. This

book provides a critical ingredient for the vision: teaching parallel programming to

millions of graduate and undergraduate students so that computational thinking and

parallel programming skills will be as pervasive as calculus.

Since the first edition came out in 2010, we have received numerous com-

ments from our readers and instructors. Many told us about the existing features

they value. Others gave us ideas about how we should expand its contents to

make the book even more valuable. Furthermore, the hardware and software tech-

nology for heterogeneous parallel computing has advanced tremendously. In the

hardware arena, two more generations of graphics processing unit (GPU) comput-

ing architectures, Fermi and Kepler, have been introduced since the first edition.

In the software domain, CUDA 4.0 and CUDA 5.0 have allowed programmers to

access the new hardware features of Fermi and Kepler. Accordingly, we added

eight new chapters and completely rewrote five existing chapters.

Broadly speaking, we aim for three major improvements in the second edition

while preserving the most valued features of the first edition. The first improve-

ment is to introduce parallel programming in a more systematic way. This is done

by (1) adding new Chapters 8, 9, and 10 that introduce frequently used, basic par-

allel algorithm patterns; (2) adding more background material to Chapters 3, 4, 5,

and 6; and (3) adding a treatment of numerical stability to Chapter 7. These addi-

tions are designed to remove the assumption that students are already familiar

with basic parallel programming concepts. They also help to address the desire

for more examples by our readers.

The second improvement is to cover practical techniques for using joint

MPI-CUDA programming in a heterogeneous computing cluster. This has been a

frequently requested addition by our readers. Due to the cost-effectiveness and

high throughput per watt of GPUs, many high-performance computing systems

now provision GPUs in each node. The new Chapter 19 explains the conceptual

framework behind the programming interfaces of these systems.

The third improvement is an introduction of new parallel programming

interfaces and tools that can significantly improve the productivity of data-parallel

programming. The new Chapters 15, 16, 17, and 18 introduce OpenACC, Thrust,

xiii

CUDA FORTRAN, and C11AMP. Instead of replicating the detailed descriptions

of these tools from their user guides, we focus on the conceptual understanding of

the programming problems that these tools are designed to solve.

While we made all these improvements, we also preserved the first edition

features that seem to contribute to its popularity. First, we kept the book as con-

cise as possible. While it is very tempting to keep adding material, we want to

minimize the number of pages readers need to go through to learn all the key con-

cepts. Second, we kept our explanations as intuitive as possible. While it is

extremely tempting to formalize some of the concepts, especially when we cover

the basic parallel algorithms, we strive to keep all our explanations intuitive and

practical.

Target Audience
The target audience of this book is graduate and undergraduate students from all

science and engineering disciplines where computational thinking and parallel

programming skills are needed to achieve breakthroughs. We assume that readers

have at least some basic C programming experience. We especially target compu-

tational scientists in fields such as mechanical engineering, civil engineering,

electrical engineering, bio-engineering, physics, chemistry, astronomy, and geog-

raphy, who use computation to further their field of research. As such, these

scientists are both experts in their domain as well as programmers. The book

takes the approach of building on basic C programming skills, to teach parallel

programming in C. We use CUDA C, a parallel programming environment that

is supported on NVIDIA GPUs and emulated on CPUs. There are more than

375 million of these processors in the hands of consumers and professionals, and

more than 120,000 programmers actively using CUDA. The applications that you

develop as part of the learning experience will be able to run by a very large user

community.

How to Use the Book
We would like to offer some of our experience in teaching courses with this

book. Since 2006, we have taught multiple types of courses: in one-semester for-

mat and in one-week intensive format. The original ECE498AL course has

become a permanent course known as ECE408 or CS483 of the University of

Illinois at Urbana-Champaign. We started to write up some early chapters of this

book when we offered ECE498AL the second time. The first four chapters were

also tested in an MIT class taught by Nicolas Pinto in the spring of 2009. Since

then, we have used the book for numerous offerings of ECE408 as well as the

VSCSE and PUMPS summer schools.

xiv Preface

A Three-Phased Approach
In ECE498AL the lectures and programming assignments are balanced with each

other and organized into three phases:

Phase 1: One lecture based on Chapter 3 is dedicated to teaching the basic

CUDA memory/threading model, the CUDA extensions to the C language,

and the basic programming/debugging tools. After the lecture, students can

write a simple vector addition code in a couple of hours. This is followed by a

series of four lectures that give students the conceptual understanding of the

CUDA memory model, the CUDA thread execution model, GPU hardware

performance features, and modern computer system architecture. These

lectures are based on Chapters 4, 5, and 6.

Phase 2: A series of lectures covers floating-point considerations in parallel

computing and common data-parallel programming patterns needed to develop

a high-performance parallel application. These lectures are based on Chapters

7�10. The performance of their matrix multiplication codes increases by

about 10 times through this period. The students also complete assignments on

convolution, vector reduction, and prefix sum through this period.

Phase 3: Once the students have established solid CUDA programming skills,

the remaining lectures cover application case studies, computational thinking,

a broader range of parallel execution models, and parallel programming

principles. These lectures are based on Chapters 11�20. (The voice and video

recordings of these lectures are available online at the ECE408 web site:

http://courses.engr.illinois.edu/ece408/.

Tying It All Together: The Final Project
While the lectures, labs, and chapters of this book help lay the intellectual foun-

dation for the students, what brings the learning experience together is the final

project. The final project is so important to the full-semester course that it is

prominently positioned in the course and commands nearly two months’ focus. It

incorporates five innovative aspects: mentoring, workshop, clinic, final report,

and symposium. (While much of the information about the final project is avail-

able at the ECE408 web site, we would like to offer the thinking that was behind

the design of these aspects.)

Students are encouraged to base their final projects on problems that represent

current challenges in the research community. To seed the process, the instructors

should recruit several computational science research groups to propose problems

and serve as mentors. The mentors are asked to contribute a one- to two-page

project specification sheet that briefly describes the significance of the applica-

tion, what the mentor would like to accomplish with the student teams on the

application, the technical skills (particular type of math, physics, or chemistry

courses) required to understand and work on the application, and a list of web

xvPreface

http://courses.engr.illinois.edu/ece408/

and traditional resources that students can draw upon for technical background,

general information, and building blocks, along with specific URLs or FTP paths

to particular implementations and coding examples. These project specification

sheets also provide students with learning experiences in defining their own

research projects later in their careers. (Several examples are available at the

ECE408 course web site.)

Students are also encouraged to contact their potential mentors during their

project selection process. Once the students and the mentors agree on a project,

they enter into a close relationship, featuring frequent consultation and project

reporting. The instructors should attempt to facilitate the collaborative relation-

ship between students and their mentors, making it a very valuable experience for

both mentors and students.

Project Workshop
The main vehicle for the whole class to contribute to each other’s final project

ideas is the project workshop. We usually dedicate six of the lecture slots to project

workshops. The workshops are designed for students’ benefit. For example, if a

student has identified a project, the workshop serves as a venue to present prelimi-

nary thinking, get feedback, and recruit teammates. If a student has not identified a

project, he or she can simply attend the presentations, participate in the discussions,

and join one of the project teams. Students are not graded during the workshops, to

keep the atmosphere nonthreatening and enable them to focus on a meaningful dia-

log with the instructors, teaching assistants, and the rest of the class.

The workshop schedule is designed so the instructors and teaching assistants

can take some time to provide feedback to the project teams and so that students

can ask questions. Presentations are limited to 10 minutes so there is time for

feedback and questions during the class period. This limits the class size to about

36 presenters, assuming 90-minute lecture slots. All presentations are preloaded

into a PC to control the schedule strictly and maximize feedback time. Since not

all students present at the workshop, we have been able to accommodate up to 50

students in each class, with extra workshop time available as needed.

The instructors and teaching assistants must make a commitment to attend all

the presentations and to give useful feedback. Students typically need the most

help in answering the following questions: (1) Are the projects too big or too

small for the amount of time available? (2) Is there existing work in the field that

the project can benefit from? (3) Are the computations being targeted for parallel

execution appropriate for the CUDA programming model?

Design Document
Once the students decide on a project and form a team, they are required to sub-

mit a design document for the project. This helps them think through the project

steps before they jump into it. The ability to do such planning will be important

to their later career success. The design document should discuss the background

xvi Preface

and motivation for the project, application-level objectives and potential impact,

main features of the end application, an overview of their design, an implementa-

tion plan, their performance goals, a verification plan and acceptance test, and a

project schedule.

The teaching assistants hold a project clinic for final project teams during the

week before the class symposium. This clinic helps ensure that students are on

track and that they have identified the potential roadblocks early in the process.

Student teams are asked to come to the clinic with an initial draft of the following

three versions of their application: (1) the best CPU sequential code in terms of

performance, with SSE2 and other optimizations that establish a strong serial base

of the code for their speedup comparisons and (2) the best CUDA parallel code in

terms of performance—this version is the main output of the project. This version

is used by the students to characterize the parallel algorithm overhead in terms of

extra computations involved.

Student teams are asked to be prepared to discuss the key ideas used in each

version of the code, any floating-point numerical issues, any comparison against

previous results on the application, and the potential impact on the field if they

achieve tremendous speedup. From our experience, the optimal schedule for the

clinic is one week before the class symposium. An earlier time typically results in

less mature projects and less meaningful sessions. A later time will not give stu-

dents sufficient time to revise their projects according to the feedback.

Project Report
Students are required to submit a project report on their team’s key findings. Six

lecture slots are combined into a whole-day class symposium. During the sympo-

sium, students use presentation slots proportional to the size of the teams. During

the presentation, the students highlight the best parts of their project report for the

benefit of the whole class. The presentation accounts for a significant part of stu-

dents’ grades. Each student must answer questions directed to him or her as indivi-

duals, so that different grades can be assigned to individuals in the same team. We

have recorded these presentations for viewing by future students at the ECE408

web site. The symposium is a major opportunity for students to learn to produce a

concise presentation that motivates their peers to read a full paper. After their pre-

sentation, the students also submit a full report on their final project.

Online Supplements
The lab assignments, final project guidelines, and sample project specifications

are available to instructors who use this book for their classes. While this book

provides the intellectual contents for these classes, the additional material will be

crucial in achieving the overall education goals. We would like to invite you to

xviiPreface

take advantage of the online material that accompanies this book, which is avail-

able at

Finally, we encourage you to submit your feedback. We would like to hear

from you if you have any ideas for improving this book. We would like to know

how we can improve the supplementary online material. Of course, we also like

to know what you liked about the book. We look forward to hearing from you.

xviii Preface

Acknowledgements

There are so many people who have made special contributions to the second

edition. We would like to first thank the contributing authors of the new chapters.

Yuan Lin and Vinod Grover wrote the original draft of the OpenACC chapter.

Nathan Bell and Jared Hoberock wrote the original draft of the Thrust chapter,

with additional contributions on the foundational concepts from Chris Rodrigues.

Greg Ruetsch and Massimiliano Fatica wrote the original draft of the CUDA

FORTRAN chapter. David Callahan wrote the C11AMP Chapter. Isaac Gelado

wrote the original draft of the MPI-CUDA chapter. Brent Oster contributed to

base material and code examples of the Kepler chapter. Without the expertise and

contribution of these individuals, we would not have been able to cover these

new programming models with the level of insight that we wanted to provide to

our readers.

We would like to give special thanks to Izzat El Hajj, who tirelessly helped to

verify the code examples and improved the quality of illustrations and exercises.

We would like to especially acknowledge Ian Buck, the father of CUDA and

John Nickolls, the lead architect of Tesla GPU Computing Architecture. Their teams

laid an excellent infrastructure for this course. John passed away while we were

working on the second edition. We miss him dearly. Nadeem Mohammad organized

the NVIDIA review efforts and also contributed to Appendix B. Bill Bean, Simon

Green, Mark Harris, Nadeem Mohammad, Brent Oster, Peter Shirley, Eric Young

and Cyril Zeller provided review comments and corrections to the manuscripts.

Calisa Cole helped with cover. Nadeem’s heroic efforts have been critical to the

completion of this book.

We would like to especially thank Jensen Huang for providing a great amount

of financial and human resources for developing the course that laid the founda-

tion for this book. Tony Tamasi’s team contributed heavily to the review and

revision of the book chapters. Jensen also took the time to read the early drafts of

the chapters and gave us valuable feedback. David Luebke has facilitated the

GPU computing resources for the course. Jonah Alben has provided valuable

insight. Michael Shebanow and Michael Garland have given guest lectures and

offered materials.

John Stone and Sam Stone in Illinois contributed much of the base material for

the case study and OpenCL chapters. John Stratton and Chris Rodrigues contributed

some of the base material for the computational thinking chapter. I-Jui “Ray” Sung,

John Stratton, Xiao-Long Wu, Nady Obeid contributed to the lab material and

helped to revise the course material as they volunteered to serve as teaching assis-

tants on top of their research. Jeremy Enos worked tirelessly to ensure that students

have a stable, user-friendly GPU computing cluster to work on their lab assignments

and projects.

xix

We would like to acknowledge Dick Blahut who challenged us to create the

course in Illinois. His constant reminder that we needed to write the book helped

keep us going. Beth Katsinas arranged a meeting between Dick Blahut and

NVIDIA Vice President Dan Vivoli. Through that gathering, Blahut was introduced

to David and challenged David to come to Illinois and create the course with

Wen-mei.

We would also like to thank Thom Dunning of the University of Illinois and

Sharon Glotzer of the University of Michigan, Co-Directors of the multi-university

Virtual School of Computational Science and Engineering, for graciously hosting

the summer school version of the course. Trish Barker, Scott Lathrop, Umesh

Thakkar, Tom Scavo, Andrew Schuh, and Beth McKown all helped organize the

summer school. Robert Brunner, Klaus Schulten, Pratap Vanka, Brad Sutton, John

Stone, Keith Thulborn, Michael Garland, Vlad Kindratenko, Naga Govindaraju,

Yan Xu, Arron Shinn, and Justin Haldar contributed to the lectures and panel

discussions at the summer school.

Nicolas Pinto tested the early versions of the first chapters in his MIT class

and assembled an excellent set of feedback comments and corrections. Steve

Lumetta and Sanjay Patel both taught versions of the course and gave us valuable

feedback. John Owens graciously allowed us to use some of his slides. Tor

Aamodt, Dan Connors, Tom Conte, Michael Giles, Nacho Navarro and numerous

other instructors and their students worldwide have provided us with valuable

feedback.

We would like to especially thank our colleagues Kurt Akeley, Al Aho, Arvind,

Dick Blahut, Randy Bryant, Bob Colwell, Ed Davidson, Mike Flynn, John Hennessy,

Pat Hanrahan, Nick Holonyak, Dick Karp, Kurt Keutzer, Dave Liu, Dave Kuck,

Yale Patt, David Patterson, Bob Rao, Burton Smith, Jim Smith and Mateo Valero

who have taken the time to share their insight with us over the years.

We are humbled by the generosity and enthusiasm of all the great people who

contributed to the course and the book.

David B. Kirk and Wen-mei W.Hwu

xx Acknowledgements

To Caroline, Rose, and Leo

To Sabrina, Amanda, Bryan, and Carissa

for enduring our absence while working on the course and the book

This page intentionally left blank

CHAPTER

1Introduction

CHAPTER OUTLINE

1.1 Heterogeneous Parallel Computing.. 2

1.2 Architecture of a Modern GPU... 8

1.3 Why More Speed or Parallelism? .. 10

1.4 Speeding Up Real Applications ... 12

1.5 Parallel Programming Languages and Models.. 14

1.6 Overarching Goals.. 16

1.7 Organization of the Book .. 17

References ... 21

Microprocessors based on a single central processing unit (CPU), such as

those in the Intel Pentium family and the AMD Opteron family, drove

rapid performance increases and cost reductions in computer applications

for more than two decades. These microprocessors brought GFLOPS,

or giga (1012) floating-point operations per second, to the desktop and

TFLOPS, or tera (1015) floating-point operations per second, to cluster

servers. This relentless drive for performance improvement has allowed

application software to provide more functionality, have better user inter-

faces, and generate more useful results. The users, in turn, demand even

more improvements once they become accustomed to these improvements,

creating a positive (virtuous) cycle for the computer industry.

This drive, however, has slowed since 2003 due to energy consumption

and heat dissipation issues that limited the increase of the clock frequency

and the level of productive activities that can be performed in each clock

period within a single CPU. Since then, virtually all microprocessor

vendors have switched to models where multiple processing units, referred

to as processor cores, are used in each chip to increase the processing

power. This switch has exerted a tremendous impact on the software

developer community [Sutter2005].

1

Traditionally, the vast majority of software applications are written as

sequential programs, as described by von Neumann in his seminal report in

1945 [vonNeumann1945]. The execution of these programs can be under-

stood by a human sequentially stepping through the code. Historically, most

software developers have relied on the advances in hardware to increase the

speed of their sequential applications under the hood; the same software

simply runs faster as each new generation of processors is introduced.

Computer users have also become accustomed to the expectation that these

programs run faster with each new generation of microprocessors. Such

expectation is no longer valid from this day onward. A sequential program

will only run on one of the processor cores, which will not become signifi-

cantly faster than those in use today. Without performance improvement,

application developers will no longer be able to introduce new features and

capabilities into their software as new microprocessors are introduced,

reducing the growth opportunities of the entire computer industry.

Rather, the applications software that will continue to enjoy performance

improvement with each new generation of microprocessors will be parallel

programs, in which multiple threads of execution cooperate to complete

the work faster. This new, dramatically escalated incentive for parallel

program development has been referred to as the concurrency revolution

[Sutter2005]. The practice of parallel programming is by no means new. The

high-performance computing community has been developing parallel pro-

grams for decades. These programs run on large-scale, expensive computers.

Only a few elite applications can justify the use of these expensive computers,

thus limiting the practice of parallel programming to a small number of appli-

cation developers. Now that all new microprocessors are parallel computers,

the number of applications that need to be developed as parallel programs has

increased dramatically. There is now a great need for software developers to

learn about parallel programming, which is the focus of this book.

1.1 HETEROGENEOUS PARALLEL COMPUTING
Since 2003, the semiconductor industry has settled on two main trajectories

for designing microprocessors [Hwu2008]. The multicore trajectory seeks

to maintain the execution speed of sequential programs while moving into

multiple cores. The multicores began with two core processors with the

number of cores increasing with each semiconductor process generation.

A current exemplar is the recent Intel Core i7t microprocessor with four

processor cores, each of which is an out-of-order, multiple instruction issue

2 CHAPTER 1 Introduction

processor implementing the full X86 instruction set, supporting hyper-

threading with two hardware threads, designed to maximize the execu-

tion speed of sequential programs. In contrast, the many-thread trajectory

focuses more on the execution throughput of parallel applications.

The many-threads began with a large number of threads, and once again,

the number of threads increases with each generation. A current exem-

plar is the NVIDIA GTX680 graphics processing unit (GPU) with 16,384

threads, executing in a large number of simple, in-order pipelines.

Many-threads processors, especially the GPUs, have led the race of

floating-point performance since 2003. As of 2012, the ratio of peak

floating-point calculation throughput between many-thread GPUs and

multicore CPUs is about 10. These are not necessarily application speeds,

but are merely the raw speed that the execution resources can potentially

support in these chips: 1.5 teraflops versus 150 gigaflops double precision

in 2012.

Such a large performance gap between parallel and sequential execu-

tion has amounted to a significant “electrical potential” build-up, and at

some point, something will have to give. We have reached that point now.

To date, this large performance gap has already motivated many applica-

tion developers to move the computationally intensive parts of their soft-

ware to GPUs for execution. Not surprisingly, these computationally

intensive parts are also the prime target of parallel programming—when

there is more work to do, there is more opportunity to divide the work

among cooperating parallel workers.

One might ask why there is such a large peak-performance gap

between many-threads GPUs and general-purpose multicore CPUs. The

answer lies in the differences in the fundamental design philosophies

between the two types of processors, as illustrated in Figure 1.1. The

design of a CPU is optimized for sequential code performance. It makes

use of sophisticated control logic to allow instructions from a single

thread to execute in parallel or even out of their sequential order while

maintaining the appearance of sequential execution. More importantly,

large cache memories are provided to reduce the instruction and data

access latencies of large complex applications. Neither control logic nor

cache memories contribute to the peak calculation speed. As of 2012, the

high-end general-purpose multicore microprocessors typically have six to

eight large processor cores and multiple megabytes of on-chip cache

memories designed to deliver strong sequential code performance.

Memory bandwidth is another important issue. The speed of many

applications is limited by the rate at which data can be delivered from the

31.1 Heterogeneous Parallel Computing

memory system into the processors. Graphics chips have been operating

at approximately six times the memory bandwidth of contemporaneously

available CPU chips. In late 2006, GeForce 8800 GTX, or simply G80,

was capable of moving data at about 85 gigabytes per second (GB/s) in

and out of its main dynamic random-access memory (DRAM) because

of graphics frame buffer requirements and the relaxed memory model (the

way various system software, applications, and input/output (I/O) devices

expect how their memory accesses work). The more recent GTX680 chip

supports about 200 GB/s. In contrast, general-purpose processors have

to satisfy requirements from legacy operating systems, applications, and

I/O devices that make memory bandwidth more difficult to increase. As

a result, CPUs will continue to be at a disadvantage in terms of memory

bandwidth for some time.

The design philosophy of GPUs is shaped by the fast-growing video

game industry that exerts tremendous economic pressure for the ability to

perform a massive number of floating-point calculations per video frame

in advanced games. This demand motivates GPU vendors to look for ways

to maximize the chip area and power budget dedicated to floating-point

calculations. The prevailing solution is to optimize for the execution

throughput of massive numbers of threads. The design saves chip area and

power by allowing pipelined memory channels and arithmetic operations

to have long latency. The reduced area and power of the memory access

hardware and arithmetic units allows the designers to have more of them

on a chip and thus increase the total execution throughput.

The application software is expected to be written with a large number

of parallel threads. The hardware takes advantage of the large number of

Control

Cache

CPU GPU

DRAM DRAM

ALU

ALU

ALU

ALU

FIGURE 1.1

CPUs and GPUs have fundamentally different design philosophies.

4 CHAPTER 1 Introduction

threads to find work to do when some of them are waiting for long-latency

memory accesses or arithmetic operations. Small cache memories are

provided to help control the bandwidth requirements of these applications

so that multiple threads that access the same memory data do not need

to all go to the DRAM. This design style is commonly referred to as

throughput-oriented design since it strives to maximize the total execution

throughput of a large number of threads while allowing individual threads

to take a potentially much longer time to execute.

The CPUs, on the other hand, are designed to minimize the execution

latency of a single thread. Large last-level on-chip caches are designed to

capture frequently accessed data and convert some of the long-latency

memory accesses into short-latency cache accesses. The arithmetic units

and operand data delivery logic are also designed to minimize the effec-

tive latency of operation at the cost of increased use of chip area and

power. By reducing the latency of operations within the same thread, the

CPU hardware reduces the execution latency of each individual thread.

However, the large cache memory, low-latency arithmetic units, and

sophisticated operand delivery logic consume chip area and power that

could be otherwise used to provide more arithmetic execution units and

memory access channels. This design style is commonly referred to as

latency-oriented design.

It should be clear now that GPUs are designed as parallel, throughput-

oriented computing engines and they will not perform well on some tasks on

which CPUs are designed to perform well. For programs that have one or

very few threads, CPUs with lower operation latencies can achieve much

higher performance than GPUs. When a program has a large number

of threads, GPUs with higher execution throughput can achieve much

higher performance than CPUs. Therefore, one should expect that many

applications use both CPUs and GPUs, executing the sequential parts on

the CPU and numerically intensive parts on the GPUs. This is why the

CUDA programming model, introduced by NVIDIA in 2007, is designed

to support joint CPU�GPU execution of an application.1 The demand for

supporting joint CPU�GPU execution is further reflected in more recent

programming models such as OpenCL (see Chapter 14), OpenACC (see

Chapter 15), and C11AMP (see Chapter 18).

It is also important to note that performance is not the only decision

factor when application developers choose the processors for running their

1See Chapter 2 for more background on the evolution of GPU computing and the creation

of CUDA.

51.1 Heterogeneous Parallel Computing

applications. Several other factors can be even more important. First and

foremost, the processors of choice must have a very large presence in the

marketplace, referred to as the installed base of the processor. The reason

is very simple. The cost of software development is best justified by a

very large customer population. Applications that run on a processor with

a small market presence will not have a large customer base. This has

been a major problem with traditional parallel computing systems that

have negligible market presence compared to general-purpose micro-

processors. Only a few elite applications funded by government and large

corporations have been successfully developed on these traditional parallel

computing systems. This has changed with many-core GPUs. Due to their

popularity in the PC market, GPUs have been sold by the hundreds of

millions. Virtually all PCs have GPUs in them. There are more than

400 million CUDA-enabled GPUs in use to date. This is the first time

that massively parallel computing is feasible with a mass-market product.

Such a large market presence has made these GPUs economically attrac-

tive targets for application developers.

Another important decision factor is practical form factors and easy

accessibility. Until 2006, parallel software applications usually ran on

data center servers or departmental clusters. But such execution environ-

ments tend to limit the use of these applications. For example, in an

application such as medical imaging, it is fine to publish a paper based

on a 64-node cluster machine. But actual clinical applications on mag-

netic resonance imaging (MRI) machines have been based on some com-

bination of a PC and special hardware accelerators. The simple reason is

that manufacturers such as GE and Siemens cannot sell MRIs with racks

of compute server boxes into clinical settings, while this is common in

academic departmental settings. In fact, National Institutes of Health

(NIH) refused to fund parallel programming projects for some time: they

felt that the impact of parallel software would be limited because huge

cluster-based machines would not work in the clinical setting. Today, GE

ships MRI products with GPUs and NIH funds research using GPU

computing.

Yet another important consideration in selecting a processor for execut-

ing numeric computing applications is the level of support for the Institute

of Electrical and Electronic Engineers’ (IEEE) floating-point standard.

The standard makes it possible to have predictable results across proces-

sors from different vendors. While the support for the IEEE floating-point

standard was not strong in early GPUs, this has also changed for new

generations of GPUs since the introduction of the G80. As we will discuss

6 CHAPTER 1 Introduction

in Chapter 7, GPU support for the IEEE floating-point standard has

become comparable with that of the CPUs. As a result, one can expect

that more numerical applications will be ported to GPUs and yield compa-

rable result values as the CPUs. Up to 2009, a major remaining issue

was that the GPUs’ floating-point arithmetic units were primarily single

precision. Applications that truly require double-precision floating-point

arithmetic units were not suitable for GPU execution. However, this has

changed with the recent GPUs of which the double-precision execution

speed approaches about half of that of single precision, a level that high-end

CPU cores achieve. This makes the GPUs suitable for even more numerical

applications.

Until 2006, graphics chips were very difficult to use because

programmers had to use the equivalent of graphics API (application

programming interface) functions to access the processor cores, mean-

ing that OpenGL or Direct3D techniques were needed to program these

chips. Stated more simply, a computation must be expressed as a func-

tion that paints a pixel in some way to execute on these early GPUs.

This technique was called GPGPU (general-purpose programming using

a graphics processing unit). Even with a higher-level programming

environment, the underlying code still needs to fit into the APIs that

are designed to paint pixels. These APIs limit the kinds of applications

that one can actually write for early GPGPUs. Consequently, it did not

become a widespread programming phenomenon. Nonetheless, this

technology was sufficiently exciting to inspire some heroic efforts and

excellent research results.

But everything changed in 2007 with the release of CUDA

[NVIDIA2007]. NVIDIA stared to devote silicon areas on their GPU chips

to facilitate the ease of parallel programming.This did not represent

software changes alone; additional hardware was added to the chips. In

the G80 and its successor chips for parallel computing, CUDA programs

no longer go through the graphics interface at all. Instead, a new general-

purpose parallel programming interface on the silicon chip serves the

requests of CUDA programs. The general-purpose programming interface

greatly expands the types of applications that one can easily develop

for GPUs. Moreover, all the other software layers were redone as well,

so that the programmers can use the familiar C/C11 programming tools.

Some of our students tried to do their lab assignments using the old

OpenGL-based programming interface, and their experience helped them

to greatly appreciate the improvements that eliminated the need for using

the graphics APIs for computing applications.

71.1 Heterogeneous Parallel Computing

1.2 ARCHITECTURE OF A MODERN GPU
Figure 1.2 shows the architecture of a typical CUDA-capable GPU. It is

organized into an array of highly threaded streaming multiprocessors (SMs).

In Figure 1.3, two SMs form a building block. However, the number of

SMs in a building block can vary from one generation of CUDA GPUs to

another generation. Also, in Figure 1.3, each SM has a number of streaming

processors (SPs) that share control logic and an instruction cache. Each

GPU currently comes with multiple gigabytes of Graphic Double Data Rate

(GDDR) DRAM, referred to as global memory in Figure 1.3. These GDDR

DRAMs differ from the system DRAMs on the CPU motherboard in

that they are essentially the frame buffer memory that is used for graphics.

For graphics applications, they hold video images and texture information

for 3D rendering. But for computing, they function as very high bandwidth

off-chip memory, though with somewhat longer latency than typical system

memory. For massively parallel applications, the higher bandwidth makes

up for the longer latency.

The G80 introduced the CUDA architecture and had 86.4 GB/s of

memory bandwidth, plus a communication link to the CPU core logic

over a PCI-Express Generation 2 (Gen2) interface. Over PCI-E Gen2,

a CUDA application can transfer data from the system memory to the

global memory at 4 GB/s, and at the same time upload data back to the

system memory at 4 GB/s. Altogether, there is a combined total of 8 GB/s.

More recent GPUs use PCI-E Gen3, which supports 8 GB/s in each direc-

tion. As the size of GPU memory grows, applications increasingly keep

their data in the global memory and only occasionally use the PCI-E to

communicate with the CPU system memory if there is need for using a

library that is only available on the CPUs. The communication bandwidth

is also expected to grow as the CPU bus bandwidth of the system memory

grows in the future.

With 16,384 threads, the GTX680 exceeds 1.5 teraflops in double

precision. A good application typically runs 5,000�12,000 threads simul-

taneously on this chip. For those who are used to multithreading in CPUs,

note that Intel CPUs support two or four threads, depending on the

machine model, per core. CPUs, however, are increasingly used with

SIMD (single instruction, multiple data) instructions for high numerical

performance. The level of parallelism supported by both GPU hardware

and CPU hardware is increasing quickly. It is therefore very important

to strive for high levels of parallelism when developing computing

applications.

8 CHAPTER 1 Introduction

Input assembler

Host

Thread execution manager

Cache Cache Cache Cache Cache Cache Cache Cache

Texture Texture Texture Texture Texture Texture TextureTexture

Load/store

Global memory

Load/storeLoad/store Load/store Load/store Load/store

FIGURE 1.2

Architecture of a CUDA-capable GPU.

1.3 WHY MORE SPEED OR PARALLELISM?
As we stated in Section 1.1, the main motivation for massively parallel

programming is for applications to enjoy continued speed increase in

future hardware generations. One might ask why applications will continue

to demand increased speed. Many applications that we have today seem

to be running quite fast enough. As we will discuss in the case study

chapters, when an application is suitable for parallel execution, a good

implementation on a GPU can achieve more than 100 times (1003)

speedup over sequential execution on a single CPU core. If the application

includes what we call data parallelism, it’s often a simple task to achieve

a 103 speedup with just a few hours of work. For anything beyond that,

we invite you to keep reading!

Despite the myriad of computing applications in today’s world, many

exciting mass-market applications of the future are what we currently con-

sider “supercomputing applications,” or super-applications. For example,

the biology research community is moving more and more into the

molecular level. Microscopes, arguably the most important instrument

in molecular biology, used to rely on optics or electronic instrumenta-

tion. But there are limitations to the molecular-level observations that

we can make with these instruments. These limitations can be effectively

Sequential portions

Data parallel portions

Traditional CPU coverage

GPGPU coverage
Obstacles

FIGURE 1.3

Coverage of sequential and parallel application portions.

10 CHAPTER 1 Introduction

addressed by incorporating a computational model to simulate the under-

lying molecular activities with boundary conditions set by traditional

instrumentation. With simulation we can measure even more details

and test more hypotheses than can ever be imagined with traditional

instrumentation alone. These simulations will continue to benefit from

the increasing computing speed in the foreseeable future in terms of

the size of the biological system that can be modeled and the length

of reaction time that can be simulated within a tolerable response time.

These enhancements will have tremendous implications to science and

medicine.

For applications such as video and audio coding and manipulation,

consider our satisfaction with digital high-definition (HD) TV verses older

NTSC TV. Once we experience the level of details in an HDTV, it is very

hard to go back to older technology. But consider all the processing that’s

needed for that HDTV. It is a very parallel process, as are 3D imaging and

visualization. In the future, new functionalities such as view synthesis and

high-resolution display of low-resolution videos will demand more com-

puting power in the TV. At the consumer level, we will begin to have an

increasing number of video and image processing applications that improve

the focus, lighting, and other key aspects of the pictures and videos.

Among the benefits offered by more computing speed are much better

user interfaces. Consider Apple’s iPhonet interfaces: the user enjoys a much

more natural interface with the touchscreen than other cell phone devices

even though the iPhone still has a limited-size window. Undoubtedly, future

versions of these devices will incorporate higher-definition, 3D perspectives,

applications that combine virtual and physical space information for

enhanced usability, and voice-based and computer vision�based interfaces,

requiring even more computing speed.

Similar developments are underway in consumer electronic gaming.

In the past, driving a car in a game was in fact simply a prearranged set

of scenes. If your car bumped into an obstacle, the course of your vehicle

did not change, only the game score changed. Your wheels were not bent

or damaged, and it was no more difficult to drive, regardless of whether

you bumped your wheels or even lost a wheel. With increased computing

speed, the games can be based on dynamic simulation rather than prear-

ranged scenes. We can expect to see more of these realistic effects in the

future: accidents will damage your wheels and your online driving experi-

ence will be much more realistic. Realistic modeling and simulation of

physics effects are known to demand very large amounts of computing

power.

111.3 Why More Speed or Parallelism?

All the new applications that we mention here involve simulating a

physical, concurrent world in different ways and at different levels, with

tremendous amounts of data being processed. In fact, the problem of han-

dling massive amounts of data is so prevalent that the term big data has

become a household word. And with this huge quantity of data, much of

the computation can be done on different parts of the data in parallel,

although they will have to be reconciled at some point. In most cases,

effective management of data delivery can have a major impact on the

achievable speed of a parallel application. While techniques for doing so

are often well known to a few experts who work with such applications on

a daily basis, the vast majority of application developers can benefit from

more intuitive understanding and practical working knowledge of these

techniques.

We aim to present the data management techniques in an intuitive way

to application developers whose formal education may not be in computer

science or computer engineering. We also aim to provide many practical

code examples and hands-on exercises that help readers acquire working

knowledge, which requires a practical programming model that facilitates

parallel implementation and supports proper management of data delivery.

CUDA offers such a programming model and has been well tested by a

large developer community.

1.4 SPEEDING UP REAL APPLICATIONS
How many times speedup can be expected from parallelizing an applica-

tion? It depends on the portion of the application that can be parallelized.

If the percentage of time spent in the part that can be parallelized is 30%,

a 1003 speedup of the parallel portion will reduce the execution time by

no more than 29.7%. The speedup for the entire application will be only

about 1.43. In fact, even an infinite amount of speedup in the parallel

portion can only slash 30% off execution time, achieving no more than

1.433 speedup. On the other hand, if 99% of the execution time is in the

parallel portion, a 1003 speedup will reduce the application execution

to 1.99% of the original time. This gives the entire application a 503
speedup. Therefore, it is very important that an application has the vast

majority of its execution in the parallel portion for a massively parallel

processor to effectively speed up its execution.

Researchers have achieved speedups of more than 1003 for some

applications. However, this is typically achieved only after extensive

12 CHAPTER 1 Introduction

optimization and tuning after the algorithms have been enhanced, so that

more than 99.9% of the application execution time is in parallel execution.

In practice, straightforward parallelization of applications often saturates

the memory (DRAM) bandwidth, resulting in only about a 103 speedup.

The trick is to figure out how to get around memory bandwidth limita-

tions, which involves doing one of many transformations to utilize special-

ized GPU on-chip memories to drastically reduce the number of accesses

to the DRAM. One must, however, further optimize the code to get around

limitations such as limited on-chip memory capacity. An important goal

of this book is to help readers fully understand these optimizations and

become skilled in them.

Keep in mind that the level of speedup achieved over single-core CPU

execution can also reflect the suitability of the CPU to the application:

in some applications, CPUs perform very well, making it harder to speed up

performance using a GPU. Most applications have portions that can be

much better executed by the CPU. Thus, one must give the CPU a fair

chance to perform and make sure that code is written so that GPUs comple-

ment CPU execution, thus properly exploiting the heterogeneous parallel

computing capabilities of the combined CPU�GPU system. This is pre-

cisely what the CUDA programming model promotes, as we will further

explain in the book.

Figure 1.3 illustrates the main parts of a typical application. Much of a

real application’s code tends to be sequential. These sequential parts are

illustrated as the “pit” area of the peach: trying to apply parallel comput-

ing techniques to these portions is like biting into the peach pit—not a

good feeling! These portions are very hard to parallelize. CPUs tend to do

a very good job on these portions. The good news is that these portions,

although they can take up a large portion of the code, tend to account for

only a small portion of the execution time of super-applications.

Then come what we call the “peach meat” portions. These portions

are easy to parallelize, as are some early graphics applications. Parallel

programming in heterogeneous computing systems can drastically

improve the quality of these applications. As illustrated in Figure 1.3,

early GPGPUs cover only a small portion of the meat section, which is

analogous to a small portion of the most exciting applications. As we

will see, the CUDA programming models are designed to cover a much

larger section of the peach meat portions of exciting applications. In fact,

as we will discuss in Chapter 20, these programming models and their

underlying hardware are still evolving at a fast pace to enable efficient

parallelization of even larger sections of applications.

131.4 Speeding Up Real Applications

1.5 PARALLEL PROGRAMMING LANGUAGES AND MODELS
Many parallel programming languages and models have been proposed

in the past several decades Mattson2004]. The ones that are the most

widely used are Message Passing Interface (MPI) [MPI2009] for scal-

able cluster computing, and OpenMP [Open2005] for shared-memory

multiprocessor systems. Both have become standardized programming

interfaces supported by major computer vendors. An OpenMP imple-

mentation consists of a compiler and a runtime. A programmer specifies

directives (commands) and pragmas (hints) about a loop to the OpenMP

compiler. With these directives and pragmas, OpenMP compilers gener-

ate parallel code. The runtime system supports the execution of the

parallel code by managing parallel threads and resources. OpenMP was

originally designed for CPU execution. More recently, a variation

called OpenACC (see Chapter 15) has been proposed and supported by

multiple computer vendors for programming heterogeneous computing

systems.

The major advantage of OpenACC is that it provides compiler auto-

mation and runtime support for abstracting away many parallel program-

ming details from programmers. Such automation and abstraction can

help make the application code more portable across systems produced

by different vendors, as well as different generations of systems from

the same vendor. This is why we teach OpenACC programming in

Chapter 15. However, effective programming in OpenACC still requires

the programmers to understand all the detailed parallel programming

concepts involved. Because CUDA gives programmers explicit control

of these parallel programming details, it is an excellent learning vehicle

even for someone who would like to use OpenMP and OpenACC as

their primary programming interface. Furthermore, from our experience,

OpenACC compilers are still evolving and improving. Many program-

mers will likely need to use CDUA-style interfaces for parts where

OpenACC compilers fall short.

MPI is a model where computing nodes in a cluster do not share memory

[MPI2009]. All data sharing and interaction must be done through explicit

message passing. MPI has been successful in high-performance computing

(HPC). Applications written in MPI have run successfully on cluster com-

puting systems with more than 100,000 nodes. Today, many HPC clusters

employ heterogeneous CPU�GPU nodes. While CUDA is an effective

interface with each node, most application developers need to use MPI

to program at the cluster level. Therefore, it is important that a parallel

14 CHAPTER 1 Introduction

programmer in HPC understands how to do joint MPI/CUDA programming,

which is presented in Chapter 19.

The amount of effort needed to port an application into MPI,

however, can be quite high due to the lack of shared memory across com-

puting nodes. The programmer needs to perform domain decomposition

to partition the input and output data into cluster nodes. Based on the

domain decomposition, the programmer also needs to call message send-

ing and receiving functions to manage the data exchange between nodes.

CUDA, on the other hand, provides shared memory for parallel execu-

tion in the GPU to address this difficulty. As for CPU and GPU commu-

nication, CUDA previously provided very limited shared memory

capability between the CPU and the GPU. The programmers needed to

manage the data transfer between the CPU and the GPU in a manner sim-

ilar to the “one-sided” message passing. New runtime support for global

address space and automated data transfer in heterogeneous computing

systems, such as GMAC [GCN2010] and CUDA 4.0, are now available.

With GMAC, a CUDA or OpenCL programmer can declare C variables

and data structures as shared between CPU and GPU. The GMAC run-

time maintains coherence and automatically performs optimized data

transfer operations on behalf of the programmer on an as-needed basis.

Such support significantly reduces the CUDA and OpenCL program-

ming complexity involved in overlapping data transfer with computation

and I/O activities.

In 2009, several major industry players, including Apple, Intel,

AMD/ATI, and NVIDIA, jointly developed a standardized programming

model called Open Compute Language (OpenCL) [Khronos2009]. Similar

to CUDA, the OpenCL programming model defines language extensions

and runtime APIs to allow programmers to manage parallelism and data

delivery in massively parallel processors. In comparison to CUDA, OpenCL

relies more on APIs and less on language extensions than CUDA. This

allows vendors to quickly adapt their existing compilers and tools to handle

OpenCL programs. OpenCL is a standardized programming model in that

applications developed in OpenCL can run correctly without modification

on all processors that support the OpenCL language extensions and API.

However, one will likely need to modify the applications to achieve high

performance for a new processor.

Those who are familiar with both OpenCL and CUDA know that there is

a remarkable similarity between the key concepts and features of OpenCL

and those of CUDA. That is, a CUDA programmer can learn OpenCL pro-

gramming with minimal effort. More importantly, virtually all techniques

151.5 Parallel Programming Languages and Models

learned using CUDA can be easily applied to OpenCL programming.

Therefore, we introduce OpenCL in Chapter 14 and explain how one can

apply the key concepts in this book to OpenCL programming.

1.6 OVERARCHING GOALS
Our primary goal is to teach the readers how to program massively parallel

processors to achieve high performance, and our approach will not require

a great deal of hardware expertise. Someone once said that if you don’t

care about performance, parallel programming is very easy. You can liter-

ally write a parallel program in an hour. But we’re going to dedicate many

pages to techniques for developing high-performance parallel programs.

And, we believe that it will become easy once you develop the right insight

and go about it the right way. In particular, we will focus on computational

thinking techniques that will enable you to think about problems in ways

that are amenable to high-performance parallel computing.

Note that hardware architecture features have constraints. High-

performance parallel programming on most processors will require some

knowledge of how the hardware works. It will probably take 10 or more

years before we can build tools and machines so that most programmers can

work without this knowledge. Even if we have such tools, we suspect that

programmers with more knowledge of the hardware will be able to use the

tools in a much more effective way than those who do not. However, we

will not be teaching computer architecture as a separate topic. Instead,

we will teach the essential computer architecture knowledge as part our

discussions on high-performance parallel programming techniques.

Our second goal is to teach parallel programming for correct function-

ality and reliability, which constitute a subtle issue in parallel computing.

Those who have worked on parallel systems in the past know that achiev-

ing initial performance is not enough. The challenge is to achieve it in

such a way that you can debug the code and support users. The CUDA

programming model encourages the use of a simple form of barrier

synchronization and memory consistency for managing parallelism. We

will show that by focusing on data parallelism, one can achieve both high

performance and high reliability in their applications.

Our third goal is scalability across future hardware generations by

exploring approaches to parallel programming such that future machines,

which will be more and more parallel, can run your code faster than

today’s machines. We want to help you master parallel programming so

16 CHAPTER 1 Introduction

that your programs can scale up to the level of performance of new gen-

erations of machines. The key to such scalability is to regularize and local-

ize memory data accesses to minimize consumption of critical resources

and conflicts in accessing and updating data structures.

Much technical knowledge will be required to achieve these goals, so

we will cover quite a few principles and patterns of parallel programming

in this book. We cannot guarantee that we will cover all of them, however,

so we have selected the most useful and well-proven techniques to cover

in detail. To complement your knowledge and expertise, we include a

list of recommended literature. We are now ready to give you a quick

overview of the rest of the book.

1.7 ORGANIZATION OF THE BOOK
Chapter 2 reviews the history of GPU computing. It starts with a brief

summary of the evolution of graphics hardware toward more programma-

bility and then discusses the historical GPGPU movement. Many of the

current features and limitations of the CUDA programming model find

their root in these historic developments. A good understanding of these

historic developments will help readers better understand the current state

and the future trends of hardware evolution that will continue to impact

the types of applications that will benefit from CUDA.

Chapter 3 introduces data parallelism and the CUDA C programming.

This chapter relies on the fact that students have had previous experience

with C programming. It first introduces CUDA C as a simple, small exten-

sion to C that supports heterogeneous CPU�GPU joint computing and the

widely used SPMD (single program, multiple data) parallel programming

model. It then covers the thought process involved in (1) identifying the

part of application programs to be parallelized; (2) isolating the data to be

used by the parallelized code, using an API (Application Programming

Interface) function to allocate memory on the parallel computing device;

(3) using an API function to transfer data to the parallel computing device;

(4) developing a kernel function that will be executed by threads in the

parallelized part; (5) launching a kernel function for execution by parallel

threads; and (6) eventually transferring the data back to the host processor

with an API function call.

While the objective of Chapter 3 is to teach enough concepts of the

CUDA C programming model so that the students can write a simple

parallel CUDA C program, it actually covers several basic skills needed to

171.7 Organization of the Book

develop a parallel application based on any parallel programming model.

We use a running example of vector addition to make this chapter con-

crete. We also compare CUDA with other parallel programming models

including OpenMP and OpenCL.

Chapter 4 presents more details of the parallel execution model of

CUDA. It gives enough insight into the creation, organization, resource

binding, data binding, and scheduling of threads to enable readers to

implement sophisticated computation using CUDA C and reason about the

performance behavior of their CUDA code. Chapter 5 is dedicated to the

special memories that can be used to hold CUDA variables for managing

data delivery and improving program execution speed.

Chapter 6 presents several important performance considerations in cur-

rent CUDA hardware. In particular, it gives more details in thread execu-

tion, memory data accesses, and resource allocation. These details form

the conceptual basis for programmers to reason about the consequence of

their decisions on organizing their computation and data.

Chapter 7 introduces the concepts of floating-point number format,

precision, and accuracy. It shows why different parallel execution arrange-

ments can result in different output values. It also teaches the concept

of numerical stability and practical techniques for maintaining numerical

stability in parallel algorithms.

Chapters 8-10 present three important parallel computation patterns that

give readers more insight into parallel programming techniques and parallel

execution mechanisms. Chapter 8 presents convolution, a frequently used

parallel computing pattern that requires careful management of data access

locality. We also use this pattern to introduce constant memory and caching

in modern GPUs. Chapter 9 presents prefix sum, or scan, an important

parallel computing pattern that coverts sequential computation into parallel

computation. We also use this pattern to introduce the concept of work

efficiency in parallel algorithms. Chapter 10 presents sparse matrix com-

putation, a pattern used for processing very large data sets. This chapter

introduces readers to the concepts of rearranging data for more efficient

parallel access: padding, sorting, transposition, and regularization.

While these chapters are based on CUDA, they help readers build up

the foundation for parallel programming in general. We believe that

humans understand best when we learn from the bottom up. That is, we

must first learn the concepts in the context of a particular programming

model, which provides us with solid footing when we generalize our

knowledge to other programming models. As we do so, we can draw on

our concrete experience from the CUDA model. An in-depth experience

18 CHAPTER 1 Introduction

with the CUDA model also enables us to gain maturity, which will help us

learn concepts that may not even be pertinent to the CUDA model.

Chapters 11 and 12 are case studies of two real applications, which

take readers through the thought process of parallelizing and optimizing

their applications for significant speedups. For each application, we start

by identifying alternative ways of formulating the basic structure of the

parallel execution and follow up with reasoning about the advantages and

disadvantages of each alternative. We then go through the steps of code

transformation needed to achieve high performance. These two chapters

help readers put all the materials from the previous chapters together and

prepare for their own application development projects.

Chapter 13 generalizes the parallel programming techniques into

problem decomposition principles, algorithm strategies, and computational

thinking. It does so by covering the concept of organizing the computation

tasks of a program so that they can be done in parallel. We start by dis-

cussing the translational process of organizing abstract scientific concepts

into computational tasks, which is an important first step in producing

quality application software, serial or parallel. It then discusses parallel

algorithm structures and their effects on application performance, which is

grounded in the performance tuning experience with CUDA. The chapter

concludes with a treatment of parallel programming styles and models,

enabling readers to place their knowledge in a wider context. With this

chapter, readers can begin to generalize from the SPMD programming

style to other styles of parallel programming, such as loop parallelism in

OpenMP and fork-join in p-thread programming. Although we do not go

into these alternative parallel programming styles, we expect that readers

will be able to learn to program in any of them with the foundation they

gain in this book.

Chapter 14 introduces the OpenCL programming model from a CUDA

programmer’s perspective. Readers will find OpenCL to be extremely

similar to CUDA. The most important difference arises from OpenCL’s

use of API functions to implement functionalities such as kernel launching

and thread identification. The use of API functions makes OpenCL more

tedious to use. Nevertheless, a CUDA programmer has all the knowledge

and skills needed to understand and write OpenCL programs. In fact, we

believe that the best way to teach OpenCL programming is to teach

CUDA first. We demonstrate this with a chapter that relates all major

OpenCL features to their corresponding CUDA features. We also illustrate

the use of these features by adapting our simple CUDA examples into

OpenCL.

191.7 Organization of the Book

Chapter 15 presents the OpenACC programming interface. It shows

how to use directives and pragmas to tell the compiler that a loop can be

parallelized, and if desirable, instruct the compiler how to parallelize the

loop. It also uses concrete examples to illustrate how one can take advan-

tage of the interface and make their code more portable across vendor sys-

tems. With the foundational concepts in this book, readers will find the

OpenACC programming directives and pragmas easy to learn and master.

Chapter 16 covers Thrust, a productivity-oriented C11 library for

building CUDA applications. This is a chapter that shows how modern

object-oriented programming interfaces and techniques can be used to

increase productivity in a parallel programming environment. In particular,

it shows how generic programming and abstractions can significantly

reduce the efforts and code complexity of applications.

Chapter 17 presents CUDA FORTRAN, an interface that supports

FORTRAN-style programming based on the CUDA model. All concepts

and techniques learned using CUDA C can be applied when programming

in CUDA. In addition, the CUDA FORTRAN interface has strong support

for multidimensional arrays that make programming of 3D models much

more readable. It also assumes the FORTRAN array data layout conven-

tion and works better with an existing application written in FORTRAN.

Chapter 18 is an overview of the C11AMP programming interface

from Microsoft. This programming interface uses a combination language

extension and API support to support data-parallel computation patterns.

It allows programmers to use C11 features to increase their productivity.

Like OpenACC, C11AMP abstracts away some of the parallel program-

ming details that are specific to the hardware so the code is potentially

more portable across vendor systems.

Chapter 19 presents an introduction to joint MPI/CUDA programming.

We cover the key MPI concepts that a programmer needs to understand

to scale their heterogeneous applications to multiple nodes in a cluster

environment. In particular, we will focus on domain partitioning, point-to-

point communication, collective communication in the context of scaling a

CUDA kernel into multiple nodes.

Chapter 20 introduces the dynamic parallelism capability available in

the Kepler GPUs and their successors. Dynamic parallelism can potentially

help the implementations of sophisticated algorithms to reduce CPU-GPU

interaction overhead, free up CPU for other tasks, and improve the utiliza-

tion of GPU execution resources. We describe the basic concepts of

dynamic parallelism and why some algorithms can benefit from dynamic

parallelism. We then illustrate the usage of dynamic parallelism with a

20 CHAPTER 1 Introduction

small contrived code example as well as a more complex realistic code

example.

Chapter 21 offers some concluding remarks and an outlook for the future

of massively parallel programming. We first revisit our goals and summa-

rize how the chapters fit together to help achieve the goals. We then present

a brief survey of the major trends in the architecture of massively parallel

processors and how these trends will likely impact parallel programming

in the future. We conclude with a prediction that these fast advances in

massively parallel computing will make it one of the most exciting areas

in the coming decade.

References
Gelado, I., Cabezas, J., Navarro, N., Stone, J. E., Patel, S. J., & Hwu, W. W. An

Asynchronous Distributed Shared Memory Model for Heterogeneous Parallel

Systems, International Conference on Architectural Support for Programming

Languages and Operating Systems, March 2010. Technical Report, IMPACT

Group, University of Illinois, Urbana-Champaign.

Hwu, W. W., Keutzer, K., & Mattson, T. (2008). The Concurrency Challenge.

IEEE Design and Test of Computers, July/August 312�320.

The Khronos Group, The OpenCL Specification Version 1.0, Available at: (http://

www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf).

Mattson, T. G., Sanders, B. A., & Massingill, B. L. (2004). Patterns of Parallel

Programming Boston: Addison-Wesley Professional.

Message Passing Interface Forum, “MPI—A Message Passing Interface Standard

Version 2.2,” Available at: ,http://www.mpi-forum.org/docs/mpi-2.2/mpi22-

report.pdf.., Sept. 4, 2009.

NVIDIA Corporation, NVIDIA CUDA Compute Unified Device Architecture

Programming Guide 1.0, June 2007, Available at: ,http://www.cs.berkeley.

edu/Byelick/cs194f07/handouts/NVIDIA_CUDA_Programming_Guide.pdf.
OpenMP Architecture Review Board, “OpenMP Application Program

Interface Version 3.1.” July 2011, Available at: ,http://www.openmp.org/

mp-documents/OpenMP3.1.pdf.
Sutter, H., & Larus,, J. (2005). Software and the Concurrency Revolution. ACM

Queue, 3(7), 54�62.

von Neumann, J. (1945). First Draft of a Report on the EDVAC. In H. H. Goldstine

(Ed.), The Computer: From Pascal to von Neumann. Princeton, NJ: Princeton

University Press.

Wing, J. (2006). Computational Thinking. Communications of the ACM, 49(3),

33�35.

21References

http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.cs.berkeley.edu/∼yelick/cs194f07/handouts/NVIDIA_CUDA_Programming_Guide.pdf
http://www.cs.berkeley.edu/∼yelick/cs194f07/handouts/NVIDIA_CUDA_Programming_Guide.pdf
http://www.cs.berkeley.edu/∼yelick/cs194f07/handouts/NVIDIA_CUDA_Programming_Guide.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf

This page intentionally left blank

CHAPTER

2History of GPU Computing

CHAPTER OUTLINE

2.1 Evolution of Graphics Pipelines... 23

2.2 GPGPU: An Intermediate Step.. 33

2.3 GPU Computing .. 34

References and Further reading ... 37

To CUDA C and OpenCL programmers, GPUs are massively parallel

numeric computing processors programmed in C with extensions. One

does not need to understand graphics algorithms or terminology to be able

to program these processors. However, understanding the graphics heritage

of these processors illuminates the strengths and weaknesses of them with

respect to major computational patterns. In particular, the history helps to

clarify the rationale behind major architectural design decisions of modern

programmable GPUs: massive multithreading, relatively small cache mem-

ories compared to CPUs, and bandwidth-centric memory interface design.

Insights into the historical developments will also likely give readers the

context needed to project the future evolution of GPUs as computing

devices.

2.1 EVOLUTION OF GRAPHICS PIPELINES
Three-dimensional (3D) graphics pipeline hardware evolved from the large

expensive systems of the early 1980s to small workstations and then

PC accelerators in the mid- to late 1990s. During this period, the

performance-leading graphics subsystems declined in price from $50,000

to $500. During the same period, the performance increased from 50 mil-

lion pixels per second to 1 billion pixels per second, and from 100,000

vertices per second to 10 million vertices per second. While these

23

advancements have much to do with the relentlessly shrinking feature

sizes of semiconductor devices, they also come from the new innovations

of graphics algorithms and hardware design innovations. These innova-

tions have shaped the native hardware capabilities of modern GPUs.

The remarkable advancement of graphics hardware performance has

been driven by the market demand for high-quality real-time graphics in

computer applications. For example, in an electronic gaming application,

one needs to render evermore complex scenes at ever-increasing resolution

at a rate of 60 frames per second. The net result is that over the last 30

years, graphics architecture has evolved from a simple pipeline for draw-

ing wireframe diagrams to a highly parallel design consisting of several

deep parallel pipelines capable of rendering complex interactive imagery

of 3D scenes. Concurrently, many of the hardware functionalities involved

became far more sophisticated and user programmable.

The Era of Fixed-Function Graphics Pipelines

From the early 1980s to the late 1990s, the leading performance graphics

hardware was fixed-function pipelines that were configurable, but not pro-

grammable. In that same era, major graphics Application Programming

Interface (API) libraries became popular. An API is a standardized layer

of software, that is, a collection of library functions that allows applica-

tions (e.g., games) to use software or hardware services and functionality.

For example, an API can allow a game to send commands to a graphics

processing unit to draw objects on a display. One such API is DirectX,

Microsoft’s proprietary API for media functionality. The Direct3D compo-

nent of DirectX provides interface functions to graphics processors. The

other major API is OpenGL, an open-standard API supported by multiple

vendors and popular in professional workstation applications. This era of

fixed-function graphics pipeline roughly corresponds to the first seven

generations of DirectX.

DIRECT MEMORY ACCESS
Modern computer systems use a specialized hardware mechanism called direct memory
access (DMA) to transfer data between an I/O device and the system DRAM. When a program
requests an I/O operation, say reading from a disk drive, the operating system makes an
arrangement by setting a DMA operation defined by the starting address of the data in the I/
O device buffer memory, the starting address of the DRAM memory, the number of bytes to
be copied, and the direction of the copy.

Using a specialized hardware mechanism to copy data between I/O devices and system
DRAM has two major advantages. First, the CPU is not burdened with the chore of copying

24 CHAPTER 2 History of GPU Computing

data. So, while the DMA hardware is copying data, the CPU can execute programs that do
not depend on the I/O data.

The second advantage of using a specialized hardware mechanism to copy data is that
the hardware is designed to perform copy. The hardware is very simple and efficient. There is
no overhead of fetching and decoding instructions while performing the copy. As a result, the
copy can be done at a higher speed than most processors can.

As we will learn later, DMA is used in data copy operations between a CPU and a GPU. It
requires pinned memory in DRAM and has subtle implications on how applications should
allocate memory.

Figure 2.1 shows an example fixed-function graphics pipeline in early

NVIDIA GeForce GPUs. The host interface receives graphics commands

and data from the CPU. The commands are typically given by application

programs by calling an API function. The host interface typically contains

a specialized DMA hardware to efficiently transfer bulk data to and from

the host system memory to the graphics pipeline. The host interface also

communicates back the status and result data of executing the commands.

Before we describe the other stages of the pipeline, we should clarify

that the term vertex usually means the “corners” of a polygon. The

Host CPU

GPUHost interface

Vertex
cache

VS/T & L

Triangle setup

Raster

Shader
Frame

ROP

Frame
buffer

memory

FBI

Vertex control

Texture
cache

FIGURE 2.1

A fixed-function NVIDIA GeForce graphics pipeline.

252.1 Evolution of Graphics Pipelines

GeForce graphics pipeline is designed to render triangles, so vertex is typi-

cally used to refer to the corners of a triangle. The surface of an object is

drawn as a collection of triangles. The finer the sizes of the triangles are,

the better the quality of the picture typically becomes. The vertex control

stage in Figure 2.1 receives parameterized triangle data from the CPU.

The vertex control stage converts the triangle data into a form that the

hardware understands and places the prepared data into the vertex cache.

The vertex shading, transform, and lighting (VS/T&L) stage in

Figure 2.1 transforms vertices and assigns per-vertex values (colors, nor-

mals, texture coordinates, tangents, etc.). The shading is done by the pixel

shader hardware. The vertex shader can assign a color to each vertex but it

is not applied to triangle pixels until later. The triangle setup stage further

creates edge equations that are used to interpolate colors and other per-

vertex data (e.g., texture coordinates) across the pixels touched by the tri-

angle. The raster stage determines which pixels are contained in each tri-

angle. For each of these pixels, the raster stage interpolates per-vertex

values necessary for shading the pixel, which includes color, position, and

texture position that will be shaded (painted) on the pixel.

The shader stage in Figure 2.1 determines the final color of each pixel.

This can be generated as a combined effect of many techniques: interpola-

tion of vertex colors, texture mapping, per-pixel lighting mathematics,

reflections, and more. Many effects that make the rendered images more

realistic are incorporated in the shader stage. Figure 2.2 illustrates texture

mapping, one of the shader stage functionalities. It shows an example in

which a world map texture is mapped onto a sphere object. Note that the

sphere object is described as a large collection of triangles. Although the

shader stage needs to perform only a small number of coordinate trans-

form calculations to identify the exact coordinates of the texture point that

will be painted on a point in one of the triangles that describes the sphere

object, the sheer number of pixels covered by the image requires the

shader stage to perform a very large number of coordinate transforms for

each frame.

The ROP (raster operation) stage in Figure 2.2 performs the final raster

operations on the pixels. It performs color raster operations that blend the

color of overlapping/adjacent objects for transparency and anti-aliasing

effects. It also determines the visible objects for a given viewpoint and

discards the occluded pixels. A pixel becomes occluded when it is blocked

by pixels from other objects according to the given viewpoint.

Figure 2.3 illustrates anti-aliasing, one of the ROP stage operations.

There are three adjacent triangles with a black background. In the aliased

26 CHAPTER 2 History of GPU Computing

Sphere with no texture

Sphere with texture

Texture image
Texture image

Vn

Vp

Ve

u

v

FIGURE 2.2

Texture mapping example: painting a world map texture image.

Triangle geometry Aliased Antialiased

FIGURE 2.3

Examples of anti-aliasing operations: (a) triangle geometry, (b) aliased, and

(c) anti-aliased.

272.1 Evolution of Graphics Pipelines

output, each pixel assumes the color of one of the objects or the back-

ground. The limited resolution makes the edges look crooked and the

shapes of the objects distorted. The problem is that many pixels are partly

in one object and partly in another object or the background. Forcing these

pixels to assume the color of one of the objects introduces distortion into

the edges of the objects. The anti-aliasing operation gives each pixel a

color that is blended, or linearly combined, from the colors of all the

objects and background that partly overlap the pixel. The contribution of

each object to the color of the pixel is to the amount of the pixel that the

object overlaps.

Finally, the frame buffer interface (FBI) stage in Figure 2.1 manages

memory reads from and writes to the display frame buffer memory. For

high-resolution displays, there is a very high bandwidth requirement in

accessing the frame buffer. Such bandwidth is achieved by two strategies.

One is that graphics pipelines typically use special memory designs that

provide higher bandwidth than the system memories. Second, the FBI

simultaneously manages multiple memory channels that connect to multi-

ple memory banks. The combined bandwidth improvement of multiple

channels and special memory structures gives the frame buffers much

higher bandwidth than their contemporaneous system memories. Such

high memory bandwidth has continued to this day and has become a

distinguishing feature of modern GPU design.

During the past two decades, each generation of hardware and its corre-

sponding generation of API brought incremental improvements to the

various stages of the graphics pipeline. Each generation introduced hard-

ware resources and configurability to the pipeline stages. However, devel-

opers were growing more sophisticated and asking for more new features

than could be reasonably offered as built-in fixed functions. The obvious

next step was to make some of these graphics pipeline stages into

programmable processors.

Evolution of Programmable Real-Time Graphics

In 2001, the NVIDIA GeForce 3 took the first step toward true general

shader programmability. It exposed the application developer to what had

been the private internal instruction set of the floating-point vertex engine

(VS/T&L stage). This coincided with the release of Microsoft DirectX 8

and OpenGL vertex shader extensions. Later GPUs, at the time of DirectX

9, extended general programmability and floating-point capability to the

pixel shader stage, and made texture accessible from the vertex shader

28 CHAPTER 2 History of GPU Computing

stage. The ATI Radeon 9700, introduced in 2002, featured a programma-

ble 24-bit floating-point pixel shader processor programmed with DirectX

9 and OpenGL. The GeForce FX added 32-bit floating-point pixel proces-

sors. These programmable pixel shader processors were part of a general

trend toward unifying the functionality of the different stages as seen by

the application programmer. NVIDIA’s GeForce 6800 and 7800 series

were built with separate processor designs dedicated to vertex and pixel

processing. The XBox 360 introduced an early unified-processor GPU in

2005, allowing vertex and pixel shaders to execute on the same processor.

In graphics pipelines, certain stages do a great deal of floating-point

arithmetic on completely independent data, such as transforming the posi-

tions of triangle vertices or generating pixel colors. This data indepen-

dence as the dominating application characteristic is a key difference

between the design assumptions for GPUs and CPUs. A single frame, ren-

dered in 1/60 of a second, might have 1 million triangles and 6 million

pixels. The opportunity to use hardware parallelism to exploit this data

independence is tremendous.

The specific functions executed at a few graphics pipeline stages

vary with rendering algorithms. Such variation has motivated the hard-

ware designers to make those pipeline stages programmable. Two

particular programmable stages stand out: the vertex shader and the

pixel shader. Vertex shader programs map the positions of triangle ver-

tices onto the screen, altering their position, color, or orientation.

Typically a vertex shader thread reads a floating-point (x, y, z, w) ver-

tex position and computes a floating-point (x, y, z) screen position.

Geometry shader programs operate on primitives defined by multiple

vertices, changing them or generating additional primitives. Vertex

shader programs and geometry shader programs execute on the VS/

T&L stage of the graphics pipeline.

Pixel shader programs each “shade” one pixel, computing a floating-

point red, green, blue, alpha (RGBA) color contribution to the rendered

image at its pixel sample (x, y) image position. These programs execute

on the shader stage of the graphics pipeline. For all three types of graphics

shader programs, program instances can be run in parallel, because each

works on independent data, produces independent results, and has no side

effects. This property has motivated the design of the programmable pipe-

line stages into massively parallel processors.

Figure 2.4 shows an example of a programmable pipeline that employs

a vertex processor and a fragment (pixel) processor. The programmable

vertex processor executes the programs designated to the VS/T&L stage

292.1 Evolution of Graphics Pipelines

3D application

or game

3D API
Commands

3D API:

OpenGL or

Direct3D

CPU – GPU boundary

CPU

Primitive

assembly

Rasterization and

interpolation

Assembled
polygons,
lines, and

points

GPU
command and

data stream

Raster

operations
Framebuffer

Pixel
updatesGPU

front

end

Vertex index
stream

Pixel
location
stream

GPU

Transformed
vertices

Rasterized
pretransformed

fragments

Transformed
fragments

Pretransformed
Vertices

Programmable

vertex

processor

Programmable

fragment

processor

FIGURE 2.4

An example of a separate vertex processor and fragment processor in a programmable graphics pipeline.

and the programmable fragment processor executes the programs desig-

nated to the (pixel) shader stage. Between these programmable graphics

pipeline stages are dozens of fixed-function stages that perform well-

defined tasks far more efficiently than a programmable processor could,

and that would benefit far less from programmability. For example,

between the geometry processing stage and the pixel processing stage is a

“rasterizer,” a complex state machine that determines exactly which pixels

(and portions thereof) lie within each geometric primitive’s boundaries.

Together, the mix of programmable and fixed-function stages is engi-

neered to balance extreme performance with user control over the render-

ing algorithms.

Common rendering algorithms perform a single pass over input primi-

tives and access other memory resources in a highly coherent manner.

That is, these algorithms tend to simultaneously access contiguous mem-

ory locations, such as all triangles or all pixels in a neighborhood. As a

result, these algorithms exhibit excellent efficiency in memory bandwidth

utilization and are largely insensitive to memory latency. Combined with a

pixel shader workload that is usually compute-limited, these characteristics

have guided GPUs along a different evolutionary path than CPUs. In par-

ticular, whereas the CPU die area is dominated by cache memories, GPUs

are dominated by floating-point data path and fixed-function logic. GPU

memory interfaces emphasize bandwidth over latency (since latency can

be readily hidden by massively parallel execution); indeed, bandwidth is

typically many times higher than a CPU, exceeding 190 GB/s in more

recent designs.

Unified Graphics and Computing Processors

Introduced in 2006, NVIDIA’s GeForce 8800 GPU mapped the separate

programmable graphics stages to an array of unified processors; the logical

graphics pipeline is physically a recirculating path that visits these proces-

sors three times, with much fixed-function graphics logic between visits.

This is illustrated in Figure 2.5. The unified processor array allows dynamic

partitioning of the array to vertex shading, geometry processing, and pixel

processing. Since different rendering algorithms present wildly different

loads among the three programmable stages, this unification allows the

same pool of execution resources to be dynamically allocated to different

pipeline stages and achieve better load balance.

The GeForce 8800 hardware corresponds to the DirectX 10 API gener-

ation. By the DirectX 10 generation, the functionality of vertex and pixel

312.1 Evolution of Graphics Pipelines

Setup / Rstr / ZCullData assembler

Host

SP

c

L1

TF

L1

TF

L1

TF

L1

TF

L1

TF

L1

TF

L1

TF

L1

TF

L2 L2 L2 L2 L2 L2

FB FB FB FB FB FB

Vtx thread issue Geom thread issue Pixel thread issue

SP SP SP SP SP SP SP SP SP SP SP SP SP SP SP

T
hr

ea
d

P
ro

ce
ss

or

FIGURE 2.5

Unified programmable processor array of the GeForce 8800 GT graphics pipeline.

shaders was to be made identical to the programmer, and a new logical

stage was introduced, the geometry shader, to process all the vertices of a

primitive rather than vertices in isolation. The GeForce 8800 was designed

with DirectX 10 in mind. Developers were coming up with more sophisti-

cated shading algorithms and this motivated a sharp increase in the avail-

able shader operation rate, particularly floating-point operations. NVIDIA

pursued a processor design with higher operating clock frequency than

what was allowed by standard-cell methodologies to deliver the desired

operation throughput as area-efficiently as possible. High�clock speed

design requires substantially more engineering effort, and this favored

designing one processor array, rather than two (or three, given the new

geometry stage). It became worthwhile to take on the engineering chal-

lenges of a unified processor (load balancing and recirculation of a logical

pipeline onto threads of the processor array) while seeking the benefits of

one processor design. Such design paved the way for using the program-

mable GPU processor array for general numeric computing.

2.2 GPGPU: AN INTERMEDIATE STEP
While the GPU hardware design evolved toward more unified processors,

it increasingly resembled high-performance parallel computers. As

DirectX 9�capable GPUs became available, some researchers took notice

of the raw performance growth path of GPUs and they started to explore

the use of GPUs to solve compute-intensive science and engineering pro-

blems. However, DirectX 9 GPUs had been designed only to match the

features required by the graphics APIs. To access the computational

resources, a programmer had to cast his or her problem into graphics

operations so that the computation could be launched through OpenGL or

DirectX API calls. For example, to run many simultaneous instances of a

compute function, it had to be written as a pixel shader. The collection of

input data had to be stored in texture images and issued to the GPU by

submitting triangles (with clipping to a rectangle shape if that’s what was

desired). The output had to be cast as a set of pixels generated from the

raster operations.

The fact that the GPU processor array and frame buffer memory inter-

face were designed to process graphics data proved too restrictive for gen-

eral numeric applications. In particular, the output data of the shader

programs are single pixels of which the memory location has been predeter-

mined. Thus, the graphics processor array is designed with very restricted

332.2 GPGPU: An Intermediate Step

memory reading and writing capability. Figure 2.6 illustrates the limited

memory access capability of early programmable shader processor arrays;

shader programmers needed to use texture to access arbitrary memory loca-

tions for their input data. More importantly, shaders did not have the means

to perform writes with calculated memory addresses, referred to as scatter

operations, to memory. The only way to write a result to memory was to

emit it as a pixel color value, and configure the frame buffer operation stage

to write (or blend, if desired) the result to a 2D frame buffer.

Furthermore, the only way to get a result from one pass of computation

to the next was to write all parallel results to a pixel frame buffer, then

use that frame buffer as a texture map as input to the pixel fragment

shader of the next stage of the computation. There was also no support for

general user-defined data types—most data had to be stored in one-, two-,

or four-component vector arrays. Mapping general computations to a GPU

in this era was quite awkward. Nevertheless, intrepid researchers demon-

strated a handful of useful applications with painstaking efforts. This field

was called GPGPU, for general-purpose computing on GPUs.

2.3 GPU COMPUTING
While developing the Tesla GPU architecture, NVIDIA realized its poten-

tial usefulness would be much greater if programmers could think of the

Input registers
per Thread
per Shader

Fragment Program
Texture

per Context

Constants

Temp registers

Output registers

FB Memory

FIGURE 2.6

The restricted input and output capabilities of a shader programming model.

34 CHAPTER 2 History of GPU Computing

GPU like a processor. NVIDIA selected a programming approach in which

programmers would explicitly declare the data-parallel aspects of their

workload.

For the DirectX 10�generation graphics, NVIDIA had already begun

work on a high-efficiency floating-point and integer processor that could

run a variety of simultaneous workloads to support the logical graphics

pipeline. The designers of the Tesla architecture GPUs took another step.

The shader processors became fully programmable processors with

instruction memory, instruction cache, and instruction sequencing control

logic. The cost of these additional hardware resources was reduced by

having multiple shader processors to share their instruction cache and

instruction sequencing control logic. This design style works well with

graphics applications because the same shader program needs to be

applied to a massive number of vertices or pixels. NVIDIA added memory

load and store instructions with random byte addressing capability to sup-

port the requirements of compiled C programs. To nongraphics application

programmers, the Tesla architecture GPUs introduced a more generic

parallel programming model with a hierarchy of parallel threads, barrier

synchronization, and atomic operations to dispatch and manage highly

parallel computing work. NVIDIA also developed the CUDA C/C11
compiler, libraries, and runtime software to enable programmers to readily

access the new data-parallel computation model and develop applications.

Programmers no longer need to use the graphics API to access the GPU

parallel computing capabilities. The G80 chip was based on the Tesla

architecture and was used in NVIDIA’s GeForce 8800 GTX. G80 was

followed later by G92, GT200, Fermi, and Kepler.

Scalable GPUs

Scalability has been an attractive feature of graphics systems from the

beginning. In the early days, workstation graphics systems gave customers

a choice in pixel horsepower by varying the number of pixel processor cir-

cuit boards installed. Prior to the mid-1990s, PC graphics scaling was

almost nonexistent. There was one option—the VGA controller. As 3D-

capable accelerators appeared, there was room in the market for a range of

offerings; for instance, 3dfx introduced multiboard scaling with the origi-

nal SLI (scan line interleave) on their Voodoo2, which held the perfor-

mance crown for its time (1998). Also in 1998, NVIDIA introduced

distinct products as variants on a single architecture with Riva TNT Ultra

(high performance) and Vanta (low cost), first by speed binning and

352.3 GPU Computing

packaging, then with separate chip designs (GeForce 2 GTS and GeForce

2 MX). At present, for a given architecture generation, four or five sepa-

rate chip designs are needed to cover the range of desktop PC performance

and price points. In addition, there are separate segments in notebook and

workstation systems. After acquiring 3dfx, NVIDIA continued the multi-

GPU SLI concept in 2004 starting with GeForce 6800, providing multi-

GPU scalability transparently to both the programmer and to the user.

Functional behavior is identical across the scaling range; one application

will run unchanged on any implementation of an architectural family.

By switching to the multicore trajectory, CPUs are scaling to higher

transistor counts by increasing the number of constant-performance cores

on a die, rather than increasing the performance of a single core. At this

writing the industry is transitioning from quad-core to oct-core CPUs.

Programmers are forced to find four-fold to eight-fold parallelism to fully

utilize these processors. Many of them resort to coarse-grained parallelism

strategies where different tasks of an application are performed in parallel.

Such applications must be rewritten often to have more parallel tasks for

each successive doubling of core count. In contrast, the highly multi-

threaded GPUs encourage the use of massive, fine-grained data parallelism

in CUDA. Efficient threading support in GPUs allows applications to

expose a much larger amount of parallelism than available hardware exe-

cution resources with little or no penalty. Each doubling of GPU core

count provides more hardware execution resources that exploit more of

the exposed parallelism for higher performance. That is, the GPU parallel

programming model for graphics and parallel computing is designed for

transparent and portable scalability. A graphics program or CUDA pro-

gram is written once, and runs on a GPU with any number of processors.

Recent Developments

Academic and industrial work on applications using CUDA has produced

hundreds of examples of successful CUDA programs. Many of these exam-

ples are presented in GPU Computing Gems, Emerald and Jade editions

[Hwu2011a, Hwu2011b] with source code available at www.gpucomputing.

net. These programs often run tens of times faster on a CPU�GPU system

than on a CPU alone. With the introduction of tools like MCUDA

[SSH2008], the parallel threads of a CUDA program can also run efficiently

on a multicore CPU, although at a lower speed than GPUs due to a lower

level of floating-point execution resources. Examples of these applications

include n-body simulation, molecular modeling, computational finance, and

36 CHAPTER 2 History of GPU Computing

oil/gas reservoir simulation. Although many of these use single-precision

floating-point arithmetic, some problems require double precision. The

high-throughput double-precision floating-point arithmetic in more recent

Fermi and Kepler GPUs enabled an even broader range of applications to

benefit from GPU acceleration.

Future Trends

Naturally, the number of processor cores will continue to increase in pro-

portion to increases in available transistors as silicon processes improve.

In addition, GPUs will continue to go through vigorous architectural evo-

lution. Despite their demonstrated high performance on data-parallel appli-

cations, GPU core processors are still of relatively simple design. More

aggressive techniques will be introduced with each successive generation

to increase the actual utilization of the calculating units. Because scalable

parallel computing on GPUs is a still a young field, novel applications are

rapidly being created. By studying them, GPU designers will continue to

discover and implement new machine optimizations.

References and Further Reading
Akeley, K., & Jermoluk, T. (1988). High-Performance polygon rendering. Proc.

SIGGRAPH 1988, 239�246.

Akeley, K. (1993). RealityEngine graphics. Proc. SIGGRAPH 1993, 109�116.

Blelloch, G. B. (1990). Prefix sums and their applications. In J. H. Reif (Ed.),

Synthesis of parallel algorithms. San Francisco: Morgan Kaufmann.

Blythe, D. (2006). The direct3D 10 system. ACM Trans Graphics, 25(3),

724�734.

Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahlian, K., & Houston, M., et al.

(2004). Brook for GPUs: Stream computing on graphics hardware. Proc.

SIGGRAPH 2004, 777�786 also Available at: ,http://doi.acm.org/10.1145/

1186562.1015800.
Elder, G. (2002). “Radeon 9700,” eurographics/SIGGRAPH workshop on gra-

phics hardware. Hot3D Session, Available at: ,http://www.graphicshardware.

org/previous/www_2002/presentations/Hot3D-RADEON9700.ppt.
Fernando, R., & Kilgard, M. J. (2003). The Cg tutorial: The definitive guide to

programmable real-time graphics. Reading, MA: Addison-Wesley.

Fernando, R. (Ed.), (2004). Gpu gems: Programming techniques, tips, and tricks

for real-time graphics. Reading, MA: Addison-Wesleyalso Available at:

,http://developer.nvidia.com/object/gpu_gems_home.html. .

37References and Further Reading

http://www.doi.acm.org/10.1145/1186562.1015800
http://www.doi.acm.org/10.1145/1186562.1015800
http://www.graphicshardware.org/previous/www_2002/presentations/Hot3D-RADEON9700.ppt
http://www.graphicshardware.org/previous/www_2002/presentations/Hot3D-RADEON9700.ppt
http://www.developer.nvidia.com/object/gpu_gems_home.html

Foley, J., van Dam, A., Feiner, S., & Hughes, J. (1995). Computer graphics:

Principles and practice, second edition in C. Reading, MA: Addison-Wesley.

Hillis, W. D., & Steele, G. L. (1986). Data parallel algorithms. Commun. ACM,

29(12), 1170�1183 ,http://doi.acm.org/10.1145/7902.7903.
IEEE 754R working group. DRAFT standard for floating-point arithmetic P754.

,http://www.validlab.com/754R/drafts/archive/2006-10-04.pdf..

Industrial light and magic (2003). OpenEXR, Available at: ,//www.openexr.

com.
Intel Corporation (2007). Intel 64 and IA-32 Architectures Optimization

Reference Manual, Available at: ,http://www3.intel.com/design/processor/

manuals/248966.pdf.
Kessenich, J. (2006). The Opengl Shading Language, Language Version 1.20,

Available at: ,http://www.opengl.org/documentation/specs/.
Kirk, D., & Voorhies, D. (1990). The rendering architecture of the DN10000VS.

Proc. SIGGRAPH 1990, 299�307.

Lindholm, E., Kilgard, M. J., & Moreton, H. (2001). A user-programmable vertex

engine. Proc. SIGGRAPH 2001, 149�158.

Lindholm, E., Nickolls, J., Oberman, S., & Montrym, J. (2008). NVIDIA tesla: A

unified graphics and computing architecture. IEEE Micro, 28(2), 39�55.

Microsoft corporation. Microsoft DirectX Specification, Available at: ,http://

msdn.microsoft.com/directx/..

Microsoft Corporation (2003). Microsoft directx 9 programmable graphics pipe-

line Readmond, WA: Microsoft Press.

Montrym, J., Baum, D., Dignam, D., & Migdal, C. (1997). InfiniteReality: A

real-time graphics system. Proc. SIGGRAPH 1997, 293�301.

Montrym, J., & Moreton, H. (2005). The GeForce 6800. IEEE Micro, 25(2),

41�51.

Moore, G. E. (1965). Cramming more components onto integrated circuits.

Electronics, 38(8)Avaialble at ,http://download.intel.com/museum/Moores_Law/

Articles-Press_Releases/Gordon_Moore_1965_Article.pdf.
Nguyen, H. (Ed.), (2008). GPU gems 3 Reading, MA: Addison-Wesley.

Nickolls, J., Buck, I., Garland, M., & Skadron, K. (2008). Scalable parallel pro-

gramming with CUDA. ACM Queue, 6(2), 40�53.

NVIDIA (2012). CUDA Zone, Available at: http://www.nvidia.com/CUDA

NVIDIA (2007). CUDA Programming Guide 1.1, Available at: ,http://developer.down-

load.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf.
NVIDIA (2007). PTX: Parallel Thread Execution ISA Version 1.1, Available at:

,http://www.nvidia.com/object/io_1195170102263.html.
Nyland, L., Harris, M., & Prins, J. (2007). Fast N-Body simulation with CUDA.

In H. Nguyen (Ed.), GPU gems 3. Reading, MA: Addison-Wesley.

Oberman, S. F.and Siu,M. Y. A high-performance area-efficient multifunction

interpolator. Proc. 17th IEEE symp. computer arithmetic (pp. 272�279).

Seattle Washington, 2005.

38 CHAPTER 2 History of GPU Computing

http://www.doi.acm.org/10.1145/7902.7903
http://www.validlab.com/754R/drafts/archive/2006-10-04.pdf
http://www.openexr.com
http://www.openexr.com
http://www3.intel.com/design/processor/manuals/248966.pdf
http://www3.intel.com/design/processor/manuals/248966.pdf
http://www.opengl.org/documentation/specs/
http://www.msdn.microsoft.com/directx/
http://www.msdn.microsoft.com/directx/
http://www.download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf
http://www.download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf
http://www.nvidia.com/CUDA
http://www.developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf
http://www.developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf
http://www.nvidia.com/object/io_1195170102263.html

Patterson, D. A., & Hennessy, J. L. (2004). Computer organization and design:

The hardware/software interface (3rd ed.) San Francisco: Morgan Kaufmann.

Pharr, M. (Ed.), (2005). GPU Gems 2: Programming techniques for high-

performance graphics and general-purpose computation. Reading, MA:

Addison-Wesley.

Satish, N. Harris, M. and Garland, M. Designing efficient sorting algorithms for

proceedings of the 23rd ieee international parallel and distributed processing

symposium. Rome, Italy, 2009

Segal, M., & Akeley, K. (2006). The opengl graphics system: A specification, ver-

sion 2.1, Available at: ,http://www.opengl.org/documentation/specs/.
Sengupta, S. Harris, M. Zhang, Y.and Owens, J. D. Scan primitives for GPU com-

puting. Proc. of graphics hardware 2007 (pp. 97�106). San Diego,

California, Aug. 2007.

Hwu, W. (Ed.), (2011a). GPU computing gems, emerald edition San Francisco:

Morgan Kauffman.

Hwu, W. (Ed.), (2011b). GPU computing gems, jade edition San Francisco:

Morgan Kauffman.

Stratton, J. A., Stone, S. S., & Hwu, W. W. (2008). MCUDA: An efficient imple-

mentation of CUDA kernels for multi-core CPUs. The 21st International

Workshop on Languages and Compilers for Parallel Computing, [Canada;

also Available as Lecture Notes in Computer Science]

Volkov V.and Demmel, J. LU, QR and cholesky factorizations using vector capa-

bilities of GPUs. Technical Report No. UCB/EECS-2008-49, 1�11; also

Available at: ,http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-

49.html. .

Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., & Demmel, J. (2007).

Optimization of sparse matrix-vector multiplication on emerging multicore plat-

forms. Proc. Supercomputing 2007 (SC’07). doi:10.1145/1362622.1362674

[Reno, Nevada]

39References and Further Reading

http://www.opengl.org/documentation/specs/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-49.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-49.html

This page intentionally left blank

CHAPTER

3Introduction to Data
Parallelism and CUDA C

CHAPTER OUTLINE

3.1 Data Parallelism .. 42

3.2 CUDA Program Structure... 43

3.3 A Vector Addition Kernel .. 45

3.4 Device Global Memory and Data Transfer .. 48

3.5 Kernel Functions and Threading.. 53

3.6 Summary ... 59

3.7 Exercises... 60

References ... 62

Our main objective is to teach the key concepts involved in writing

massively parallel programs in a heterogeneous computing system. This

requires many code examples expressed in a reasonably simple language

that supports massive parallelism and heterogeneous computing. We have

chosen CUDA C for our code examples and exercises. CUDA C is an

extension to the popular C programming language1 with new keywords and

application programming interfaces for programmers to take advantage of

heterogeneous computing systems that contain both CPUs and massively

parallel GPU’s. For the rest of this book, we will refer to CUDA C simply

as CUDA. To a CUDA programmer, the computing system consists of a

host that is a traditional CPU, such as an Intel architecture microprocessor

in personal computers today, and one or more devices that are processors

with a massive number of arithmetic units. A CUDA device is typically a

GPU. Many modern software applications have sections that exhibit a rich

amount of data parallelism, a phenomenon that allows arithmetic operations

1CUDA C also supports a growing subset of C11 features. Interested readers should

refer to the CUDA Programming Guide for more information about the supported C11
features.

41

to be safely performed on different parts of the data structures in parallel.

CUDA devices accelerate the execution of these applications by applying

their massive number of arithmetic units to these data-parallel program sec-

tions. Since data parallelism plays such an important role in CUDA, we will

first discuss the concept of data parallelism before introducing the basic fea-

tures of CUDA.

3.1 DATA PARALLELISM
Modern software applications often process a large amount of data and

incur long execution time on sequential computers. Many of them operate

on data that represents or models real-world, physical phenomena. Images

and video frames are snapshots of a physical world where different parts

of a picture capture simultaneous, independent physical events. Rigid-

body physics and fluid dynamics model natural forces and movements that

can be independently evaluated within small time steps. Airline scheduling

deals with thousands of flights, crews, and airport gates that operate

in parallel. Such independent evaluation is the basis of data parallelism in

these applications.

TASK PARALLELISM VERSUS DATA PARALLELISM
Data parallelism is not the only type of parallelism widely used in parallel programming. Task
parallelism has also been used extensively in parallel programming. Task parallelism is typi-
cally exposed through task decomposition of applications. For example, a simple application
may need to do a vector addition and a matrix�vector multiplication. Each of these would be
a task. Task parallelism exists if the two tasks can be done independently.

In large applications, there are usually a larger number of independent tasks and there-
fore a larger amount of task parallelism. For example, in a molecular dynamics simulator, the
list of natural tasks includes vibrational forces, rotational forces, neighbor identification for
nonbonding forces, nonbonding forces, velocity and position, and other physical properties
based on velocity and position.

In general, data parallelism is the main source of scalability for parallel programs. With
large data sets, one can often find abundant data parallelism to be able to utilize massively
parallel processors and allow application performance to grow with each generation of hard-
ware that has more execution resources. Nevertheless, task parallelism can also play an
important role in achieving performance goals. We will be covering task parallelism later
when we introduce CUDA streams.

Let us illustrate the concept of data parallelism with a vector addition

example in Figure 3.1. In this example, each element of the sum vector C

is generated by adding an element of input vector A to an element of input

vector B. For example, C[0] is generated by adding A[0] to B[0], and C[3]

is generated by adding A[3] to B[3]. All additions can be performed in

42 CHAPTER 3 Introduction to Data Parallelism and CUDA C

parallel. Therefore, vector addition of two large vectors exhibits a rich

amount of data parallelism. Data parallelism in real applications can be

more complex and will be discussed in detail later.

3.2 CUDA PROGRAM STRUCTURE
The structure of a CUDA program reflects the coexistence of a host (CPU) and

one or more devices (GPUs) in the computer. Each CUDA source file can

have a mixture of both host and device code. By default, any traditional C pro-

gram is a CUDA program that contains only host code. One can add device

functions and data declarations into any C source file. The function or data

declarations for the device are clearly marked with special CUDA keywords.

These are typically functions that exhibit a rich amount of data parallelism.

Once device functions and data declarations are added to a source file, it is

no longer acceptable to a traditional C compiler. The code needs to be com-

piled by a compiler that recognizes and understands these additional declara-

tions. We will be using a CUDA C compiler by NVIDIA called NVCC

(NVIDIA C Compiler). As shown at the top of Figure 3.2, the NVCC pro-

cesses a CUDA program, using the CUDA keywords to separate the host code

and device code. The host code is straight ANSI C code, which is further com-

piled with the host’s standard C/C11 compilers and is run as a traditional

CPU process. The device code is marked with CUDA keywords for labeling

data-parallel functions, called kernels, and their associated data structures. The

device code is further compiled by a runtime component of NVCC and

A[0]vector
A

A[1] A[2] A[3] A[4] A[N-1]

vector
B

B[0] B[1] B[2] B[3] B[4] B[N-1]

+ + + + + +

vector
C

C[0] C[1] C[2] C[3] C[4] C[N-1]

FIGURE 3.1

Data parallelism in vector addition.

433.2 CUDA Program Structure

executed on a GPU device. In situations where there is no device available or

a kernel can be appropriately executed on a CPU, one can also choose to exe-

cute the kernel on a CPU using tools like MCUDA [Stratton 2008].

The execution of a CUDA program is illustrated in Figure 3.3. The

execution starts with host (CPU) execution. When a kernel function is

called, or launched, it is executed by a large number of threads on a

device. All the threads that are generated by a kernel launch are collec-

tively called a grid. Figure 3.3 shows the execution of two grids of

threads. We will discuss how these grids are organized soon. When all

threads of a kernel complete their execution, the corresponding grid termi-

nates, and the execution continues on the host until another kernel is

launched. Note that Figure 3.3 shows a simplified model where the CPU

execution and the GPU execution do not overlap. Many heterogeneous

computing applications actually manage overlapped CPU and GPU execu-

tion to take advantage of both CPUs and GPUs.

THREADS
A thread is a simplified view of how a processor executes a program in modern computers. A thread
consists of the code of the program, the particular point in the code that is being executed,
and the values of its variables and data structures. The execution of a thread is sequential as
far as a user is concerned. One can use a source-level debugger to monitor the progress of a

Integrated C programs with CUDA extensions

NVCC Compiler

Host Code Device Code (PTX)

Host C preprocessor,
compiler/ linker

Device just-in-time
compiler

Heterogeneous Computing Platform with
CPUs, GPUs

FIGURE 3.2

Overview of the compilation process of a CUDA program.

44 CHAPTER 3 Introduction to Data Parallelism and CUDA C

thread by executing one statement at a time, looking at the statement that will be executed
next, and checking the values of the variables and data structures.

Threads have been used in traditional CPU programming for many years. If a programmer
wants to start parallel execution in an application, he or she needs to create and manage
multiple threads using thread libraries or special languages.

In CUDA, the execution of each thread is sequential as well. A CUDA program initiates
parallel execution by launching kernel functions, which causes the underlying runtime
mechanisms to create many threads that process different parts of the data in parallel.

Launching a kernel typically generates a large number of threads to exploit

data parallelism. In the vector addition example, each thread can be used to

compute one element of the output vector C. In this case, the number of threads

that will be generated by the kernel is equal to the vector length. For long

vectors, a large number of threads will be generated. CUDA programmers can

assume that these threads take very few clock cycles to generate and schedule

due to efficient hardware support. This is in contrast with traditional CPU

threads that typically take thousands of clock cycles to generate and schedule.

3.3 A VECTOR ADDITION KERNEL
We now use vector addition to illustrate the CUDA programming model.

Before we show the kernel code for vector addition, it is helpful to first

review how a conventional CPU-only vector addition function works.

Figure 3.4 shows a simple traditional C program that consists of a main

function and a vector addition function. In each piece of host code, we

will prefix the names of variables that are mainly processed by the host

CPU serial code

. . .

CPU serial code

. . .

GPU parallel kernel
KernelA<<< nBlK, nTid >>>(args);

GPU parallel kernel
KernelA<<< nBlK, nTid >>>(args);

FIGURE 3.3

Execution of a CUDA program.

453.3 A Vector Addition Kernel

with h_ and those of variables that are mainly processed by a device d_ to

remind ourselves the intended usage of these variables.

Assume that the vectors to be added are stored in arrays h_A and h_B
that are allocated and initialized in the main program. The output vector is

in array h_C, which is also initialized in the main program. For brevity,

we do not show the details of how h_A, V, and h_C are allocated or initial-

ized. A complete source code listing that contains more details is available

in Appendix A. The pointers to these arrays are passed to the vecAdd()
function, along with the variable N that contains the length of the vectors.

POINTERS IN THE C LANGUAGE
The function arguments A, B, and C in Figure 3.4 are pointers. In the C language, a pointer
can be used to access variables and data structures. While a floating point variable V can be
declared wit:
float V;
a pointer variable P can be declared with:
float *P;
By assigning the address of V to P with the statement P 5 & V, we make P “point to” V. �P
becomes a synonym for V. For example U = �P assigns the value of V to U. For another exam-
ple, �P = 3 changes the value of V to 3. An array in a C program can be accessed through a
pointer that points to its 0th element. For example, the statement P = & (h_A[0]) makes P
point to the 0th element of array h_A. P[i] becomes a synonym for h_A[i]. In fact, the array
name h_A is in itself a pointer to its 0th element. In Figure 3.4, passing an array name h_A
as the first argument to function call to vecAdd makes the function’s first parameter A point
to the 0th element of h_A . We say that h_A is passed by reference to vecAdd. As a result, A
[i] in the function body can be used to access h_A[i]. See Patt& Patel [Patt] for an easy-to-
follow explanation of the detailed usage of pointers in C.

// Compute vector sum h_C = h_A+h_B

void vecAdd(float* h_A, float* h_B, float* h_C, int n)

{{

for (i = 0; i < n; i++) h_C[i] = h_A[i] + h_B[i];

}

int main()

{

// Memory allocation for h_A, h_B, and h_C

// I/O to read h_A and h_B, N elements each

…

vecAdd(h_A, h_B, h_C, N);

}

FIGURE 3.4

A simple traditional vector addition C code example.

46 CHAPTER 3 Introduction to Data Parallelism and CUDA C

The vecAdd() function in Figure 3.4 uses a for loop to iterate through

the vector elements. In the ith iteration, output element C[i] receives the

sum of A[i] and B[i]. The vector length parameter n is used to control

the loop so that the number of iterations matches the length of the vectors.

The parameters A, B, and C are passed by reference so the function reads the

elements of h_A, h_B and writes the elements of h_C through the parameter

pointers A, B, and C. When the vecAdd() function returns, the subsequent

statements in the main function can access the new contents of h_C.
A straightforward way to execute vector addition in parallel is to

modify the vecAdd() function and move its calculations to a CUDA

device. The structure of such a modified vecAdd() function is shown in

Figure 3.5. At the beginning of the file, we need to add a C preprocessor

directive to include the CUDA.h header file. This file defines the CUDA

API functions and built-in variables that we will be introducing soon.

Part 1 of the function allocates space in the device (GPU) memory to hold

copies of the A, B, and C vectors, and copies the vectors from the host

memory to the device memory. Part 2 launches parallel execution of the

actual vector addition kernel on the device. Part 3 copies the sum vector C

from the device memory back to the host memory.

Note that the revised vecAdd() function is essentially an outsourcing

agent that ships input data to a device, activates the calculation on the

device, and collects the results from the device. The agent does so in such

a way that the main program does not need to even be aware that the

vector addition is now actually done on a device. The details of the revised

#include <cuda.h>
…

Part 1

void vecAdd(float* A, float*B, float* C, int n)
{

int size = n* sizeof(float);
float *A_d, *B_d, *C_d; CPU

Host Memory

GPU
Part 2

…
1. // Allocate device memory for A, B, and C

// copy A and B to device memory

2. // Kernel launch code – to have the device
// to perform the actual vector addition

Part 3

3. // copy C from the device memory
// Free device vectors

}}

Device Memory

FIGURE 3.5

Outline of a revised vecAdd() function that moves the work to a device.

473.3 A Vector Addition Kernel

function, as well as the way to compose the kernel function, will be shown

as we introduce the basic features of the CUDA programming model.

3.4 DEVICE GLOBAL MEMORY AND DATA TRANSFER
In CUDA, host and devices have separate memory spaces. This reflects

the current reality that devices are often hardware cards that come with

their own DRAM. For example, the NVIDIA GTX480 comes with up to

4 GB2 (billion bytes, or gigabytes) of DRAM, called global memory. We will

also refer to global memory as device memory. To execute a kernel on a

device, the programmer needs to allocate global memory on the device and

transfer pertinent data from the host memory to the allocated device memory.

This corresponds to Part 1 of Figure 3.5. Similarly, after device execution,

the programmer needs to transfer result data from the device memory back

to the host memory and free up the device memory that is no longer needed.

This corresponds to Part 3 of Figure 3.5. The CUDA runtime system

provides Application Programming Interface (API) functions to perform

these activities on behalf of the programmer. From this point on, we will

simply say that a piece of data is transferred from host to device as short-

hand for saying that the data is copied from the host memory to the device

memory. The same holds for the opposite direction.

Figure 3.6 shows a CUDA host memory and device memory model

for programmers to reason about the allocation of device memory and

movement of memory between host and device. The device global mem-

ory can be accessed by the host to transfer data to and from the device,

as illustrated by the bidirectional arrows between these memories and the

Device

G

Host

H Global
Memory

Host
Memory

FIGURE 3.6

Host memory and device global memory.

2There is a trend to integrate CPUs and GPUs into the same chip package, commonly

referred to as fusion. Fusion architectures often have a unified memory space for host

and devices. There are new programming frameworks, such as GMAC, that take advan-

tage of the unified memory space and eliminate data copying costs.

48 CHAPTER 3 Introduction to Data Parallelism and CUDA C

host in Figure 3.6. There are more device memory types than shown in

Figure 3.6. Constant memory can be accessed in a read-only manner by

device functions, which will be described in Chapter 8. We will also dis-

cuss the use of registers and shared memory in Chapter 5. See the CUDA

Programming Guide for the functionality of texture memory. For now, we

will focus on the use of global memory.

The CUDA runtime system provides API functions for managing data in

the device memory. For example, Parts 1 and 3 of the vecAdd() function

in Figure 3.5 need to use these API functions to allocate device memory

for A, B, and C; transfer A and B from host memory to device memory;

transfer C from device memory to host memory; and free the device

memory for A, B, and C. We will explain the memory allocation and free

functions first. Figure 3.7 shows two API functions for allocating and

freeing device global memory. Function cudaMalloc() can be called from

the host code to allocate a piece of device global memory for an object.

Readers should notice the striking similarity between cudaMalloc()
and the standard C runtime library malloc(). This is intentional; CUDA is

C with minimal extensions. CUDA uses the standard C runtime library

malloc() function to manage the host memory and adds cudaMalloc() as

an extension to the C runtime library. By keeping the interface as close to

the original C runtime libraries as possible, CUDA minimizes the time

that a C programmer spends to relearn the use of these extensions.

The first parameter to the cudaMalloc() function is the address of a

pointer variable that will be set to point to the allocated object. The

address of the pointer variable should be cast to (void ��) because the

function expects a generic pointer; the memory allocation function is a

generic function that is not restricted to any particular type of objects.3

This parameter allows the cudaMalloc() function to write the address of

the allocated memory into the pointer variable.4 The host code passes this

pointer value to the kernels that need to access the allocated memory

3The fact that cudaMalloc() returns a generic object makes the use of dynamically

allocated multidimensional arrays more complex. We will address this issue in

Section 4.2.
4Note that cudaMalloc() has a different format from the C malloc() function. The

C malloc() function returns a pointer to the allocated object. It takes only one parame-

ter that specifies the size of the allocated object. The cudaMalloc() function writes to

the pointer variable of which the address is given as the first parameter. As a result,

the cudaMalloc() function takes two parameters. The two-parameter format of

cudaMalloc() allows it to use the return value to report any errors in the same way

as other CUDA API functions.

493.4 Device Global Memory and Data Transfer

object. The second parameter to the cudaMalloc() function gives the size

of the data to be allocated, in terms of bytes. The usage of this second

parameter is consistent with the size parameter to the C malloc()
function.

We now use a simple code example to illustrate the use of cudaMalloc().
This is a continuation of the example in Figure 3.5. For clarity, we will start a

pointer variable with d_ to indicate that it points to an object in the device

memory. The program passes the address of d_A (i.e., &d_A) as the first

parameter after casting it to a void pointer. That is, d_A will point to the

device memory region allocated for the A vector. The size of the allocated

region will be n times the size of a single-precision floating number, which is

4 bytes in most computers today. After the computation, cudaFree() is called
with pointer d_A as input to free the storage space for the A vector from the

device global memory.

float �d_A
int size 5 n � sizeof(float);
cudaMalloc((void��)&d_A, size);
. . .
cudaFree(d_A);

The addresses in d_A, d_B, and d_C are addresses in the device memory.

These addresses should not be dereferenced in the host code. They should

be mostly used in calling API functions and kernel functions.

Dereferencing a device memory point in the host code can cause excep-

tions or other types of runtime errors during runtime.

Readers should complete Part 1 of the vecAdd() example in Figure 3.5

with similar declarations of d_B and d_C pointer variables as well as their

corresponding cudaMalloc() calls. Furthermore, Part 3 in Figure 3.6 can

be completed with the cudaFree() calls for d_B and d_C.

• cudaMalloc()
– Allocates object in the device global memory
– Two parameters

• Address of a pointer to the allocated object
• Size of allocated object in terms of bytes

• cudaFree()
– Frees object from device global memoryv

• Pointer to freed object

FIGURE 3.7

CUDA API functions for managing device global memory.

50 CHAPTER 3 Introduction to Data Parallelism and CUDA C

Once the host code has allocated device memory for the data objects, it

can request that data be transferred from host to device. This is accom-

plished by calling one of the CUDA API functions. Figure 3.8 shows such

an API function, cudaMemcpy(). The cudaMemcpy() function takes four

parameters. The first parameter is a pointer to the destination location for

the data object to be copied. The second parameter points to the source

location. The third parameter specifies the number of bytes to be copied.

The fourth parameter indicates the types of memory involved in the copy:

from host memory to host memory, from host memory to device memory,

from device memory to host memory, and from device memory to device

memory. For example, the cudaMemcpy() function can be used to copy

data from one location of the device memory to another location of the

device memory.5

ERROR HANDLING IN CUDA
In general, it is very important for a program to check and handle errors. CUDA API functions
return flags that indicate whether an error has occurred when they served the request. Most
errors are due to inappropriate argument values used in the call.

For brevity, we will not show error checking code in our examples. For example, line 1
in Figure 3.9 shows a call to cudaMalloc():

cudaMalloc((void ��) &d_A, size);

In practice, we should surround the call with code that tests for error conditions and
prints out error messages so that the user can be aware of the fact that an error has occurred.
A simple version of such checking code is as follows:

cudaError_t err 5 cudaMalloc((void ��) &d_A, size);

cudaMemcpy()
– memory data transfer
– Requires four parameters
• Pointer to destination
•• Pointer to source
• Number of bytes copied
• Type/Direction of transfer

FIGURE 3.8

CUDA API function for data transfer between host and device.

5Please note cudaMemcpy() cannot be used to copy between different GPUs in multi-

GPU systems.

513.4 Device Global Memory and Data Transfer

if (err !5 cudaSuccess) {
printf(“%s in %s at line %d\n”, cudaGetErrorString(err),
__FILE__, __LINE__);

exit(EXIT_FAILURE);
}

This way, if the system is out of device memory, the user will be informed about the
situation.

One would usually define a C macro to make the checking code more concise in the
source.

The vecAdd() function calls the cudaMemcpy() function to copy A and

B vectors from host to device before adding them and to copy the C vector

from the device to host after the addition is done. Assume that the value

of A, B, d_A, d_B, and size have already been set as we discussed before;

the three cudaMemcpy() calls are shown below. The two symbolic con-

stants, cudaMemcopyHostToDevice and cudaMemcopyDeviceToHost, are

recognized, predefined constants of the CUDA programming environment.

Note that the same function can be used to transfer data in both directions

by properly ordering the source and destination pointers and using the

appropriate constant for the transfer type.

void vecAdd(float* A, float* B, float* C, int n)
{
 int size = n * sizeof(float);
 float *d_A, *d_B, *d_C;

 cudaMalloc((void **) &d_A, size);
 cudaMemcpy(d_A, A, size, cudaMemcpyHostToDevice);
 cudaMalloc((void **) &B_d, size);
 cudaMemcpy(d_B, B, size, cudaMemcpyHostToDevice);

 cudaMalloc((void **) &d_C, size);

 // Kernel invocation code – to be shown later
 ...

 cudaMemcpy(C, d_C, size, cudaMemcpyDeviceToHost);

 // Free device memory for A, B, C
 cudaFree(d_Ad); cudaFree(d_B); cudaFree (d_C);
}

FIGURE 3.9

A more complete version of vecAdd().

52 CHAPTER 3 Introduction to Data Parallelism and CUDA C

cudaMemcpy(d_A, A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, B, size, cudaMemcpyHostToDevice);
cudaMemcpy(C, d_C, size, cudaMemcpyDeviceToHost);

To summarize, the main program in Figure 3.4 calls vecAdd(), which is

also executed on the host. The vecAdd() function, outlined in Figure 3.5,

allocates device memory, requests data transfers, and launches the kernel

that performs the actual vector addition. We often refer to this type of host

code as a stub function for launching a kernel. After the kernel finishes

execution, vecAdd() also copies result data from device to the host. We

show a more complete version of the vecAdd() function in Figure 3.9.

Compared to Figure 3.6, the vecAdd() function in Figure 3.9 is com-

plete for Parts 1 and 3. Part 1 allocates device memory for d_A, d_B, and
d_C and transfers A to d_A and B to d_B. This is done by calling the

cudaMalloc() and cudaMemcpy() functions. Readers are encouraged to

write their own function calls with the appropriate parameter values and

compare their code with that shown in Figure 3.9. Part 2 invokes the ker-

nel and will be described in the following section. Part 3 copies the sum

data from device memory to host memory so that the value will be avail-

able to main(). This is accomplished with a call to the cudaMemcpy()
function. It then frees the memory for d_A, d_B, and d_C from the device

memory, which is done by calls to the cudaFree() function.

3.5 KERNEL FUNCTIONS AND THREADING
We are now ready to discuss more about the CUDA kernel functions and

the effect of launching these kernel functions. In CUDA, a kernel function

specifies the code to be executed by all threads during a parallel phase.

Since all these threads execute the same code, CUDA programming is an

instance of the well-known SPMD (single program, multiple data)

[Atallah1998] parallel programming style, a popular programming style

for massively parallel computing systems.6

When a host code launches a kernel, the CUDA runtime system gener-

ates a grid of threads that are organized in a two-level hierarchy. Each

6Note that SPMD is not the same as SIMD (single instruction, multiple data)

[Flynn1972]. In an SPMD system, the parallel processing units execute the same pro-

gram on multiple parts of the data. However, these processing units do not need to be

executing the same instruction at the same time. In an SIMD system, all processing units

are executing the same instruction at any instant.

533.5 Kernel Functions and Threading

grid is organized into an array of thread blocks, which will be referred to

as blocks for brevity. All blocks of a grid are of the same size; each block

can contain up to 1,024 threads.7 Figure 3.10 shows an example where

each block consists of 256 threads. The number of threads in each thread

block is specified by the host code when a kernel is launched. The same

kernel can be launched with different numbers of threads at different parts

of the host code. For a given grid of threads, the number of threads in a

block is available in the blockDim variable. In Figure 3.10, the value of

the blockDim.x variable is 256. In general, the dimensions of thread

blocks should be multiples of 32 due to hardware efficiency reasons. We

will revisit this later.

Each thread in a block has a unique threadIdx value. For example, the

first thread in block 0 has value 0 in its threadIdx variable, the second

thread has value 1, the third thread has value 2, etc. This allows each thread

to combine its threadIdx and blockIdx values to create a unique global

index for itself with the entire grid. In Figure 3.10, a data index i is calcu-

lated as i5 blockIdx.x � blockDim.x 1 threadIdx.x. Since blockDim is

256 in our example, the i values of threads in block 0 ranges from 0 to 255.

The i values of threads in block 1 range from 256 to 511. The i values of

threads in block 2 range from 512 to 767. That is, the i values of the threads

in these three blocks form a continuous coverage of the values from 0 to

767. Since each thread uses i to access d_A, d_B, and d_C, these threads

cover the first 768 iterations of the original loop. By launching the kernel

with a larger number of blocks, one can process larger vectors. By launch-

ing a kernel with n or more threads, one can process vectors of length n.

Block 0 Block 1 Block N-1

……

…
1 2 254 2550

i = blockIdx.x * blockDim.x +
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

…
0 1 2 254 255

i = blockIdx.x * blockDim.x +
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

…
1 2 254 2550

i = blockIdx.x * blockDim.x +
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

FIGURE 3.10

All threads in a grid execute the same kernel code.

7Each thread block can have up to 1,024 threads in CUDA 3.0 and later. Some earlier

CUDA versions allow only up to 512 threads in a block.

54 CHAPTER 3 Introduction to Data Parallelism and CUDA C

Figure 3.11 shows a kernel function for a vector addition. The syntax is

ANSI C with some notable extensions. First, there is a CUDA specific

keyword __global__ in front of the declaration of vecAddKernel(). This
keyword indicates that the function is a kernel and that it can be called

from a host function to generate a grid of threads on a device.

In general, CUDA extends C language with three qualifier keywords

in function declarations. The meaning of these keywords is summarized in

Figure 3.12. The __global__ keyword indicates that the function being

declared is a CUDA kernel function. Note that there are two underscore

characters on each side of the word “global.” A __global__ function is to

be executed on the device and can only be called from the host code. The

__device__ keyword indicates that the function being declared is a

CUDA device function. A device function executes on a CUDA device

and can only be called from a kernel function or another device function.8

Only callable
from the:

Executed
on the:

hostdevice__global__ void KernelFunc()

devicedevice__device__ float DeviceFunc()

hosthost__host__ float HostFunc()

FIGURE 3.12

CUDA C keywords for function declaration.

// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global_ _

void vecAddKernel(float* A, float* B, float* C, int n)

{

int i = threadIdx.x + blockDim.x * blockIdx.x;

if(i<n) C[i] = A[i] + B[i];

}

FIGURE 3.11

A vector addition kernel function and its launch statement.

8We will explain the rules for using indirect function calls and recursions in different

generations of CUDA later. In general, one should avoid the use of recursion and indi-

rect function calls in their device functions and kernel functions to allow maximal

portability.

553.5 Kernel Functions and Threading

The __host__ keyword indicates that the function being declared is a

CUDA host function. A host function is simply a traditional C function

that executes on the host and can only be called from another host func-

tion. By default, all functions in a CUDA program are host functions if

they do not have any of the CUDA keywords in their declaration. This

makes sense since many CUDA applications are ported from CPU-only

execution environments. The programmer would add kernel functions and

device functions during the porting process. The original functions remain

as host functions. Having all functions to default into host functions spares

the programmer the tedious work to change all original function

declarations.

Note that one can use both __host__ and __device__ in a function

declaration. This combination tells the compilation system to generate two

versions of object files for the same function. One is executed on the host

and can only be called from a host function. The other is executed on

the device and can only be called from a device or kernel function. This

supports a common-use case when the same function source code can be

recompiled to generate a device version. Many user library functions will

likely fall into this category.

The second notable extension to ANSI C in Figure 3.10 is the key-

words threadIdx.x. blockIdx.x, and blockDim.x. Note that all threads

execute the same kernel code. There needs to be a way for them to distin-

guish among themselves and direct each thread toward a particular part

of the data. These keywords identify predefined variables that correspond

to hardware registers that provide the identifying coordinates to threads.

Different threads will see different values in their threadIdx.x,
blockIdx.x, and blockDim.x variables. For simplicity, we will refer to a

thread as threadblockIdx.x, threadIdx.x. Note that the .x implies that there

might be .y and .z. We will come back to this point soon.

There is an automatic (local) variable i in Figure 3.11. In a CUDA

kernel function, automatic variables are private to each thread. That is,

a version of i will be generated for every thread. If the kernel is launched

with 10,000 threads, there will be 10,000 versions of i, one for each thread.

The value assigned by a thread to its i variable is not visible to other

threads. We will discuss these automatic variables again in Chapter 5.

A quick comparison between Figure 3.4 and Figure 3.11 reveals an

important insight for CUDA kernels and a CUDA kernel launch. The

kernel function in Figure 3.11 does not have a loop that corresponds to

the one in Figure 3.4. Readers should ask where the loop went. The

answer is that the loop is now replaced with the grid of threads. The entire

56 CHAPTER 3 Introduction to Data Parallelism and CUDA C

grid forms the equivalent of the loop. Each thread in the grid corresponds

to one iteration of the original loop.

Note that there is an if (i,n) statement in addVecKernel() in

Figure 3.11. This is because not all vector lengths can be expressed as multi-

ples of the block size. For example, if the vector length is 100, the smallest

efficient thread block dimension is 32. Assume that we picked 32 as the block

size. One would need to launch four thread blocks to process all the 100 vec-

tor elements. However, the four thread blocks would have 128 threads.

We need to disable the last 28 threads in thread block 3 from doing work not

expected by the original program. Since all threads are to execute the same

code, all will test their i values against n, which is 100. With the if (i,n)
statement, the first 100 threads will perform the addition whereas the last 28

will not. This allows the kernel to process vectors of arbitrary lengths.

When the host code launches a kernel, it sets the grid and thread block

dimensions via execution configuration parameters. This is illustrated in

Figure 3.13. The configuration parameters are given between the ,,,

and ... before the traditional C function arguments. The first configura-

tion parameter gives the number of thread blocks in the grid. The second

specifies the number of threads in each thread block. In this example, there

are 256 threads in each block. To ensure that we have enough threads to

cover all the vector elements, we apply the C ceiling function to n/256.0.
Using floating-point value 256.0 ensures that we generate a floating value

for the division so that the ceiling function can round it up correctly. For

example, if we have 1,000 threads, we would launch ceil(1,000/256.0)5 4

thread blocks. As a result, the statement will launch 43 2565 1,024

threads. With the if (i , n) statement in the kernel as shown in

Figure 3.11, the first 1,000 threads will perform addition on the 1,000 vec-

tor elements. The remaining 24 will not.

Figure 3.14 shows the final host code of vecAdd(). This source code

completes the skeleton in Figure 3.5. Figures 3.10 and 3.14 jointly illustrate

a simple CUDA program that consists of both the host code and a device

int vectAdd(float* A, float* B, float* C, int n)

{

//// d_A, d_B, d_C allocations and copies omitted

// Run ceil(n/256) blocks of 256 threads each

vecAddKernel<<<ceil(n/256.0), 256>>>(d_A, d_B, d_C, n);

}

FIGURE 3.13

A vector addition kernel function and its launch statement.

573.5 Kernel Functions and Threading

kernel. The code is hardwired to use thread blocks of 256 threads each. The

number of thread blocks used, however, depends on the length of the vec-

tors (n). If n is 750, three thread blocks will be used; if n is 4,000, 16 thread

blocks will be used; if n is 2,000,000, 7,813 blocks will be used. Note that

all the thread blocks operate on different parts of the vectors. They can be

executed in any arbitrary order. A small GPU with a small amount of exe-

cution resources may execute one or two of these thread blocks in parallel.

A larger GPU may execute 64 or 128 blocks in parallel. This gives CUDA

kernels scalability in execution speed with hardware. That is, same code

runs at lower performance on small GPUs and higher performance on larger

GPUs. We will revisit this point again in Chapter 4.

It is important to point out that the vector addition example is used for

its simplicity. In practice, the overhead of allocating device memory, input

data transfer from host to device, output data transfer from device to host,

and de-allocating device memory will likely make the resulting code

slower than the original sequential code in Figure 3.4. This is because the

amount of calculation done by the kernel is small relative to the amount of

data processed. Only one addition is performed for two floating-point

input operands and one floating-point output operand. Real applications

typically have kernels where much more work is needed relative to the

amount of data processed, which makes the additional overhead worth-

while. They also tend to keep the data in the device memory across

void vecAdd(float* A, float* B, float* C, int n)
{

intint size = n * sizeof(float);
float *d_A, *d_B, *d_C;

cudaMalloc((void **) &d_A, size);
cudaMemcpy(d_A, A, size, cudaMemcpyHostToDevice);

cudaMalloc((void **) &B_d, size);
ccudaMemcpy(d_B, B, size, cudaMemcpyHostToDevice);

cudaMalloc((void **) &d_C, size);

vecAddKernel<<<ceil(n/2560), 256>>>vecAddKernel<<<ceil(n/2560), 256>>>(d_A, d_B, d_C, n);(d_A, d_B, d_C, n);

cudaMemcpy(C, d_C, size, cudaMemcpyDeviceToHost);

// Free device memory for A, B, C
cudaFree(d_Ad); cudaFree(d_B); cudaFree (d_C);

}

FIGURE 3.14

A complete version of vecAdd().

58 CHAPTER 3 Introduction to Data Parallelism and CUDA C

multiple kernel invocations so that the overhead can be amortized. We

will present several examples of such applications.

3.6 SUMMARY
This chapter provided a quick overview of the CUDA programming

model. CUDA extends the C language to support parallel computing. We

discussed a subset of these extensions in this chapter. For your conve-

nience, we summarize the extensions that we have discussed in this

chapter as follows.

Function Declarations

CUDA extends the C function declaration syntax to support heterogeneous

parallel computing. The extensions are summarized in Figure 3.12. Using

one of __global__, __device__, or __host__, a CUDA programmer can

instruct the compiler to generate a kernel function, a device function, or a

host function. All function declarations without any of these keywords are

defaulted to host functions. If both __host__ and __device__ are used in

a function declaration, the compiler generates two versions of the function,

one for the device and one for the host. If a function declaration does not

have any CUDA extension keyword, the function defaults into a host

function.

Kernel Launch

CUDA extends C function call syntax with kernel execution configuration

parameters surrounded by ,,, and These execution configuration

parameters are only used during a call to a kernel function, or a kernel

launch. We discussed the execution configuration parameters that define

the dimensions of the grid and the dimensions of each block. Readers

should refer to the CUDA Programming Guide [NVIDIA2011] for more

details of the kernel launch extensions as well as other types of execution

configuration parameters.

Predefined Variables

CUDA kernels can access a set of predefined variables that allow each

thread to distinguish among themselves and to determine the area of data

each thread is to work on. We discussed the threadIdx, blockDim, and

593.6 Summary

blockIdx variables in this chapter. In Chapter 4, we will discuss more

details of using these variables.

Runtime API

CUDA supports a set of API functions to provide services to CUDA

programs. The services that we discussed in this chapter are the

cudaMalloc(), cudaFree(), and cudaMemcpy() functions. These functions

allocate device memory and transfer data between host and device on

behalf of the calling program. Readers are referred to the CUDA

Programming Guide [NVIDIA2011] for other CUDA API functions.

Our goal for this chapter is to introduce the core concepts of the

CUDA programming model and the essential CUDA extensions to C for

writing a simple CUDA program. The chapter is by no means a compre-

hensive account of all CUDA features. Some of these features will be

covered in the remainder of the book. However, our emphasis will be

on key concepts rather than details. We will only introduce enough

CUDA features that are needed in our code examples for parallel pro-

gramming techniques. In general, we would like to encourage readers to

always consult the CUDA Programming Guide for more details of the

CUDA features.

3.7 EXERCISES
3.1. A matrix addition takes two input matrices B and C and produces

one output matrix A. Each element of the output matrix A is the sum

of the corresponding elements of the input matrices B and C, that is,

A[i][j] 5 5 B[i][j]1 C[i][j]. For simplicity, we will only handle

square matrices of which the elements are single-precision floating-

point numbers. Write a matrix addition kernel and the host stub

function that can be called with four parameters: pointer to the output

matrix, pointer to the first input matrix, pointer to the second input

matrix, and the number of elements in each dimension. Use the

following instructions:

a. Write the host stub function by allocating memory for the input

and output matrices, transferring input data to device, launch the

kernel, transferring the output data to host, and freeing the device

memory for the input and output data. Leave the execution

configuration parameters open for this step.

60 CHAPTER 3 Introduction to Data Parallelism and CUDA C

b. Write a kernel that has each thread producing one output matrix

element. Fill in the execution configuration parameters for the

design.

c. Write a kernel that has each thread producing one output matrix

row. Fill in the execution configuration parameters for the

design.

d. Write a kernel that has each thread producing one output matrix

column. Fill in the execution configuration parameters for the

design.

e. Analyze the pros and cons of each preceding kernel design.

3.2. A matrix�vector multiplication takes an input matrix B and a vector

C and produces one output vector A. Each element of the output

vector A is the dot product of one row of the input matrix B and C,

that is, A[i]5
Pj B[i][j]1C[j]. For simplicity, we will only handle

square matrices of which the elements are single-precision floating-

point numbers. Write a matrix�vector multiplication kernel and the

host stub function that can be called with four parameters: pointer to

the output matrix, pointer to the input matrix, pointer to the input

vector, and the number of elements in each dimension.

3.3. A new summer intern was frustrated with CUDA. He has been

complaining that CUDA is very tedious: he had to declare many

functions that he plans to execute on both the host and the device

twice, once as a host function and once as a device function. What is

your response?

3.4. Complete Parts 1 and 2 of the function in Figure 3.6.

3.5. If we need to use each thread to calculate one output element of a

vector addition, what would be the expression for mapping the

thread/block indices to data index:

(A) i55 threadIdx.x1 threadIdx.y;

(B) i55 blockIdx.x1 threadIdx.x;

(C) i55 blockIdx.x�blockDim.x1 threadIdx.x;

(D) i55 blockIdx.x � threadIdx.x;

3.6. We want to use each thread to calculate two (adjacent) elements of a

vector addition, Assume that variable i should be the index for the

613.7 Exercises

first element to be processed by a thread. What would be the

expression for mapping the thread/block indices to data index?

(A) i55 blockIdx.x�blockDim.x1 threadIdx.x1 2;

(B) i55 blockIdx.x�threadIdx.x�2

(C) i55 (blockIdx.x�blockDim.x1 threadIdx.x)�2

(D) i55 blockIdx.x�blockDim.x�21 threadIdx.x

3.7. For a vector addition, assume that the vector length is 2000, each

thread calculates one output element, and the thread block size is 512

threads. How many threads will be in the grid?

(A) 2000

(B) 2024

(C) 2048

(D) 2096

References
Atallah, M. J. (Ed.), (1998). Algorithms and Theory of Computation Handbook

Baco Raton, FL: CRC Press.

Flynn, M. (1972). Some computer organizations and their effectiveness. IEEE

Trans. Comput, C-21, 948.

NVIDIA Corporation, NVIDIA CUDA C Programming Guide, version 4.2,

April 2012, Available at: ,http://developer.download.nvidia.com/compute/

DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf..

Patt, Y. N., & Patel, S. J. (1972). Introduction to Computing Systems: From Bits

and Gates to C and Beyond, New York: McGraw-Hill.

Stratton, J. A., Stone, S. S., & Hwu, W. W. MCUDA: An Efficient

Implementation of CUDA Kernels for Multi-Core CPUs, The 21st

International Workshop on Languages and Compilers for Parallel Computing,

July 30�31, Canada, 2008. Also available as Lecture Notes in Computer

Science, 2008.

62 CHAPTER 3 Introduction to Data Parallelism and CUDA C

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

CHAPTER

4Data-Parallel Execution
Model

CHAPTER OUTLINE

4.1 Cuda Thread Organization... 64

4.2 Mapping Threads to Multidimensional Data ... 68

4.3 Matrix-Matrix Multiplication—A More Complex Kernel ... 74

4.4 Synchronization and Transparent Scalability ... 81

4.5 Assigning Resources to Blocks ... 83

4.6 Querying Device Properties... 85

4.7 Thread Scheduling and Latency Tolerance... 87

4.8 Summary ... 91

4.9 Exercises... 91

Fine-grained, data-parallel threads are the fundamental means of parallel

execution in CUDA. As we explained in Chapter 3, launching a CUDA

kernel creates a grid of threads that all execute the kernel function. That

is, the kernel function specifies the C statements that are executed by each

individual thread at runtime. Each thread uses a unique coordinate, or

thread index, to identify the portion of the data structure to process. The

thread index can be organized multidimensionally to facilitate access to

multidimensional arrays. This chapter presents more details on the organi-

zation, resource assignment, synchronization, and scheduling of threads

in a grid. A CUDA programmer who understands these details is well

equipped to express and understand the parallelism in high-performance

CUDA applications.

BUILT-IN VARIABLES
Many programming languages have built-in variables. These variables have special meaning
and purpose. The values of these variables are often preinitialized by the runtime system.

63

For example, in a CUDA kernel function, gridDim, blockDim, blockIdx, and
threadIdx are all built-in variables. Their values are preinitialized by the CUDA runtime
systems and can be referenced in the kernel function. The programmers should refrain from
using these variables for any other purpose.

4.1 CUDA THREAD ORGANIZATION
Recall from Chapter 3 that all CUDA threads in a grid execute the same

kernel function and they rely on coordinates to distinguish themselves

from each other and to identify the appropriate portion of the data to pro-

cess. These threads are organized into a two-level hierarchy: a grid con-

sists of one or more blocks and each block in turn consists of one or more

threads. All threads in a block share the same block index, which can be

accessed as the blockIdx variable in a kernel. Each thread also has a

thread index, which can be accessed as the threadIdx variable in a kernel.

To a CUDA programmer, blockIdx and threadIdx appear as built-in, pre-

initialized variables that can be accessed within kernel functions (see

“Built-in Variables” sidebar). When a thread executes a kernel function,

references to the blockIdx and threadIdx variables return the coordinates

of the thread. The execution configuration parameters in a kernel launch

statement specify the dimensions of the grid and the dimensions of each

block. These dimensions are available as predefined built-in variables

gridDim and blockDim in kernel functions.

HIERARCHICAL ORGANIZATIONS
Like CUDA threads, many real-world systems are organized hierarchically. The U.S. telephone
system is a good example. At the top level, the telephone system consists of “areas,” each of
which corresponds to a geographical area. All telephone lines within the same area have the
same three-digit area code. A telephone area is typically larger than a city. For example,
many counties and cities of central Illinois are within the same telephone area and share the
same area code 217. Within an area, each phone line has a seven-digit local phone number,
which allows each area to have a maximum of about 10 million numbers. One can think of
each phone line as a CUDA thread, the area code as the CUDA blockIdx, and the seven-
digital local number as the CUDA threadIdx. This hierarchical organization allows the
system to have a very large number of phone lines while preserving “locality” for calling the
same area. That is, when dialing a phone line in the same area, a caller only needs to dial
the local number. As long as we make most of our calls within the local area, we do not need
to dial the area code. If we occasionally need to call a phone line in another area, we dial 1
and the area code, followed by the local number (this is the reason why no local number in
any area should start with a 1). The hierarchical organization of CUDA threads also offers a
form of locality. We will study this locality soon.

64 CHAPTER 4 Data-Parallel Execution Model

In general, a grid is a 3D array of blocks1 and each block is a 3D array

of threads. The programmer can choose to use fewer dimensions by setting

the unused dimensions to 1. The exact organization of a grid is determined

by the execution configuration parameters (within ,, , and .. .) of

the kernel launch statement. The first execution configuration parameter

specifies the dimensions of the grid in number of blocks. The second spe-

cifies the dimensions of each block in number of threads. Each such

parameter is of dim3 type, which is a C struct with three unsigned integer

fields, x, y, and z. These three fields correspond to the three dimensions.

For 1D or 2D grids and blocks, the unused dimension fields should be

set to 1 for clarity. For example, the following host code can be used to

launch the vecAddkernel() kernel function and generate a 1D grid that

consists of 128 blocks, each of which consists of 32 threads. The total

number of threads in the grid is 1283 325 4,096.
dim3 dimBlock(128, 1, 1);
dim3 dimGrid(32, 1, 1);
vecAddKernel,, ,dimGrid, dimBlock.. .(. . .);

Note that dimBlock and dimGrid are host code variables defined by the

programmer. These variables can have names as long as they are of dim3
type and the kernel launch uses the appropriate names. For example, the

following statements accomplish the same as the previous statements:
dim3 dog(128, 1, 1);
dim3 cat(32, 1, 1);
vecAddKernel,, ,dog, cat.. .(. . .);
The grid and block dimensions can also be calculated from other vari-

ables. For example, the kernel launch in Figure 3.14 can be written as:
dim3 dimGrid(ceil(n/256.0), 1, 1);
dim3 dimBlock(256, 1, 1);
vecAddKernel,, ,dimGrid, dimBlock.. .(. . .);

This allows the number of blocks to vary with the size of the vectors

so that the grid will have enough threads to cover all vector elements. The

value of variable n at kernel launch time will determine the dimension of

the grid. If n is equal to 1,000, the grid will consist of four blocks. If n is

equal to 4,000, the grid will have 16 blocks. In each case, there will be

enough threads to cover all the vector elements. Once vecAddKernel() is

launched, the grid and block dimensions will remain the same until the

entire grid finishes execution.

For convenience, CUDA C provides a special shortcut for launching a

kernel with 1D grids and blocks. Instead of using dim3 variables, one can

1Devices with capability level less than 2.0 support grids with up to 2D arrays of blocks.

654.1 Cuda Thread Organization

use arithmetic expressions to specify the configuration of 1D grids and

blocks. In this case, the CUDA C compiler simply takes the arithmetic

expression as the x dimensions and assumes that the y and z dimensions

are 1. This gives us the kernel launch statement shown in Figure 3.14:

vecAddKernel,, ,ceil(n/256.0), 256.. .(. . .);
Within the kernel function, the x field of the predefined variables

gridDim and blockDim are preinitialized according to the execution con-

figuration parameters. For example, if n is equal to 4,000, references to

gridDim.x and blockDim.x in the vectAddkernel kernel function will

result in 16 and 256, respectively. Note that unlike the dim3 variables in

the host code, the names of these variables within the kernel functions are

part of the CUDA C specification and cannot be changed. That is, the

gridDim and blockDim variables in the kernel function always reflect the

dimensions of the grid and the blocks.

In CUDA C, the allowed values of gridDim.x, gridDim.y, and

gridDim.z range from 1 to 65,536. All threads in a block share the same

blockIdx.x, blockIdx.y, and blockIdx.z values. Among all blocks, the

blockIdx.x value ranges between 0 and gridDim.x-1, the blockIdx.y
value between 0 and gridDim.y-1, and the blockIdx.z value between 0

and gridDim.z-1. For the rest of this book, we will use the notation (x, y,

z) for a 3D grid with x blocks in the x direction, y blocks in the y direction,

and z blocks in the z direction.

We now turn our attention to the configuration of blocks. Blocks are

organized into 3D arrays of threads. Two-dimensional blocks can be cre-

ated by setting the z dimension to 1. One-dimensional blocks can be

created by setting both the y and z dimensions to 1, as in the

vectorAddkernel example. As we mentioned before, all blocks in a grid

have the same dimensions. The number of threads in each dimension of a

block is specified by the second execution configuration parameter at the

kernel launch. Within the kernel, this configuration parameter can be

accessed as the x, y, and z fields of the predefined variable blockDim.
The total size of a block is limited to 1,024 threads, with flexibility in dis-

tributing these elements into the three dimensions as long as the total number

of threads does not exceed 1,024. For example, (512, 1, 1), (8, 16, 4), and

(32, 16, 2) are all allowable blockDim values, but (32, 32, 2) is not allowable

since the total number of threads would exceed 1,024.2

Note that the grid can have higher dimensionality than its blocks and

vice versa. For example, Figure 4.1 shows a small toy example of a 2D

2Devices with capability less than 2.0 allow blocks with up to 512 threads.

66 CHAPTER 4 Data-Parallel Execution Model

(2, 2, 1) grid that consists of 3D (4, 2, 2) blocks. The grid can be gener-

ated with the following host code:
dim3 dimBlock(2, 2, 1);
dim3 dimGrid(4, 2, 2);
KernelFunction,, ,dimGrid, dimBlock.. .(. . .);

The grid consists of four blocks organized into a 23 2 array. Each

block in Figure 4.1 is labeled with (blockIdx.y, blockIdx.x). For exam-

ple, block(1,0) has blockIdx.y51 and blockIdx.x50. Note that the

ordering of the labels is such that the highest dimension comes first. This

is reverse of the ordering used in the configuration parameters where the

lowest dimension comes first. This reversed ordering for labeling threads

works better when we illustrate the mapping of thread coordinates into

data indexes in accessing multidimensional arrays.

Each threadIdx also consists of three fields: the x coordinate

threadId.x, the y coordinate threadIdx.y, and the z coordinate

threadIdx.z. Figure 4.1 illustrates the organization of threads within a

block. In this example, each block is organized into 43 23 2 arrays of

threads. Since all blocks within a grid have the same dimensions, we only

need to show one of them. Figure 4.1 expands block(1,1) to show its

host device

Kernel 1

Grid 1

Block
(0, 0)

Block
(1, 1)

Block
(1, 0)

Block
(0, 1)

Kernel 2

Grid 2

Block (1,1)

Thread
(0,0,0)Thread

(0,1,3)
Thread
(0,1,0)

Thread
(0,1,1)

Thread
(0,1,2)

Thread
(0,0,0)

Thread
(0,0,1)

Thread
(0,0,2)

Thread
(0,0,3)

(1,0,0) (1,0,1) (1,0,2) (1,0,3)

FIGURE 4.1

A multidimensional example of CUDA grid organization.

674.1 Cuda Thread Organization

16 threads. For example, thread(1,0,2) has threadIdx.z51, threadIdx.
y50, and threadIdx.x52. Note that in this example, we have four blocks

of 16 threads each, with a grand total of 64 threads in the grid. We use

these small numbers to keep the illustration simple. Typical CUDA grids

contain thousands to millions of threads.

4.2 MAPPING THREADS TO MULTIDIMENSIONAL DATA
The choice of 1D, 2D, or 3D thread organizations is usually based on the

nature of the data. For example, pictures are a 2D array of pixels. It is

often convenient to use a 2D grid that consists of 2D blocks to process the

pixels in a picture. Figure 4.2 shows such an arrangement for processing a

763 62 picture (76 pixels in the horizontal or x direction and 62 pixels in

the vertical or y direction). Assume that we decided to use a 163 16

block, with 16 threads in the x direction and 16 threads in the y direction.

We will need five blocks in the x direction and four blocks in the y direc-

tion, which results in 53 45 20 blocks as shown in Figure 4.2. The heavy

lines mark the block boundaries. The shaded area depicts the threads that

cover pixels. Note that we have four extra threads in the x direction and

two extra threads in the y direction. That is, we will generate 803 64

threads to process 763 62 pixels. This is similar to the situation where a

16×16 blocks

FIGURE 4.2

Using a 2D grid to process a picture.

68 CHAPTER 4 Data-Parallel Execution Model

1,000-element vector is processed by the 1D vecAddKernel in Figure 3.10

using four 256-thread blocks. Recall that an if statement is needed to pre-

vent the extra 24 threads from taking effect. Analogously, we should

expect that the picture processing kernel function will have if statements

to test whether the thread indices threadIdx.x and threadIdx.y fall

within the valid range of pixels.

Assume that the host code uses an integer variable n to track the number

of pixels in the x direction, and another integer variable m to track the num-

ber of pixels in the y direction. We further assume that the input picture

data has been copied to the device memory and can be accessed through a

pointer variable d_Pin. The output picture has been allocated in the device

memory and can be accessed through a pointer variable d_Pout. The fol-

lowing host code can be used to launch a 2D kernel to process the picture:
dim3 dimBlock(ceil(n/16.0), ceil(m/16.0), 1);
dim3 dimGrid(16, 16, 1);
pictureKernel,, ,dimGrid, dimBlock.. .(d_Pin, d_Pout, n, m);

In this example, we assume for simplicity that the dimensions of the

blocks are fixed at 163 16. The dimensions of the grid, on the other hand,

depend on the dimensions of the picture. To process a 2,0003 1,500 (3 M

pixel) picture, we will generate 14,100 blocks, 150 in the x direction and

94 in the y direction. Within the kernel function, references to built-in

variables gridDim.x, gridDim.y, blockDim.x, and blockDim.y will result

in 150, 94, 16, and 16, respectively.

Before we show the kernel code, we need to first understand how C

statements access elements of dynamically allocated multidimensional

arrays. Ideally, we would like to access d_Pin as a 2D array where an ele-

ment at row j and column i can be accessed as d_Pin[j][i]. However,
the ANSI C standard based on which CUDA C was developed requires

that the number of columns in d_Pin be known at compile time.

Unfortunately, this information is not known at compiler time for dynami-

cally allocated arrays. In fact, part of the reason why one uses dynamically

allocated arrays is to allow the sizes and dimensions of these arrays to

vary according to data size at runtime. Thus, the information on the num-

ber of columns in a dynamically allocated 2D array is not known at com-

pile time by design. As a result, programmers need to explicitly linearize,

or “flatten,” a dynamically allocated 2D array into an equivalent 1D array

in the current CUDA C. Note that the newer C99 standard allows multidi-

mensional syntax for dynamically allocated arrays. It is likely that future

CUDA C versions may support multidimensional syntax for dynamically

allocated arrays.

694.2 Mapping Threads to Multidimensional Data

MEMORY SPACE
Memory space is a simplified view of how a processor accesses its memory in modern compu-
ters. A memory space is usually associated with each running application. The data to be pro-
cessed by an application and instructions executed for the application are stored in locations
in its memory space. Each location typically can accommodate a byte and has an address.
Variables that require multiple bytes—4 bytes for float and 8 bytes for double—are stored in
consecutive byte locations. The processor gives the starting address (address of the starting
byte location) and the number of bytes needed when accessing a data value from the memory
space.

The locations in a memory space are like phones in a telephone system where everyone
has a unique phone number. Most modern computers have at least 4 GB-sized locations,
where each G is 1,073,741,824 (230). All locations are labeled with an address that ranges
from 0 to the largest number. Since there is only one address for every location, we say that
the memory space has a “flat” organization. So, all multidimensional arrays are ultimately
“flattened” into equivalent 1D arrays. While a C programmer can use a multidimensional syn-
tax to access an element of a multidimensional array, the compiler translates these accesses
into a base pointer that points to the beginning element of the array, along with an offset cal-
culated from these multidimensional indices.

In reality, all multidimensional arrays in C are linearized. This is due

to the use of a “flat” memory space in modern computers (see “Memory

Space” sidebar). In the case of statically allocated arrays, the compilers

allow the programmers to use higher-dimensional indexing syntax such as

d_Pin[j][i] to access their elements. Under the hood, the compiler line-

arizes them into an equivalent 1D array and translates the multidimen-

sional indexing syntax into a 1D offset. In the case of dynamically

allocated arrays, the current CUDA C compiler leaves the work of such

translation to the programmers due to lack of dimensional information.

There are at least two ways one can linearize a 2D array. One is to

place all elements of the same row into consecutive locations. The rows

are then placed one after another into the memory space. This arrange-

ment, called row-major layout, is illustrated in Figure 4.3. To increase the

readability, we will use Mj,i to denote an M element at the j row and the i

column. Mj,i is equivalent to the C expression M[j][i] but slightly more

readable. Figure 4.3 shows an example where a 43 4 matrix M is linear-

ized into a 16-element 1D array, with all elements of row 0 first, followed

by the four elements of row 1, etc. Therefore, the 1D equivalent index for

the M element in row j and column i is j3 41 i. The j3 4 term skips

over all elements of the rows before row j. The i term then selects the right

element within the section for row j. For example, the 1D index for M2,1

is 23 41 15 9. This is illustrated in Figure 4.3, where M9 is the 1D

equivalent to M2,1. This is the way C compilers linearize 2D arrays.

70 CHAPTER 4 Data-Parallel Execution Model

Another way to linearize a 2D array is to place all elements of the

same column into consecutive locations. The columns are then placed one

after another into the memory space. This arrangement, called column-

major layout, is used by FORTRAN compilers. Note that the column-

major layout of a 2D array is equivalent to the row-major layout of its

transposed form. We will not spend more time on this except mentioning

that readers whose primary previous programming experience was with

FORTRAN should be aware that CUDA C uses row-major layout rather

than column-major layout. Also, many C libraries that are designed to be

used by FORTRAN programs use column-major layout to match the

FORTRAN compiler layout. As a result, the manual pages for these librar-

ies, such as Basic Linear Algebra Subprograms (see “Linear Algebra

Functions” sidebar), usually tell the users to transpose the input arrays if

they call these libraries from C programs.

We are now ready to study the source code of pictureKernel(),
shown in Figure 4.4. Let’s assume that the kernel will scale every pixel

value in the picture by a factor of 2.0. The kernel code is conceptually

quite simple. There are a total of blockDim.x�gridDim.x threads in the

horizontal direction. As we learned in the vecAddKernel() example, the

M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3
M

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3 M3,1M3,0 M3,2 M3,3

Row*Width+Col = 2*4+1 = 9

M

M2M1M0 M3 M5M4 M6 M7 M9M8 M10 M11 M13M12 M14 M15

FIGURE 4.3

Row-major layout for a 2D C array. The result is an equivalent 1D array accessed

by an index expression Row�Width1Col for an element that is in the Rowth row

and Colth column of an array of Width elements in each row.

714.2 Mapping Threads to Multidimensional Data

expression Col5 blockIdx.x�blockDim.x1threadIdx.x generates every

integer value from 0 to blockDim.x�gridDim.x�1. We know that

gridDim.x�blockDim.x is greater than or equal to n. We have at least as

many threads as the number of pixels in the horizontal direction.

Similarly, we also know that there are at least as many threads as the num-

ber of pixels in the vertical direction. Therefore, as long as we test and

make sure only the threads with both Row and Col values are within range,

that is (Col,n) && (Row,m), we will be able to cover every pixel in the

picture. Since there are n pixels in a row, we can generate the 1D index

for the pixel at row Row and column Col as Row�n1 Col. This 1D index is

used to read from the d_Pin array and write the d_Pout array.

Figure 4.5 illustrates the execution of pictureKernel() when proces-

sing our 763 62 example. Assuming that we use 163 16 blocks, launch-

ing pictureKernel() generates 803 64 threads. The grid will have 20

blocks, 5 in the horizontal direction and 4 in the vertical direction. During

the execution, the execution behavior of blocks will fill into one of four

different cases, shown as four major areas in Figure 4.5.

The first area, marked as 1 in Figure 4.5, consists of the threads that

belong to the 12 blocks covering the majority of pixels in the picture.

Both Col and Row values of these threads are within range; all these

threads will pass the if statement test and process pixels in the dark-

shaded area of the picture. That is, all 163 165 256 threads in each block

will process pixels.

The second area, marked as 2 in Figure 4.5, contains the threads that

belong to the 3 blocks in the medium-shaded area covering the upper-right

__global__ void PictureKernell(float* d_Pin, float* d_Pout, int n, int m) {

// Calculate the row # of the d_Pin and d_Pout element to process
int Row = blockIdx.y*blockDim.y + threadIdx.y;

// Calculate the column # of the d_Pin and d_Pout element to process
int Col = blockIdx.x*blockDim.x + threadIdx.x;

// each thread computes one element of d_Pout if in range
if ((Row < m) && (Col < n)) {
d_Pout[Row*n+Col] = 2*d_Pin[Row*n+Col];

}

}

FIGURE 4.4

Source code of pictureKernel() showing a 2D thread mapping to a data

pattern.

72 CHAPTER 4 Data-Parallel Execution Model

pixels of the picture. Although the Row values of these threads are always

within range, the Col values of some of them exceed the n value (76).

This is because the number of threads in the horizontal direction is always

a multiple of the blockDim.x value chosen by the programmer (16 in this

case). The smallest multiple of 16 needed to cover 76 pixels is 80. As a

result, 12 threads in each row will find their Col values within range and

will process pixels. On the other hand, 4 threads in each row will find their

Col values out of range, and thus fail the if statement condition. These

threads will not process any pixels. Overall, 123 165 192 out of the

163 165 256 threads will process pixels.

The third area, marked as 3 in Figure 4.5, accounts for the 3 lower-left

blocks covering the medium-shaded area of the picture. Although the Col
values of these threads are always within range, the Row values of some of

them exceed the m value (62). This is because the number of threads in the

vertical direction is always multiples of the blockDim.y value chosen by

the programmer (16 in this case). The smallest multiple of 16 to cover 62

is 64. As a result, 14 threads in each column will find their Row values

within range and will process pixels. On the other hand, 2 threads in each

column will fail the if statement of area 2, and will not process any pix-

els; 163 145 224 out of the 256 threads will process pixels.

FIGURE 4.5

Covering a 76362 picture with 16316 blocks.

734.2 Mapping Threads to Multidimensional Data

The fourth area, marked as 4 in Figure 4.5, contains the threads that

cover the lower-right light-shaded area of the picture. Similar to area 2, 4

threads in each of the top 14 rows will find their Col values out of range.

Similar to area 3, the entire bottom two rows of this block will find their

Row values out of range. So, only 143 125 168 of the 163 165 256

threads will be allowed to process threads.

We can easily extend our discussion of 2D arrays to 3D arrays by

including another dimension when we linearize arrays. This is done by

placing each “plane” of the array one after another. Assume that the pro-

grammer uses variables m and n to track the number of rows and columns

in a 3D array. The programmer also needs to determine the values of

blockDim.z and gridDim.z when launching a kernel. In the kernel, the

array index will involve another global index:
int Plane 5 blockIdx.z�blockDim.z1 threadIdx.z

The linearized access to an array P will be in the form of P[Plane�m�n
1 Row � n1 Col]. One would of course need to test if all the three global

indices—Plane, Row, and Col—fall within the valid range of the array.

LINEAR ALGEBRA FUNCTIONS
Linear algebra operations are widely used in science and engineering applications. According
to the widely used basic linear algebra subprograms (BLAS), a de facto standard for publish-
ing libraries that perform basic algebra operations, there are three levels of linear algebra
functions. As the level increases, the amount of operations performed by the function
increases. Level-1 functions perform vector operations of the form y5αx1 y, where x and y
are vectors and α is a scalar. Our vector addition example is a special case of a level-1 func-
tion with α51. Level-2 functions perform matrix�vector operations of the form
y5αAx1βy, where A is a matrix, x and y are vectors, and α and β are scalars. We will be
studying a form of level-2 function in the context of sparse linear algebra. Level-3 functions
perform matrix�matrix operations in the form of C5αAB1βC, where A, B, and C are matri-
ces and α and β are scalars. Our matrix�matrix multiplication example is a special case of a
level-3 function where α51 and β50. These BLAS functions are important because they
are used as basic building blocks of higher-level algebraic functions such as linear system
solvers and eigenvalue analysis. As we will discuss later, the performance of different imple-
mentations of BLAS functions can vary by orders of magnitude in both sequential and paral-
lel computers.

4.3 MATRIX-MATRIX MULTIPLICATION—A MORE
COMPLEX KERNEL

Up to this point, we have studied vecAddkernel() and pictureKernel()
where each thread performs only one floating-point arithmetic operation on

74 CHAPTER 4 Data-Parallel Execution Model

one array element. Readers should ask the obvious question: Do all CUDA

threads perform only such a trivial amount of operation? The answer is no.

Most real kernels have each thread to perform many more arithmetic opera-

tions and embody sophisticated control flows. These two simple kernels

were selected for teaching the mapping of threads to data using threadIdx,
blockIdx, blockDim, and gridDim variables. In particular, we introduce the

following pattern of using global index values to ensure that every valid

data element in a 2D array is covered by a unique thread:
Row 5 blockIdx.x�blockDim.x1threadIdx.x
and
Col 5 blockIdx.y�blockDim.y1threadIdx.y
We also used vecAddKernel() and pictureKernel() to introduce the

phenomenon that the number of threads that we create is a multiple of the

block dimension. As a result, we will likely end up with more threads than

data elements. Not all threads will process elements of an array. We use

an if statement to test if the global index values of a thread are within the

valid range. Now that we understand the mapping of threads to data, we

are in a position to understand kernels that perform more complex

computation.

Matrix�matrix multiplication between an I3 J matrix d_M and a J3K

matrix d_N produces an I3K matrix d_P. Matrix�matrix multiplication is

an important component of the BLAS standard (see “Linear Algebra

Functions” sidebar). For simplicity, we will limit our discussion to square

matrices, where I5 J5K. We will use variable Width for I, J, and K.

When performing a matrix�matrix multiplication, each element of the

product matrix d_P is an inner product of a row of d_M and a column of

d_N. We will continue to use the convention where d_PRow,Col is the ele-

ment at Row row and Col column. As shown in Figure 4.6, d_PRow, Col (the

small square in d_P) is the inner product of the Row row of d_M (shown as

the horizontal strip in d_M) and the Col column of d_N (shown as the verti-

cal strip in d_N). The inner product between two vectors is the sum of pro-

ducts of corresponding elements. That is, d_PRow,Col5
P

d_MRow,k �d_Nk,Col,

for k 5 0, 1, . . . Width-1. For example,

d_P1,5 5 d_M1, 0
�d_N0,5 1 d_M1,1

�d_N1,5 1 d_M1,2
� d_N2,5 1 1 d_M1,

Width-1
�d_NWidth-1,5

We map threads to d_P elements with the same approach as what we

used for pictureKernel(). That is, each thread is responsible for calculat-

ing one d_P element. The d_P element calculated by a thread is in row

blockIdx.y�blockDim.y1threadIdx.y and in column blockIdx.

754.3 Matrix-Matrix Multiplication—A More Complex Kernel

x�blockDim.x1threadIdx.x. Figure 4.7 shows the source code of the

kernel based on this thread-to-data mapping. Readers should immediately

see the familiar pattern of calculating Row, Col, and the if statement test-

ing if Row and Col are both within range. These statements are almost

identical to their counterparts in pictureKernel(). The only significant

difference is that we are assuming square matrices for the

matrixMulKernel() so we replace both n and m with Width.
With our thread-to-data mapping, we effectively divide d_P into square

tiles, one of which is shown as a large square in Figure 4.6. Some dimen-

sion sizes may be better for a device and others may be better for another

device. This is why, in real applications, programmers often want to keep

the block dimensions as an easily adjustable value in the host code.

A common practice is to declare a compile-time constant and use this

constant in the host statements for setting the kernel launch configuration.

d_M

d_N

d_P

BLOCK_WIDTH

WIDTHWIDTH

bx

tx
01 BLOCK_WIDTH-12

0 1 …

by ty 2
1
0

BLOCK_WIDTH-1…

1

0

B
LO

C
K

_W
ID

TH
E

W
ID

TH
W

ID
TH

Row

Col

FIGURE 4.6

Matrix multiplication using multiple blocks by tiling d_P.

76 CHAPTER 4 Data-Parallel Execution Model

We will refer to this compile-time constant as BLOCK_WIDTH. To set

BLOCK_WIDTH to a value, say 16, we can use the following C statement in a

header file or the beginning of a file where BLOCK_WIDTH is used:
#define BLOCK_WIDTH 16

Throughout the source code, instead of using a numerical value, the

programmer can use the name BLOCK_WIDTH. Using a named compile-time

constant allows the programmer to easily set BLOCK_WIDTH to a different

value when compiling for a particular hardware. It also allows an auto-

mated tuning system to search for the best BLOCK_WIDTH value by itera-

tively setting it to different values, compile, and run for the hardware of

interest. This type of process is often referred to as autotuning. In both

cases, the source code can remain largely unchanged while changing the

dimensions of the thread blocks.

Figure 4.8 shows the host code to be used to launch the

matrixMulKernel(). Note that the configuration parameter dimGrid is set

to ensure that for any combination of Width and BLOCK_WIDTH values,

there are enough thread blocks in both x and y dimensions to calculate all

d_P elements. Also, the name of the BLOCK_WIDTH constant rather than the

actual value is used in initializing the fields of dimGrid and dimBlock.
This allows the programmer to easily change the BLOCK_WIDTH value with-

out modifying any of the other statements. Assume that we have a Width
value of 1,000. That is, we need to do 1,0003 1,000 matrix�matrix

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width) {

// Calculate the row index of the d_Pelement and d_M
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of d_P and d_N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (intk = 0; k < Width; ++k) {

Pvalue += d_M[Row*Width+k]*d_N[k*Width+Col];
}
d_P[Row*Width+Col] = Pvalue;

}

}

FIGURE 4.7

A simple matrix�matrix multiplication kernel using one thread to compute each

d_P element.

774.3 Matrix-Matrix Multiplication—A More Complex Kernel

multiplication. For a BLOCK_WIDTH value of 16, we will generate 163 16

blocks. There will be 643 64 blocks in the grid to cover all d_P elements.

By changing the #define statement in Figure 4.8 to
#define BLOCK_WIDTH 32

we will generate 323 32 blocks. There will be 323 32 blocks in the

grid. We can make this change to the kernel launch configuration without

changing any of the statements that initialize dimGrid and dimBlock.
We now turn our attention to the work done by each thread. Recall that

d_PRow, Col is the inner product of the Row row of d_M and the Col column

of d_N. In Figure 4.7, we use a for loop to perform this inner product

operation. Before we enter the loop, we initialize a local variable Pvalue
to 0. Each iteration of the loop accesses an element in the Row row of d_M,
an element in the Col column of d_N, multiplies the two elements together,

and accumulates the product into Pvalue.
Let’s first focus on accessing the Row row of d_M within the for loop.

Recall that d_M is linearized into an equivalent 1D array where the rows of

d_M are placed one after another in the memory space, starting with the 0

row. Therefore, the beginning element of the 1 row is d_M[1�Width]
because we need to account for all elements of the 0 row. In general, the

beginning element of the Row row is d_M[Row�Width]. Since all elements

of a row are placed in consecutive locations, the k element of the Row row

is at d_M[Row�Width1k]. This is what we used in Figure 4.7.

We now turn to accessing the Col column of d_N. As shown in

Figure 4.3, the beginning element of the Col column is the Col element of

the 0 row, which is d_N[Col]. Accessing each additional element in the

Col column requires skipping over entire rows. This is because the next

#define BLOCK_WIDTH 16

// Setup the execution configuration
int NumBlocks = Width/BLOCK_WIDTH;
if (Width % BLOCK_WIDTH) NumBlocks++;
dim3 dimGrid(NumBlocks, NumbBlocks);
dim3 dimBlock(BLOCK_WIDTH, BLOCK_WIDTH);

// Launch the device computation threads!
matrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

FIGURE 4.8

Host code for launching the matrixMulKernel() using a compile-time

constant BLOCK_WIDTH to set up its configuration parameters.

78 CHAPTER 4 Data-Parallel Execution Model

element of the same column is actually the same element in the next row.

Therefore, the k element of the Col column is d_N[k�Width1Col].
After the execution exits the for loop, all threads have their d_P element

value in its Pvalue variable. It then uses the 1D equivalent index expression

Row�Width1Col to write its d_P element. Again, this index pattern is simi-

lar to that used in the pictureKernel(), with n replaced by Width.
We now use a small example to illustrate the execution of the

matrix�matrix multiplication kernel. Figure 4.9 shows a 43 4 d_P with

BLOCK_WIDTH 5 2. The small sizes allow us to fit the entire example in

one picture. The d_P matrix is now divided into four tiles and each block

calculates one tile. (Whenever it is clear that we are discussing a device

memory array, we will drop the d_ part of the name to improve readabil-

ity. In Figure 4.10, we use P instead of d_P since it is clear that we are dis-

cussing a device memory array.) We do so by creating blocks that are

23 2 arrays of threads, with each thread calculating one P element. In the

example, thread(0,0) of block(0,0) calculates P0,0, whereas thread(0,0) of

block(1,0) calculates P2,0. It is easy to verify that one can identify the P
element calculated by thread(0,0) of block(1,0) with the formula:

PblockIdx:y�blockDim:y1 threadIdx:y;blockIdx:x�BLOCK WIDTH1 threadIdx:x 5 P1�210;0�210

5 P2;0

Readers should work through the index derivation for as many threads

as it takes to become comfortable with the mapping.

Row and Col in the matrixMulKernel() identify the P element to be calcu-

lated by a thread. Row also identifies the row of M and Col identifies the col-

umn of N for input values for the thread. Figure 4.10 illustrates the

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

Block(0,0) Block(0,1)

Block(1,1)Block(1,0)

BLOCK_WIDTH = 2
Thread(0,0)

Thread(1,0)

Thread(0,1)

Thread(1,0)

FIGURE 4.9

A small execution example of matrixMulKernel().

794.3 Matrix-Matrix Multiplication—A More Complex Kernel

multiplication actions in each thread block. For the small matrix multiplica-

tion, threads in block(0,0) produce four dot products. The Row and Col vari-

ables of thread(0,0) in block(0,0) are 0�0105 0 and 0�01050. It maps to

P0,0 and calculates the dot product of row 0 of M and column 0 of N.

We now walk through the execution of the for loop of Figure 4.7 for

thread(0,0) in block(0,0). During the 0 iteration (k50), Row�Width1k 5

0�410 5 0 and k�Width1Col 5 0�410 5 0. Therefore, the we are acces-

sing d_M[0] and d_N[0], which according to Figure 4.3 are the 1D equiva-

lent of d_M0,0 and d_N0,0. Note that these are indeed the 0 elements of row

0 of d_M and column 0 of d_N.
During the first iteration (k51), Row�Width1k 5 0�411 5 1 and

k�Width1Col 5 1�410 5 4. We are accessing d_M[1] and d_N[4], which
according to Figure 4.3 are the 1D equivalent of d_M0,1 and d_N1,0. These

are the first elements of row 0 of d_M and column 0 of d_N.
During the second iteration (k52), Row�Width1k 5 0�412 5 2 and

k�Width1Col 5 8, which results in d_M[2] and d_N[8]. Therefore, the ele-
ments accessed are the 1D equivalent of d_M0,2 and d_N2,0.

Finally, during the third iteration (k53), Row�Width1k 5 0�413 and

k�Width1Col 5 12, which results in d_M[3] and d_N[12], the 1D equiva-

lent of dM0,3 and d_N3,0. We now have verified that the for loop performs

the inner product between the 0 row of d_M and the 0 column of d_N.
After the loop, the thread writes d_P[Row�Width1Col], which is d_P[0].

P0,1M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2

P0,0

M1,3 P1,0

N0,3 N1,3

N1,2

N1,1

N1,0N0,0

N0,1

N0,2

P1,1

FIGURE 4.10

Matrix multiplication actions of one thread block. For readability, d_M, d_N, and
d_P are shown as M, N, and P.

80 CHAPTER 4 Data-Parallel Execution Model

This is the 1D equivalent of d_P0,0 so thread(0,0) in block(0,0) success-

fully calculated the inner product between the 0 row of d_M and the 0 col-

umn of d_N and deposited the result in d_P0,0.

We will leave it as an exercise for the reader to hand-execute and ver-

ify the for loop for other threads in block(0,0) or in other blocks.

Note that matrixMulKernel()can handle matrices of up to 163 65,535

elements in each dimension. In the situation where matrices larger than

this limit are to be multiplied, one can divide up the P matrix into subma-

trices of which the size can be covered by a kernel. We can then either

use the host code to iteratively launch kernels to complete the P matrix or

have the kernel code of each thread to calculate more P elements.

4.4 SYNCHRONIZATION AND TRANSPARENT SCALABILITY
So far, we have discussed how to launch a kernel for execution by a grid of

threads. We have also explained how one can map threads to parts of the data

structure. However, we have not yet presented any means to coordinate the

execution of multiple threads. We will now study a basic coordination

mechanism. CUDA allows threads in the same block to coordinate their

activities using a barrier synchronization function __syncthreads(). Note
that “__” actually consists of two “_” characters. When a kernel function calls

__syncthreads(), all threads in a block will be held at the calling location

until every thread in the block reaches the location. This ensures that all

threads in a block have completed a phase of their execution of the kernel

before any of them can move on to the next phase. We will discuss an

important use case of __syncthreads() in Chapter 5.

Barrier synchronization is a simple and popular method of coordinating

parallel activities. In real life, we often use barrier synchronization to coor-

dinate parallel activities of multiple persons. For example, assume that

four friends go to a shopping mall in a car. They can all go to different

stores to shop for their own clothes. This is a parallel activity and is much

more efficient than if they all remain as a group and sequentially visit all

the stores of interest. However, barrier synchronization is needed before

they leave the mall. They have to wait until all four friends have returned

to the car before they can leave—the ones who finish earlier need to wait

for those who finish later. Without the barrier synchronization, one or

more persons can be left in the mall when the car leaves, which can seri-

ously damage their friendship!

814.4 Synchronization and Transparent Scalability

Figure 4.11 illustrates the execution of barrier synchronization. There

are N threads in the block. Time goes from left to right. Some of the threads

reach the barrier synchronization statement early and some of them much

later. The ones that reach the barrier early will wait for those that arrive

late. When the latest one arrives at the barrier, everyone can continue their

execution. With barrier synchronization, “No one is left behind.”

In CUDA, a __syncthreads() statement, if present, must be executed

by all threads in a block. When a __syncthread() statement is placed in

an if statement, either all threads in a block execute the path that includes

the __syncthreads() or none of them does. For an if-then-else state-

ment, if each path has a __syncthreads() statement, either all threads in

a block execute the __syncthreads() on the then path or all of them exe-

cute the else path. The two __syncthreads() are different barrier syn-

chronization points. If a thread in a block executes the then path and

another executes the else path, they would be waiting at different barrier

synchronization points. They would end up waiting for each other forever.

It is the responsibility of the programmers to write their code so that these

requirements are satisfied.

The ability to synchronize also imposes execution constraints on

threads within a block. These threads should execute in close time

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread N-3

Thread N-2

Thread N-1

Time

FIGURE 4.11

An example execution timing of barrier synchronization.

82 CHAPTER 4 Data-Parallel Execution Model

proximity with each other to avoid excessively long waiting times. In fact,

one needs to make sure that all threads involved in the barrier synchroni-

zation have access to the necessary resources to eventually arrive at the

barrier. Otherwise, a thread that never arrived at the barrier synchroniza-

tion point can cause everyone else to wait forever. CUDA runtime systems

satisfy this constraint by assigning execution resources to all threads in a

block as a unit. A block can begin execution only when the runtime sys-

tem has secured all the resources needed for all threads in the block to

complete execution. When a thread of a block is assigned to an execution

resource, all other threads in the same block are also assigned to the same

resource. This ensures the time proximity of all threads in a block and pre-

vents excessive or indefinite waiting time during barrier synchronization.

This leads us to a major trade-off in the design of CUDA barrier syn-

chronization. By not allowing threads in different blocks to perform barrier

synchronization with each other, the CUDA runtime system can execute

blocks in any order relative to each other since none of them need to wait

for each other. This flexibility enables scalable implementations as shown

in Figure 4.12, where time progresses from top to bottom. In a low-cost sys-

tem with only a few execution resources, one can execute a small number

of blocks at the same time; two blocks executing at a time is shown on the

left side of Figure 4.12. In a high-end implementation with more execution

resources, one can execute a large number of blocks at the same time; four

blocks executing at a time is shown on the right side of Figure 4.12.

The ability to execute the same application code at a wide range of

speeds allows the production of a wide range of implementations accord-

ing to the cost, power, and performance requirements of particular market

segments. For example, a mobile processor may execute an application

slowly but at extremely low power consumption, and a desktop processor

may execute the same application at a higher speed while consuming more

power. Both execute exactly the same application program with no change

to the code. The ability to execute the same application code on hardware

with a different number of execution resources is referred to as transpar-

ent scalability, which reduces the burden on application developers and

improves the usability of applications.

4.5 ASSIGNING RESOURCES TO BLOCKS
Once a kernel is launched, the CUDA runtime system generates the corre-

sponding grid of threads. As we discussed in the previous section, these

834.5 Assigning Resources to Blocks

threads are assigned to execution resources on a block-by-block basis. In

the current generation of hardware, the execution resources are organized

into streaming multiprocessors (SMs). Figure 4.13 illustrates that multiple

thread blocks can be assigned to each SM. Each device has a limit on the

number of blocks that can be assigned to each SM. For example, a CUDA

device may allow up to eight blocks to be assigned to each SM. In situa-

tions where there is an insufficient amount of any one or more types of

resources needed for the simultaneous execution of eight blocks, the

CUDA runtime automatically reduces the number of blocks assigned to

each SM until their combined resource usage falls under the limit. With a

limited numbers of SMs and a limited number of blocks that can be

assigned to each SM, there is a limit on the number of blocks that can be

actively executing in a CUDA device. Most grids contain many more

blocks than this number. The runtime system maintains a list of blocks

that need to execute and assigns new blocks to SMs as they complete exe-

cuting the blocks previously assigned to them.

Figure 4.13 shows an example in which three thread blocks are

assigned to each SM. One of the SM resource limitations is the number of

threads that can be simultaneously tracked and scheduled. It takes hard-

ware resources for SMs to maintain the thread and block indices and track

their execution status. In more recent CUDA device designs, up to 1,536

threads can be assigned to each SM. This could be in the form of 6 blocks

of 256 threads each, 3 blocks of 512 threads each, etc. If the device only

allows up to 8 blocks in an SM, it should be obvious that 12 blocks of 128

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order
relative to other blocks.

time

FIGURE 4.12

Lack of synchronization constraints between blocks enables transparent

scalability for CUDA programs.

84 CHAPTER 4 Data-Parallel Execution Model

threads each is not a viable option. If a CUDA device has 30 SMs and

each SM can accommodate up to1,536 threads, the device can have up to

46,080 threads simultaneously residing in the CUDA device for execution.

4.6 QUERYING DEVICE PROPERTIES
Our discussions on assigning execution resources to blocks raise an impor-

tant question: How do we find out the amount of resources available?

When a CUDA application executes on a system, how can it find out the

number of SMs in a device and the number of threads that can be assigned

to each SM? Obviously, there are also other resources that we have not

discussed so far but can be relevant to the execution of a CUDA applica-

tion. In general, many modern applications are designed to execute on a

wide variety of hardware systems. There is often a need for the application

to query the available resources and capabilities of the underlying hard-

ware to take advantage of the more capable systems while compensating

for the less capable systems.

RESOURCE AND CAPABILITY QUERIES
In everyday life, we often query the resources and capabilities. For example, when we make a
hotel reservation, we can check the amenities that come with a hotel room. If the room
comes with a hair dryer, we do not need to bring one. Most American hotel rooms come with
hair dryers while many hotels in other regions do not have them.

Some Asian and European hotels provide toothpastes and even toothbrushes while most
American hotels do not. Many American hotels provide both shampoo and conditioner while
hotels in other continents often only provide shampoo.

t0 t1 t2 … tm

Blocks Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 … tmSM 1SM 0

FIGURE 4.13

Thread block assignment to SMs.

854.6 Querying Device Properties

If the room comes with a microwave oven and a refrigerator, we can take the leftover
from dinner and expect to eat it the second day. If the hotel has a pool, we can bring swim
suits and take a dip after business meetings. If the hotel does not have a pool but has an
exercise room, we can bring running shoes and exercise clothes. Some high-end Asian hotels
even provide exercise clothing!

These hotel amenities are part of the properties, or resources and capabilities, of the
hotels. Veteran travelers check these properties at hotel web sites, choose the hotels that bet-
ter match their needs, and pack more efficiently and effectively using the information.

In CUDA C, there is a built-in mechanism for host code to query the

properties of the devices available in the system. The CUDA runtime sys-

tem has an API function cudaGetDeviceCount() that returns the number

of available CUDA devices in the system. The host code can find out the

number of available CUDA devices using the following statements:

int dev_count;
cudaGetDeviceCount(&dev_count);

While it may not be obvious, a modern PC system can easily have two

or more CUDA devices. This is because many PC systems come with one

or more “integrated” GPUs. These GPUs are the default graphics units and

provide rudimentary capabilities and hardware resources to perform mini-

mal graphics functionalities for modern window-based user interfaces.

Most CUDA applications will not perform very well on these integrated

devices. This would be a reason for the host code to iterate through all the

available devices, query their resources and capabilities, and choose the

ones that have enough resources to execute the application with satisfac-

tory performance.

The CUDA runtime system numbers all the available devices in the

system from 0 to dev_count-1. It provides an API function

cudaGetDeviceProperties() that returns the properties of the device of

which the number is given as an argument. For example, we can use the

following statements in the host code to iterate through the available

devices and query their properties:

cudaDeviceProp dev_prop;
for (I 5 0; i,dev_count; i11) {
cudaGetDeviceProperties(&dev_prop, i);
// decide if device has sufficient resources and capabilities

}

The built-in type cudaDeviceProp is a C structure with fields that repre-

sent the properties of a CUDA device. Readers are referred to the CUDA

Programming Guide for all the fields of the type. We will discuss a few of

these fields that are particularly relevant to the assignment of execution

86 CHAPTER 4 Data-Parallel Execution Model

resources to threads. We assume that the properties are returned in

the dev_prop variable of which the fields are set by the

cudaGetDeviceProperties() function. If readers choose to name the vari-

able differently, the appropriate variable name will obviously need to be

substituted in the following discussion.

As the name suggests, the field dev_prop.maxThreadsPerBlock gives

the maximal number of threads allowed in a block in the queried device.

Some devices allow up to 1,024 threads in each block and other devices

allow fewer. It is possible that future devices may even allow more than

1,024 threads per block. Therefore, it is a good idea to query the available

devices and determine which ones will allow a sufficient number of

threads in each block as far as the application is concerned.

The number of SMs in the device is given in dev_prop.
multiProcessorCount. As we discussed earlier, some devices have only a

small number of SMs (e.g., 2) and some have a much larger number of SMs

(e.g., 30). If the application requires a large number of SMs to achieve satisfac-

tory performance, it should definitely check this property of the prospective

device. Furthermore, the clock frequency of the device is in dev_prop.
clockRate. The combination of the clock rate and the number of SMs gives a

good indication of the hardware execution capacity of the device.

The host code can find the maximal number of threads allowed along

each dimension of a block in dev_prop.maxThreadsDim[0] (for the x

dimension), dev_prop.maxThreadsDim[1] (for the y dimension), and

dev_prop.maxThreadsDim[2] (for the z dimension). An example use of

this information is for an automated tuning system to set the range of

block dimensions when evaluating the best performing block dimensions

for the underlying hardware. Similarly, it can find the maximal number of

blocks allowed along each dimension of a grid in dev_prop.maxGridSize
[0] (for the x dimension), dev_prop.maxGridSize[1] (for the y dimen-

sion), and dev_prop.maxGridSize[2] (for the z dimension). A typical use

of this information is to determine whether a grid can have enough threads

to handle the entire data set or if some kind of iteration is needed.

There are many more fields in the cudaDeviceProp structure type. We

will discuss them as we introduce the concepts and features that they are

designed to reflect.

4.7 THREAD SCHEDULING AND LATENCY TOLERANCE
Thread scheduling is strictly an implementation concept and thus must be

discussed in the context of specific hardware implementations. In most

874.7 Thread Scheduling and Latency Tolerance

implementations to date, once a block is assigned to a SM, it is further

divided into 32-thread units called warps. The size of warps is

implementation-specific. In fact, warps are not part of the CUDA specifi-

cation. However, knowledge of warps can be helpful in understanding and

optimizing the performance of CUDA applications on particular genera-

tions of CUDA devices. The size of warps is a property of a CUDA

device, which is in the dev_prop.warpSize field of the device query vari-

able (dev_prop in this case).

The warp is the unit of thread scheduling in SMs. Figure 4.14 shows

the division of blocks into warps in an implementation. Each warp consists

of 32 threads of consecutive threadIdx values: threads 0�31 form the

first warp, 32�63 the second warp, and so on. In this example, there are

three blocks—block 1, block 2, and block 3, all assigned to an SM. Each

of the three blocks is further divided into warps for scheduling purposes.

We can calculate the number of warps that reside in an SM for a given

block size and a given number of blocks assigned to each SM. For exam-

ple, in Figure 4.14, if each block has 256 threads, we can determine that

each block has 256432 or 8 warps. With three blocks in each SM, we

have 83 35 24 warps in each SM.

An SM is designed to execute all threads in a warp following the single

instruction, multiple data (SIMD) model. That is, at any instant in time,

one instruction is fetched and executed for all threads in the warp. This is

illustrated in Figure 4.14 with a single instruction fetch/dispatch shared

among execution units in the SM. Note that these threads will apply the

same instruction to different portions of the data. As a result, all threads in

a warp will always have the same execution timing.

Figure 4.14 also shows a number of hardware streaming processors

(SPs) that actually execute instructions. In general, there are fewer SPs

than the number of threads assigned to each SM. That is, each SM has

only enough hardware to execute instructions from a small subset of all

threads assigned to the SM at any point in time. In earlier GPU design,

each SM can execute only one instruction for a single warp at any given

instant. In more recent designs, each SM can execute instructions for a

small number of warps at any given point in time. In either case, the hard-

ware can execute instructions for a small subset of all warps in the SM. A

legitimate question is, why do we need to have so many warps in an SM

if it can only execute a small subset of them at any instant? The answer is

that this is how CUDA processors efficiently execute long-latency opera-

tions such as global memory accesses.

88 CHAPTER 4 Data-Parallel Execution Model

When an instruction executed by the threads in a warp needs to wait

for the result of a previously initiated long-latency operation, the warp is

not selected for execution. Another resident warp that is no longer waiting

for results will be selected for execution. If more than one warp is ready

for execution, a priority mechanism is used to select one for execution.

This mechanism of filling the latency time of operations with work from

other threads is often called latency tolerance or latency hiding (see

“Latency Tolerance” sidebar).

LATENCY TOLERANCE
Latency tolerance is also needed in many everyday situations. For example, in post offices,
each person trying to ship a package should ideally have filled out all the forms and labels
before going to the service counter. However, as we have all experienced, many people wait
for the service desk clerk to tell them which form to fill out and how to fill out the form.

When there is a long line in front of the service desk, it is important to maximize the pro-
ductivity of the service clerks. Letting a person fill out the form in front of the clerk while
everyone waits is not a good approach. The clerk should be helping the next customers who

t0 t1 t2 … t31 t0 t1 t2 … t31

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1

Streaming Multiprocessor

t0 t1 t2 … t31

Block 1 Warps Block 1 Warps Block 1 Warps

FIGURE 4.14

Blocks are partitioned into warps for thread scheduling.

894.7 Thread Scheduling and Latency Tolerance

are waiting in line while the person fills out the form. These other customers are “ready to
go” and should not be blocked by the customer who needs more time to fill out a form.

This is why a good clerk would politely ask the first customer to step aside to fill out the
form while he or she can serve other customers. In most cases, the first customer will be
served as soon as he or she finishes the form and the clerk finishes serving the current cus-
tomer, instead of going to the end of the line.

We can think of these post office customers as warps and the clerk as a hardware execu-
tion unit. The customer who needs to fill out the form corresponds to a warp of which the
continued execution is dependent on a long-latency operation.

Note that warp scheduling is also used for tolerating other types of

operation latencies such as pipelined floating-point arithmetic and branch

instructions. With enough warps around, the hardware will likely find a

warp to execute at any point in time, thus making full use of the execution

hardware in spite of these long-latency operations. The selection of ready

warps for execution does not introduce any idle time into the execution

timeline, which is referred to as zero-overhead thread scheduling. With

warp scheduling, the long waiting time of warp instructions is “hidden” by

executing instructions from other warps. This ability to tolerate long oper-

ation latencies is the main reason why GPUs do not dedicate nearly as

much chip area to cache memories and branch prediction mechanisms as

CPUs. As a result, GPUs can dedicate more of its chip area to floating-

point execution resources.

We are now ready to do a simple exercise.3 Assume that a CUDA

device allows up to 8 blocks and 1,024 threads per SM, whichever

becomes a limitation first. Furthermore, it allows up to 512 threads in each

block. For matrix�matrix multiplication, should we use 83 8, 163 16, or

323 32 thread blocks? To answer the question, we can analyze the pros

and cons of each choice. If we use 83 8 blocks, each block would have

only 64 threads. We will need 1,0244645 12 blocks to fully occupy an

SM. However, since there is a limitation of up to 8 blocks in each SM, we

will end up with only 643 85 512 threads in each SM. This means that

the SM execution resources will likely be underutilized because there will

be fewer warps to schedule around long-latency operations.

The 163 16 blocks give 256 threads per block. This means that each

SM can take 1,02442565 4 blocks. This is within the 8-block limitation.

3Note that this is an oversimplified exercise. As we will explain in Chapter 5, the usage

of other resources, such as registers and shared memory, must also be considered when

determining the most appropriate block dimensions. This exercise highlights the interac-

tions between the limit on the number of thread blocks and the limit on the number of

threads that can be assigned to each SM.

90 CHAPTER 4 Data-Parallel Execution Model

This is a good configuration since we will have full thread capacity in

each SM and a maximal number of warps for scheduling around the long-

latency operations. The 323 32 blocks would give 1,024 threads in each

block, exceeding the limit of 512 threads per block for this device.

4.8 SUMMARY
The kernel execution configuration defines the dimensions of a grid and

its blocks. Unique coordinates in blockIdx and threadIdx variables allow

threads of a grid to identify themselves and their domains of data. It is the

programmer’s responsibility to use these variables in kernel functions so

that the threads can properly identify the portion of the data to process.

This model of programming compels the programmer to organize threads

and their data into hierarchical and multidimensional organizations.

Once a grid is launched, its blocks are assigned to SMs in arbitrary

order, resulting in transparent scalability of CUDA applications. The trans-

parent scalability comes with a limitation: threads in different blocks can-

not synchronize with each other. To allow a kernel to maintain transparent

scalability, the simple way for threads in different blocks to synchronize

with each other is to terminate the kernel and start a new kernel for the

activities after the synchronization point.

Threads are assigned to SMs for execution on a block-by-block basis.

Each CUDA device imposes a potentially different limitation on the

amount of resources available in each SM. For example, each CUDA

device has a limit on the number of thread blocks and the number of

threads each of its SMs can accommodate, whichever becomes a limitation

first. For each kernel, one or more of these resource limitations can

become the limiting factor for the number of threads that simultaneously

reside in a CUDA device.

Once a block is assigned to an SM, it is further partitioned into warps. All

threads in a warp have identical execution timing. At any time, the SM exe-

cutes instructions of only a small subset of its resident warps. This allows the

other warps to wait for long-latency operations without slowing down the

overall execution throughput of the massive number of execution units.

4.9 EXERCISES
4.1 If a CUDA device’s SM can take up to 1,536 threads and up to 4

thread blocks, which of the following block configurations would

result in the most number of threads in the SM?

914.9 Exercises

a. 128 threads per block

b. 256 threads per block

c. 512 threads per block

d. 1,024 threads per block

4.2 For a vector addition, assume that the vector length is 2,000, each

thread calculates one output element, and the thread block size is

512 threads. How many threads will be in the grid?

a. 2,000

b. 2,024

c. 2,048

d. 2,096

4.3 For the previous question, how many warps do you expect to have

divergence due to the boundary check on the vector length?

a. 1

b. 2

c. 3

d. 6

4.4 You need to write a kernel that operates on an image of size

4003 900 pixels. You would like to assign one thread to each pixel.

You would like your thread blocks to be square and to use the

maximum number of threads per block possible on the device (your

device has compute capability 3.0). How would you select the grid

dimensions and block dimensions of your kernel?

4.5 For the previous question, how many idle threads do you expect to

have?

4.6 Consider a hypothetical block with 8 threads executing a section of

code before reaching a barrier. The threads require the following

amount of time (in microseconds) to execute the sections: 2.0, 2.3,

3.0, 2.8, 2.4, 1.9, 2.6, 2.9, and spend the rest of their time waiting

for the barrier. What percentage of the threads’ summed-up

execution times is spent waiting for the barrier?

92 CHAPTER 4 Data-Parallel Execution Model

4.7 Indicate which of the following assignments per multiprocessor is

possible. In the case where it is not possible, indicate the limiting

factor(s).

a. 8 blocks with 128 threads each on a device with compute

capability 1.0

b. 8 blocks with 128 threads each on a device with compute

capability 1.2

c. 8 blocks with 128 threads each on a device with compute

capability 3.0

d. 16 blocks with 64 threads each on a device with compute

capability 1.0

e. 16 blocks with 64 threads each on a device with compute

capability 1.2

f. 16 blocks with 64 threads each on a device with compute

capability 3.0

4.8 A CUDA programmer says that if they launch a kernel with only 32

threads in each block, they can leave out the __syncthreads()
instruction wherever barrier synchronization is needed. Do you think

this is a good idea? Explain.

4.9 A student mentioned that he was able to multiply two 1,0243 1,024

matrices using a tiled matrix multiplication code with 323 32 thread

blocks. He is using a CUDA device that allows up to 512 threads per

block and up to 8 blocks per SM. He further mentioned that each

thread in a thread block calculates one element of the result matrix.

What would be your reaction and why?

4.10 The following kernel is executed on a large matrix, which is tiled

into submatrices. To manipulate tiles, a new CUDA programmer has

written the following device kernel, which will transpose each tile in

the matrix. The tiles are of size BLOCK_WIDTH by BLOCK_WIDTH, and
each of the dimensions of matrix A is known to be a multiple of

BLOCK_WIDTH. The kernel invocation and code are shown below.

BLOCK_WIDTH is known at compile time, but could be set anywhere

from 1 to 20.
dim3 blockDim(BLOCK_WIDTH,BLOCK_WIDTH);
dim3 gridDim(A_width/blockDim.x,A_height/blockDim.y);

934.9 Exercises

BlockTranspose,, ,gridDim, blockDim.. .(A, A_width,
A_height);

__global__ void
BlockTranspose(float� A_elements, int A_width, int

A_height)
{
__shared__ float blockA[BLOCK_WIDTH][BLOCK_WIDTH];
int baseIdx 5 blockIdx.x � BLOCK_SIZE1 threadIdx.x;
baseIdx1 5 (blockIdx.y � BLOCK_SIZE1 threadIdx.y) �

A_width;
blockA[threadIdx.y][threadIdx.x] 5 A_elements

[baseIdx];
A_elements[baseIdx] 5 blockA[threadIdx.x][threadIdx.y];

}

a. Out of the possible range of values for BLOCK_SIZE, for what
values of BLOCK_SIZE will this kernel function correctly when

executing on the device?

b. If the code does not execute correctly for all BLOCK_SIZE values,

suggest a fix to the code to make it work for all BLOCK_SIZE
values.

94 CHAPTER 4 Data-Parallel Execution Model

CHAPTER

5CUDA Memories

CHAPTER OUTLINE

5.1 Importance of Memory Access Efficiency... 96

5.2 CUDA Device Memory Types ... 97

5.3 A Strategy for Reducing Global Memory Traffic .. 105

5.4 A Tiled Matrix�Matrix Multiplication Kernel.. 109

5.5 Memory as a Limiting Factor to Parallelism ... 115

5.6 Summary ... 118

5.7 Exercises... 119

So far, we have learned to write a CUDA kernel function that is executed

by a massive number of threads. The data to be processed by these threads

is first transferred from the host memory to the device global memory. The

threads then access their portion of the data from the global memory using

their block IDs and thread IDs. We have also learned more details of the

assignment and scheduling of threads for execution. Although this is a very

good start, these simple CUDA kernels will likely achieve only a small frac-

tion of the potential speed of the underlying hardware. The poor perfor-

mance is due to the fact that global memory, which is typically

implemented with dynamic random access memory (DRAM), tends to have

long access latencies (hundreds of clock cycles) and finite access band-

width. While having many threads available for execution can theoretically

tolerate long memory access latencies, one can easily run into a situation

where traffic congestion in the global memory access paths prevents all

but very few threads from making progress, thus rendering some of the

streaming multiprocessors (SMs) idle. To circumvent such congestion,

CUDA provides a number of additional methods for accessing memory that

can remove the majority of data requests to the global memory. In this chap-

ter, you will learn to use these memories to boost the execution efficiency

of CUDA kernels.

95

5.1 IMPORTANCE OF MEMORY ACCESS EFFICIENCY
We can illustrate the effect of memory access efficiency by calculating the

expected performance level of the matrix multiplication kernel code in

Figure 4.7, replicated in Figure 5.1. The most important part of the kernel

in terms of execution time is the for loop that performs inner product

calculation.
for (int k 5 0; k , Width;11k)

Pvalue 1 5 d_M[Row�Width1k] � d_N[k�Width1Col];
In every iteration of this loop, two global memory accesses are per-

formed for one floating-point multiplication and one floating-point addi-

tion. One global memory access fetches a d_M[] element and the other

fetches a d_N[] element. One floating-point operation multiplies the d_M[]
and d_N[] elements fetched and the other accumulates the product into

Pvalue. Thus, the ratio of floating-point calculation to global memory

access operation is 1:1, or 1.0. We will refer to this ratio as the compute to

global memory access (CGMA) ratio, defined as the number of floating-

point calculations performed for each access to the global memory within

a region of a CUDA program.

CGMA has major implications on the performance of a CUDA kernel.

In a high-end device today, the global memory bandwidth is around

200 GB/s. With 4 bytes in each single-precision floating-point value, one

can expect to load no more than 50 (200/4) giga single-precision operands

per second. With a CGMA ration of 1.0, the matrix multiplication kernel

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, intWidth) {

// Calculate the row index of the d_P element and d_M
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of d_P and d_N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {

Pvalue += d_M[Row*Width+k]*d_N[k*Width+Col];
}
d_P[Row*Width+Col] = Pvalue;

}

}

FIGURE 5.1

A simple matrix�matrix multiplication kernel using one thread to compute each

d_P element (copied from Figure 4.7).

96 CHAPTER 5 CUDA Memories

will execute no more than 50 giga floating-point operations per second

(GFLOPS). While 50 GFLOPS is a respectable number, it is only a tiny

fraction of the peak single-precision performance of 1,500 GFLOPS or

higher for these high-end devices. We need to increase the CGMA ratio

to achieve a higher level of performance for the kernel. For the matrix

multiplication code to achieve the peak 1,500 GFLOPS rating of the pro-

cessor, we need a CGMA value of 30. The desired CGMA ratio has

roughly doubled in the past three generations of devices.

THE VON NEUMANN MODEL
In his seminal 1945 report, John von Neumann described a model for building electronic
computers that is based on the design of the pioneering EDVAC computer. This model, now
commonly referred to as the von Neumann model, has been the foundational blueprint for vir-
tually all modern computers.

The von Neumann model is illustrated here. The computer has an I/O that allows both
programs and data to be provided to and generated from the system. To execute a program,
the computer first inputs the program and its data into the memory.

The program consists of a collection of instructions. The control unit maintains a program
counter (PC), which contains the memory address of the next instruction to be executed. In
each “instruction cycle,” the control unit uses the PC to fetch an instruction into the instruc-
tion register (IR). The instruction bits are then used to determine the action to be taken by
all components of the computer. This is the reason why the model is also called the “stored
program” model, which means that a user can change the actions of a computer by storing a
different program into its memory.

5.2 CUDA DEVICE MEMORY TYPES
CUDA supports several types of memory that can be used by programmers

to achieve a high CGMA ratio and thus a high execution speed in their ker-

nels. Figure 5.2 shows these CUDA device memories. At the bottom of the

figure, we see global memory and constant memory. These types of mem-

ory can be written (W) and read (R) by the host by calling API functions.1

We have already introduced global memory in Chapter 3. The constant

memory supports short-latency, high-bandwidth, read-only access by the

device when all threads simultaneously access the same location.

Registers and shared memory in Figure 5.2 are on-chip memories.

Variables that reside in these types of memory can be accessed at very

high speed in a highly parallel manner. Registers are allocated to individ-

ual threads; each thread can only access its own registers. A kernel func-

tion typically uses registers to hold frequently accessed variables that are

1See the CUDA Programming Guide for zero-copy access to the global memory.

975.2 CUDA Device Memory Types

private to each thread. Shared memory is allocated to thread blocks; all

threads in a block can access variables in the shared memory locations

allocated to the block. Shared memory is an efficient means for threads to

cooperate by sharing their input data and the intermediate results of their

work. By declaring a CUDA variable in one of the CUDA memory types,

a CUDA programmer dictates the visibility and access speed of the

variable.

To fully appreciate the difference between registers, shared memory,

and global memory, we need to go into a little more detail of how these

different types of memories are realized and used in modern processors.

The global memory in the CUDA programming model maps to the mem-

ory of the von Neumann model (see “The von Neumann Model” sidebar).

The processor box in Figure 5.3 corresponds to the processor chip bound-

ary that we typically see today. The global memory is off the processor

chip and is implemented with DRAM technology, which implies long

access latencies and relatively low access bandwidth. The registers corre-

spond to the “register file” of the von Neumann model. It is on the proces-

sor chip, which implies very short access latency and drastically higher

access bandwidth. In a typical device, the aggregated access bandwidth of

the register files is about two orders of magnitude of that of the global

memory. Furthermore, whenever a variable is stored in a register, its

accesses no longer consume off-chip global memory bandwidth. This will

be reflected as an increase in the CGMA ratio.

Device code can:

– R/W per-thread registers

– R/W per-thread local memory

– R/W per-block shared memory

– R/W per-grid global memory

– Read only per-grid constant

memory

Host code can

– Transfer data to/from per grid

global and constant memories

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread
(0, 0)

Registers

Thread
(1, 0)

Registers

Host

Constant Memory

Block (0, 0)

Shared Memory

Thread
(0, 0)

Registers

Thread
(1, 0)

Registers

FIGURE 5.2

Overview of the CUDA device memory model.

98 CHAPTER 5 CUDA Memories

A more subtle point is that each access to registers involves fewer

instructions than global memory. In Figure 5.3, the processor uses the PC

value to fetch instructions from memory into the IR (see “The von

Neumann Model” sidebar). The bits of the fetched instructions are then

used to control the activities of the components of the computer. Using the

instruction bits to control the activities of the computer is referred to as

instruction execution. The number of instructions that can be fetched and

executed in each clock cycle is limited. Therefore, the more instructions

that need to be executed for a program, the more time it can take to exe-

cute the program.

Arithmetic instructions in most modern processors have “built-in” reg-

ister operands. For example, a typical floating addition instruction is of the

form
fadd r1, r2, r3
where r2 and r3 are the register numbers that specify the location in

the register file where the input operand values can be found. The location

for storing the floating-point addition result value is specified by r1.
Therefore, when an operand of an arithmetic instruction is in a register,

there is no additional instruction required to make the operand value avail-

able to the arithmetic and logic unit (ALU) where the arithmetic calcula-

tion is done.

Memory

Processing Unit

Control Unit

I/O

ALU
Register

File

PC IR

Processor

FIGURE 5.3

Memory versus registers in a modern computer based on the von Neumann

model.

995.2 CUDA Device Memory Types

On the other hand, if an operand value is in global memory, one needs

to perform a memory load operation to make the operand value available

to the ALU. For example, if the first operand of a floating-point addition

instruction is in global memory of a typical computer today, the instruc-

tions involved will likely be
load r2, r4, offset
fadd r1, r2, r3
where the load instruction adds an offset value to the contents of r4 to

form an address for the operand value. It then accesses the global memory

and places the value into register r2. The fadd instruction then performs

the floating addition using the values in r2 and r3 and places the result

into r1. Since the processor can only fetch and execute a limited number

of instructions per clock cycle, the version with an additional load will

likely take more time to process than the one without. This is another rea-

son why placing the operands in registers can improve execution speed.

PROCESSING UNITS AND THREADS
Now that we have introduced the von Neumann model, we are ready to discuss how threads
are implemented. A thread in modern computers is a virtualized von Neumann processor.
Recall that a thread consists of the code of a program, the particular point in the code that is
being executed, and the value of its variables and data structures.

In a computer based on the von Neumann model, the code of the program is stored in
the memory. The PC keeps track of the particular point of the program that is being executed.
The IR holds the instruction that is fetched from the point execution. The register and mem-
ory hold the values of the variables and data structures.

Modern processors are designed to allow context switching, where multiple threads can
timeshare a processor by taking turns to make progress. By carefully saving and restoring the
PC value and the contents of registers and memory, we can suspend the execution of a thread
and correctly resume the execution of the thread later.

Some processors provide multiple processing units, which allow multiple threads to
make simultaneous progress. Figure 5.4 shows a single instruction, multiple data (SIMD)
design style where all processing units share a PC and IR. Under this design, all threads
making simultaneous progress execute the same instruction in the program.

Finally, there is another subtle reason why placing an operand value in

registers is preferable. In modern computers, the energy consumed for

accessing a value from the register file is at least an order of magnitude

lower than for accessing a value from the global memory. We will look at

more details of the speed and energy difference in accessing these two

hardware structures in modern computers soon. However, as we will soon

learn, the number of registers available to each thread is quite limited in

today’s GPUs. We need to be careful not to oversubscribe to this limited

resource.

100 CHAPTER 5 CUDA Memories

Figure 5.4 shows shared memory and registers in a CUDA device.

Although both are on-chip memories, they differ significantly in function-

ality and cost of access. Shared memory is designed as part of the memory

space that resides on the processor chip (see Section 4.2). When the pro-

cessor accesses data that resides in the shared memory, it needs to perform

a memory load operation, just like accessing data in the global memory.

However, because shared memory resides on-chip, it can be accessed with

much lower latency and much higher bandwidth than the global memory.

Because of the need to perform a load operation, share memory has longer

latency and lower bandwidth than registers. In computer architecture,

share memory is a form of scratchpad memory.

One important difference between the share memory and registers in

CUDA is that variables that reside in the shared memory are accessible by

all threads in a block. This is in contrast to register data, which is private

to a thread. That is, shared memory is designed to support efficient, high-

bandwidth sharing of data among threads in a block. As shown in

Figure 5.4, a CUDA device SM typically employs multiple processing

units, referred to as SPs in Figure 4.14, to allow multiple threads to make

simultaneous progress (see “Processing Units and Threads” sidebar).

Threads in a block can be spread across these processing units. Therefore,

the hardware implementations of shared memory in these CUDA devices

are typically designed to allow multiple processing units to simultaneously

access its contents to support efficient data sharing among threads in a

block. We will be learning several important types of parallel algorithms

that can greatly benefit from such efficient data sharing among threads.

Memory

Processing Unit

I/O

ALU

Processor (SM)

Shared
Memory

Register
File

Control Unit

PC IR

FIGURE 5.4

Shared memory versus registers in a CUDA device SM.

1015.2 CUDA Device Memory Types

It should be clear by now that registers, shared memory, and global

memory all have different functionalities, latencies, and bandwidth. It is,

therefore, important to understand how to declare a variable so that it will

reside in the intended type of memory. Table 5.1 presents the CUDA syn-

tax for declaring program variables into the various types of device mem-

ory. Each such declaration also gives its declared CUDA variable a scope

and lifetime. Scope identifies the range of threads that can access the vari-

able: by a single thread only, by all threads of a block, or by all threads of

all grids. If a variable’s scope is a single thread, a private version of the

variable will be created for every thread; each thread can only access its

private version of the variable. For example, if a kernel declares a variable

of which the scope is a thread and it is launched with one million threads,

one million versions of the variable will be created so that each thread

initializes and uses its own version of the variable.

Lifetime tells the portion of the program’s execution duration when the

variable is available for use: either within a kernel’s execution or through-

out the entire application. If a variable’s lifetime is within a kernel’s exe-

cution, it must be declared within the kernel function body and will be

available for use only by the kernel’s code. If the kernel is invoked several

times, the value of the variable is not maintained across these invocations.

Each invocation must initialize the variable to use them. On the other

hand, if a variable’s lifetime is throughout the entire application, it must

be declared outside of any function body. The contents of these variables

are maintained throughout the execution of the application and available

to all kernels.

As shown in Table 5.1, all automatic scalar variables declared in kernel

and device functions are placed into registers. We refer to variables that

are not arrays as scalar variables. The scopes of these automatic variables

are within individual threads. When a kernel function declares an auto-

matic variable, a private copy of that variable is generated for every thread

Table 5.1 CUDA Variable Type Qualifiers

Variable Declaration Memory Scope Lifetime

Automatic variables other than arrays Register Thread Kernel
Automatic array variables Local Thread Kernel
__device__ __shared__ int SharedVar; Shared Block Kernel
__device__ int GlobalVar; Global Grid Application
__device__ __constant__ int ConstVar; Constant Grid Application

102 CHAPTER 5 CUDA Memories

that executes the kernel function. When a thread terminates, all its auto-

matic variables also cease to exist. In Figure 5.1, variables Row, Col, and
Pvalue are all automatic variables and fall into this category. Note that

accessing these variables is extremely fast and parallel but one must be

careful not to exceed the limited capacity of the register storage in the

hardware implementations. We will address this point in Chapter 6.

Automatic array variables are not stored in registers.2 Instead, they are

stored into the global memory and may incur long access delays and

potential access congestions. The scope of these arrays is, like automatic

scalar variables, limited to individual threads. That is, a private version

of each automatic array is created for and used by every thread. Once a

thread terminates its execution, the contents of its automatic array vari-

ables also cease to exist. From our experience, one seldom needs to use

automatic array variables in kernel functions and device functions.

If a variable declaration is preceded by the keyword __shared__ (each

__ consists of two _ characters), it declares a shared variable in CUDA.

One can also add an optional __device__ in front of __shared__ in the

declaration to achieve the same effect. Such declaration typically resides

within a kernel function or a device function. Shared variables reside in

shared memory. The scope of a shared variable is within a thread block,

that is, all threads in a block see the same version of a shared variable. A

private version of the shared variable is created for and used by each

thread block during kernel execution. The lifetime of a shared variable

is within the duration of the kernel. When a kernel terminates its execu-

tion, the contents of its shared variables cease to exist. As we discussed

earlier, shared variables are an efficient means for threads within a block

to collaborate with each other. Accessing shared variables from the shared

memory is extremely fast and highly parallel. CUDA programmers often

use shared variables to hold the portion of global memory data that are

heavily used in an execution phase of a kernel. One may need to adjust

the algorithms used to create execution phases that heavily focus on small

portions of the global memory data, as we will demonstrate with matrix

multiplication in Section 5.3.

If a variable declaration is preceded by the keyword __constant__
(each __ consists of two _ characters), it declares a constant variable in

CUDA. One can also add an optional __device__ in front of __constant__
to achieve the same effect. Declaration of constant variables must be

2There are some exceptions to this rule. The compiler may decide to store an automatic

array into registers if all accesses are done with constant index values.

1035.2 CUDA Device Memory Types

outside any function body. The scope of a constant variable is all grids,

meaning that all threads in all grids see the same version of a constant vari-

able. The lifetime of a constant variable is the entire application execution.

Constant variables are often used for variables that provide input values to

kernel functions. Constant variables are stored in the global memory but

are cached for efficient access. With appropriate access patterns, accessing

constant memory is extremely fast and parallel. Currently, the total size of

constant variables in an application is limited at 65,536 bytes. One may

need to break up the input data volume to fit within this limitation, as we

will illustrate in Chapter 8.

A variable of which the declaration is preceded only by the keyword

__device__ (each __ consists of two _ characters) is a global variable and

will be placed in the global memory. Accesses to a global variable are slow.

Latency and throughput of accessing global variables have been improved

with caches in more recent devices. One important advantage of global vari-

ables is that they are visible to all threads of all kernels. Their contents also

persist through the entire execution. Thus, global variables can be used as a

means for threads to collaborate across blocks. One must, however, be

aware of the fact that there is currently no easy way to synchronize between

threads from different thread blocks or to ensure data consistency across

threads when accessing global memory other than terminating the current

kernel execution.3 Therefore, global variables are often used to pass infor-

mation from one kernel invocation to another kernel invocation.

In CUDA, pointers are used to point to data objects in global memory.

There are two typical ways in which pointer usage arises in kernel and

device functions. First, if an object is allocated by a host function, the

pointer to the object is initialized by cudaMalloc() and can be passed to

the kernel function as a parameter. For example, the parameters d_M, d_N,
and d_P in Figure 5.1 are such pointers. The second type of usage is to

assign the address of a variable declared in the global memory to a pointer

variable. For example, the statement {float� ptr 5 &GlobalVar;} in a

kernel function assigns the address of GlobalVar into an automatic pointer

variable ptr. Readers should refer to the CUDA Programming Guide for

using pointers in other memory types.

3Note that one can use CUDA memory fencing to ensure data coherence between thread

blocks if the number of thread blocks is smaller than the number of SMs in the CUDA

device. See the CUDA Programming Guide for more details.

104 CHAPTER 5 CUDA Memories

5.3 A STRATEGY FOR REDUCING GLOBAL MEMORY TRAFFIC
We have an intrinsic trade-off in the use of device memories in CUDA:

global memory is large but slow, whereas the shared memory is small but

fast. A common strategy is partition the data into subsets called tiles so

that each tile fits into the shared memory. The term tile draws on the anal-

ogy that a large wall (i.e., the global memory data) can be covered by tiles

(i.e., subsets that each can fit into the shared memory). An important crite-

rion is that the kernel computation on these tiles can be done indepen-

dently of each other. Note that not all data structures can be partitioned

into tiles given an arbitrary kernel function.

The concept of tiling can be illustrated with the matrix multiplication

example. Figure 5.5 shows a small example of matrix multiplication. It

corresponds to the kernel function in Figure 5.1. For brevity, we abbrevi-

ate d_P[y�Width1x], d_M[y�Width1x], and d_N[y�Width1x] into Py,x,

My,x, and Ny,x, respectively. This example assumes that we use four 23 2

blocks to compute the P matrix. Figure 5.5 highlights the computation

done by the four threads of block(0,0). These four threads compute P0,0,

P0,1, P1,0, and P1,1. The accesses to the M and N elements by thread(0,0)

and thread(0,1) of block(0,0) are highlighted with black arrows. For exam-

ple, thread(0,0) reads M0,0 and N0,0, followed by M0,1, and N1,0 followed

by M0,2 and N2,0, followed by M0,3 and N3,0.

P0,1M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2

P0,0

M1,3 P1,0

P0,2 P0,3

N3,0 N3,1

N12,1

N1,1

N0,1N0,0

N1,0

N2,0

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

FIGURE 5.5

A small example of matrix multiplication. For brevity, We show d_M
[y�Width1x], d_N[y�Width1x], d_P[y�Width1x] as My,x, Ny,x, Py,x,

respectively.

1055.3 A Strategy for Reducing Global Memory Traffic

Figure 5.6 shows the global memory accesses done by all threads

in block0,0. The threads are listed in the vertical direction, with time

of access increasing to the right in the horizontal direction. Note that

each thread accesses four elements of M and four elements of N during

its execution. Among the four threads highlighted, there is a significant

overlap in terms of the M and N elements they access. For example,

thread0,0 and thread0,1 both access M0,0 as well as the rest of row 0 of M.
Similarly, thread0,1 and thread1,1 both access N0,1 as well as the rest of

column 1 of N.
The kernel in Figure 5.1 is written so that both thread0,0 and thread0,1

access row 0 elements of M from the global memory. If we can somehow

manage to have thread0,0 and thread1,0 to collaborate so that these M ele-

ments are only loaded from global memory once, we can reduce the total

number of accesses to the global memory by half. In general, we can see

that every M and N element is accessed exactly twice during the execution

of block0,0. Therefore, if we can have all four threads to collaborate in

their accesses to global memory, we can reduce the traffic to the global

memory by half.

Readers should verify that the potential reduction in global memory

traffic in the matrix multiplication example is proportional to the dimen-

sion of the blocks used. With N3N blocks, the potential reduction of

global memory traffic would be N. That is, if we use 163 16 blocks, one

can potentially reduce the global memory traffic to 1/16 through collabora-

tion between threads.

Traffic congestion obviously does not only arise in computing. Most of

us have experienced traffic congestion in highway systems, as illustrated

in Figure 5.7. The root cause of highway traffic congestion is that there

are too many cars all squeezing through a road that is designed for a much

smaller number of vehicles. When congestion occurs, the travel time for

thread0,0 M0,0 * N0,0 M0,1 * N1,0 M0,2 * N2,0 M0,3 * N3,0

thread0,1 M0,0 * N0,1 M0,1 * N1,1 M0,2 * N2,1 M0,3 * N3,1

thread1,0 M1,0 * N0,0 M1,1 * N1,0 M1,2 * N2,0 M1,3 * N3,0

thread1,1 M1,0 * N0,1 M1,1 * N1,1 M1,2 * N2,1 M1,3 * N3,1

Access order

FIGURE 5.6

Global memory accesses performed by threads in block0,0.

106 CHAPTER 5 CUDA Memories

each vehicle is greatly increased. Commute time to work can easily double

or triple during traffic congestion.

All proposed solutions for reduced traffic congestion involve reduction

of cars on the road. Assuming that the number of commuters is constant,

people need to share rides to reduce the number of cars on the road. A

common way to share rides in the United States is carpools, where a group

of commuters take turns to drive the group to work in one vehicle. In

some countries, the government simply disallows certain classes of cars to

be on the road on a daily basis. For example, cars with odd license plates

may not be allowed on the road on Monday, Wednesday, or Friday. This

encourages people whose cars are allowed on different days to form a car-

pool group. There are also countries where the government makes gasoline

so expensive that people form carpools to save money. In other countries,

the government may provide incentives for behavior that reduces the num-

ber of cars on the road. In the United States, some lanes of congested

highways are designated as carpool lanes—only cars with more than two

or three people are allowed to use these lanes. All these measures for

encouraging carpooling are designed to overcome the fact that carpooling

requires extra effort, as we show in Figure 5.8.

The top half of Figure 5.8 shows a good schedule pattern for carpool-

ing. Time goes from left to right. Worker A and worker B have similar

FIGURE 5.7

Reducing traffic congestion in highway systems.

1075.3 A Strategy for Reducing Global Memory Traffic

schedules for sleep, work, and dinner. This allows these two workers to

easily go to work and return home in one car. Their similar schedules

allow them to more easily agree on a common departure time and return

time. This is, however, not the case of the schedules shown in the bottom

half of Figure 5.8. Worker A and worker B have very different habits in

this case. Worker A parties until sunrise, sleeps during the day, and goes

to work in the evening. Worker B sleeps at night, goes to work in the

morning, and returns home for dinner at 6 p.m. The schedules are so

wildly different that there is no way these two workers can coordinate a

common time to drive to work and return home in one car. For these

workers to form a carpool, they need to negotiate a common schedule sim-

ilar to what is shown in the top half of Figure 5.8.

Tiled algorithms are very similar to carpooling arrangements. We can

think of data values accessed by each thread as commuters and DRAM

requested as vehicles. When the rate of DRAM requests exceeds the provi-

sioned bandwidth of the DRAM system, traffic congestion arises and the

arithmetic units become idle. If multiple threads access data from the

same DRAM location, they can form a “carpool” and combine their

accesses into one DRAM request. This, however, requires the threads to

have a similar execution schedule so that their data accesses can be com-

bined into one. This is shown in Figure 5.9, where the top portion shows

two threads that access the same data elements with similar timing. The

bottom half shows two threads that access their common data in very dif-

ferent times. The reason why the bottom half is a bad arrangement is that

Good – people have similar schedule

Bad – people have very different schedule

Worker A

Worker B

Time

sleep

sleep work

work

dinner

dinner

Worker A

Worker B

Time

sleep

sleep work

work

dinner

party

FIGURE 5.8

Carpooling requires synchronization among people.

108 CHAPTER 5 CUDA Memories

data elements brought back from the DRAM need to be kept in the on-

chip memory for a long time, waiting for thread 2 to consume them. This

will likely require a large number of data elements to be kept around, thus

large on-chip memory requirements. As we will show in the next section,

we will use barrier synchronization to keep the threads that form the “car-

pool” group to follow approximately the same execution timing.

5.4 A TILED MATRIX�MATRIX MULTIPLICATION KERNEL
We now present an algorithm where threads collaborate to reduce the traf-

fic to the global memory. The basic idea is to have the threads to collabo-

ratively load M and N elements into the shared memory before they

individually use these elements in their dot product calculation. Keep in

mind that the size of the shared memory is quite small and one must be

careful not to exceed the capacity of the shared memory when loading

these M and N elements into the shared memory. This can be accomplished

by dividing the M and N matrices into smaller tiles. The size of these tiles

is chosen so that they can fit into the shared memory. In the simplest

form, the tile dimensions equal those of the block, as illustrated in

Figure 5.10.

In Figure 5.10, we divide the M and N matrices into 23 2 tiles, as

delineated by the thick lines. The dot product calculations performed by

Good – threads have similar access timing

Bad – threads have very different timing

Thread 1

Thread 2

Time

Thread 1

Thread 2

Time

FIGURE 5.9

Tiled algorithms require synchronization among threads.

1095.4 A Tiled Matrix�Matrix Multiplication Kernel

each thread are now divided into phases. In each phase, all threads in a

block collaborate to load a tile of M elements and a tile of N elements into

the shared memory. This is done by having every thread in a block to

load one M element and one N element into the shared memory, as illus-

trated in Figure 5.11. Each row of Figure 5.11 shows the execution

M1,1M1,0 M1,2 M1,3 P1,0

N3,0 N3,1

N2,1

N1,1

N0,1N0,0

N1,0

N2,0

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

P0,1M0,2M0,1M0,0 M0,3 P0,0 P0,2 P0,3

FIGURE 5.10

Tiling M and N matrices to utilize shared memory.

Phase 1 Phase 2

thread0,0 M0,0

↓
Mds0,0

N0,0

↓
Nds0,0

PValue0,0 +=
Mds0,0*Nds0,0 +
Mds0,1*Nds1,0

M0,2

↓
Mds0,0

N2,0

↓
Nds0,0

PValue0,0 +=
Mds0,0*Nds0,0 +
Mds0,1*Nds1,0

thread0,1 M0,1

↓
Mds0,1

N0,1

↓
Nds1,0

PValue0,1 +=
Mds0,0*Nds0,1 +
Mds0,1*Nds1,1

M0,3

↓
Mds0,1

N2,1

↓
Nds0,1

PValue0,1 +=
Mds0,0*Nds0,1 +
Mds0,1*Nds1,1

thread1,0 M1,0

↓
Mds1,0

N1,0

↓
Nds1,0

PValue1,0 +=
Mds1,0*Nds0,0 +
Mds1,1*Nds1,0

M1,2

↓
Mds1,0

N3,0

↓
Nds1,0

PValue1,0 +=
Mds1,0*Nds0,0 +
Mds1,1*Nds1,0

thread1,1 M1,1

↓
Mds1,1

N1,1

↓
Nds1,1

PValue1,1 +=
Mds1,0*Nds0,1 +
Mds1,1*Nds1,1

M1,3

↓
Mds1,1

N3,1

↓
Nds1,1

PValue1,1+=
Mds1,0*Nds0,1 +
Mds1,1*Nds1,1

time

FIGURE 5.11

Execution phases of a tiled matrix multiplication.

110 CHAPTER 5 CUDA Memories

activities of a thread. Note that time progresses from left to right. We only

need to show the activities of threads in block0,0; the other blocks all have

the same behavior. The shared memory array for the M elements is called

Mds. The shared memory array for the N elements is called Nds. At the
beginning of phase 1, the four threads of block0,0 collaboratively load a

tile of M elements into shared memory: thread0,0 loads M0,0 into Mds0,0,

thread0,1 loads M0,1 into Mds0,1, thread1,0 loads M1,0 into Mds1,0, and

thread1,1 loads M1,1 into Mds1,1. See the second column of Figure 5.11. A

tile of N elements is also loaded in a similar manner, shown in the third

column of Figure 5.11.

After the two tiles of M and N elements are loaded into the shared mem-

ory, these values are used in the calculation of the dot product. Note that

each value in the shared memory is used twice. For example, the M1,1

value, loaded by thread1,1 into Mds1,1, is used twice, once by thread0,1 and

once by thread1,1. By loading each global memory value into shared mem-

ory so that it can be used multiple times, we reduce the number of

accesses to the global memory. In this case, we reduce the number of

accesses to the global memory by half. Readers should verify that the

reduction is by a factor of N if the tiles are N3N elements.

Note that the calculation of each dot product in Figure 5.6 is now per-

formed in two phases, shown as phase 1 and phase 2 in Figure 5.11.

In each phase, products of two pairs of the input matrix elements are accu-

mulated into the Pvalue variable. Note that Pvalue is an automatic vari-

able so a private version is generated for each thread. We added subscripts

just to clarify that these are different instances of the Pvalue variable cre-

ated for each thread. The first phase calculation is shown in the fourth col-

umn of Figure 5.11; the second phase in the seventh column. In general, if

an input matrix is of dimension N and the tile size is TILE_WIDTH, the dot

product would be performed in N/TILE_WIDTH phases. The creation of

these phases is key to the reduction of accesses to the global memory.

With each phase focusing on a small subset of the input matrix values, the

threads can collaboratively load the subset into the shared memory and

use the values in the shared memory to satisfy their overlapping input

needs in the phase.

Note also that Mds and Nds are reused to hold the input values. In each

phase, the same Mds and Nds are used to hold the subset of M and N ele-

ments used in the phase. This allows a much smaller shared memory to

serve most of the accesses to global memory. This is due to the fact that

each phase focuses on a small subset of the input matrix elements. Such

focused access behavior is called locality. When an algorithm exhibits

1115.4 A Tiled Matrix�Matrix Multiplication Kernel

locality, there is an opportunity to use small, high-speed memories to serve

most of the accesses and remove these accesses from the global memory.

Locality is as important for achieving high performance in multicore

CPUs as in many-thread GPUs. We return to the concept of locality in

Chapter 6.

We are now ready to present the tiled kernel function that uses shared

memory to reduce the traffic to global memory. The kernel shown in

Figure 5.12 implements the phases illustrated in Figure 5.11. In Figure 5.12,

lines 1 and 2 declare Mds and Nds as shared memory variables. Recall that

the scope of shared memory variables is a block. Thus, one pair of Mds and

Nds will be created for each block and all threads of a block have access to

the same Mds and Nds. This is important since all threads in a block must

have access to the M and N values loaded into Mds and Nds by their peers so

that they can use these values to satisfy their input needs.
#define TILE_WIDTH 16
Lines 3 and 4 save the threadIdx and blockIdx values into automatic

variables and thus into registers for fast access. Recall that automatic

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P,
int Width) {

1. __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
2. __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the d_P element to work on
5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;

7. float Pvalue = 0;
// Loop over the d_M and d_N tiles required to compute d_P element

8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Coolaborative loading of d_M and d_N tiles into shared memory
9. Mds[ty][tx] = d_M[Row*Width + m*TILE_WIDTH + tx];
10. Nds[ty][tx] = d_N[(m*TILE_WIDTH + ty)*Width + Col];
11. __syncthreads();

12. for (int k = 0; k < TILE_WIDTH; ++k) {
13. Pvalue += Mds[ty][k] * Nds[k][tx];

}
14. __syncthreads();

}
15. d_P[Row*Width + Col] = Pvalue;

}

FIGURE 5.12

Tiled matrix multiplication kernel using shared memory.

112 CHAPTER 5 CUDA Memories

scalar variables are placed into registers. Their scope is in each individual

thread. That is, one private version of tx, ty, bx, and by is created by the

runtime system for each thread. They will reside in registers that are

accessible by one thread. They are initialized with the threadIdx and

blockIdx values and used many times during the lifetime of the thread.

Once the thread ends, the values of these variables also cease to exist.

Lines 5 and 6 determine the row index and column index of the d_P
element that the thread is to produce. As shown in line 6, the horizontal

(x) position, or the column index of the d_P element to be produced by a

thread, can be calculated as bx�TILE_WIDTH1tx. This is because each

block covers TILE_WIDTH elements in the horizontal dimension. A thread

in block bx would have bx blocks of threads, or (bx�TILE_WIDTH) threads,

before it; they cover bx�TILE_WIDTH elements of d_P. Another tx thread

within the same block would cover another tx element of d_P. Thus, the
thread with bx and tx should be responsible for calculating the d_P ele-

ment of which the xindex is bx�TILE_WIDTH+tx. This horizontal index is

saved in the variable Col (for column) for the thread and is also illustrated

in Figure 5.13. For the example in Figure 5.10, the x index of the d_P
element to be calculated by thread0,1 of block1,0 is 03 21 15 1.

Similarly, the y index can be calculated as by�TILE_WIDTH1ty. This verti-
cal index is saved in the variable Row for the thread. Thus, as shown in

Figure 5.10, each thread calculates the d_P element at the Col column and

the Row row. Going back to the example in Figure 5.10, the y index of the

d_P element to be calculated by thread1,0 of block0,1 is 13 21 05 2.

Thus, the d_P element to be calculated by this thread is d_P2,1.
Line 8 of Figure 5.12 marks the beginning of the loop that iterates

through all the phases of calculating the final d_P element. Each iteration

of the loop corresponds to one phase of the calculation shown in

Figure 5.11. The m variable indicates the number of phases that have

already been done for the dot product. Recall that each phase uses one tile

of d_M and one tile of d_N elements. Therefore, at the beginning of each

phase, m�TILE_WIDTH pairs of d_M and d_N elements have been processed

by previous phases.

In each phase, line 9 loads the appropriate d_M element into the shared

memory. Since we already know the row of d_M and column of d_N to be

processed by the thread, we will focus on the column index of d_M and

row index of d_N. As shown in Figure 5.11, each block has TILE_WIDTH2

threads that will collaborate to load TILE_WIDTH2 d_M elements into the

shared memory. Thus, all we need to do is to assign each thread to load

one d_M element. This is conveniently done using the blockIdx and

1135.4 A Tiled Matrix�Matrix Multiplication Kernel

threadIdx. Note that the beginning column index of the section of d_M
elements to be loaded is m�TILE_WIDTH. Therefore, an easy approach is to

have every thread load an element from at an offset tx that contains

threadIdx.x value. This is precisely what we have in line 9, where each

thread loads d_M[Row�Width1 m�TILE_WIDTH1 tx]. Since the value of Row
is a linear function of ty, each of the TILE_WIDTH2 threads will load a

unique d_M element into the shared memory. Together, these threads will

load the dark square subset of d_M in Figure 5.13. Readers should use the

small example in Figures 5.5 and 5.6 to verify that the address calculation

works correctly.

The barrier __syncthreads() in line 11 ensures that all threads have

finished loading the tiles of d_M and d_N into Mds and Nds before any of

them can move forward. The loop in line 12 then performs one phase of

the dot product based on these tile elements. The progression of the loop

for thread(ty,tx) is shown in Figure 5.13, with the direction of d_M and

d_M

d_N

d_P

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

T
IL

E
_
W

ID
T

H
T

IL
E

_
W

ID
T

H
T

IL
E

_
W

ID
T

H
E

W
ID

T
H

W
ID

T
H

m
*T

ILE
_W

ID
T

H

k

k

m*TILE_WIDTH

Col

Row

…

FIGURE 5.13

Calculation of the matrix indices in tiled multiplication.

114 CHAPTER 5 CUDA Memories

d_N elements usage along the arrow marked with k, the loop variable in

line 12. Note that these elements will be accessed from Mds and Nds, the
shared memory arrays holding these d_M and d_N elements. The barrier

__syncthreads() in line 14 ensures that all threads have finished using

the d_M and d_N elements in the shared memory before any of them move

on to the next iteration and load the elements in the next tiles. This way,

none of the threads would load the elements too early and corrupt the

input values for other threads.

After all sections of the dot product are complete, the execution exits the

loop of line 8. All threads write to their d_P element using the Row and Col.
The benefit of the tiled algorithm is substantial. For matrix multiplica-

tion, the global memory accesses are reduced by a factor of TILE_WIDTH.
If one uses 163 16 tiles, we can reduce the global memory accesses by a

factor of 16. This increases the CGMA from 1 to 16. This improvement

allows the memory bandwidth of a CUDA device to support a computa-

tion rate close to its peak performance. For example, this improvement

allows a 150 GB/s global memory bandwidth to support (150/4)3
165 600 GFLOPS!

5.5 MEMORY AS A LIMITING FACTOR TO PARALLELISM
While CUDA registers and shared memory can be extremely effective in

reducing the number of accesses to global memory, one must be careful

not to exceed the capacity of these memories. These memories are forms

of resources that are needed for thread execution. Each CUDA device

offers a limited amount of resources, which limits the number threads that

can simultaneously reside in the SM for a given application. In general,

the more resources each thread requires, the fewer the number of threads

can reside in each SM, and thus the fewer number of threads that can

reside in the entire device.

Let’s use an example to illustrate the interaction between register usage

of a kernel and the level of parallelism that a device can support. Assume

that in a device D, each SM can accommodate up to 1,536 threads and has

16,384 registers. While 16,384 is a large number, it only allows each

thread to use a very limited number of registers considering the number of

threads that can reside in each SM. To support 1,536 threads, each thread

can use only 16,38441,5365 10 registers. If each thread uses 11 registers,

the number of threads able to be executed concurrently in each SM will be

reduced. Such reduction is done at the block granularity. For example, if

1155.5 Memory as a Limiting Factor to Parallelism

each block contains 512 threads, the reduction of threads will be done by

reducing 512 threads at a time. Thus, the next lower number of threads

from 1,536 would be 512, a one-third reduction of threads that can simul-

taneously reside in each SM. This can greatly reduce the number of warps

available for scheduling, thus reducing the processor’s ability to find use-

ful work in the presence of long-latency operations.

Note that the number of registers available to each SM varies from

device to device. An application can dynamically determine the number of

registers available in each SM of the device used and choose a version of

the kernel that uses the number of registers appropriate for the device.

This can be done by calling the cudaGetDeviceProperties() function,

the use of which was discussed in Section 4.6. Assume that variable

&dev_prop is passed to the function for the device property, and the field

dev_prop.regsPerBlock gives the number of registers available in each

SM. For device D, the returned value for this field should be 16,384. The

application can then divide this number by the target number of threads to

reside in each SM to determine the number of registers that can be used in

the kernel.

Shared memory usage can also limit the number of threads assigned to

each SM. Assume device D has 16,384 (16 K) bytes of shared memory in

each SM. Keep in mind that shared memory is used by blocks. Assume

that each SM can accommodate up to eight blocks. To reach this maxi-

mum, each block must not use more than 2 K bytes of shared memory. If

each block uses more than 2 K bytes of memory, the number of blocks

that can reside in each SM is such that the total amount of shared memory

used by these blocks does not exceed 16 K bytes. For example, if each

block uses 5 K bytes of shared memory, no more than three blocks can be

assigned to each SM.

For the matrix multiplication example, shared memory can become a

limiting factor. For a tile size of 163 16, each block needs a

163 163 45 1 K bytes of storage for Mds. Another 1 KB is needed for

Nds. Thus, each block uses 2 K bytes of shared memory. The 16 K�byte

shared memory allows eight blocks to simultaneous reside in an SM.

Since this is the same as the maximum allowed by the threading hardware,

shared memory is not a limiting factor for this tile size. In this case, the

real limitation is the threading hardware limitation that only 768 threads

are allowed in each SM. This limits the number of blocks in each SM to

three. As a result, only 33 2 KB5 6 KB of the shared memory will be

used. These limits do change from device generation to the next but are

116 CHAPTER 5 CUDA Memories

properties that can be determined at runtime, for example, the GT200

series of processors can support up to 1,024 threads in each SM.

Note that the size of shared memory in each SM can also vary from

device to device. Each generation or model of device can have a differ-

ent amount of shared memory in each SM. It is often desirable for a

kernel to be able to use a different amount of shared memory according

to the amount available in the hardware. That is, we may want to have

a kernel to dynamically determine the size of the shared memory and

adjust the amount of shared memory used. This can be done by calling

the cudaGetDeviceProperties() function, the general use of which

was discussed in Section 4.6. Assume that variable &dev_prop is passed

to the function, the field dev_prop.sharedMemPerBlock gives the num-

ber of registers available in each SM. The programmer can then deter-

mine the number of amount of shared memory that should be used by

each block.

Unfortunately, the kernel in Figure 5.12 does not support this. The

declarations used in Figure 5.12 hardwire the size of its shared memory

usage to a compile-time constant:

__shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
__shared__ float Nds[TILE_WIDTH][TILE_WIDTH];
That is, the size of Mds and Nds is set to be TILE_WIDTH2 elements,

whatever the value of TILE_WIDTH is set to be at compile time. For exam-

ple, assume that the file contains

#define TILE_WIDTH 16
Both Mds and Nds will have 256 elements. If we want to change the

size of Mds and Nds, we need to change the value of TILE_WIDTH and

recompile. The kernel cannot easily adjust its shared memory usage at run-

time without recompilation. We can enable such adjustment with a differ-

ent style of declaration in CUDA. We can add a C extern keyword in

front of the shared memory declaration and omit the size of the array in

the declaration. Based on this style, the declaration for Mds and Nds
become:

extern __shared__ Mds[];
extern __shared__ Nds[];
Note that the arrays are now one dimensional. We will need to use a

linearized index based on the vertical and horizontal indices.

At runtime, when we launch the kernel, we can dynamically determine

the amount of shared memory to be used according to the device query

result and supply that as a third configuration parameter to the kernel

1175.5 Memory as a Limiting Factor to Parallelism

launch. For example, the kernel launch statement in Figure 4.18 could be

replaced with the following statements:

size_t size 5

calculate_appropriate_SM_usage(dev_prop.
sharedMemPerBlock,. . .);

matrixMulKernel,, ,dimGrid, dimBlock, size.. .(Md, Nd, Pd,
Width);

where size_t is a built-in type for declaring a variable to hold the size

information for dynamically allocated data structures. We have omitted

the details of the calculation for setting the value of size at runtime.

5.6 SUMMARY
In summary, CUDA defines registers, shared memory, and constant mem-

ory that can be accessed at a higher speed and in a more parallel manner

than the global memory. Using these memories effectively will likely

require redesign of the algorithm. We use matrix multiplication as an

example to illustrate tiled algorithms, a popular strategy to enhance local-

ity of data access and enable effective use of shared memory. We demon-

strate that with 163 16 tiling, global memory accesses are no longer the

major limiting factor for matrix multiplication performance.

It is, however, important for CUDA programmers to be aware of the

limited sizes of these types of memory. Their capacities are implementa-

tion dependent. Once their capacities are exceeded, they become limiting

factors for the number of threads that can be simultaneously executing in

each SM. The ability to reason about hardware limitations when develop-

ing an application is a key aspect of computational thinking. Readers are

also referred to Appendix B for a summary of resource limitations of sev-

eral different devices.

Although we introduced tiled algorithms in the context of CUDA pro-

gramming, it is an effective strategy for achieving high performance in

virtually all types of parallel computing systems. The reason is that an

application must exhibit locality in data access to make effective use of

high-speed memories in these systems. For example, in a multicore CPU

system, data locality allows an application to effectively use on-chip data

caches to reduce memory access latency and achieve high performance.

Therefore, readers will find the tiled algorithm useful when they develop a

parallel application for other types of parallel computing systems using

other programming models.

118 CHAPTER 5 CUDA Memories

Our goal for this chapter is to introduce the different types of CUDA

memory. We introduced tiled algorithm as an effective strategy for using

shared memory. We have not discussed the use of constant memory,

which will be explained in Chapter 8.

5.7 EXERCISES
5.1. Consider the matrix addition in Exercise 3.1. Can one use shared

memory to reduce the global memory bandwidth consumption?

Hint: analyze the elements accessed by each thread and see if there

is any commonality between threads.

5.2. Draw the equivalent of Figure 5.6 for a 83 8 matrix multiplication

with 23 2 tiling and 43 4 tiling. Verify that the reduction in global

memory bandwidth is indeed proportional to the dimension size of

the tiles.

5.3. What type of incorrect execution behavior can happen if one forgots

to use syncthreads() in the kernel of Figure 5.12?

5.4. Assuming capacity was not an issue for registers or shared memory,

give one case that it would be valuable to use shared memory

instead of registers to hold values fetched from global memory?

Explain your answer.

5.5. For our tiled matrix�matrix multiplication kernel, if we use a

323 32 tile, what is the reduction of memory bandwidth usage for

input matrices M and N?

a. 1/8 of the original usage

b. 1/16 of the original usage

c. 1/32 of the original usage

d. 1/64 of the original usage

5.6. Assume that a kernel is launched with 1,000 thread blocks each of

which has 512 threads. If a variable is declared as a local variable in

the kernel, how many versions of the variable will be created

through the lifetime of the execution of the kernel?

a. 1

b. 1,000

1195.7 Exercises

c. 512

d. 512,000

5.7. In the previous question, if a variable is declared as a shared

memory variable, how many versions of the variable will be created

through the lifetime of the execution of the kernel?

a. 1

b. 1,000

c. 512

d. 51,200

5.8. Explain the difference between shared memory and L1 cache.

5.9. Consider performing a matrix multiplication of two input matrices

with dimensions N3N. How many times is each element in the

input matrices requested from global memory when:

a. There is no tiling?

b. Tiles of size T3 T are used?

5.10. A kernel performs 36 floating-point operations and 7 32-bit word

global memory accesses per thread. For each of the following

device properties, indicate whether this kernel is compute- or

memory-bound.

a. Peak FLOPS5 200 GFLOPS, peak memory

bandwidth5 100 GB/s.

b. Peak FLOPS5 300 GFLOPS, peak memory

bandwidth5 250 GB/s.

5.11. Indicate which of the following assignments per streaming

multiprocessor is possible. In the case where it is not possible,

indicate the limiting factor(s).

a. 4 blocks with 128 threads each and 32 B shared memory

per thread on a device with compute capability 1.0.

120 CHAPTER 5 CUDA Memories

b. 8 blocks with 128 threads each and 16 B shared memory

per thread on a device with compute capability 1.0.

c. 16 blocks with 32 threads each and 64 B shared memory

per thread on a device with compute capability 1.0.

d. 2 blocks with 512 threads each and 32 B shared memory

per thread on a device with compute capability 1.2.

e. 4 blocks with 256 threads each and 16 B shared memory

per thread on a device with compute capability 1.2.

f. 8 blocks with 256 threads each and 8 B shared memory

per thread on a device with compute capability 1.2.

1215.7 Exercises

This page intentionally left blank

CHAPTER

6Performance Considerations

CHAPTER OUTLINE

6.1 Warps and Thread Execution .. 124

6.2 Global Memory Bandwidth .. 132

6.3 Dynamic Partitioning of Execution Resources... 141

6.4 Instruction Mix and Thread Granularity .. 143

6.5 Summary ... 145

6.6 Exercises... 145

References ... 149

The execution speed of a CUDA kernel can vary greatly depending on the

resource constraints of the device being used. In this chapter, we will

discuss the major types of resource constraints in a CUDA device and

how they can affect the kernel execution performance in this device. To

achieve his or her goals, a programmer often has to find ways to achieve a

required level of performance that is higher than that of an initial version

of the application. In different applications, different constraints may dom-

inate and become the limiting factors. One can improve the performance

of an application on a particular CUDA device, sometimes dramatically,

by trading one resource usage for another. This strategy works well if the

resource constraint alleviated was actually the dominating constraint

before the strategy was applied, and the one exacerbated does not have

negative effects on parallel execution. Without such understanding, perfor-

mance tuning would be guess work; plausible strategies may or may not

lead to performance enhancements. Beyond insights into these resource

constraints, this chapter further offers principles and case studies designed

to cultivate intuition about the type of algorithm patterns that can result in

high-performance execution. It is also establishes idioms and ideas that

123

will likely lead to good performance improvements during your perfor-

mance tuning efforts.

6.1 WARPS AND THREAD EXECUTION
Let’s first discuss some aspects of thread execution that can limit perfor-

mance. Recall that launching a CUDA kernel generates a grid of threads

that are organized as a two-level hierarchy. At the top level, a grid consists

of a 1D, 2D, or 3D array of blocks. At the bottom level, each block, in

turn, consists of a 1D, 2D, or 3D array of threads. In Chapter 4, we saw

that blocks can execute in any order relative to each other, which allows

for transparent scalability in parallel execution of CUDA kernels.

However, we did not say much about the execution timing of threads

within each block.

WARPS AND SIMD HARDWARE
The motivation for executing threads as warps is illustrated in the following diagram (same as
Figure 5.4). The processor has only one control unit that fetches and decodes instructions.
The same control signal goes to multiple processing units, each of which executes one of the
threads in a warp. Since all processing units are controlled by the same instruction, their exe-
cution differences are due to the different data operand values in the register files. This is
called single instruction, multiple data (SIMD) in processor design. For example, although all
processing units are controlled by an instruction

add r1, r2, r3
the r2 and r3 values are different in different processing units.

Memory

Processing Unit

I/O

ALU

Processor (SM)

Shared
Memory

Register
File

Control Unit

PC IR

Control units in modern processors are quite complex, including sophisticated logic for
fetching instructions and access ports to the instruction memory. They include on-chip
instruction caches to reduce the latency of instruction fetch. Having multiple processing

124 CHAPTER 6 Performance Considerations

units share a control unit can result in significant reduction in hardware manufacturing cost
and power consumption.

As the processors are increasingly power-limited, new processors will likely use SIMD
designs. In fact, we may see even more processing units sharing a control unit in the future.

Conceptually, one should assume that threads in a block can execute in

any order with respect to each other. Barrier synchronizations should be

used whenever we want to ensure all threads have completed a common

phase of their execution before any of them start the next phase. The cor-

rectness of executing a kernel should not depend on the fact that certain

threads will execute in synchrony with each other. Having said this, we

also want to point out that due to various hardware cost considerations,

current CUDA devices actually bundle multiple threads for execution.

Such an implementation strategy leads to performance limitations for cer-

tain types of kernel function code constructs. It is advantageous for appli-

cation developers to change these types of constructs to other equivalent

forms that perform better.

As we discussed in Chapter 4, current CUDA devices bundle several

threads for execution. Each thread block is partitioned into warps. The

execution of warps are implemented by an SIMD hardware (see “Warps

and SIMD Hardware” sidebar). This implementation technique helps to

reduce hardware manufacturing cost, lower runtime operation electricity

cost, and enable some optimizations in servicing memory accesses. In the

foreseeable future, we expect that warp partitioning will remain as a popu-

lar implementation technique. However, the size of a warp can easily vary

from implementation to implementation. Up to this point in time, all

CUDA devices have used similar warp configurations where each warp

consists of 32 threads.

Thread blocks are partitioned into warps based on thread indices. If a

thread block is organized into a 1D array (i.e., only threadIdx.x is used),

the partition is straightforward; threadIdx.x values within a warp are

consecutive and increasing. For a warp size of 32, warp 0 starts with

thread 0 and ends with thread 31, warp 1 starts with thread 32 and ends

with thread 63. In general, warp n starts with thread 323 n and ends with

thread 32(n1 1)2 1. For a block of which the size is not a multiple of 32,

the last warp will be padded with extra threads to fill up the 32 threads.

For example, if a block has 48 threads, it will be partitioned into two

warps, and its warp 1 will be padded with 16 extra threads.

For blocks that consist of multiple dimensions of threads, the dimen-

sions will be projected into a linear order before partitioning into warps.

1256.1 Warps and Thread Execution

The linear order is determined by placing the rows with larger y and z

coordinates after those with lower ones. That is, if a block consists of two

dimensions of threads, one would form the linear order by placing all

threads of which threadIdx.y is 1 after those of which threadIdx.y is 0,

threads of which threadIdx.y is 2 after those of which threadIdx.y is 1,

and so on.

Figure 6.1 shows an example of placing threads of a 2D block into lin-

ear order. The upper part shows the 2D view of the block. Readers should

recognize the similarity with the row-major layout of 2D arrays in C, as

shown in Figure 4.3. Each thread is shown as Ty,x, x being threadIdx.x
and y being threadIdx.y. The lower part of Figure 6.1 shows the linear

view of the block. The first four threads are those threads of which the

threadIdx.y value is 0; they are ordered with increasing threadIdx.x
values. The next four threads are those threads of which the threadIdx.y
value is 1; they are also placed with increasing threadIdx.x values. For

this example, all 16 threads form half a warp. The warp will be padded

with another 16 threads to complete a 32-thread warp. Imagine a 2D block

with 83 8 threads. The 64 threads will form two warps. The first warp

starts from T0,0 and ends with T3,7. The second warp starts with T4,0 and

ends with T7,7. It would be a useful exercise to draw out the picture as an

exercise.

For a 3D block, we first place all threads of which the threadIdx.z
value is 0 into the linear order. Among these threads, they are treated as a

2D block as shown in Figure 6.1. All threads of which the threadIdx.z
value is 1 will then be placed into the linear order, and so on. For a 3D

T0,2

T1,1

T0,1T0,0

T1,0

T0,3

T1,2 T1,3

T0,2T0,1T0,0 T0,3 T1,1T1,0 T1,2 T1,3 T2,1T2,0 T2,2 T2,3

T2,1T2,0 T2,2 T2,3

T3,1T3,0 T3,2 T3,3

T3,1T3,0 T3,2 T3,3

linear order

logical 2−D
organization

FIGURE 6.1

Placing 2D threads into linear order.

126 CHAPTER 6 Performance Considerations

thread block of dimensions 23 83 4 (four in the x dimension, eight in the

y dimension, and two in the z dimension), the 64 threads will be parti-

tioned into two warps, with T0,0,0 through T0,7,3 in the first warp and T1,0,0

through T1,7,3 in the second warp.

The SIMD hardware executes all threads of a warp as a bundle. An

instruction is run for all threads in the same warp. It works well when all

threads within a warp follow the same execution path, or more formally

referred to as control flow, when working their data. For example, for an

if-else construct, the execution works well when either all threads exe-

cute the if part or all execute the else part. When threads within a warp

take different control flow paths, the SIMD hardware will take multiple

passes through these divergent paths. One pass executes those threads that

follow the if part and another pass executes those that follow the else
part. During each pass, the threads that follow the other path are not

allowed to take effect. These passes are sequential to each other, thus they

will add to the execution time.

The multipass approach to divergent warp execution extends the SIMD

hardware’s ability to implement the full semantics of CUDA threads.

While the hardware executes the same instruction for all threads in a

warp, it selectively lets the threads take effect in each pass only, allowing

every thread to take its own control flow path. This preserves the indepen-

dence of threads while taking advantage of the reduced cost of SIMD

hardware.

When threads in the same warp follow different paths of control flow,

we say that these threads diverge in their execution. In the if-else exam-

ple, divergence arises if some threads in a warp take the then path and

some the else path. The cost of divergence is the extra pass the hardware

needs to take to allow the threads in a warp to make their own decisions.

Divergence also can arise in other constructs; for example, if threads in a

warp execute a for loop that can iterate six, seven, or eight times for dif-

ferent threads. All threads will finish the first six iterations together. Two

passes will be used to execute the seventh iteration, one for those that take

the iteration and one for those that do not. Two passes will be used to exe-

cute the eighth iteration, one for those that take the iteration and one for

those that do not.

In terms of source statements, a control construct can result in thread

divergence when its decision condition is based on threadIdx values. For

example, the statement if (threadIdx.x . 2) {} causes the threads to fol-

low two divergent control flow paths. Threads 0, 1, and 2 follow a differ-

ent path than threads 3, 4, 5, etc. Similarly, a loop can cause thread

1276.1 Warps and Thread Execution

divergence if its loop condition is based on thread index values. Such

usages arise naturally in some important parallel algorithms. We will use a

reduction algorithm to illustrate this point.

A reduction algorithm derives a single value from an array of values.

The single value could be the sum, the maximal value, the minimal

value, etc. among all elements. All these types of reductions share the

same computation structure. A reduction can be easily done by sequen-

tially going through every element of the array. When an element is vis-

ited, the action to take depends on the type of reduction being

performed. For a sum reduction, the value of the element being visited at

the current step, or the current value, is added to a running sum. For a

maximal reduction, the current value is compared to a running maximal

value of all the elements visited so far. If the current value is larger than

the running maximal, the current element value becomes the running

maximal value. For a minimal reduction, the value of the element cur-

rently being visited is compared to a running minimal. If the current

value is smaller than the running minimal, the current element value

becomes the running minimal. The sequential algorithm ends when all

the elements are visited. The sequential reduction algorithm is work-

efficient in that every element is only visited once and only a minimal

amount of work is performed when each element is visited. Its execution

time is proportional to the number of elements involved. That is, the

computational complexity of the algorithm is O(N), where N is the num-

ber of elements involved in the reduction.

The time needed to visit all elements of a large array motivates paral-

lel execution. A parallel reduction algorithm typically resembles the struc-

ture of a soccer tournament. In fact, the elimination process of the World

Cup is a reduction of “maximal” where the maximal is defined as the

team that “beats” all other teams. The tournament “reduction” is done by

multiple rounds. The teams are divided into pairs. During the first round,

all pairs play in parallel. Winners of the first round advance to the second

round, the winners of which advance to the third round, etc. With 16

teams entering a tournament, 8 winners will emerge from the first round,

4 from the second round, 2 from the third round, and 1 final winner from

the fourth round. It should be easy to see that even with 1,024 teams, it

takes only 10 rounds to determine the final winner. The trick is to have

enough soccer fields to hold the 512 games in parallel during the first

round, 256 games in the second round, 128 games in the third round, and

so on. With enough fields, even with 60,000 teams, we can determine the

final winner in just 16 rounds. Of course, one would need to have enough

128 CHAPTER 6 Performance Considerations

soccer fields and enough officials to accommodate the 30,000 games in

the first round, etc.

Figure 6.2 shows a kernel function that performs parallel sum reduc-

tion. The original array is in the global memory. Each thread block

reduces a section of the array by loading the elements of the section into

the shared memory and performing parallel reduction. The code that loads

the elements from global memory into the shared memory is omitted from

Figure 6.2 for brevity. The reduction is done in place, which means the

elements in the shared memory will be replaced by partial sums. Each iter-

ation of the while loop in the kernel function implements a round of

reduction. The __syncthreads() statement (line 5) in the while loop

ensures that all partial sums for the previous iteration have been generated

and thus all threads are ready to enter the current iteration before any one

of them is allowed to do so. This way, all threads that enter the second

iteration will be using the values produced in the first iteration. After the

first round, the even elements will be replaced by the partial sums gener-

ated in the first round. After the second round, the elements of which the

indices are multiples of four will be replaced with the partial sums. After

the final round, the total sum of the entire section will be in element 0.

In Figure 6.2, line 3 initializes the stride variable to 1. During the first

iteration, the if statement in line 6 is used to select only the even threads

to perform addition between two neighboring elements. The execution of

the kernel is illustrated in Figure 6.3. The threads and the array element

values are shown in the horizontal direction. The iterations taken by the

threads are shown in the vertical direction with time progressing from top

to bottom. Each row of Figure 6.3 shows the contents of the array ele-

ments after an iteration of the for loop.

1. __shared__ float partialSum[]
…

2. unsigned int t = threadIdx.x;
3. for (unsigned int stride = 1; stride < blockDim.x; stride *= 2)
4. {

8

5. __syncthreads();
6. if (t % (2*stride) == 0)
7. partialSum[t] += partialSum[t+stride];

}

FIGURE 6.2

A simple sum reduction kernel.

1296.1 Warps and Thread Execution

As shown in Figure 6.3, the even elements of the array hold the pair-

wise partial sums after iteration 1. Before the second iteration, the value

of the stride variable is doubled to 2. During the second iteration, only

those threads of which the indices are multiples of four will execute the

add statement in line 8. Each thread generates a partial sum that includes

four elements, as shown in row 2. With 512 elements in each section, the

kernel function will generate the sum of the entire section after nine itera-

tions. By using blockDim.x as the loop bound in line 4, the kernel

assumes that it is launched with the same number of threads as the number

of elements in the section. That is, for a section size of 512, the kernel

needs to be launched with 512 threads.1

Let’s analyze the total amount of work done by the kernel. Assume

that the total number of elements to be reduced is N. The first round

requires N/2 additions. The second round requires N/4 additions. The final

round has only one addition. There are log2(N) rounds. The total number

of additions performed by the kernel is N/21N/41N/81 . . .1 15N2 1.

Therefore, the computational complexity of the reduction algorithm is O(N).

The algorithm is work-efficient. However, we also need to make sure that the

hardware is efficiently utilized while executing the kernel.

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elementsiterations

Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10

FIGURE 6.3

Execution of the sum reduction kernel.

1Note that using the same number of threads as the number of elements in a section is

wasteful. Half of the threads in a block will never execute. Readers are encouraged to

modify the kernel and the kernel launch execution configuration parameters to eliminate

this waste (see Exercise 6.1).

130 CHAPTER 6 Performance Considerations

The kernel in Figure 6.2 clearly has thread divergence. During the first

iteration of the loop, only those threads of which the threadIdx.x are

even will execute the add statement. One pass will be needed to execute

these threads and one additional pass will be needed to execute those that

do not execute line 8. In each successive iteration, fewer threads will exe-

cute line 8 but two passes will be still needed to execute all the threads

during each iteration. This divergence can be reduced with a slight change

to the algorithm.

Figure 6.4 shows a modified kernel with a slightly different algorithm

for sum reduction. Instead of adding neighbor elements in the first round,

it adds elements that are half a section away from each other. It does so

by initializing the stride to be half the size of the section. All pairs added

during the first round are half the section size away from each other. After

the first iteration, all the pairwise sums are stored in the first half of the

array. The loop divides the stride by 2 before entering the next iteration.

Thus, for the second iteration, the stride variable value is one-quarter of

the section size—that is, the threads add elements that are one-quarter a

section away from each other during the second iteration.

Note that the kernel in Figure 6.4 still has an if statement (line 6) in

the loop. The number of threads that execute line 7 in each iteration is the

same as in Figure 6.2. So, why should there be a performance difference

between the two kernels? The answer lies in the positions of threads that

execute line 7 relative to those that do not.

Figure 6.5 illustrates the execution of the revised kernel. During the

first iteration, all threads of which the threadIdx.x values are less than

half of the size of the section execute line 7. For a section of 512 ele-

ments, threads 0�255 execute the add statement during the first iteration

1. __shared__ float partialSum[]

2. unsigned int t = threadIdx.x;
3. for (unsigned int stride = blockDim.x; stride > 1; stride /= 2)
4. {
5. __syncthreads();
6. if (t < stride)
7. partialSum[t] += partialSum[t+stride];
8. }

FIGURE 6.4

A kernel with fewer thread divergence.

1316.1 Warps and Thread Execution

while threads 256�511 do not. The pairwise sums are stored in elements

0�255 after the first iteration. Since the warps consist of 32 threads with

consecutive threadIdx.x values, all threads in warps 0�7 execute the add

statement, whereas warps 8�15 all skip the add statement. Since all

threads in each warp take the same path, there is no thread divergence!

The kernel in Figure 6.4 does not completely eliminate the divergence

due to the if statement. Readers should verify that starting with the fifth

iteration, the number of threads that execute line 7 will fall below 32. That

is, the final five iterations will have only 16, 8, 4, 2, and 1 thread(s) per-

forming the addition. This means that the kernel execution will still have

divergence in these iterations. However, the number of iterations of the

loop that has divergence is reduced from 10 to 5.

6.2 GLOBAL MEMORY BANDWIDTH
One of the most important factors of CUDA kernel performance is acces-

sing data in the global memory. CUDA applications exploit massive data

parallelism. Naturally, CUDA applications tend to process a massive

amount of data from the global memory within a short period of time. In

Chapter 5, we discussed tiling techniques that utilize shared memories to

reduce the total amount of data that must be accessed by a collection of

threads in the thread block. In this chapter, we will further discuss memory

Thread 0

0 1 2 3 … 253 255254 258257256 …

1

2

3

Thread 1 Thread 2 Thread 14 Thread 15

255+5110+256

iterations Array elements

FIGURE 6.5

Execution of the revised algorithm.

132 CHAPTER 6 Performance Considerations

coalescing techniques that can more effectively move data from the global

memory into shared memories and registers. Memory coalescing techni-

ques are often used in conjunction with tiling techniques to allow CUDA

devices to reach their performance potential by more efficiently utilizing

the global memory bandwidth.2

The global memory of a CUDA device is implemented with DRAMs.

Data bits are stored in DRAM cells that are small capacitors, where the

presence or absence of a tiny amount of electrical charge distinguishes

between 0 and 1. Reading data from a DRAM cell requires the small

capacitor to use its tiny electrical charge to drive a highly capacitive line

leading to a sensor and set off its detection mechanism that determines

whether a sufficient amount of charge is present in the capacitor to qualify

as a “1” (see “Why Are DRAMs So Slow?” sidebar). This process takes

tens of nanoseconds in modern DRAM chips. Because this is a very slow

process relative to the desired data access speed (sub-nanosecond access

per byte), modern DRAMs use parallelism to increase their rate of data

access.

Each time a DRAM location is accessed, many consecutive locations

that include the requested location are actually accessed. Many sensors are

provided in each DRAM chip and they work in parallel. Each senses the

content of a bit within these consecutive locations. Once detected by the

sensors, the data from all these consecutive locations can be transferred at

very high speed to the processor. If an application can make focused use

of data from consecutive locations, the DRAMs can supply the data at a

much higher rate than if a truly random sequence of locations were

accessed.

WHY ARE DRAMs So Slow?
The following figure shows a DRAM cell and the path for accessing its content. The decoder
is an electronic circuit that uses a transistor to drive a line connected to the outlet gates of
thousands of cells. It can take a long time for the line to be fully charged or discharged to
the desired level.

2Recent CUDA devices use on-chip caches for global memory data. Such caches auto-

matically coalesce more of the kernel access patterns and somewhat reduce the need for

programmers to manually rearrange their access patterns. However, even with caches,

coalescing techniques will continue to have a significant effect on kernel execution per-

formance in the foreseeable future.

1336.2 Global Memory Bandwidth

de
co

de

To sense amps

A very small capacitance
that stores a data bit

About 1000 cells connected to
each vertical line

A more formidable challenge is for the cell to drive the line to the sense amplifiers and
allow the sense amplifier to detect its content. This is based on electrical charge sharing.
The gate lets out the tiny amount of electrical charge stored in the cell. If the cell content is
“1,” the tiny amount of charge must raise the potential of the large capacitance formed by
the long bit line and the input of the sense amplifier. A good analogy would be for someone
to hold a small cup of coffee at one end of a long hallway for another person to smell the
aroma propagated through the hallway to determine the flavor of the coffee.

One could speed up the process by using a larger, stronger capacitor in each cell.
However, the DRAMs have been going in the opposite direction. The capacitors in each cell
have been steadily reduced in size over time so that more bits can be stored in each chip.
This is why the access latency of DRAMS has not decreased over time.

Recognizing the organization of modern DRAMs, current CUDA

devices employ a technique that allows the programmers to achieve high

global memory access efficiency by organizing memory accesses of

threads into favorable patterns. This technique takes advantage of the fact

that threads in a warp execute the same instruction at any given point in

time. When all threads in a warp execute a load instruction, the hardware

detects whether they access consecutive global memory locations. That is,

the most favorable access pattern is achieved when all threads in a warp

access consecutive global memory locations. In this case, the hardware

combines, or coalesces, all these accesses into a consolidated access to

consecutive DRAM locations. For example, for a given load instruction of

a warp, if thread 0 accesses global memory location N,3 thread 1 location

N1 1, thread 2 location N1 2, and so on, all these accesses will be coa-

lesced, or combined into a single request for consecutive locations when

accessing the DRAMs. Such coalesced access allows the DRAMs to

deliver data at a rate close to the peak global memory bandwidth.

To understand how to effectively use coalescing hardware, we need

to review how the memory addresses are formed in accessing C

3Different CUDA devices may also impose alignment requirements on N. For example,

in some CUDA devices, N is required to be aligned to 16-word boundaries. That is, the

lower 6 bits of N should all be 0 bits. We will discuss techniques that address this align-

ment requirement in Chapter 12.

134 CHAPTER 6 Performance Considerations

multidimensional array elements. As we showed in Chapter 4 (Figure 4.3,

replicated as Figure 6.6 for convenience), multidimensional array elements in

C and CUDA are placed into the linearly addressed memory space according

to the row-major convention. That is, the elements of row 0 of a matrix are

first placed in order into consecutive locations. They are followed by the ele-

ments of row 1 of the matrix, and so on. In other words, all elements in a row

are placed into consecutive locations and entire rows are placed one after

another. The term row major refers to the fact that the placement of data pre-

serves the structure of rows: all adjacent elements in a row are placed into

consecutive locations in the address space. Figure 6.6 shows a small example

where the 16 elements of a 43 4 matrix M are placed into linearly addressed

locations. The four elements of row 0 are first placed in their order of appear-

ance in the row. Elements in row 1 are then placed, followed by elements of

row 2, followed by elements of row 3. It should be clear that M0,0 and M1,0,

though they appear to be consecutive in the 2D matrix, are placed four loca-

tions away in the linearly addressed memory.

Figure 6.7 illustrates the favorable versus unfavorable CUDA kernel

2D row-major array data access patterns for memory coalescing. Recall

from Figure 4.7 that in our simple matrix�matrix multiplication kernel,

each thread accesses a row of the d_M array and a column of the d_N array.

Readers should review Section 4.3 before continuing. Figure 6.7(a) illus-

trates the data access pattern of the d_M array, where threads in a warp

read adjacent rows. That is, during iteration 0, threads in a warp read ele-

ment 0 of rows 0�31. During iteration 1, these same threads read element

1 of rows 0�31. None of the accesses will be coalesced. A more favorable

access pattern is shown in Figure 6.7(b), where each thread reads a column

M0,2

M
1,1

M0,1M0,0

M1,0

M0,3

M
1,2

M
1,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

linearized order in increasing address

FIGURE 6.6

Placing matrix elements into linear order.

1356.2 Global Memory Bandwidth

of d_N. During iteration 0, threads in warp 0 read element 1 of columns

0�31. All these accesses will be coalesced.

To understand why the pattern in Figure 6.7(b) is more favorable than

that in Figure 6.7(a), we need to review how these matrix elements are

accessed in more detail. Figure 6.8 shows a small example of the favorable

access pattern in accessing a 43 4 matrix. The arrow in the top portion of

Figure 6.8 shows the access pattern of the kernel code for one thread. This

access pattern is generated by the access to d_N in Figure 4.7:
d_N[k�Width1 Col]

d_M d_N

W
ID

T
H

WIDTH

Thread 1

Thread 2

not coalesced coalesced

(a) (b)

FIGURE 6.7

Memory access patterns in C 2D arrays for coalescing.

M

T0 T1 T2 T3

Load iteration 0

T0 T1 T2 T3

Load iteration 1

Access
direction
in Kernel
code

M0,2

M
1,1

M0,1M0,0

M1,0

M0,3

M
1,2

M
1,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3 M3,1M3,0 M3,2 M3,3

FIGURE 6.8

A coalesced access pattern.

136 CHAPTER 6 Performance Considerations

Within a given iteration of the k loop, the k�Width value is the same

across all threads. Recall that Col 5 blockIdx.x�blockDim.x1 threadIdx.
x. Since the value of blockIndx.x and blockDim.x are of the same value

for all threads in the same block, the only part of k�Width1Col that varies

across a thread block is threadIdx.x. For example, in Figure 6.8, assume

that we are using 43 4 blocks and that the warp size is 4. That is, for this

toy example, we are using only one block to calculate the entire P matrix.

The values of Width, blockDim.x, and blockIdx.x are 4, 4, and 0, respec-

tively, for all threads in the block. In iteration 0, the k value is 0. The index

used by each thread for accessing d_N is
d_N[k�Width1Col]5d_N[k�Width1blockIdx.x�blockDim.x
1threadIdx.x]

5 d_N[0�41 0�41 threadidx.x]
5 d_N[threadIdx.x]

That is, the index for accessing d_N is simply the value of threadIdx.x.
The d_N elements accessed by T0, T1, T2, and T3 are d_N[0], d_N[1],
d_N[2], and d_N[3], respectively. This is illustrated with the “Load iteration

0” box of Figure 6.8. These elements are in consecutive locations in the

global memory. The hardware detects that these accesses are made by

threads in a warp and to consecutive locations in the global memory. It coa-

lesces these accesses into a consolidated access. This allows the DRAMs to

supply data at a high rate.

During the next iteration, the k value is 1. The index used by each

thread for accessing d_N becomes
d_N[k�Width1Col]5d_N[k�Width1blockIdx.x�blockDim.x
1threadIdx.x]

5 d_N[1�41 0�41 threadidx.x]
5 d_N[41threadIdx.x]

The d_N elements accessed by T0, T1, T2, and T3 are d_N[5], d_N[6],
d_N[7], and d_N[8], respectively, as shown with the “Load iteration 1”

box in Figure 6.8. All these accesses are again coalesced into a consoli-

dated access for improved DRAM bandwidth utilization.

Figure 6.9 shows an example of a matrix data access pattern that is not

coalesced. The arrow in the top portion of the figure shows that the kernel

code for each thread accesses elements of a row in sequence. The arrow in

the top portion of Figure 6.9 shows the access pattern of the kernel code

for one thread. This access pattern is generated by the access to d_M in

Figure 4.7:
d_M[Row�Width1 k]
Within a given iteration of the k loop, the k�Width value is the same

across all threads. Recall that Row 5 blockIdx.y�blockDim.y 1

1376.2 Global Memory Bandwidth

threadIdx.y. Since the value of blockIndx.y and blockDim.y are of the

same value for all threads in the same block, the only part of

Row�Width1k that can vary across a thread block is threadIdx.y. In

Figure 6.9, assume again that we are using 43 4 blocks and that the warp

size is 4. The values of Width, blockDim.y, and blockIdx.y are 4, 4, and

0, respectively, for all threads in the block. In iteration 0, the k value is 0.

The index used by each thread for accessing d_N is
d_M[Row�Width1k] 5 d_M[(blockIdx.y�blockDim.y1threadIdx.y)�

Width1k]
5 d_M[((0�41threadIdx.y)�41 0]
5 d_M[threadIdx.x�4]

That is, the index for accessing d_M is simply the value of threadIdx.x�4.
The d_M elements accessed by T0, T1, T2, and T3 are d_M[0], d_M[4], d_M[8],
and d_M[12]. This is illustrated with the “Load iteration 0” box of Figure 6.9.

These elements are not in consecutive locations in the global memory. The

hardware cannot coalesce these accesses into a consolidated access.

During the next iteration, the k value is 1. The index used by each

thread for accessing d_M becomes
d_M[Row�Width1k] 5 d_M[(blockIdx.y�blockDim.y1threadIdx.y)�

Width1k]

M

T0 T1 T2 T3

Load iteration 0

T0 T1 T2 T3

Load iteration 1

Access
direction
in Kernel
code

…

M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3 M3,1M3,0 M3,2 M3,3

FIGURE 6.9

An uncoalesced access pattern.

138 CHAPTER 6 Performance Considerations

5 d_M[(0�41threadidx.x)�411]
5 d_M[threadIdx.x�411]

The d_M elements accessed by T0, T1, T2, T3 are d_M[1], d_M[5], d_M[9],
and d_M[13], respectively, as shown with the “Load iteration 1” box in

Figure 6.9. All these accesses again cannot be coalesced into a consolidated

access.

For a realistic matrix, there are typically hundreds or even thousands of

elements in each dimension. The elements accessed in each iteration by

neighboring threads can be hundreds or even thousands of elements apart.

The “Load iteration 0” box in the bottom portion shows how the threads

access these nonconsecutive locations in the 0 iteration. The hardware will

determine that accesses to these elements are far away from each other

and cannot be coalesced. As a result, when a kernel loop iterates through a

row, the accesses to global memory are much less efficient than the case

where a kernel iterates through a column.

If an algorithm intrinsically requires a kernel code to iterate through

data along the row direction, one can use the shared memory to enable

memory coalescing. The technique is illustrated in Figure 6.10 for matrix

multiplication. Each thread reads a row from d_M, a pattern that cannot be

Original
Access
Pattern

Tiled
Access
Pattern

Copy into
scratchpad

memory

Perform
multiplication

with scratchpad
values

d_M d_N

W
ID

T
H

WIDTH

d_M d_N

FIGURE 6.10

Using shared memory to enable coalescing.

1396.2 Global Memory Bandwidth

coalesced. Fortunately, a tiled algorithm can be used to enable coalescing.

As we discussed in Chapter 5, threads of a block can first cooperatively

load the tiles into the shared memory. Care must be taken to ensure that

these tiles are loaded in a coalesced pattern. Once the data is in shared

memory, it can be accessed either on a row basis or a column basis with

much less performance variation because the shared memories are imple-

mented as intrinsically high-speed, on-chip memory that does not require

coalescing to achieve a high data access rate.

We replicate Figure 5.7 here as Figure 6.11, where the matrix multipli-

cation kernel loads two tiles of matrix d_M and d_N into the shared mem-

ory. Note that each thread in a thread block is responsible for loading one

d_M element and one d_N element into Mds and Nds in each phase as

defined by the for loop in line 8. Recall that there are TILE_WIDTH2

threads involved in each tile. The threads use threadIdx.y and

threadIdx.y to determine the element of each matrix to load.

The d_M elements are loaded in line 9, where the index calculation for each

thread uses m to locate the left end of the tile. Each row of the tile is then

loaded by TILE_WIDTH threads of which the threadIdx differ in the x dimen-

sion. Since these threads have consecutive threadIdx.x values, they are in

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width)
{
1. __ shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
2. __ shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the d_P element to work on
5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;

7. float Pvalue = 0;
// Loop over the d_M and d_N tiles required to compute the d_P element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Coolaborative loading of d_M and d_N tiles into shared memory
9. Mds[tx][ty] = d_M[Row*Width + m*TILE_WIDTH+tx];
10. Nds[tx][ty] = d_N[(m*TILE_WIDTH+ty)*Width + Col];
11. __ syncthreads();

12. for (int k = 0; k < TILE_WIDTH; ++k)
13. Pvalue += Mds[tx][k] * Nds[k][ty];
14. __ synchthreads();

}
15. d_P[Row*Width+Col] = Pvalue;
}

FIGURE 6.11

Tiled matrix multiplication kernel using shared memory.

140 CHAPTER 6 Performance Considerations

the same warp. Also, the index calculation d_M[row][m�TILE_SIZE1tx]
makes these threads access elements in the same row. The question is whether

adjacent threads in the warp indeed access adjacent elements in the row.

Recall that elements in the same row are placed into consecutive locations of

the global memory. Since the column index m�TILE_SIZE1tx is such that all

threads with adjacent tx values will access adjacent row elements, the answer

is yes. The hardware detects that these threads in the same warp access conse-

cutive locations in the global memory and combines them into a coalesced

access.

In the case of d_N, the row index m�TILE_SIZE1ty has the same

value for all threads in the same warp; they all have the same ty
value. Thus, threads in the same warp access the same row. The ques-

tion is whether the adjacent threads in a warp access adjacent

elements of a row. Note that the column index calculation for each

thread Col is based on bx�TILE_SIZE1tx (see line 4). Therefore, adja-

cent threads in a warp access adjacent elements in a row. The hard-

ware detects that these threads in the same warp access consecutive

locations in the global memory and combine them into a coalesced

access.

Readers shall find it useful to draw a picture based on the kernel code

in Figure 6.11 and identify the threadIdx.y and threadIdx.x values of

the thread that loads each element of the tile. Lines 5, 6, 9, and 10 in

Figure 6.11 form a frequently used programming pattern for loading

matrix elements into shared memory in tiled algorithms. We would also

like to encourage readers to analyze the data access pattern by the dot-

product loop in lines 12 and 13. Note that the threads in a warp do not

access consecutive location of Mds. This is not a problem since Mds is in

shared memory, which does not require coalescing to achieve high-speed

data access.

6.3 DYNAMIC PARTITIONING OF EXECUTION RESOURCES
The execution resources in a streaming multiprocessor (SM) include regis-

ters, shared memory, thread block slots, and thread slots. These resources

are dynamically partitioned and assigned to threads to support their execu-

tion. In Chapter 4, we have seen that the current generation of devices

have 1,536 thread slots, each of which can accommodate one thread.

These thread slots are partitioned and assigned to thread blocks during

runtime. If each thread block consists of 512 threads, the 1,536 thread slots

1416.3 Dynamic Partitioning of Execution Resources

are partitioned and assigned to three blocks. In this case, each SM can

accommodate up to three thread blocks due to limitations on thread slots.

If each thread block contains 128 threads, the 1,536 thread slots are parti-

tioned and assigned to 12 thread blocks. The ability to dynamically parti-

tion the thread slots among thread blocks makes SMs versatile. They can

either execute many thread blocks each having few threads, or execute

few thread blocks each having many threads. This is in contrast to a fixed

partitioning method where each block receives a fixed amount of resources

regardless of their real needs. Fixed partitioning results in wasted thread

slots when a block has few threads and fails to support blocks that require

more thread slots than the fixed partition allows.

Dynamic partitioning of resources can lead to subtle interactions between

resource limitations, which can cause underutilization of resources. Such

interactions can occur between block slots and thread slots. For example, if

each block has 128 threads, the 1,536 thread slots can be partitioned and

assigned to 12 blocks. However, since there are only 8 block slots in each

SM, only 8 blocks will be allowed. This means that only 1,024 of the thread

slots will be utilized. Therefore, to fully utilize both the block slots and

thread slots, one needs at least 256 threads in each block.

As we mentioned in Chapter 4, the automatic variables declared in a

CUDA kernel are placed into registers. Some kernels may use lots of auto-

matic variables and others may use few of them. Thus, one should expect

that some kernels require many registers and some require fewer. By

dynamically partitioning the registers among blocks, the SM can accom-

modate more blocks if they require few registers and fewer blocks if they

require more registers. One does, however, need to be aware of potential

interactions between register limitations and other resource limitations.

In the matrix multiplication example, assume that each SM has 16,384

registers and the kernel code uses 10 registers per thread. If we have

163 16 thread blocks, how many threads can run on each SM? We can

answer this question by first calculating the number of registers needed for

each block, which is 103 163 165 2,560. The number of registers

required by six blocks is 15,360, which is under the 16,384 limit. Adding

another block would require 17,920 registers, which exceeds the limit.

Therefore, the register limitation allows blocks that altogether have 1,536

threads to run on each SM, which also fits within the limit of block slots

and 1,536 thread slots.

Now assume that the programmer declares another two automatic vari-

ables in the kernel and bumps the number of registers used by each thread

to 12. Assuming the same 163 16 blocks, each block now requires

142 CHAPTER 6 Performance Considerations

123 163 165 3,072 registers. The number of registers required by six

blocks is now 18,432, which exceeds the register limitation. The CUDA

runtime system deals with this situation by reducing the number of blocks

assigned to each SM by one, thus reducing the number of registered

required to 15,360. This, however, reduces the number of threads running

on an SM from 1,536 to 1,280. That is, by using two extra automatic vari-

ables, the program saw a one-sixth reduction in the warp parallelism in

each SM. This is sometimes a referred to as a “performance cliff” where a

slight increase in resource usage can result in significant reduction in par-

allelism and performance achieved [RRS2008]. Readers are referred to the

CUDA Occupancy Calculator [NVIDIA], which is a downloadable Excel

sheet that calculates the actual number of threads running on each SM for

a particular device implementation given the usage of resources by a

kernel.

6.4 INSTRUCTION MIX AND THREAD GRANULARITY
An important algorithmic decision in performance tuning is the granularity

of threads. It is often advantageous to put more work into each thread and

use fewer threads. Such advantage arises when some redundant work

exists between threads. In the current generation of devices, each SM has

limited instruction processing bandwidth. Every instruction consumes

instruction processing bandwidth, whether it is a floating-point calculation

instruction, a load instruction, or a branch instruction. Eliminating redun-

dant instructions can ease the pressure on the instruction processing band-

width and improve the overall execution speed of the kernel.

Figure 6.12 illustrates such an opportunity in matrix multiplication. The

tiled algorithm in Figure 6.11 uses one thread to compute one element of

the output d_P matrix. This requires a dot product between one row of d_M
and one column of d_N.

The opportunity of thread granularity adjustment comes from the fact

that multiple blocks redundantly load each d_M tile. As shown in

Figure 6.12, the calculation of two d_P elements in adjacent tiles uses the

same d_M row. With the original tiled algorithm, the same d_M row is

redundantly loaded by the two blocks assigned to generate these two Pd
tiles. One can eliminate this redundancy by merging the two thread blocks

into one. Each thread in the new thread block now calculates two d_P ele-

ments. This is done by revising the kernel so that two dot products are

computed by the innermost loop of the kernel. Both dot products use the

1436.4 Instruction Mix and Thread Granularity

same Mds row but different Nds columns. This reduces the global memory

access by one-quarter. Readers are encouraged to write the new kernel as

an exercise.

The potential downside is that the new kernel now uses even more reg-

isters and shared memory. As we discussed in the previous section, the

number of blocks that can be running on each SM may decrease. It also

reduces the total number of thread blocks by half, which may result in an

insufficient amount of parallelism for matrices of smaller dimensions. In

practice, we found that combining up to four adjacent horizontal blocks to

compute adjacent horizontal tiles improves the performance of large

(2,0483 2,048 or more) matrix multiplication.

14

d_M

d_N

d_P

d_Psub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by
ty

2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_

W
ID

T
H

T
IL

E
_

W
ID

T
H

T
IL

E
_

W
ID

T
H

E

W
ID

T
H

W
ID

T
H

D_Psub

FIGURE 6.12

Increased thread granularity with rectangular tiles.

144 CHAPTER 6 Performance Considerations

6.5 SUMMARY
In this chapter, we reviewed the major aspects of CUDA C application

performance on a CUDA device: control flow divergence, global memory

coalescing, dynamic resource partitioning, and instruction mixes. We pre-

sented practical techniques for creating good program patterns for these

performance aspects. We will continue to study practical applications of

these techniques in the case studies in the next few chapters.

6.6 EXERCISES
6.1 The kernels in Figures 6.2 and 6.4 are wasteful in their use of threads;

half of the threads in each block never execute. Modify the kernels to

eliminate such waste. Give the relevant execute configuration

parameter values at the kernel launch. Is there a cost in terms of an

extra arithmetic operation needed? Which resource limitation can be

potentially addressed with such modification? (Hint: line 2 and/or line

4 can be adjusted in each case; the number of elements in the section

may increase.)

6.2 Compare the modified kernels you wrote for Exercise 6.1. Which

modification introduced fewer additional arithmetic operations?

6.3 Write a complete kernel based on Exercise 6.1 by (1) adding the

statements that load a section of the input array from global memory

to shared memory, (2) using blockIdx.x to allow multiple blocks to

work on different sections of the input array, and (3) writing the

reduction value for the section to a location according to the

blockIdx.x so that all blocks will deposit their section reduction

value to the lower part of the input array in global memory.

6.4 Design a reduction program based on the kernel you wrote for

Exercise 6.3. The host code should (1) transfer a large input array to

the global memory, and (2) use a loop to repeatedly invoke the kernel

you wrote for Exercise 6.3 with adjusted execution configuration

parameter values so that the reduction result for the input array will

eventually be produced.

6.5 For the matrix multiplication kernel in Figure 6.11, draw the access

patterns of threads in a warp of lines 9 and 10 for a small 163 16

matrix size. Calculate the tx and ty values for each thread in a warp

1456.6 Exercises

and use these values in the d_M and d_N index calculations in lines 9

and 10. Show that the threads indeed access consecutive d_M and d_N
locations in global memory during each iteration.

6.6 For the simple matrix�matrix multiplication (M �3 N) based on

row-major layout, which input matrix will have coalesced accesses?

a. M

b. N

c. Both

d. Neither

6.7 For the tiled matrix�matrix multiplication (M 3 N) based on row-

major layout, which input matrix will have coalesced accesses?

a. M

b. N

c. Both

d. Neither

6.8 For the simple reduction kernel, if the block size is 1,024 and warp

size is 32, how many warps in a block will have divergence during

the fifth iteration?

a. 0

b. 1

c. 16

d. 32

6.9 For the improved reduction kernel, if the block size is 1,024 and

warp size is 32, how many warps will have divergence during the

fifth iteration?

a. 0

b. 1

c. 16

d. 32

146 CHAPTER 6 Performance Considerations

6.10 Write a matrix multiplication kernel function that corresponds to the

design illustrated in Figure 6.12.

6.11 The following scalar product code tests your understanding of the

basic CUDA model. The following code computes 1,024 dot

products, each of which is calculated from a pair of 256-element

vectors. Assume that the code is executed on G80. Use the code to

answer the following questions.
1 #define VECTOR_N 1024
2 #define ELEMENT_N 256
3 const int DATA_N 5 VECTOR_N � ELEMENT_N;
4 const int DATA_SZ 5 DATA_N � sizeof(float);
5 const int RESULT_SZ 5 VECTOR_N � sizeof(float);
. . .
6 float �d_A, �d_B, �d_C;
. . .
7 cudaMalloc((void ��)&d_A, DATA_SZ);
8 cudaMalloc((void ��)&d_B, DATA_SZ);
9 cudaMalloc((void ��)&d_C, RESULT_SZ);
. . .
10 scalarProd,, ,VECTOR_N, ELEMENT_N.. .(d_C, d_A,

d_B, ELEMENT_N);
11
12 __global__ void
13 scalarProd(float �d_C, float �d_A, float �d_B, int

ElementN)
14 {
15 __shared__ float accumResult[ELEMENT_N];
16 //Current vectors bases
17 float �A 5 d_A1 ElementN � blockIdx.x;
18 float �B 5 d_B1 ElementN � blockIdx.x;
19 int tx 5 threadIdx.x;
20
21 accumResult[tx] 5 A[tx] � B[tx];
22
23 for(int stride 5 ElementN /2; stride . 0; stride .. 5 1)
24 {
25 __syncthreads();
26 if(tx , stride)
27 accumResult[tx] 1 5 accumResult[stride1 tx];
28 }
30 d_C[blockIdx.x] 5 accumResult[0];
31 }

a. How many threads are there in total?

1476.6 Exercises

b. How many threads are there in a warp?

c. How many threads are there in a block?

d. How many global memory loads and stores are done for each

thread?

e. How many accesses to shared memory are done for each block?

f. List the source code lines, if any, that cause shared memory bank

conflicts.

g. How many iterations of the for loop (line 23) will have branch

divergence? Show your derivation.

h. Identify an opportunity to significantly reduce the bandwidth

requirement on the global memory. How would you achieve this?

How many accesses can you eliminate?

6.12 In Exercise 4.2, out of the possible range of values for BLOCK_SIZE,
for what values of BLOCK_SIZE will the kernel completely avoid

uncoalesced accesses to global memory?

6.13 In an attempt to improve performance, a bright young engineer

changed the CUDA code in Figure 6.4 into the following.
__shared__ float partialSum[];
unsigned int tid 5 threadIdx.x;
for (unsigned int stride 5 n..1; stride .5 32; stride

.. 5 1) {
__syncthreads();
if (tid , stride)
shared[tid] 1 5 shared[tid1 stride];

}
__syncthreads();
if (tid , 32) { // unroll last 5 predicated steps
shared[tid] 1 5 shared[tid1 16];
shared[tid] 1 5 shared[tid1 8];
shared[tid] 1 5 shared[tid1 4];
shared[tid] 1 5 shared[tid1 2];
shared[tid] 1 5 shared[tid1 1];

}

a. Do you believe that the performance will be improved? Why or

why not?

b. Should the engineer receive a reward or a lecture? Why?

148 CHAPTER 6 Performance Considerations

References
CUDA Occupancy Calculator.

CUDA C (2012). Best Practices Guide, v. 4.2.

Ryoo, S., Rodrigues, C., Stone, S., Baghsorkhi, S., Ueng, S., Stratton, J., & Hwu,

W. Program optimization space pruning for a multithreaded GPU, Proceedings

of the 6th ACM/IEEE International Symposium on Code Generation and

Optimization, April 6�9, 2008.

Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S., Stone, S. S., Kirk, D. B., & Hwu,

W. W. Optimization principles and application performance evaluation of a

multithreaded GPU using CUDA, Proceedings of the 13th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, February

2008.

149References

This page intentionally left blank

CHAPTER

7Floating-Point Considerations

CHAPTER OUTLINE

7.1 Floating-Point Format ... 152

7.2 Representable Numbers.. 155

7.3 Special Bit Patterns and Precision in IEEE Format.. 160

7.4 Arithmetic Accuracy and Rounding.. 161

7.5 Algorithm Considerations.. 162

7.6 Numerical Stability .. 164

7.7 Summary ... 169

7.8 Exercises... 170

References ... 171

In the early days of computing, floating-point arithmetic capability was

found only in mainframes and supercomputers. Although many micropro-

cessors designed in the 1980s started to have floating-point coprocessors,

their floating-point arithmetic speed was extremely slow, about three

orders of magnitude slower than that of mainframes and supercomputers.

With advances in microprocessor technology, many microprocessors

designed in the 1990s, such as Intel Pentium III and AMD Athlon, started

to have high-performance floating-point capabilities that rival supercompu-

ters. High-speed floating-point arithmetic has become a standard feature

for microprocessors and GPUs today. As a result, it has also become

important for application programmers to understand and take advantage

of floating-point arithmetic in developing their applications. In particular,

we will focus on the accuracy of floating-point arithmetic, the precision of

floating-point number representation, and how they should be taken into

consideration in parallel computing.

151

7.1 FLOATING-POINT FORMAT
The IEEE-754 Floating-Point Standard is an effort for the computer manu-

facturers to conform to a common representation and arithmetic behavior

for floating-point data [IEEE2008]. Most, if not all, of the computer manu-

facturers in the world have accepted this standard. In particular, virtually all

microprocessors designed in the future will either fully conform to or

almost fully conform to the IEEE-754 Floating-Point Standard and its more

recent IEEE-754 2008 revision [IEEE2008]. Therefore, it is important for

application developers to understand the concept and practical considera-

tions of this standard.

A floating-point number system starts with the representation of a

numerical value as bit patterns. In the IEEE-754 Floating-Point Standard,

a numerical value is represented in three groups of bits: sign (S), exponent

(E), and mantissa (M). With some exceptions that will be detailed later,

each (S, E, M) pattern uniquely identifies a numeric value according to the

following formula:

value5 ð21ÞS 3 1:M3 f2E2biasg (7.1)

The interpretation of S is simple: S5 0 means a positive number and

S5 1 a negative number. Mathematically, any number, including 21,

when raised to the power of 0, results in 1. Thus, the value is positive. On

the other hand, when 21 is raised to the power of 1, it is 21 itself. With

a multiplication by 21, the value becomes negative. The interpretation of

M and E bits are, however, much more complex. We will use the follow-

ing example to help explain the interpretation of M and E bits.

Assume for the sake of simplicity that each floating-point number consists

of a 1-bit sign, 3-bit exponent, and 2-bit mantissa. We will use this hypotheti-

cal 6-bit format to illustrate the challenges involved in encoding E and M. As

we discuss numeric values, we will sometimes need to express a number

either in decimal place value or in binary place value. Numbers expressed in

decimal place value will have subscript D and those as binary place value

will have subscript B. For example, 0.5D (53 1021 since the place to the right

of the decimal point carries a weight of 1021) is the same as 0.1B (13 221

since the place to the right of the decimal point carries a weight of 221).

Normalized Representation of M

Equation (7.1) requires that all values are derived by treating the mantissa

value as 1.M, which makes the mantissa bit pattern for each floating-point

152 CHAPTER 7 Floating-Point Considerations

number unique. For example, the only one mantissa bit pattern allowed for

0.5D is the one where all bits that represent M are 0’s:

0:5D5 1:0B3 221

Other potential candidates would be 0.1B3 20 and 10.0B3 222, but nei-

ther fits the form of 1.M. The numbers that satisfy this restriction will be

referred to as normalized numbers. Because all mantissa values that satisfy

the restriction are of the form 1.XX, we can omit the “1.” part from the

representation. Therefore, the mantissa value of 0.5 in a 2-bit mantissa

representation is 00, which is derived by omitting “1.” from 1.00. This

makes a 2-bit mantissa effectively a 3-bit mantissa. In general, with IEEE

format, an m-bit mantissa is effectively an (m1 1)-bit mantissa.

Excess Encoding of E

The number of bits used to represent E determines the range of numbers

that can be represented. Large positive E values result in very large

floating-point absolute values. For example, if the value of E is 64, the

floating-point number being represented is between 264 (. 1018) and

265. You would be extremely happy if this was the balance of your

savings account! Large negative E values result in very small floating-

point values. For example, if the E value is 264, the number being

represented is between 2264 (, 10218) and 2263. This is a very tiny frac-

tional number. The E field allows a floating-point number format to

represent a wider range of numbers than integer number formats. We

will come back to this point when we look at the representable numbers

of a format.

The IEEE standard adopts an excess or biased encoding convention for

E. If e bits are used to represent the exponent E, (2e21 21) is added to the

2’s complement representation for the exponent to form its excess repre-

sentation. A 2’s complement representation is a system where the negative

value of a number can be derived by first complementing every bit of the

value and add 1 to the result. In our 3-bit exponent representation, there

are 3 bits in the exponent (e5 3). Therefore, the value 2321 215 011

will be added to the 2’s complement representation of the exponent value.

The advantage of excess representation is that an unsigned comparator

can be used to compare signed numbers. As shown in Figure 7.1, in our

3-bit exponent representation, the excess-3 bit patterns increase monotoni-

cally from �3 to 3 when viewed as unsigned numbers. We will refer to

each of these bit patterns as the code for the corresponding value. For

1537.1 Floating-Point Format

example, the code for �3 is 000 and that for 3 is 110. Thus, if one uses an

unsigned number comparator to compare excess-3 code for any number

from �3 to 3, the comparator gives the correct comparison result in terms

of which number is larger, smaller, etc. For another example, if one com-

pares excess-3 codes 001 and 100 with an unsigned comparator, 001 is

smaller than 100. This is the right conclusion since the values that they

represent, 22 and 1, have exactly the same relation. This is a desirable

property for hardware implementation since unsigned comparators are

smaller and faster than signed comparators.

Figure 7.1 also shows that the pattern of all 1’s in the excess represen-

tation is a reserved pattern. Note that a 0 value and an equal number of

positive and negative values results in an odd number of patterns. Having

the pattern 111 as either even number or odd number would result in an

unbalanced number of even and odd numbers. The IEEE standard uses

this special bit pattern in special ways that will be discussed later.

Now we are ready to represent 0.5D with our 6-bit format:

0:5D5 0 010 00; where S5 0; E5 010; and M5 ð1:Þ00
That is, the 6-bit representation for 0.5D is 001000.

In general, with a normalized mantissa and excess-coded exponent, the

value of a number with an n-bit exponent is

ð21ÞS 3 1:M3 2ðE2ð2^ðn21Þ21ÞÞ

2’s complement Decimal value Excess-3

101 –3 000

110 –2 001

111 –1 010

000 0 011

001 1 100

010 2 101

011 3 110

100 Reserved pattern 111

FIGURE 7.1

Excess-3 encoding, sorted by excess-3 ordering.

154 CHAPTER 7 Floating-Point Considerations

7.2 REPRESENTABLE NUMBERS
The representable numbers of a number format are the numbers that can

be exactly represented in the format. For example, if one uses a 3-bit

unsigned integer format, the representable numbers are shown in

Figure 7.2.

Neither 21 nor 9 can be represented in the format given in Figure 7.2.

We can draw a number line to identify all the representable numbers, as

shown in Figure 7.3 where all representable numbers of the 3-bit unsigned

integer format are marked with stars.

The representable numbers of a floating-point format can be visualized

in a similar manner. In Figure 7.4, we show all the representable numbers

of what we have so far and two variations. We use a 5-bit format to keep

the size of the table manageable. The format consists of 1-bit S, 2-bit E

(excess-1 coded), and 2-bit M (with the “1.” part omitted). The no-zero

column gives the representable numbers of the format we discussed thus

far. Readers are encouraged to generate at least part of the no-zero column

based on the formula given in Section 7.1. Note that with this format, 0 is

not one of the representable numbers.

A quick look at how these representable numbers populate the number

line, as shown in Figure 7.5, provides further insights about these

representable numbers. In Figure 7.5, we show only the positive

000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

FIGURE 7.2

Representable numbers of a 3-bit unsigned integer format.

0 71 42 3 5 6–1 98

FIGURE 7.3

Representable numbers of a 3-bit unsigned integer format.

1557.2 Representable Numbers

representable numbers. The negative numbers are symmetric to their posi-

tive counterparts on the other side of 0.

We can make five observations. First, the exponent bits define the

major intervals of representable numbers. In Figure 7.5, there are three

major intervals on each side of 0 because there are two exponent bits.

Basically, the major intervals are between powers of 2’s. With 2 bits of

exponents and one reserved bit pattern (11), there are three powers of 2

(221 5 0.5D, 205 1.0D, 215 2.0D), and each starts an interval of

representable numbers. Keep in mind that there are also three powers of 2

(2 221 520.5D, 220521.0D, 221522.0D) to the left of 0 that are

not shown in Figure 7.5.

The second observation is that the mantissa bits define the number of

representable numbers in each interval. With two mantissa bits, we have

four representable numbers in each interval. In general, with N mantissa

bits, we have 2N representable numbers in each interval. If a value to be

represented falls within one of the intervals, it will be rounded to one of

No-zero Abrupt underflow Denorm

E M S=0 S=1 S=0 S=1 S=0 S=1

00

00 2–1

20

21

2–1 +1*2–3

2–1 +2*2–3

2–1 +3*2–3

20 +1*2–2

20 +2*2–2

20 +3*2–2

21 +1*2–1

21 +2*2–1

21 +3*2–1

20

21

1*2–2

2*2–2

3*2–2

20 +1*2–2

20 +2*2–2

20 +3*2–2

21 +1*2–1

21 +2*2–1

21 +3*2–1

20

21

20 +1*2–2

20 +2*2–2

20 +3*2–2

21 +1*2–1

21 +2*2–1

21 +3*2–1

–(2–1)

–(20)

–(21)

–(2–1 +1*2–3)

–(2–1 +2*2–3)

–(2–1 +3*2–3)

–1*2–2

–2*2–2

–3*2–2

–(20 +1*2–2)

–(20 +2*2–2)

–(20 +3*2–2)

–(21 +1*2–1)

–(21 +2*2–1)

–(21 +3*2–1)

–(20)

–(21)

–(20 +1*2–2)

–(20 +2*2–2)

–(20 +3*2–2)

–(21 +1*2–1)

–(21 +2*2–1)

–(21 +3*2–1)

–(20)

–(21)

–(20 +1*2–2)

–(20 +2*2–2)

–(20 +3*2–2)

–(21 +1*2–1)

–(21 +2*2–1)

–(21 +3*2–1)

0 0 0 0

01 0 0

10 0 0

11 0 0

01

00

01

10

11

10

00

01

10

11

Reserved pattern11

FIGURE 7.4

Representable numbers of no-zero, abrupt underflow, and denorm formats.

0 1 2 3 4

FIGURE 7.5

Representable numbers of the no-zero representation.

156 CHAPTER 7 Floating-Point Considerations

these representable numbers. Obviously, the larger the number of

representable numbers in each interval, the more precisely we can repre-

sent a value in the region. Therefore, the number of mantissa bits deter-

mines the precision of the representation.

The third observation is that 0 is not representable in this format. It is

missing from the representable numbers in the no-zero column of

Figure 7.5. Because 0 is one of the most important numbers, not being

able to represent 0 in a number representation system is a serious defi-

ciency. We will address this deficiency soon.

The fourth observation is that the representable numbers become closer

to each other toward the neighborhood of 0. Each interval is half the size

of the previous interval as we move toward 0. In Figure 7.5, the rightmost

interval is of width 2, the next one is of width 1, and the next one is of

width 0.5. While not shown in Figure 7.5, there are three intervals to the

left of 0. They contain the representable negative numbers. The leftmost

interval is of width 2, the next one is of width 1, and the next one is of

width 0.5. Since every interval has the same representable numbers, four

in Figure 7.5, the representable numbers becomes closer to each other as

we move toward 0. In other words, the representative numbers become

closer as their absolute values become smaller. This is a desirable trend,

because as the absolute value of these numbers become smaller, it is more

important to represent them more precisely. The distance between

representable numbers determines the maximal rounding error for a value

that falls into the interval. For example, if you have one billion dollars in

your bank account, you may not even notice that there is a 1 dollar round-

ing error in calculating your balance. However, if the total balance is 10

dollars, having a 1 dollar rounding error would be much more noticeable!

The fifth observation is that, unfortunately, the trend of increasing den-

sity of representable numbers and thus increasing precision of representing

numbers in the intervals as we move toward 0 does not hold for the very

vicinity of 0. That is, there is a gap of representable numbers in the imme-

diate vicinity of 0. This is because the range of normalized mantissa

precludes 0. This is another serious deficiency. The representation intro-

duces significantly larger (43) errors when representing numbers between

0 and 0.5 compared to the errors for the larger numbers between 0.5 and

1.0. In general, with m bits in the mantissa, this style of representation

would introduce 2m times more error in the interval closest to 0 than the

next interval. For numerical methods that rely on accurate detection

of convergence conditions based on very small data values, such defi-

ciency can cause instability in execution time and accuracy of results.

1577.2 Representable Numbers

Furthermore, some algorithms generate small numbers and eventually use

them as denominators. The errors in representing these small numbers can

be greatly magnified in the division process and cause numerical instabil-

ity in these algorithms.

One method that can accommodate 0 into a normalized floating-point

number system is the abrupt underflow convention, which is illustrated in the

second column of Figure 7.4. Whenever E is 0, the number is interpreted as

0. In our 5-bit format, this method takes away eight representable numbers

(four positive and four negative) in the vicinity of 0 (between 21.0 and

11.0) and makes them all 0. Due to its simplicity, some mini-computers in

the 1980s used abrupt underflow. Even to this day, some arithmetic units that

need to operate in high speed still use abrupt underflow convention.

Although this method makes 0 a representable number, it creates an even

larger gap between representable numbers in 0’s vicinity, as shown in

Figure 7.6. It is obvious, when compared with Figure 7.5, that the gap of

representable numbers has been enlarged significantly (by 23) from 0.5 to

1.0. As we explained before, this is very problematic for many numerical

algorithms of which the correctness reply on accurate representation of small

numbers near 0.

The actual method adopted by the IEEE standard is called denormaliza-

tion. The method relaxes the normalization requirement for numbers very

close to 0. As shown later in Figure 7.8, whenever E5 0, the mantissa is

no longer assumed to be of the form 1.XX. Rather, it is assumed to be 0.

XX. The value of the exponent is assumed to be the same as the previous

interval. For example, in Figure 7.4, the denormalized representation

00001 has exponent value 00 and mantissa value 01. The mantissa is

assumed to be 0.01 and the exponent value is assumed to be the same as

that of the previous interval: 0 rather than 21. That is, the value that

0 1 2 3 4

FIGURE 7.6

Representable numbers of the abrupt underflow format.

0 1 2

FIGURE 7.7

Representable numbers of a denormalization format.

158 CHAPTER 7 Floating-Point Considerations

00001 represents is now 0.013 205 222. Figure 7.7 shows the

representable numbers for the denormalized format. The representation

now has uniformly spaced representable numbers in the close vicinity of

0. Intuitively, the denormalized convention takes the four numbers in the

last interval of representable numbers of a no-zero representation and

spreads them out to cover the gap area. This eliminates the undesirable

gap in the previous two methods. Note that the distances between

representable numbers in the last two intervals are actually identical. In

general, if the n-bit exponent is 0, the value is

0:M3 222ð̂n11Þ12

As we can see, the denormalization formula is quite complex. The

hardware also needs to be able to detect whether a number falls into the

denormalized interval and choose the appropriate representation for that

number. The amount of hardware required to implement denormalization

in high speed is quite significant. Implementations that use a moderate

amount of hardware often introduce thousands of clock cycles of delay

whenever a denormalized number needs to be generated or used. This was

the reason why early generations of CUDA devices did not support denor-

malization. However, virtually all recent generations of CUDA devices,

thanks to the increasing number of available transistors of more recent fab-

rication processes, support denormalization. More specifically, all CUDA

devices of compute capability 1.3 and later support denormalized double-

precision operands, and all devices of compute capability 2.0 and later

support denormalized single-precision operands.

In summary, the precision of a floating-point representation is mea-

sured by the maximal error that we can introduce to a floating-point

number by representing that number as one of the representable numbers.

The smaller the error is, the higher the precision. The precision of a

floating-point representation can be improved by adding more bits to man-

tissa. Adding 1 bit to the representation of the mantissa improves the

exponent mantissa meaning

11…1 ≠ 0 NaN

11…1 = 0 (–1)S *∞
00…0 ≠ 0 denor malized

00…0 = 0 0

FIGURE 7.8

Special bit patterns in the IEEE standard format.

1597.2 Representable Numbers

precision by reducing the maximal error by half. Thus, a number system

has higher precision when it uses more bits for mantissa. This is reflected

in double-precision versus single-precision numbers in the IEEE standard.

7.3 SPECIAL BIT PATTERNS AND PRECISION IN IEEE
FORMAT

We now turn to more specific details of the actual IEEE format. When all

exponent bits are 1’s, the number represented is an infinity value if the

mantissa is 0. It is a not a number (NaN) if the mantissa is not 0. All

special bit patterns of the IEEE floating-point format are described in

Figure 7.8.

All other numbers are normalized floating-point numbers. Single-

precision numbers have 1-bit S, 8-bit E, and 23-bit M. Double-precision

numbers have 1-bit S, 11-bit E, and 52-bit M. Since a double-precision

number has 29 more bits for mantissa, the largest error for representing a

number is reduced to 1/229 of that of the single-precision format! With the

additional 3 bits of exponent, the double-precision format also extends the

number of intervals of representable numbers. This extends the range of

representable numbers to very large as well as very small values.

All representable numbers fall between 2N (negative infinity) and

1N (positive infinity). An N can be created by overflow, for example, a

large number divided by a very small number. Any representable number

divided by 1N or 2N results in 0.

NaN is generated by operations of which the input values do not make

sense, for example, 0/0, 03N, N/N, N2N. They are also used for

data that has not been properly initialized in a program. There are two

types of NaNs in the IEEE standard: signaling and quiet. Signaling NaNs

(sNaNs) should be represented with the most significant mantissa bit

cleared, whereas quiet NaNs (qNaNs) are represented with the most signif-

icant mantissa bit set.

An sNaN causes an exception when used as input to arithmetic opera-

tions. For example, the operation (1.0 1 sNaN) raises an exception signal

to the operating system. Signaling NaNs are used in situations where the

programmer would like to make sure that the program execution be inter-

rupted whenever any NaN values are used in floating-point computations.

These situations usually mean that there is something wrong with the exe-

cution of the program. In mission-critical applications, the execution

cannot continue until the validity of the execution can be verified with a

160 CHAPTER 7 Floating-Point Considerations

separate means. For example, software engineers often mark all the unini-

tialized data as sNaN. This practice ensures the detection of using uninitia-

lized data during program execution. The current generation of GPU

hardware does not support sNaN. This is due to the difficulty of support-

ing accurate signaling during massively parallel execution.

A qNaN generates another qNaN without causing an exception when

used as input to arithmetic operations. For example, the operation (1.0 1
qNaN) generates a qNaN. Quiet NaNs are typically used in applications

where the user can review the output and decide if the application should

be rerun with a different input for more valid results. When the results are

printed, qNaNs are printed as “NaN” so that the user can spot them in the

output file easily.

7.4 ARITHMETIC ACCURACY AND ROUNDING
Now that we have a good understanding of the IEEE floating-point format,

we are ready to discuss the concept of arithmetic accuracy. While the

precision is determined by the number of mantissa bits used in a floating-

point number format, the accuracy is determined by the operations

performed on a floating number. The accuracy of a floating-point arithme-

tic operation is measured by the maximal error introduced by the opera-

tion. The smaller the error is, the higher the accuracy. The most common

source of error in floating-point arithmetic is when the operation generates

a result that cannot be exactly represented and thus requires rounding.

Rounding occurs if the mantissa of the result value needs too many bits to

be represented exactly. For example, a multiplication generates a product

value that consists of twice the number of bits than either of the input

values. For another example, adding two floating-point numbers can be

done by adding their mantissa values together if the two floating-point

values are identical exponents. When two input operands to a floating-

point addition have different exponents, the mantissa of the one with the

smaller exponent is repeatedly divided by 2 or right-shifted (i.e., all the

mantissa bits are shifted to the right by 1 bit position) until the exponents

are equal. As a result, the final result can have more bits than the format

can accommodate.

Alignment shifting of operands can be illustrated with a simple exam-

ple based on the 5-bit representation in Figure 7.4. Assume that we need

to add 1.00B 2222(0, 00, 01) to 1.003 21D (0, 10, 00); that is, we need to

perform 1.00B3 211 1.00B 3 222. Due to the difference in exponent

1617.4 Arithmetic Accuracy and Rounding

values, the mantissa value of the second number needs to be right-shifted

by 3 bit positions before it is added to the first mantissa value. That is, the

addition becomes 1.00B3 211 0.001B3 21. The addition can now be per-

formed by adding the mantissa values together. The ideal result would be

1.001B3 21. However, we can see that this ideal result is not a

representable number in a 5-bit representation. It would have required

three mantissa bits and there are only two mantissa bits in the format.

Thus, the best one can do is to generate one of the closest

representable numbers, which is either 1.01B3 21 or 1.00B3 21. By doing

so, we introduce an error, 0.001B3 21, which is half the place value of the

least significant place. We refer to this as 0.5D ULP (units in the last

place). If the hardware is designed to perform arithmetic and rounding

operations perfectly, the most errors that one should introduce should be

no more than 0.5D ULP. To our knowledge, this is the accuracy achieved

by the addition and subtraction operations in all CUDA devices today.

In practice, some of the more complex arithmetic hardware units, such

as division and transcendental functions, are typically implemented with

polynomial approximation algorithms. If the hardware does not use a suffi-

cient number of terms in the approximation, the result may have an error

larger than 0.5D ULP. For example, if the ideal result of an inversion oper-

ation is 1.00B3 21 but the hardware generates a 1.10B3 21 due to the use

of an approximation algorithm, the error is 2D ULP since the error

(1.10B2 1.00B5 0.10B) is two times bigger than the units in the last place

(0.01B). In practice, the hardware inversion operations in some early

devices introduce an error that is twice the place value of the least place

of the mantissa, or 2 ULP. Thanks to the more abundant transistors in

more recent generations of CUDA devices, their hardware arithmetic

operations are much more accurate.

7.5 ALGORITHM CONSIDERATIONS
Numerical algorithms often need to sum up a large number of values. For

example, the dot product in matrix multiplication needs to sum up pair-

wise products of input matrix elements. Ideally, the order of summing

these values should not affect the final total since addition is an associa-

tive operation. However, with finite precision, the order of summing these

values can affect the accuracy of the final result. For example, if we need

to perform a sum reduction on four numbers in our 5-bit representation:

1.00B3 201 1.00B3 201 1.00B3 2221 1.00B3 222.

162 CHAPTER 7 Floating-Point Considerations

If we add up the numbers in strict sequential order, we have the follow-

ing sequence of operations:

1:00B3 20 1 1:00B3 20 1 1:00B3 2221 1:00B3 2225 1:00B3 21

1 1:00B3 222 1 1:00B3 222 5 1:00B3 211 1:00B3 2225 1:00B3 21

Note that in the second and third step, the smaller operand simply dis-

appears because they are too small compared to the larger operand.

Now, let’s consider a parallel algorithm where the first two values are

added and the second two operands are added in parallel. The algorithm

then adds up the pairwise sum:

ð1:00B3 20 1 1:00B3 20Þ1 ð1:00B3 222 1 1:00B3 222Þ5 1:00B3 21

1 1:00B3 2215 1:01B3 21

Note that the results are different from the sequential result! This is

because the sum of the third and fourth values is large enough that it now

affects the addition result. This discrepancy between sequential algorithms

and parallel algorithms often surprises application developers who are not

familiar with floating-point precision and accuracy considerations.

Although we showed a scenario where a parallel algorithm produced a

more accurate result than a sequential algorithm, readers should be able to

come up with a slightly different scenario where the parallel algorithm

produces a less accurate result than a sequential algorithm. Experienced

application developers either make sure that the variation in the final result

can be tolerated, or ensure that the data is sorted or grouped in a way that

the parallel algorithm results in the most accurate results.

A common technique to maximize floating-point arithmetic accuracy is

to presort data before a reduction computation. In our sum reduction

example, if we presort the data according to ascending numerical order,

we will have the following:

1:00B3 222 1 1:00B3 222 1 1:00B3 201 1:00B3 20

When we divide up the numbers into groups in a parallel algorithm,

say the first pair in one group and the second pair in another group, num-

bers with numerical values close to each other are in the same group.

Obviously, the sign of the numbers needs to be taken into account during

the presorting process. Therefore, when we perform addition in these

groups, we will likely have accurate results. Furthermore, some parallel

algorithms use each thread to sequentially reduce values within each

1637.5 Algorithm Considerations

group. Having the numbers sorted in ascending order allows a sequential

addition to get higher accuracy. This is a reason why sorting is frequently

used in massively parallel numerical algorithms. Interested readers should

study more advanced techniques such as compensated summation algo-

rithm, also known as Kahan’s summation algorithm, for getting an even

more robust approach to accurate summation of floating-point values

[Kahan1965].

7.6 NUMERICAL STABILITY
While the order of operations may cause variation in the numerical out-

come of reduction operations, it may have even more serious implications

on some types of computation such as solvers for linear systems of equa-

tions. In these solvers, different numerical values of input may require dif-

ferent ordering of operations to find a solution. If an algorithm fails to

follow a desired order of operations for an input, it may fail to find a solu-

tion even though the solution exists. Algorithms that can always find an

appropriate operation order and thus find a solution to the problem as long

as it exists for any given input values are called numerically stable.

Algorithms that fall short are referred to as numerically unstable.

In some cases, numerical stability considerations can make it more dif-

ficult to find efficient parallel algorithms for a computational problem. We

can illustrate this phenomenon with a solver that is based on Gaussian

elimination. Consider the following system of linear equations:

3X1 5Y 1 2Z5 19 (equation 1)

2X1 3Y 1 Z 5 11 (equation 2)

X1 2Y 1 2Z 5 11 (equation 3)

As long as the three planes represented by these equations have an

intersection point, we can use Gaussian elimination to derive the solution

that gives the coordinate of the intersection point. We show the process of

applying Gaussian elimination to this system in Figure 7.9, where vari-

ables are systematically eliminated from lower positioned equations.

In the first step, all equations are divided by their coefficient for the X var-

iable: 3 for equation 1, 2 for equation 2, and 1 for equation 3. This makes the

coefficients for X in all equations the same. In step two, equation 1 is

164 CHAPTER 7 Floating-Point Considerations

subtracted from equations 2 and 3. These subtractions eliminate variable X

from equations 2 and 3, as shown in Figure 7.9.

We can now treat equations 2 and 3 as a smaller system of equations

with one fewer variable than the original equation. Since they do not have

variable X, they can be solved independently from equation 1. We can

make more progress by eliminating variable Y from equation 3. This is done

in step 3 by dividing equations 2 and 3 by the coefficients for their Y vari-

ables: 21/6 for equation 2 and 1/3 for equation 3. This makes the coeffi-

cients for Y in both equations 2 and 3 the same. In step four, equation 2 is

subtracted from equation 3, which eliminates variable Y from equation 3.

For systems with a larger number of equations, the process would be

repeated more. However, since we have only three variables in this exam-

ple, the equation 3 has only the Z variable. We simply need to divide

3X + 5Y +2Z = 19

2X + 3Y + Z = 11

X + 2Y + 2Z = 11

Original

X + 5/3Y + 2/3Z = 19/3

X + 3/2Y + 1/2Z = 11/2

X + 2Y + 2Z = 11
Step 1: divide equation 1 by 3,
equation 2 by 2

X + 5/3Y +2/3Z = 19/3

–1/6Y –1/6Z = –5/6

1/3Y + 4/3Z = 14/3
Step 2: subtract equation 1 from
equation 2 and equation 3

X + 5/3Y +2/3Z = 19/3

Y + Z = 5

Y + 4Z = 14

Step 3: divide equation 2 by -1/6
and equation 3 by 1/3

X + 5/3Y +2/3Z = 19/3

Y + Z = 5

+ 3Z = 9
Step 4: subtract equation 2 from
equation 3

X + 5/3Y +2/3Z = 19/3

Y + Z = 5

Z = 3
Step 5 : divide equation 3 by 3
Solution for Z!

X + 5/3Y +2/3Z = 19/3

Y = 2

Z = 3
Step 6: substitute Z solution into
equation 2. Solution for Y!

X = 1

Y = 2

Z = 3
Step 7: substitute Y and Z into

equation 1. Solution for X!

FIGURE 7.9

Gaussian elimination and backward substitution for solving systems of linear

equations.

1657.6 Numerical Stability

equation 3 by the coefficient for variable Z. This conveniently gives us the

solution Z5 3.

With the solution for the Z variable in hand, we can substitute the Z

value into equation 2 to get the solution Y5 2. We can then substitute

both Z5 3 and Y5 2 into equation 1 to get the solution X5 1. We now

have the complete solution for the original system. It should be obvious

why steps six and seven form the second phase of the method called back-

ward substitution. We go backwards from the last equation to the first

equation to get solutions for more and more variables.

In general, the equations are stored in matrix forms in computers. Since

all calculations only involve the coefficients and the right-side values, we

can just store these coefficients and right-side values in a matrix.

Figure 7.10 shows the matrix view of the Gaussian elimination and back

substitution process. Each row of the matrix corresponds to an original

equation. Operations on equations become operations on matrix rows.

3 5 2 19

2 3 1 11

1 2 2 11

Original

1 5/3 2/3 19/3

1 3/2 1/2 11/2

1 2 2 11

Step 1: divide row 1 by 3, row 2
by 2

1 5/3 2/3 19/3

–1/6 –1/6 –5/6

1/3 4/3 14/3

Step 2: subtract row 1 from row
2 and row 3

1 5/3 2/3 19/3

1 1 5

1 4 14

Step 3: divide row 2 by -1/6 and
row 3 by 1/3

1 5/3 2/3 19/3

1 1 5

3 9

Step 4: subtract row 2 from row 3

1 5/3 2/3 19/3

1 1 5

1 3

Step 5: divide equation 3 by 3
Solution for Z!

1 5/3 2/3 19/3

1 2

1 3

Step 6: substitute Z solution into
equation 2. Solution for Y!

1 1

1 2

1 3
Step 7: substitute Y and Z into
equation 1. Solution for X!

FIGURE 7.10

Gaussian elimination and backward substitution in matrix view.

166 CHAPTER 7 Floating-Point Considerations

After Gaussian elimination, the matrix becomes a triangular matrix.

This is a very popular type of matrix for various physics and mathematics

reasons. We see that the end goal is to make the coefficient part of the

matrix into a diagonal form, where each row has only a value 1 on the

diagonal line. This is called an identity matrix because the result of multi-

plying any matrix multiplied by an identity matrix is itself. This is also the

reason why performing Gaussian elimination on a matrix is equivalent to

multiplying the matrix by its inverse matrix.

In general, it is straightforward to design a parallel algorithm for the

Gaussian elimination procedure that we described in Figure 7.10. For

example, we can write a CUDA kernel and designate each thread to per-

form all calculations to be done on a row of the matrix. For systems that

can fit into shared memory, we can use a thread block to perform

Gaussian elimination. All threads iterate through the steps. After each divi-

sion step, all threads participate in barrier synchronization. They then all

perform a subtraction step, after which one thread will stop its participa-

tion since its designated row has no more work to do until the back substi-

tution phase. After the subtraction step, all threads need to perform barrier

synchronization again to ensure that the next step will be done with the

updated information. With systems of equations with many variables, we

can expect a reasonable amount of speedup from the parallel execution.

Unfortunately, the simple Gaussian elimination algorithm we have been

using can suffer from numerical instability. This can be illustrated with

the following example.

5Y 1 2Z 5 16 (equation 1)

2X1 3Y 1 Z 5 11 (equation 2)

X1 2Y1 2Z5 11 (equation 3)

We will encounter a problem when we perform step one of the algo-

rithm. The coefficient for the X variable in equation 1 is 0. We will not be

able to divide equation 1 by the coefficient for variable X and eliminate

the X variable from equations 2 and 3 by subtracting equation 1 from

equations 2 and 3. Readers should verify that this system of equation is

solvable and has the same solution X5 1, Y5 2, and Z5 3. Therefore, the

algorithm is numerically unstable. It can fail to generate a solution for cer-

tain input values even though the solution exists.

This is a well-known problem with Gaussian elimination algorithms

and can be addressed with a method commonly referred to as pivoting.

1677.6 Numerical Stability

The idea is to find one of the remaining equations of which the coefficient

for the lead variable is not 0. By swapping the current top equation with

the identified equation, the algorithm can successfully eliminate the lead

variable from the rest of the equations. If we apply pivoting to the three

equations, we end up with the following set.

2X1 3Y1 Z5 11 (equation 1 ’, original equation 2)

5Y 1 2Z5 16 (equation 2 ’, original equation 1)

X1 2Y 1 2Z5 11 (equation 3 ’, original equation 3)

Note that the coefficient for X in equation 10 is no longer 0. We can

proceed with Gaussian elimination, as illustrated in Figure 7.11.

Readers should follow the steps in Figure 7.11. The most important

additional insight is that some equations may not have the variable that

the algorithm is eliminating at the current step (see row 2 of step one in

5 2 16

2 3 1 11

1 2 2 11

Original

1 3/2 1/2 11/2

1 2/5 16/5

1 3 11

Step 1: divide row 1 by 3, no
need to divide row 2 or row 3

1 3/2 1/2 11/2

5 2 16

1 2 2 11

Step 2: subtract row 1 from row 3
(column 1 of row 2 is already 0)

1 3/2 1/2 11/2

5 2 16

1/2 3/2 11/2

Step 3: divide row 2 by 5 and row
3 by 1/2

Step 4: subtract row 2 from row 3

1 3/2 1/2 11/2

1 2/5 16/5

13/5 39/5
Step 5: divide row 3 by 13/5
Solution for Z!

1 5/3 2/3 19/3

1 2/5 16/5

1 3

Step 6: substitute Z solution into
equation 2. Solution for Y!

1 1

1 2

1 3

Step 7: substitute Y and Z into
equation 1. Solution for X!

2 3 1 11

5 2 16

1 2 2 11
Pivoting: Swap row 1 (Equation1)
with row 2 (Equation 2)

1 5/3 2/3 19/3

1 2

1 3

FIGURE 7.11

Gaussian elimination with pivoting.

168 CHAPTER 7 Floating-Point Considerations

Figure 7.11). The designated thread does not need to do the division on

the equation.

In general, the pivoting step should choose the equation with the largest

absolute coefficient value among all the lead variables and swap its equa-

tion (row) with the current top equation, as well as swap the variable (col-

umn) with the current variable. While pivoting is conceptually simple, it

can incur significant implementation complexity and performance over-

head. In the case of our simple CUDA kernel implementation, recall that

each thread is assigned a row. Pivoting requires an inspection and perhaps

swapping of coefficient data spread across these threads. This is not a big

problem if all coefficients are in the shared memory. We can run a parallel

reduction using threads in the block as long as we control the level of con-

trol flow divergence within warps.

However, if the system of linear equations is being solved by multiple

thread blocks or even multiple nodes of a compute cluster, the idea of

inspecting data spread across multiple thread blocks or multiple compute

cluster nodes can be an extremely expensive proposition. This is the main

motivation for communication-avoiding algorithms that avoid a global

inspection of data such as pivoting [Ballard2011]. In general, there are

two approaches to this problem. Partial pivoting restricts the candidates of

the swap operation to come from a localized set of equations so that the

cost of global inspection is limited. This can, however, slightly reduce the

numerical accuracy of the solution. Researchers have also demonstrated

that randomization tends to maintain a high level of numerical accuracy

for the solution.

7.7 SUMMARY
This chapter introduced the concepts of floating-point format and

representable numbers that are foundational to the understanding of preci-

sion. Based on these concepts, we also explained the denormalized num-

bers and why they are important in many numerical applications. In early

CUDA devices, denormalized numbers were not supported. However, later

hardware generations support denormalized numbers. We have also

explained the concept of arithmetic accuracy of floating-point operations.

This is important for CUDA programmers to understand the potential

lower accuracy of fast arithmetic operations implemented in the special

function units. More importantly, readers should now have a good under-

standing of why parallel algorithms often can affect the accuracy of

1697.7 Summary

calculation results and how one can potentially use sorting and other tech-

niques to improve the accuracy of their computation.

7.8 EXERCISES
7.1. Draw the equivalent of Figure 7.5 for a 6-bit format (1-bit sign, 3-bit

mantissa, 2-bit exponent). Use your result to explain what each

additional mantissa bit does to the set of representable numbers on

the number line.

7.2. Draw the equivalent of Figure 7.5 for another 6-bit format (1-bit sign,

2-bit mantissa, 3-bit exponent). Use your result to explain what each

additional exponent bit does to the set of representable numbers on

the number line.

7.3. Assume that in a new processor design, due to technical difficulty,

the floating-point arithmetic unit that performs addition can only do

“round to zero” (rounding by truncating the value toward 0). The

hardware maintains a sufficient number of bits that the only error

introduced is due to rounding. What is the maximal ulp error value

for add operations on this machine?

7.4. A graduate student wrote a CUDA kernel to reduce a large floating-

point array to the sum of all its elements. The array will always be

sorted with the smallest values to the largest values. To avoid branch

divergence, he decided to implement the algorithm of Figure 6.4.

Explain why this can reduce the accuracy of his results.

7.5. Assume that in a arithmetic unit design, the hardware implements an

iterative approximation algorithm that generates two additional

accurate mantissa bits of the result for the sin() function in each

clock cycle. The architect decided to allow the arithmetic function to

iterate nine clock cycles. Assume that the hardware fill in all

remaining mantissa bits with zeroes. What would be the maximal ulp
error of the hardware implementation of the sin() function in this

design for the IEEE single-precision numbers? Assume that the

omitted 1. mantissa bit must also be generated by the arithmetic unit.

170 CHAPTER 7 Floating-Point Considerations

References
Ballard, G., Demmel, J., Holtz, O., & Schwartz, O. (2011). Minimizing communi-

cation in numerical linear algebra. SIAM J. Matrix Analysis Applications, 32

(3), 866�901.

IEEE Microprocessor Standards Committee. Draft standard for floating-point

arithmetic P754. January 2008.

Kahan, W. (1965). Further remarks on reducing truncation errors. Communications

of the ACM, 8(1), 40. doi:10.1145/363707.363723.

171References

This page intentionally left blank

CHAPTER

8Parallel Patterns: Convolution
With an Introduction to Constant
Memory and Caches

CHAPTER OUTLINE

8.1 Background ... 174

8.2 1D Parallel Convolution—A Basic Algorithm .. 179

8.3 Constant Memory and Caching.. 181

8.4 Tiled 1D Convolution with Halo Elements... 185

8.5 A Simpler Tiled 1D Convolution—General Caching ... 192

8.6 Summary ... 193

8.7 Exercises... 194

In the next several chapters, we will discuss a set of important parallel

computation patterns. These patterns are the basis of many parallel algo-

rithms that appear in applications. We will start with convolution, which is

a popular array operation that is used in various forms in signal proces-

sing, digital recording, image processing, video processing, and computer

vision. In these application areas, convolution is often performed as a filter

that transforms signals and pixels into more desirable values. For example,

Gaussian filters are convolution filters that can be used to sharpen bound-

aries and edges of objects in images. Other filters smooth out the signal

values so that one can see the big-picture trend. They also form the basis

of a large number of force and energy calculation algorithms used in simu-

lation models. Convolution typically involves a significant number of

arithmetic operations on each data element. For large data sets such as

high-definition images and videos, the amount of computation can be very

large. Each output data element can be calculated independently of each

other, a desirable trait for massively parallel computing. On the other

hand, there is a substantial level of input data sharing among output data

173

elements with somewhat challenging boundary conditions. This makes

convolution an important use case of sophisticated tiling methods and

input data staging methods.

8.1 BACKGROUND
Mathematically, convolution is an array operation where each output data

element is a weighted sum of a collection of neighboring input elements.

The weights used in the weighted sum calculation are defined by an input

mask array, commonly referred to as the convolution kernel. Since there is

an unfortunate name conflict between the CUDA kernel functions and

convolution kernels, we will refer to these mask arrays as convolution

masks to avoid confusion. The same convolution mask is typically used

for all elements of the array.

In audio digital signal processing, the input data are in 1D form and

represent signal volume as a function of time. Figure 8.1 shows a convolu-

tion example for 1D data where a five-element convolution mask array M
is applied to a seven-element input array N. We will follow the C language

convention where N and P elements are indexed from 0 to 6 and M ele-

ments are indexed from 0 to 4. The fact that we use a five-element mask M
means that each P element is generated by a weighted sum of the corre-

sponding N element, up to two elements to the left and up to two elements

to the right. For example, the value of P[2] is generated as the weighted

sum of N[0] (N[2-2]) through N[4] (N[212]). In this example, we arbi-

trarily assume that the values of the N elements are 1, 2, 3, . . ., 7. The
M elements define the weights, the values of which are 3, 4, 5, 4, and 3 in

this example. Each weight value is multiplied to the corresponding N

N[0] PN[3]N[1] N[2] N[5]N[4] N[6] P[0] P[3]P[1] P[2] P[5]P[4] P[6]N

3 8 57 16 151 2 3 4 5 6 7 3 3

M[0] M[3]M[1] M[2] M[4]M

3 4 5 4 3 3 8 15 16 15

FIGURE 8.1

A 1D convolution example, inside elements.

174 CHAPTER 8 Parallel Patterns: Convolution

element values before the products are summed together. As shown in

Figure 8.1, the calculation for P[2] is as follows:
P[2] 5 N[0]�M[0]1 N[1]�M[1]1 N[2]�M[2]1 N[3]�M[3]1 N[4]�M[4]

5 1�31 2�41 3�51 4�41 5�3
5 57

In general, the size of the mask tends to be an odd number, which

makes the weighted sum calculation symmetric around the element being

calculated. That is, an odd number of mask elements define the weight to

be applied to the input element in the corresponding position of the output

element along with the same number of input elements on each side of

that position. In Figure 8.1, with a mask size of five elements, each output

element is calculated as the weighted sum of the corresponding input ele-

ment, two elements on the left and two elements on the right. For exam-

ple, P[2] is calculated as the weighted sum of N[2] along with N[0] and N
[1] on the left and N[3] and N[4] on the right.

In Figure 8.1, the calculation for P element P[i] can be viewed as an

inner product between the subarray of N that starts at N[i-2] and the M
array. Figure 8.2 shows the calculation for P[3]. The calculation is shifted

by one N element from that of Figure 8.1. That is the value of P[3] is the

weighted sum of N[1] (N[3-2]) through N[5] (312). We can think of

the calculation for P[3] as follows:
P[3] 5 N[1]�M[0]1 N[2]�M[1]1 N[3]�M[2]1 N[4]�M[3]1 N[5]�M[4]

5 2�31 3�41 4�51 5�41 6�3
5 76

Because convolution is defined in terms of neighboring elements,

boundary conditions naturally exist for output elements that are close to

the ends of an array. As shown in Figure 8.3, when we calculate P[1],
there is only one N element to the left of N[1]. That is, there are not

N[0] PN[3]N[1] N[2] N[5]N[4] N[6] P[0] P[3]P[1] P[2] P[5]P[4] P[6]N

3 8 57 76 151 2 3 4 5 6 7 3 3

M[0] M[3]M[1] M[2] M[4]M

3 4 5 4 3 6 12 20 20 18

FIGURE 8.2

1D convolution, calculation of P[3].

1758.1 Background

enough N elements to calculate P[1] according to our definition of convo-

lution. A typical approach to handling such a boundary condition is to

define a default value to these missing N elements. For most applications,

the default value is 0, which is what we use in Figure 8.3. For example, in

audio signal processing, we can assume that the signal volume is 0 before

the recording starts and after it ends. In this case, the calculation of P[1]
is as follows:

P[1] 5 0 � M[0]1 N[0]�M[1]1 N[1]�M[2]1 N[2]�M[3]1 N[3]�M[4]
5 0 � 31 1�41 2�51 3�41 4�3
5 38

The N element that does not exist in this calculation is illustrated as a

dashed box in Figure 8.3. It should be clear that the calculation of P[0]
will involve two missing N elements, both of which will be assumed to be

0 for this example. We leave the calculation of P[0] as an exercise. These

missing elements are typically referred to as ghost elements in literature.

There are also other types of ghost elements due to the use of tiling in par-

allel computation. These ghost elements can have significant impact on

the complexity and/or efficiency of tiling. We will come back to this point

soon.

For image processing and computer vision, input data is usually in 2D

form, with pixels in an x-y space. Image convolutions are also two dimen-

sional, as illustrated in Figure 8.4. In a 2D convolution, the mask M is a

2D array. Its x and y dimensions determine the range of neighbors to be

included in the weighted sum calculation. In Figure 8.4, we use a 53 5

mask for simplicity. In general, the mask does not have to be a square

array. To generate an output element, we take the subarray of which the

center is at the corresponding location in the input array N. We then

N PN[0] N[3]N[1] N[2] N[5]N[4] N[6] P[0] P[3]P[1] P[2] P[5]P[4] P[6]

3 38 57 16 151 2 3 4 5 6 7 3 30

Filled in

M M[0] M[3]M[1] M[2] M[4]

3 4 5 4 3 0 4 10 12 12

FIGURE 8.3

1D convolution boundary condition.

176 CHAPTER 8 Parallel Patterns: Convolution

perform pairwise multiplication between elements of the mask array and

those of the mask array. For our example, the result is shown as the 53 5

product array below N and P arrays in Figure 8.4. The value of the output

element is the sum of all elements of the product array.

The example in Figure 8.4 shows the calculation of P2,2. For brevity,

we will use Ny,x to denote N[y][x] in addressing a C array. Since N and P
are most likely dynamically allocated arrays, we will be using linearized

indices in our actual code examples. The subarray of N for calculating the

value of P2,2 span from N0,0 to N0,4 in the x or horizontal direction and

N0,0 to N4,0 in the y or vertical direction. The calculation is as follows:
P2,2 5 N0,0�M0,01 N0,1�M0,11 N0,2�M0,21 N0,3�M0,31 N0,4�M0,4

1 N1,0�M1,01 N1,1�M1,11 N1,2�M1,21 N1,3�M1,31 N1,4�M1,4
1 N2,0�M2,01 N2,1�M2,11 N2,2�M2,21 N2,3�M2,31 N2,4�M2,4
1 N3,0�M3,01 N3,1�M3,11 N3,2�M3,21 N3,3�M3,31 N3,4�M3,4
1 N4,0�M4,01 N4,1�M4,11 N4,2�M4,21 N4,3�M4,31 N4,4�M4,4

5 1�11 2�21 3�31 4�21 5�1
1 2�21 3�31 4�41 5�31 6�2
1 3�31 4�41 5�51 6�41 7�3
1 4�21 5�31 6�41 7�31 8�2

N P

1 2 3 4 5 6 7

2 3 4 5 6 7 8

1 2 3 4 5

2 3 4 5 62 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 5 6

2 3 4 5 6

3 4 321 6 7

4 5 6 7 84 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

4 5 6 7 8

5 6 7 8 5

7 8 9 0 1 2 3

1 2 3 2 1
2 3 4 3 2
3 4 5 4 3

1 4 9 8 5

4 9 16 15 12

9 16 25 24 21

M

3 4 5 4 3
2 3 4 3 2
1 2 3 2 1

9 16 25 24 21

8 15 24 21 16

5 12 21 16 55 12 21 16 5

FIGURE 8.4

A 2D convolution example.

1778.1 Background

1 5�11 6�21 7�31 8�21 5�1
5 11 41 91 81 5

1 41 91 161 151 12
1 91 161 251 241 21
1 81 151 241 211 16
1 51 121 211 161 5

5 321
Like 1D convolution, 2D convolution must also deal with boundary

conditions. With boundaries in both the x and y dimensions, there are

more complex boundary conditions: the calculation of an output ele-

ment may involve boundary conditions along a horizontal boundary, a

vertical boundary, or both. Figure 8.5 illustrates the calculation of a P
element that involves both boundaries. From Figure 8.5, the calculation

of P1,0 involves two missing columns and one missing horizontal row

in the subarray of N. Like in 1D convolution, different applications

assume different default values for these missing N elements. In our

example, we assume that the default value is 0. These boundary condi-

tions also affect the efficiency of tiling. We will come back to this

point soon.

N
P

1 2 3 4 5 6 7 1 2 3 4 5

2 3 4 5 6 7 8

3 4 5 6 7 8 9

112 3 4 5 6

3 4 5 6 7

5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

4 5 6 7 8

5 6 7 8 5

4

M

0 1 2

7 8 9 0 1 2 3

1 2 3 2 1
2 3 4 3 2
3 4 5 4 3

0 0 0 0 0

0 0 4 6 6

0 0 10 12 123 4 5 4 3
2 3 4 3 2
1 2 3 2 1

0 0 10 12 12

0 0 12 12 10

0 0 12 10 60 0 12 10 6

FIGURE 8.5

A 2D convolution boundary condition.

178 CHAPTER 8 Parallel Patterns: Convolution

8.2 1D PARALLEL CONVOLUTION—A BASIC ALGORITHM
As we mentioned in Section 8.1, the calculation of all output (P) elements

can be done in parallel in a convolution. This makes convolution an ideal

problem for parallel computing. Based on our experience in

matrix�matrix multiplication, we can quickly write a simple parallel con-

volution kernel. For simplicity, we will work on 1D convolution.

The first step is to define the major input parameters for the kernel. We

assume that the 1D convolution kernel receives five arguments: pointer to

input array N, pointer to input mask M, pointer to output array P, size of the
mask Mask_Width, and size of the input and output arrays Width. Thus, we
have the following set up:

__global__ void convolution_1D_basic_kernel(float �N, float
�M, float �P,

int Mask_Width, int Width) {
// kernel body
}
The second step is to determine and implement the mapping of threads

to output elements. Since the output array is one dimensional, a simple

and good approach is to organize the threads into a 1D grid and have each

thread in the grid calculate one output element. Readers should recognize

that this is the same arrangement as the vector addition example as far as

output elements are concerned. Therefore, we can use the following state-

ment to calculate an output element index from the block index, block

dimension, and thread index for each thread:
int i 5 blockIdx.x�blockDim.x1 threadIdx.x;
Once we determined the output element index, we can access the input

N elements and the mask M elements using offsets to the output element

index. For simplicity, we assume that Mask_Width is an odd number and

the convolution is symmetric, that is, Mask_Width is 2�n11 where n is an

integer. The calculation of P[i] will use N[i-n], N[i-n11],. . ., N[i-1],
N[i], N[i11], . . ., N[i1n-1], N[i1n]. We can use a simple loop to do

this calculation in the kernel:
float Pvalue 5 0;
int N_start_point 5 i - (Mask_Width/2);
for (int j 5 0; j , Mask_Width; j11) {

if (N_start_point1 j .5 0 && N_start_point1 j , Width) {
Pvalue 1 5 N[N_start_point1 j]�M[j];

}
}
P[i] 5 Pvalue;

1798.2 1D Parallel Convolution—A Basic Algorithm

The variable Pvalue will allow all intermediate results to be accumu-

lated in a register to save DRAM bandwidth. The for loop accumulates

all the contributions from the neighboring elements to the output P ele-

ment. The if statement in the loop tests if any of the input N elements

used are ghost elements, either on the left side or the right side of the N
array. Since we assume that 0 values will be used for ghost elements, we

can simply skip the multiplication and accumulation of the ghost element

and its corresponding N element. After the end of the loop, we release the

Pvalue into the output P element. We now have a simple kernel in

Figure 8.6.

We can make two observations about the kernel in Figure 8.6. First,

there will be control flow divergence. The threads that calculate the output

P elements near the left end or the right end of the P array will handle

ghost elements. As we showed in Section 8.1, each of these neighboring

threads will encounter a different number of ghost elements. Therefore,

they will all be somewhat different decisions in the if statement. The

thread that calculates P[0] will skip the multiply-accumulate statement

about half of the time, whereas the one that calculates P[1] will skip one

fewer times, and so on. The cost of control divergence will depend on

Width, the size of the input array, and Mask_Width (the size of the masks).

For large input arrays and small masks, the control divergence only occurs

to a small portion of the output elements, which will keep the effect of

control divergence small. Since convolution is often applied to large

images and spatial data, we typically expect that the effect of convergence

will be modest or insignificant.

__global__ void convolution_1D_basic_kernel(float *N, float *M, float *P,
int Mask Width int Width) {int Mask_Width, int Width) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

float Pvalue = 0;
int N_start_point = i - (Mask_Width/2);
for (int j = 0; j < Mask_Width; j++) {
if (N_start_point + j >= 0 && N_start_point + j < Width) {
Pvalue += N[N_start_point + j]*M[j];

}}
}
P[i] = Pvalue;

}

FIGURE 8.6

A 1D convolution kernel with boundary condition handling.

180 CHAPTER 8 Parallel Patterns: Convolution

A more serious problem is memory bandwidth. The ratio of floating-

point arithmetic calculation to global memory accesses is only about 1.0

in the kernel. As we have seen in the matrix�matrix multiplication exam-

ple, this simple kernel can only be expected to run at a small fraction of

the peak performance. We will discuss two key techniques for reducing

the number of global memory accesses in the next two sections.

8.3 CONSTANT MEMORY AND CACHING
We can make three interesting observations about the way the mask array

M is used in convolution. First, the size of the M array is typically small.

Most convolution masks are less than 10 elements in each dimension.

Even in the case of a 3D convolution, the mask typically contains only

less than 1,000 elements. Second, the contents of M are not changed

throughout the execution of the kernel. Third, all threads need to access

the mask elements. Even better, all threads access the M elements in the

same order, starting from M[0] and move by one element a time through

the iterations of the for loop in Figure 8.6. These two properties make the

mask array an excellent candidate for constant memory and caching.

Grid

Block (0, 0)

Shared Memory/L1 cache

Block (1, 0)

Shared Memory/L1 cache

Registers Registers Registers Registers

Global Memory

Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)

Host

Constant Memory

FIGURE 8.7

A review of the CUDA memory model.

1818.3 Constant Memory and Caching

The CUDA programming model allows programmers to declare a variable

in the constant memory. Like global memory variables, constant memory

variables are also visible to all thread blocks. The main difference is that a

constant memory variable cannot be changed by threads during kernel execu-

tion. Furthermore, the size of the constant memory can vary from device to

device. The amount of constant memory available on a device can be learned

with a device property query. Assume that dev_prop is returned by

cudaGetDeviceProperties(). The field dev_prop.totalConstMem indicates

the amount of constant memory available on a device is in the field.

To use constant memory, the host code needs to allocate and copy con-

stant memory variables in a different way than global memory variables.

To declare an M array in constant memory, the host code declares it as a

global variable as follows:
#define MAX_MASK_WIDTH 10
__constant__ float M[MAX_MASK_WIDTH];
This is a global variable declaration and should be outside any function

in the source file. The keyword __constant__ (two underscores on each

side) tells the compiler that array M should be placed into the device con-

stant memory.

Assume that the host code has already allocated and initialized the

mask in a mask h_M array in the host memory with Mask_Width elements.

The contents of the h_M can be transferred to M in the device constant

memory as follows:
cudaMemcpyToSymbol(M, h_M, Mask_Width�sizeof(float));
Note that this is a special memory copy function that informs the

CUDA runtime that the data being copied into the constant memory will

not be changed during kernel execution. In general, the use of the

cudaMemcpyToSymbol() function is as follows:
cudaMemcpyToSymbol(dest, src, size)
where dest is a pointer to the destination location in the constant mem-

ory, src is a pointer to the source data in the host memory, and size is

the number of bytes to be copied.

Kernel functions access constant memory variables as global variables.

Thus, their pointers do not need to be passed to the kernel as parameters.

We can revise our kernel to use the constant memory as shown in

Figure 8.8. Note that the kernel looks almost identical to that in

Figure 8.6. The only difference is that M is no longer accessed through a

pointer passed in as a parameter. It is now accessed as a global variable

declared by the host code. Keep in mind that all the C language scoping

rules for global variables apply here. If the host code and kernel code are

182 CHAPTER 8 Parallel Patterns: Convolution

in different files, the kernel code file must include the relevant external

declaration information to ensure that the declaration of M is visible to the

kernel.

Like global memory variables, constant memory variables are also

located in DRAM. However, because the CUDA runtime knows that con-

stant memory variables are not modified during kernel execution, it directs

the hardware to aggressively cache the constant memory variables during

kernel execution. To understand the benefit of constant memory usage, we

need to first understand more about modern processor memory and cache

hierarchies.

In modern processors, accessing a variable from DRAM takes hundreds

if not thousands of clock cycles. Also, the rate at which variables can be

accessed from DRAM is typically much lower than the rate at which pro-

cessors can perform an arithmetic operation. The long latency and limited

bandwidth of DRAM has been a major bottleneck in virtually all modern

processors commonly referred to as the memory wall. To mitigate the

effect of memory bottleneck, modern processors commonly employ on-

chip cache memories, or caches, to reduce the number of variables that

need to be accessed from DRAM (Figure 8.9).

Unlike CUDA shared memory, or scratchpad memories in general,

caches are “transparent” to programs. That is, to use CUDA shared mem-

ory, a program needs to declare variables as __shared__ and explicitly

move a global memory variable into a shared memory variable. On the

other hand, when using caches, the program simply accesses the original

variables. The processor hardware will automatically retain some of the

__global__ void convolution_1D_ba sic_kernel(float *N, float *P, int Mask_Width,
int Width) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

float Pvalue = 0;
int N_start_point = i - (Mask_Width/2);
for (int j = 0; j < Mask_Width; j++) {
if (N start point + j >= 0 && N start point + j < Width) {if (N_start_point + j >= 0 && N_start_point + j < Width) {
Pvalue += N[N_start_point + j]*M[j];

}
}
P[i] = Pvalue;

}

FIGURE 8.8

A 1D convolution kernel using constant memory for M.

1838.3 Constant Memory and Caching

most recently or frequently used variables in the cache and remember their

original DRAM address. When one of the retained variables is used later,

the hardware will detect from their addresses that a copy of the variable is

available in the cache. The value of the variable will then be provided

from the cache, eliminating the need to access DRAM.

There is a trade-off between the size of a memory and the speed of a

memory. As a result, modern processors often employ multiple levels of

caches. The numbering convention for these cache levels reflects the dis-

tance to the processor. The lowest level, L1 or level 1, is the cache that is

directly attached to a processor core. It runs at a speed very close to the

processor in both latency and bandwidth. However, an L1 cache is small

in size, typically between 16 KB and 64 KB. L2 caches are larger, in the

range of 128 KB to 1 MB, but can take tens of cycles to access. They are

typically shared among multiple processor cores, or streaming multipro-

cessors (SMs) in a CUDA device. In some high-end processors today,

there are even L3 caches that can be of several MB in size.

A major design issue with using caches in a massively parallel proces-

sor is cache coherence, which arises when one or more processor cores

modify cached data. Since L1 caches are typically directly attached to

only one of the processor cores, changes in its contents are not easily

observed by other processor cores. This causes a problem if the modified

variable is shared among threads running on different processor cores.

Processor

The chip

L1 Cache

regs

L2 Cache

Main Memory

FIGURE 8.9

A simplified view of the cache hierarchy of modern processors.

184 CHAPTER 8 Parallel Patterns: Convolution

A cache coherence mechanism is needed to ensure that the contents of the

caches of the other processor cores are updated. Cache coherence is difficult

and expensive to provide in massively parallel processors. However, their

presence typically simplifies parallel software development. Therefore,

modern CPUs typically support cache coherence among processor cores.

While modern GPUs provide two levels of caches, they typically do without

cache coherence to maximize hardware resources available to increase the

arithmetic throughput of the processor.

Constant memory variables play an interesting role in using caches in

massively parallel processors. Since they are not changed during kernel

execution, there is no cache coherence issue during the execution of a ker-

nel. Therefore, the hardware can aggressively cache the constant variable

values in L1 caches. Furthermore, the design of caches in these processors

is typically optimized to broadcast a value to a large number of threads.

As a result, when all threads in a warp access the same constant memory

variable, as is the case with M, the caches can provide a tremendous

amount of bandwidth to satisfy the data needs of threads. Also, since the

size of M is typically small, we can assume that all M elements are effec-

tively always accessed from caches. Therefore, we can simply assume that

no DRAM bandwidth is spent on M accesses. With the use of constant

caching, we have effectively doubled the ratio of floating-point arithmetic

to memory access to 2.

The accesses to the input N array elements can also benefit from

caching in more recent devices. We will come back to this point in

Section 8.5.

8.4 TILED 1D CONVOLUTION WITH HALO ELEMENTS
We now address the memory bandwidth issue in accessing the N array ele-

ment with a tiled convolution algorithm. Recall that in a tiled algorithm,

threads collaborate to load input elements into an on-chip memory and

then access the on-chip memory for their subsequent use of these ele-

ments. For simplicity, we will continue to assume that each thread calcu-

lates one output P element. With up to 1,024 threads in a block we can

process up to 1,024 data elements. We will refer to the collection of output

elements processed by each block as an output tile. Figure 8.10 shows a

small example of a 16-element, 1D convolution using four thread blocks

of four threads each. In this example, there are four output tiles. The first

output tile covers P[0] through P[3], the second tile P[4] through P[7],

1858.4 Tiled 1D Convolution with Halo Elements

the third tile P[8] through P[11], and the fourth tile P[12] through P[15].
Keep in mind that we use four threads per block to keep the example

small. In practice, there should be at least 32 threads per block for the cur-

rent generation of hardware. From this point on, we will assume that M ele-

ments are in the constant memory.

We will discuss two input data tiling strategies for reducing the total

number of global memory accesses. The first one is the most intuitive and

involves loading all input data elements needed for calculating all output

elements of a thread block into the shared memory. The number of input

elements to be loaded depends on the size of the mask. For simplicity, we

will continue to assume that the mask size is an odd number equal to

23 n1 1. That is, each output element P[i] is a weighted sum of the

input element at the corresponding input element N[i], the n input ele-

ments to the left (N[i-n], . . ., N[i-1]), and the n input elements to the

right (N[i11], . . ., N[i1n]). Figure 8.10 shows an example where n5 2.

Threads in block 0 calculate output elements P[0] through P[3]. This
is the leftmost tile in the output data and is often referred to as the left

boundary tile. They collectively require input elements N[0] through N[5].
Note that the calculation also requires two ghost elements to the left of N
[0]. This is shown as two dashed empty elements on the left end of tile 0

of Figure 8.6. These ghost elements will be assumed have a default value

of 0. Tile 3 has a similar situation at the right end of input array N. In our

discussions, we will refer to tiles like tile 0 and tile 3 as boundary tiles

N

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15

1 2 3 4 5

8 9 10 11 12 13

0

76

Tile 0

Tile 2

2 3 4 5 6 7 8 9Tile 1

10 11 12 13 14 15Tile 3

FIGURE 8.10

A 1D tiled convolution example.

186 CHAPTER 8 Parallel Patterns: Convolution

since they involve elements at or outside the boundary of the input

array N.
Threads in block 1 calculate output elements P[4] through P[7].

They collectively require input elements N[2] through N[9], also shown

in Figure 8.10. Calculations for tiles 1 and 2 in Figure 8.10 do not

involve ghost elements and are often referred to as internal tiles. Note

that elements N[2] and N[3] belong to two tiles and are loaded into the

shared memory twice, once to the shared memory of block 0 and once to

the shared memory of block 1. Since the contents of shared memory of a

block are only visible to the threads of the block, these elements need to

be loaded into the respective shared memories for all involved threads

to access them. The elements that are involved in multiple tiles and

loaded by multiple blocks are commonly referred to as halo elements or

skirt elements since they “hang” from the side of the part that is used

solely by a single block. We will refer to the center part of an input tile

that is solely used by a single block the internal elements of that input

tile. Tiles 1 and 2 are commonly referred to as internal tiles since they

do not involve any ghost elements at or outside the boundaries of the

input array N.
We now show the kernel code that loads the input tile into shared

memory. We first declare a shared memory array, N_ds, to hold the N tile

for each block. The size of the shared memory array must be large enough

to hold the left halo elements, the center elements, and the right halo ele-

ments of an input tile. We assume that Mask_Size is an odd number. The

total is TILE_SIZE 1 MAX_MASK_WIDTH -1, which is used in the following

declaration in the kernel:
__shared__ float N_ds[TILE_SIZE1 MAX_MASK_WIDTH - 1];
We then load the left halo elements, which include the last

n 5 Mask_Width/2 center elements of the previous tile. For example, in

Figure 8.10, the left halo elements of tile 1 consist of the last two center

elements of tile 0. In C, assuming that Mask_Width is an odd number, the

expression Mask_Width/2 will result in an integer value that is the same as

(Mask_Width-1)/2. We will use the last (Mask_Width/2) threads of the

block to load the left halo element. This is done with the following two

statements:

int halo_index_left 5 (blockIdx.x - 1)�blockDim.x1 threadIdx.x;
if (threadIdx.x .5 blockDim.x - n) {

N_ds[threadIdx.x - (blockDim.x - n)] 5

(halo_index_left , 0) ? 0 : N[halo_index_left];
}

1878.4 Tiled 1D Convolution with Halo Elements

In the first statement, we map the thread index to the element index

into the previous tile with the expression (blockIdx.x-1)�blockDim.
x1threadIdx.x. We then pick only the last n threads to load the needed

left halo elements using the condition in the if statement. For example, in

Figure 8.6, blockDim.x equals 4 and n equals 2; only threads 2 and 3 will

be used. Threads 0 and 1 will not load anything due to the failed

condition.

For the threads used, we also need to check if their halo elements are

ghost elements. This can be checked by testing if the calculated halo_in-
dex_left value is negative. If so, the halo elements are actually ghost ele-

ments since their N indices are negative, outside the valid range of the N
indices. The conditional C assignment will choose 0 for threads in this sit-

uation. Otherwise, the conditional statement will use the halo_index_left
to load the appropriate N elements into the shared memory. The shared

memory index calculation is such that left halo elements will be loaded

into the shared memory array starting at element 0. For example, in

Figure 8.10, blockDim.x-n equals 2. So for block 1, thread 2 will load the

leftmost halo element into N_ds[0] and thread 3 will load the next halo

element into N_ds[1]. However, for block 0, both threads 2 and 3 will

load value 0 into N_ds[0] and N_ds[1].
The next step is to load the center elements of the input tile. This is

done by mapping the blockIdx.x and threadIdx.x values into the appro-

priate N indices, as shown in the following statement. Readers should be

familiar with the N index expression used:
N_ds[n1 threadIdx.x] 5 N[blockIdx.x�blockDim.x1 threadIdx.x];
Since the first n elements of the N_ds array already contain the left

halo elements, the center elements need to be loaded into the next section

of N_ds. This is done by adding n to threadIdx.x as the index for each

thread to write its loaded center element into N_ds.
We now load the right halo elements, which is quite similar to loading

the left halo. We first map the blockIdx.x and threadIdx.x to the ele-

ments of next output tile. This is done by adding (blockIdx.x11)�

blockDim.x to the thread index to form the N index for the right halo

elements. In this case, we are loading the beginning Mask_Width:
int halo_index_right5(blockIdx.x11)�blockDim.x1 threadIdx.x;
if (threadIdx.x , n) {

N_ds[n1 blockDim.x1 threadIdx.x] 5

(halo_index_right .5 Width) ? 0 : N[halo_index_right];
}

188 CHAPTER 8 Parallel Patterns: Convolution

Now that all the input tile elements are in N_ds, each thread can calcu-

late their output P element value using the N_ds elements. Each thread will

use a different section of the N_ds. Thread 0 will use N_ds[0] through

N_ds[Mask_Width-1]; thread 1 will use N_ds[1] through N[Mask_Width].
In general, each thread will use N_ds[threadIdx.x] through N
[threadIdx.x1Mask_Width-1]. This is implemented in the following for
loop to calculate the P element assigned to the thread:

float Pvalue 5 0;
for(int j 5 0; j , Mask_Width; j11) {

Pvalue 1 5 N_ds[threadIdx.x1 j]�M[j];
}
P[i] 5 Pvalue;
However, one must not forget to do a barrier synchronization using

syncthreads() to make sure that all threads in the same block have com-

pleted loading their assigned N elements before anyone should start using

them from the shared memory.

Note that the code for multiply and accumulate is simpler than the base

algorithm. The conditional statements for loading the left and right halo

elements have placed the 0 values into the appropriate N_ds elements for

the first and last thread block.

The tiled 1D convolution kernel is significantly longer and more com-

plex than the basic kernel. We introduced the additional complexity to

reduce the number of DRAM accesses for the N elements. The goal is to

improve the arithmetic to memory access ratio so that the achieved perfor-

mance is not limited or less limited by the DRAM bandwidth. We will

evaluate improvement by comparing the number of DRAM accesses per-

formed by each thread block for the kernels in Figure 8.8 and Figure 8.11.

In Figure 8.8, there are two cases. For thread blocks that do not handle

ghost elements, the number of N elements accessed by each thread is

Mask_Width. Thus, the total number of N elements accessed by each thread

block is blockDim.x�Mask_Width or blockDim.x�(2n11). For example, if

Mask_Width is equal to 5 and each block contains 1,024 threads, each

block accesses a total of 5,120 N elements.

For the first and last blocks, the threads that handle ghost elements, no

memory access is done for the ghost elements. This reduces the number of

memory accesses. We can calculate the reduced number of memory

accesses by enumerating the number of threads that use each ghost ele-

ment. This is illustrated with a small example in Figure 8.12. The leftmost

ghost element is used by one thread. The second left ghost element is used

by two threads. In general, the number of ghost elements is n and the

1898.4 Tiled 1D Convolution with Halo Elements

__global__ void convolution_1D_basic_kernel(float *N, float *P, int Mask_Width,
int Width) {

int i = blockIdx.x*blockDim.x + threadIdx.x;
__shared__ float N_ds[TILE_SIZE + MAX_MASK_WIDTH -1];

int n = Mask_Width/2;

int halo_index_left = (blockIdx.x - 1)*blockDim.x + threadIdx.x;
if (threadIdx.x >= blockDim.x - n) {

N_ds[threadIdx.x - (blockDim.x - n)] =
(halo_index_left < 0) ? 0 : N[halo_index_left];

}

N_ds[n + threadIdx.x] = N[blockIdx.x*blockDim.x + threadIdx.x];

int halo_index_right = (blockIdx.x + 1)*blockDim.x + threadIdx.x;
if (threadIdx.x < n) {

N_ds[n + blockDim.x + threadIdx.x] =
(halo_index_right >= Width) ? 0 : N[halo_index_right];

}

__syncthreads();

float Pvalue = 0;
for(intj = 0; j < Mask_Width; j++) {

Pvalue += N_ds[threadIdx.x + j]*M[j];
}
P[i] = Pvalue;

}

FIGURE 8.11

A tiled 1D convolution kernel using constant memory for M.

N

0 N[0] N[3]N[1] N[2] N[5]N[4] N[6]0 00

P[0]

P[1]

P[2]

P[3]

P[4]

P[5]

P[6]

FIGURE 8.12

A small example of accessing N elements and ghost elements.

190 CHAPTER 8 Parallel Patterns: Convolution

number of threads that use each of these ghost elements, from left to right

is 1, 2, . . ., n. This is a simple series with sum n(n 1 1)/2, which is the

total number of accesses that were avoided due to ghost elements. For our

simple example where Mask_Width is equal to 5 and n is equal to 2, the

number of accesses avoided due to ghost elements is 23 3/25 3. A simi-

lar analysis gives the same results for the right ghost elements. It should

be clear that for large thread blocks, the effect of ghost elements for small

mask sizes will be insignificant.

We now calculate the total number of memory accesses for N elements

by the tiled kernel in Figure 8.11. All the memory accesses have been

shifted to the code that loads the N elements into the shared memory. In

the tiled kernel, each N element is only loaded by one thread. However, 2n

halo elements will also be loaded, n from the left and n from the right, for

blocks that do not handle ghost elements. Therefore, we have the

blockDim.x12n elements in for the internal thread blocks and

blockDim1n for boundary thread blocks.

For internal thread blocks, the ratio of memory accesses between the

basic and the tiled 1D convolution kernel is
(blockDim.x�(2n11)) / (blockDim.x12n)
whereas the ratio for boundary blocks is
(blockDim.x�(2n11)2 n(n11)/2) / (blockDim.x1n)
For most situations, blockDim.x is much larger than n. Both ratios can

be approximated by eliminating the small terms n(n1 1)/2 and n:
(blockDim.x�(2n11)/ blockDim.x 5 2n11 5 Mask_Width
This should be quite an intuitive result. In the original algorithm, each

N element is redundantly loaded by approximately Mask_Width threads.

For example, in Figure 8.12, N[2] is loaded by the five threads that calcu-

late P[2], P[3], P[4], P[5], and P[6]. That is, the ratio of memory access

reduction is approximately proportional to the mask size.

However, in practice, the effect of the smaller terms may be significant

and cannot be ignored. For example, if blockDim.x is 128 and n is 5, the

ratio for the internal blocks is
(128�11-10) / (1281 10) 5 1398 / 138 5 10.13
whereas the approximate ratio would be 11. It should be clear that as

blockDim.x becomes smaller, the ratio also becomes smaller. For exam-

ple, if blockDim is 32 and n is 5, the ratio for the internal blocks becomes
(32�11-10) / (32110) 5 8.14
Readers should always be careful when using smaller block and tile

sizes. They may result in significantly less reduction in memory accesses

than expected. In practice, smaller tile sizes are often used due to an

1918.4 Tiled 1D Convolution with Halo Elements

insufficient amount of on-chip memory, especially for 2D and 3D convo-

lution where the amount of on-chip memory needed grows quickly with

the dimension of the tile.

8.5 A SIMPLER TILED 1D CONVOLUTION—GENERAL
CACHING

In Figure 8.11, much of the complexity of the code has to do with loading

the left and right halo elements in addition to the internal elements into

the shared memory. More recent GPUs such as Fermi provide general L1

and L2 caches, where L1 is private to each SM and L2 is shared among

all SMs. This leads to an opportunity for the blocks to take advantage of

the fact that their halo elements may be available in the L2 cache.

Recall that the halo elements of a block are also internal elements of a

neighboring block. For example, in Figure 8.10, the halo elements N[2]
and N[3] of tile 1 are also internal elements of tile 0. There is a significant

probability that by the time block 1 needs to use these halo elements, they

are already in the L2 cache due to the accesses by block 0. As a result, the

memory accesses to these halo elements may be naturally served from the

L2 cache without causing additional DRAM traffic. That is, we can leave

the accesses to these halo elements in the original N elements rather than

loading them into the N_ds. We now present a simpler tiled 1D convolu-

tion algorithm that only loads the internal elements of each tile into the

shared memory.

In the simpler tiled kernel, the shared memory N_ds array only needs to

hold the internal elements of the tile. Thus, it is declared with the

TILE_SIZE, rather than TILE_SIZE1Mask_Width-1:
__shared__ float N_ds[TILE_SIZE];
i 5 blockIdx.x�blockDim.x1threadIdx.x;
Loading the tile becomes very simple with only one line of code:
N_ds[threadIdx.x] 5 N[i];
We still need a barrier synchronization before using the elements in

N_ds. The loop that calculates P elements, however, becomes more com-

plex. It needs to add conditions to check for use of both halo elements and

ghost elements. The ghost elements are handled with the same conditional

statement as that in Figure 8.6. The multiply�accumulate statement

becomes more complex:
__syncthreads();
int This_tile_start_point 5 blockIdx.x � blockDim.x;
int Next_tile_start_point 5 (blockIdx.x1 1) � blockDim.x;
int N_start_point 5 i - (Mask_Width/2);

192 CHAPTER 8 Parallel Patterns: Convolution

float Pvalue 5 0;
for (int j 5 0; j , Mask_Width; j11) {

int N_index 5 N_start_point1 j;
if (N_index .5 0 && N_index , Width) {

if ((N_index .5 This_tile_start_point)
&& (N_index , Next_tile_start_point)) {
Pvalue 1 5 N_ds[threadIdx.x1j-(Mask_Width/2)]�M[j];

} else {
Pvalue 1 5 N[N_index] � M[j];

}
}

}
P[i] 5 Pvalue;
The variables This_tile_start_point and Next_tile_start_point

hold the starting position index of the tile processed by the current block

and that of the tile processed by the next in the next block. For example,

in Figure 8.10, the value of This_tile_start_point for block 1 is 4 and

the value of Next_tile_start_point is 8.

The new if statement tests if the current access to the N element falls

within a tile by testing it against This_tile_start_point and

Next_tile_start_point. If the element falls within the tile—that is, it is

an internal element for the current block—it is accessed from the N_ds array

in the shared memory. Otherwise, it is accessed from the N array, which is

hopefully in the L2 cache. The final kernel code is shown is Figure 8.13.

Although we have shown kernel examples for only a 1D convolution,

the techniques are directly applicable to 2D and 3D convolutions. In gen-

eral, the index calculation for the N and M arrays are more complex for 2D

and 3D convolutions due to higher dimensionality. Also, one will have

more loop nesting for each thread since multiple dimensions need to be tra-

versed when loading tiles and/or calculating output values. We encourage

readers to complete these higher-dimension kernels as homework exercises.

8.6 SUMMARY
In this chapter, we have studied convolution as an important parallel com-

putation pattern. While convolution is used in many applications such as

computer vision and video processing, it also represents a general pattern

that forms the basis of many other parallel algorithms. For example, one

can view the stencil algorithms in partial differential equation (PDE) solvers

as a special case of convolution. For another example, one can also view

1938.6 Summary

the calculation of grid point force or the potential value as a special case of

convolution.

We have presented a basic parallel convolution algorithm of which the

implementations will be limited by DRAM bandwidth for accessing both

the input N and mask M elements. We then introduced the constant memory

and a simple modification to the kernel and host code to take advantage of

constant caching and eliminate practically all DRAM accesses for the mask

elements. We further introduced a tiled parallel convolution algorithm that

reduces DRAM bandwidth consumption by introducing more control flow

divergence and programming complexity. Finally, we presented a simpler

tiled parallel convolution algorithm that takes advantage of the L2 caches.

8.7 EXERCISES
8.1. Calculate the P[0] value in Figure 8.3.

8.2. Consider performing a 1D convolution on array N5{4,1,3,2,3}
with mask M5{2,1,4}. What is the resulting output array?

__global__ void convolution_1D_basic_kernel(float *N, float *P, int Mask_Width,
int Width) {

int i = blockIdx.x*blockDim.x + threadIdx.x;
__shared__ float N_ds[TILE_SIZE];

N_ds[threadIdx.x] = N[i];

__syncthreads();

int This_tile_start_point = blockIdx.x * blockDim.x;
int Next_tile_start_point = (blockIdx.x + 1) * blockDim.x;
int N_start_point = i - (Mask_Width/2);
float Pvalue = 0;
for (intj = 0; j < Mask_Width; j ++) {

int N_index = N_start_point + j;
if (N_index >= 0 && N_index < Width) {

if ((N_index >= This_tile_start_point)
&& (
Pvalue += N_ds[threadIdx.x+j-(Mask_Width/2)]*M[j];

} else {
Pvalue += N[N_index] * M[j];

}
}

}
P[i] = Pvalue;

}

FIGURE 8.13

A simpler tiled 1D convolution kernel using constant memory and general caching.

194 CHAPTER 8 Parallel Patterns: Convolution

8.3. What do you think the following 1D convolution masks are doing?

a. [0 1 0]

b. [0 0 1]

c. [1 0 0]

d. [2 1/2 0 1/2]

e. [1/3 1/3 1/3]

8.4. Consider performing a 1D convolution on an array of size n with a

mask of size m:

a. How many halo cells are there in total?

b. How many multiplications are performed if halo cells are treated

as multiplications (by 0)?

c. How many multiplications are performed if halo cells are not

treated as multiplications?

8.5. Consider performing a 2D convolution on a square matrix of size

n3 n with a square mask of size m3m:

a. How many halo cells are there in total?

b. How many multiplications are performed if halo cells are treated

as multiplications (by 0)?

c. How many multiplications are performed if halo cells are not

treated as multiplications?

8.6. Consider performing a 2D convolution on a rectangular matrix of

size n13 n2 with a rectangular mask of size m13m2:

a. How many halo cells are there in total?

b. How many multiplications are performed if halo cells are treated

as multiplications (by 0)?

c. How many multiplications are performed if halo cells are not

treated as multiplications?

8.7. Consider performing a 1D tiled convolution with the kernel shown

in Figure 8.11 on an array of size n with a mask of size m using a

tile of size t.

a. How many blocks are needed?

1958.7 Exercises

b. How many threads per block are needed?

c. How much shared memory is needed in total?

d. Repeat the same questions if you were using the kernel in

Figure 8.13.

8.8. Revise the 1D kernel in Figure 8.6 to perform 2D convolution. Add

more width parameters to the kernel declaration as needed.

8.9. Revise the tiled 1D kernel in Figure 8.8 to perform 2D convolution.

Keep in mind that the host code also needs to be changed to declare

a 2D M array in the constant memory. Pay special attention to the

increased usage of shared memory. Also, the N_ds needs to be

declared as a 2D shared memory array.

8.10. Revise the tiled 1D kernel in Figure 8.11 to perform 2D

convolution. Keep in mind that the host code also needs to be

changed to declare a 2D M array in the constant memory. Pay

special attention to the increased usage of shared memory. Also, the

N_ds needs to be declared as a 2D shared memory array.

196 CHAPTER 8 Parallel Patterns: Convolution

CHAPTER

9Parallel Patterns: Prefix Sum
An Introduction to Work Efficiency
in Parallel Algorithms

CHAPTER OUTLINE

9.1 Background ... 198

9.2 A Simple Parallel Scan... 200

9.3 Work Efficiency Considerations .. 204

9.4 A Work-Efficient Parallel Scan.. 205

9.5 Parallel Scan for Arbitrary-Length Inputs ... 210

9.6 Summary ... 214

9.7 Exercises... 215

References ... 216

Our next parallel pattern is prefix sum, which is also commonly known as

scan. Parallel scan is frequently used to convert seemingly sequential

operations, such as resource allocation, work assignment, and polynomial

evaluation, into parallel operations. In general, if a computation is natu-

rally described as a mathematical recursion, it can likely be parallelized as

a parallel scan operation. Parallel scan plays a key role in massively paral-

lel computing for a simple reason: any sequential section of an application

can drastically limit the overall performance of the application. Many such

sequential sections can be converted into parallel computation with paral-

lel scan. Another reason why parallel scan is an important parallel pattern

is that sequential scan algorithms are linear algorithms and are extremely

work-efficient, which makes it also very important to control the work

efficiency of parallel scan algorithms. As we will show, a slight increase

in algorithm complexity can make parallel scan run slower than sequential

scan for large data sets. Therefore, work-efficient parallel scan also repre-

sents an important class of parallel algorithms that can run effectively on

parallel systems with a wide range of available computing resources.

197

9.1 BACKGROUND
Mathematically, an inclusive scan operation takes a binary associative

operator ", and an input array of n elements [x0, x1, . . ., xn21], and

returns the output array

[x0, (x0 " x1), . . ., (x0 " x1 " . . . " xn21)]

For example, if " is addition, then an inclusive scan operation on the

input array [3 1 7 0 4 1 6 3] would return [3 4 11 11 15 16 22 25].
We can illustrate the applications for inclusive scan operations using an

example of cutting sausage for a group of people. Assume that we have a

40-inch sausage to be served to eight people. Each person has ordered a

different amount in terms of inches: 3, 1, 7, 0, 4, 1, 6, 3. That is, person

number 0 wants 3 inches of sausage, person number 1 wants 1 inch, and

so on. We can cut the sausage either sequentially or in parallel. The

sequential way is very straightforward. We first cut a 3-inch section for

person number 0. The sausage is now 37 inches long. We then cut a

1-inch section for person number 1. The sausage becomes 36 inches long.

We can continue to cut more sections until we serve the 3-inch section to

person number 7. At that point, we have served a total of 25 inches of sau-

sage, with 15 inches remaining.

With an inclusive scan operation, we can calculate all the cutting points

based on the amount each person orders. That is, given an addition opera-

tion and an order input array [3 1 7 0 4 1 6 3], the inclusive scan operation

returns [3 4 11 11 15 16 22 25]. The numbers in the return array are cutting

locations. With this information, one can simultaneously make all the eight

cuts that will generate the sections that each person ordered. The first cut

point is at the 3-inch point so the first section will be 3 inches, as ordered

by person number 0. The second cut point is 4, therefore the second sec-

tion will be 1-inch long, as ordered by person number 1. The final cut will

be at the 25-inch point, which will produce a 3-inch long section since the

previous cut point is at the 22-inch point. This gives person number 7

what she ordered. Note that since all the cutting points are known from

the scan operation, all cuts can be done in parallel.

In summary, an intuitive way of thinking about inclusive scan is that

the operation takes an order from a group of people and identifies all the

cutting points that allow the orders to be served all at once. The order

could be for sausage, bread, campground space, or a contiguous chunk of

memory in a computer. As long as we can quickly calculate all the cutting

points, all orders can be served in parallel.

198 CHAPTER 9 Parallel Patterns: Prefix Sum

An exclusive scan operation is similar to an inclusive operation with

the exception that it returns the output array

[0, x0, (x0 " x1), . . ., (x0 " x1 " . . . " xn22)]

That is, the first output element is 0 while the last output element only

reflects the contribution of up to xn22.

The applications of an exclusive scan operation are pretty much the

same as those for an inclusive scan. The inclusive scan provides slightly

different information. In the sausage example, the exclusive scan would

return [0 3 4 11 11 15 16 22], which are the beginning points of the cut

sections. For example, the section for person number 0 starts at the 0-inch

point. For another example, the section for person number 7 starts at the

22-inch point. The beginning point information is important in applications

such as memory allocation, where the allocated memory is returned to the

requester via a pointer to its beginning point.

Note that it is fairly easy to convert between the inclusive scan output

and the exclusive scan output. One simply needs to do a shift and fill in

an element. When converting from inclusive to exclusive, one can simply

shift all elements to the right and fill in value 0 for the 0 element. When

converting from exclusive to inclusive, we need to shift all elements to the

left and fill in the last element with the previous last element plus the last

input element. It is just a matter of convenience that we can directly gen-

erate an inclusive or exclusive scan, whether we care about the cutting

points or the beginning points for the sections.

In practice, parallel scan is often used as a primitive operation in paral-

lel algorithms that perform radix sort, quick sort, string comparison, poly-

nomial evaluation, solving recurrences, tree operations, and histograms.

Before we present parallel scan algorithms and their implementations,

we would like to first show a work-efficient sequential inclusive scan

algorithm and its implementation. We will assume that the operation is

addition. The algorithm assumes that the input elements are in the x array

and the output elements are to be written into the y array.
void sequential_scan(float �x, float �y, int Max_i) {
y[0] 5 x[0];
for (int i 5 1; i , Max_i; i11) {

y[i] 5 y [i-1]1 x[i];
}
}
The algorithm is work-efficient. With a reasonably good compiler, only

one addition, one memory load, and one memory store are used in proces-

sing each input x element. This is pretty much the minimal that we will

1999.1 Background

ever be able to do. As we will see, when the sequential algorithm of a

computation is so “lean and mean,” it is extremely challenging to develop

a parallel algorithm that will consistently beat the sequential algorithm

when the data set size becomes large.

9.2 A SIMPLE PARALLEL SCAN
We start with a simple parallel inclusive scan algorithm by doing a reduc-

tion operation for all output elements. The main idea is to create each ele-

ment quickly by calculating a reduction tree of the relevant input elements

for each output element. There are multiple ways to design the reduction

tree for each output element. We will present a simple one that is shown

in Figure 9.1.

The algorithm is an in-place scan algorithm that operates on an array

XY that originally contains input elements. It then iteratively evolves the

y0 y3 y4 y
5

y6 y7y1 y2 y11y10y9y8 y12 y13 y14 y15

+
∑x0..x1 ∑x2..x3 ∑x4..x5

+ ++ + + + + + + + + + + +

+

+

+

∑ ∑

∑x0..x2

+

∑x0..x3

∑x1..x4

+ + + + +

+
∑x0..x4

∑x4..x7

∑x0..x5

+

∑x3..x6

∑x2..x5

∑

∑x6..x7 x8..x9 x10..x11 x12..x13

x11..x12x7..x8x5..x6x3..x4x1..x2 x9..x10

x14..x15

x13..x14

∑x5..x8

∑x6..x9

∑x0..x6

+

∑x0..x7

+
∑x1..x8

∑x7..x10

∑

∑x

∑

∑

∑

+

∑

∑

∑

+ ++ + +

∑x8..x11

∑x9..x12 ∑x11..x14

∑x10..x13 ∑x12..x15

++ + + + ++

∑x2..x9

∑x3..x10 ∑x5..x12

∑x6..x13

++ + + + ++ +

∑x7..x14

∑x8..x15

x0 x3 x4 x5 x6 x7x1 x2 x11x10x9x8 x12 x13 x14 x15

∑x4..x11

FIGURE 9.1

A simple but work-inefficient parallel inclusive scan.

200 CHAPTER 9 Parallel Patterns: Prefix Sum

contents of the array into output elements. Before the algorithm begins, we

assume XY[i] contains input element xi. At the end of iteration n, XY[i]
will contain the sum of 2n input elements at and before the location. That is,

at the end of iteration 1, XY[i] will contain xi211 xi and at the end of itera-

tion 2, XY[i] will contain xi-31 xi221 xi211 xi, and so on.

Figure 9.1 illustrates the algorithm with a 16-element input example.

Each vertical line represents an element of the XY array, with XY[0] in the

leftmost position. The vertical direction shows the progress of iterations,

starting from the top of the figure. For the inclusive scan, by definition, y0
is x0 so XY[0] contains its final answer. In the first iteration, each position

other than XY[0] receives the sum of its current content and that of its left

neighbor. This is illustrated by the first row of addition operators in

Figure 9.1. As a result, XY[i] contains xi211 xi. This is reflected in the

labeling boxes under the first row of addition operators in Figure 9.1. For

example, after the first iteration, XY[3] contains x21 x3, shown as
P

x2..x3.

Note that after the first iteration, XY[1] is equal to x01 x1, which is the final

answer for this position. So, there should be no further changes to XY[1]
in subsequent iterations.

In the second iteration, each position other than XY[0] and XY[1]
receive the sum of its current content and that of the position that is two

elements away. This is illustrated in the labeling boxes below the second

row of addition operators. As a result, XY[i] now contains

xi231 xi221 xi211 xi. For example, after the first iteration, XY[3] con-

tains x01 x11 x21 x3, shown as
P

x0..x3. Note that after the second itera-

tion, XY[2] and XY[3] contain their final answers and will not need to be

changed in subsequent iterations.

Readers are encouraged to work through the rest of the iterations. We

now work on the implementation of the algorithm illustrated in Figure 9.1.

We assign each thread to evolve the contents of one XY element. We will

write a kernel that performs a scan on a section of the input that is small

enough for a block to handle. The size of a section is defined as a

compile-time constant SECTION_SIZE. We assume that the kernel launch

will use SECTION_SIZE as the block size so there will be an equal number

of threads and section elements. All results will be calculated as if the

array only has the elements in the section. Later, we will make final

adjustments to these sectional scan results for large input arrays. We also

assume that input values were originally in a global memory array X, the
address of which is passed into the kernel as an argument. We will have

all the threads in the block to collaboratively load the X array elements

2019.2 A Simple Parallel Scan

into a shared memory array XY. At the end of the kernel, each thread will

write its result into the assigned output array Y.
__global__ void work_inefficient_scan_kernel(float �X, float � Y,

int InputSize) {
__shared__ float XY[SECTION_SIZE];

int i 5 blockIdx.x�blockDim.x1 threadIdx.x;
if (i , InputSize) {
XY[threadIdx.x] 5 X[i];

}
// the code below performs iterative scan on XY
. . .

Y[i] 5 XY[threadIdx.x];
}
We now focus on the implementation of the iterative calculations for

each XY element in Figure 9.1 as a for loop:
for (unsigned int stride 5 1; stride ,5 threadIdx.x; stride � 5 2)
{

__syncthreads();
XY[threadIdx.x] 1 5 XY[threadIdx.x-stride];

}
The loop iterates through the reduction tree for the XY array position

that is assigned to a thread. Note that we use a barrier synchronization to

make sure that all threads have finished their current iteration of additions

in the reduction tree before any of them starts the next iteration. This is

the same use of __syncthreads(); as in the reduction discussion in

Chapter 6. When the stride value becomes greater than a thread’s

threadIdx.x value, it means that the thread’s assigned XY position has

already accumulated all the required input values. Thus, the thread can

exit the while loop. The smaller the threadIdx.x value, the earlier the

thread will exit the while loop. This is consistent with the example shown

in Figure 9.1. The actions of the smaller positions of XY end earlier than

the larger positions. This will cause some level of control divergence in

the first warp when stride values are small. The effect should be quite

modest for large block sizes since it only impacts the first loop for smaller

stride values. The detailed analysis is left as an exercise. The final kernel

is shown in Figure 9.2.

We can easily convert an inclusive scan kernel to an exclusive scan

kernel. Recall that an exclusive scan is equivalent to an inclusive scan

with all elements shifted to the right by one position and element 0 filled

with value 0. This is illustrated in Figure 9.3. Note that the only real

202 CHAPTER 9 Parallel Patterns: Prefix Sum

difference is the alignment of elements on top of the picture. All labeling

__global__ void work_inefficient_scan_kernel(float *X, float *Y,
int InputSize) {

shared float XY[SECTION SIZE];__ __ _

int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < InputSize) {
XY[threadIdx.x] = X[i];

}

// the code below performs iterative scan on XY
for (unsigned int stride = 1; stride <= threadIdx.x; stride *= 2) {

syncthreads();__
XY[threadIdx.x] += XY[threadIdx.x-stride];

}

Y[i] = XY[threadIdx.x];

}

FIGURE 9.2

A kernel for the inclusive scan algorithm in Figure 9.1.

+

∑0..x0 ∑x1..x2

∑x0..x1 ∑x2.x3 ∑x6..x7 ∑x8..x9 ∑x10,.x11 ∑x12..x13∑x4..x5

∑x3..x4 ∑x5..x6 ∑x7..x8 ∑x13..x14∑x11..x12∑x9..x10

+ ++ + + + + + + + + + + +

+

+

+
∑0..x1

∑0..x3 ∑0..x5 ∑0..x7 ∑x2..x9 ∑x4..x11 ∑x6..x13

∑x7..x114∑x5..x1∑x3..x10∑x1..x8∑0..x6∑0..x4

∑0..x3 ∑x2..x5 ∑x4..x7 ∑x6..x9 ∑x8..x11 ∑x10..x13

∑x11..x14∑x9..x14∑x7..x10∑x5..x8∑x3..x6∑x2..x4∑0..x2

+ + + + + +

+ + + +

∑

+ + ++ + +

++ + + + ++

2

++ + + + ++ +

x00 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

FIGURE 9.3

Work-inefficient parallel exclusive scan.

2039.2 A Simple Parallel Scan

boxes are updated to reflect the new alignment. All iterative operations

remain the same.

We can now easily convert the kernel in Figure 9.2 into an exclusive

scan kernel. The only modification we need to do is to load 0 into XY[0]
and X[i-1] into XY[threadIdx.x], as shown in the following code:

if (i , InputSize && threadIdx.x !5 0) {
XY[threadIdx.x] 5 X[i-1];

} else {
XY[threadIdx.x] 5 0;

}
Note that the XY positions of which the associated input elements are

outside the range are now also filled with 0. This causes no harm and yet

it simplifies the code slightly. We leave the work to finish the exclusive

scan kernel as an exercise.

9.3 WORK EFFICIENCY CONSIDERATIONS
We now analyze the work efficiency of the kernel in Figure 9.2. All

threads will iterate up to log(N) steps, where N is the SECTION_SIZE. In
each iteration, the number of threads that do not need to do any addition is

equal to the stride size. Therefore, we can calculate the amount of work

done for the algorithm as
X

ðN � strideÞ; for strides 1; 2; 4; . . .; N=2 ðlog2ðNÞ termsÞ

The first part of each term is independent of the stride, so they add up

to N3 log2(N). The second part is a familiar geometric series and sums up

to (N2 1). So the total number of add operations is

N3 log2ðNÞ � ðN2 1Þ
Recall that the number of add operations for a sequential scan algo-

rithm is N2 1. We can put this into perspective by comparing the number

of add operations for different N values, as shown in Figure 9.4. Note that

even for modest-size sections, the kernel in Figure 9.2 does much more

work than the sequential algorithm. In the case of 1,024 elements, the ker-

nel does nine times more work than the sequential code. The ratio will

continue to grow as N becomes larger. Such additional work is problem-

atic in two ways. First, the use of hardware for executing the parallel ker-

nel needs to be much less efficient. In fact, just to break even one needs to

have at least nine times more execution units in a parallel machine than

204 CHAPTER 9 Parallel Patterns: Prefix Sum

the sequential machine. For example, if we execute the kernel on a parallel

machine with four times the execution resources as a sequential machine,

the parallel machine executing the parallel kernel can end up with only

half the performance of the sequential machine executing the sequential

code. Second, all the extra work consumes additional energy. This makes

the kernel inappropriate for power-constrained environments such as

mobile applications.

9.4 A WORK-EFFICIENT PARALLEL SCAN
While the kernel in Figure 9.2 is conceptually simple, its work efficiency

is too low for many practical applications. Just by inspecting Figures 9.1

and 9.3, we can see that there are potential opportunities for sharing some

intermediate results to streamline the operations performed. However, to

allow more sharing across multiple threads, we need to quickly calculate

the intermediate results to be shared and then quickly distribute them to

different threads.

As we know, the fastest parallel way to produce sum values for a set of

values is a reduction tree. A reduction tree can generate the sum for N

values in log2(N) steps. Furthermore, the tree can also generate a number

of subsums that can be in the calculation of some of the scan output

values.

In Figure 9.5, we produce the sum of all 16 elements in four steps. We

use the minimal number of operations needed to generate the sum. During

the first step, only the odd element of XY[i] will be changed to xi211 xi.

During the second step, only the XY elements of which the indices are of

the form of 43 n 2 1, which are 3, 7, 11, and 15 in Figure 9.5, will be

updated. During the third step, only the XY elements of which the indices

are of the form 83 n 2 1, which are 7 and 15, will be updated. Finally,

during the fourth step, only XY[15] is updated. The total number of

N 16 32 64 128 256 512 1024

N – 1 15 31 63 127 255 511 1023

N·log2(N) – (N –1) 49 129 321 769 1793 4097 9217

FIGURE 9.4

Work efficiency calculation for the kernel in Figure 9.2.

2059.4 A Work-Efficient Parallel Scan

operations performed is 81 41 21 15 15. In general, for a scan section

of N elements, we would do (N/2)1 (N/4) 1 . . .1 21 15N 2 1 opera-

tions for this reduction phase.

The second part of the algorithm is to use a reverse tree to distribute

the partial sums to the positions that can use these values as quickly as

possible. This is illustrated in the bottom half of Figure 9.5. At the end of

the reduction phase, we have quite a few usable partial sums. For our

example, the first row of Figure 9.6 shows all the partial sums in XY right

after the top reduction tree. An important observation is that XY[0], XY[7],
and X[15] contain their final answers. Therefore, all remaining XY ele-

ments can obtain the partial sums they need from no farther than four posi-

tions away. For example, XY[14] can obtain all the partial sums it needs

XY 0 1 2 3 54 6 7 98 10 11 1312 14 15

+ + + + + + + +

+

+

+

++

+

+

+

+

+ +

+++++++

FIGURE 9.5

Basic idea of a work-efficient parallel scan algorithm.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x0 x0.x1 x0.x3 x4.x5

x0..x5

x8.x11

x0..x11

x0.x15x12..x13

x0..x13

x8..x9

x0..x9

x0.x7x2 x4 x10 x12 x14x8x6

FIGURE 9.6

Partial sums available in each XY element after the reduction tree phase.

206 CHAPTER 9 Parallel Patterns: Prefix Sum

from XY[7], XY[11], and XY[13]. To organize our second half of the addi-

tion operations, we will first show all the operations that need partial sums

from four positions away, then two positions away, then one position way.

By inspection, XY[7] contains a critical value needed by many positions in

the right half. A good way is to add XY[7] to XY[11], which brings XY
[11] to the final answer. More importantly, XY[7] also becomes a good

partial sum for XY[12], XY[13], and XY[14]. No other partial sums have

so many uses. Therefore, there is only one addition, XY[11]5 XY[7]1 XY
[11], that needs to occur in the four-position level in Figure 9.5. We show

the updated partial sum in the second row of Figure 9.6.

We now identify all additions for getting partial sums that are two posi-

tions away. We see that XY[2] only needs the partial sum that is next to it in

XY[1]. This is the same with XY[4]—it needs the partial sum next to it to be

complete. The first XY element that can need a partial sum two positions

away is XY[5]. Once we calculate XY[5]5 XY[3]1 XY[5], XY[5] contains

the final answer. The same analysis shows that XY[6] and XY[8] can

become complete with the partial sums next to them in XY[5] and XY[7].
The next two-position addition is XY[9]5 XY[7]1 XY[9], which makes

XY[9] complete. XY[10] can wait for the next round to catch XY[9]. XY

[12] only needs the XY[11], which contains its final answer after the four-

position addition. The final two-position addition is XY[13]5 XY[11]1
XY[13]. The third row shows all the updated partial sums in XY[5], XY[9],
and XY[13]. It is clear that now every position is either complete or can be

completed when added by its left neighbor. This leads to the final row of

additions in Figure 9.5, which completes the contents for all the incom-

plete positions XY[2], XY[4], XY[6], XY[8], XY[10], and XY[12].
We could implement the reduction tree phase of the parallel scan using

the following loop:
for (unsiged int stride 5 1; stride , threadDim.x; stride � 5 2)
{

__synchthreads();
if ((threadIdx.x1 1)%(2�stride) 5 5 0) {
XY[threadIdx.x] 1 5 XY[threadIdx.x - stride];

}
}
Note that this loop is very similar to the reduction in Figure 6.2. The

only difference is that we want the thread that has a thread index that is in

the form of 2n 2 1, rather than 2n to perform addition in each iteration.

This is why we added 1 to the threadIdx.x when we select the threads

for performing addition in each iteration. However, this style of reduction

2079.4 A Work-Efficient Parallel Scan

is known to have control divergence problems. A better way to do this is

to use a decreasing number of contiguous threads to perform the additions

as the loop advances:
for (unsigned int stride 5 1; stride , blockDim.x; stride � 5 2)
{

__syncthreads();
int index 5 (threadIdx.x11) � 2� stride -1;
if (index , blockDim.x) {

XY[index] 1 5 XY[index - stride];
}

}
In our example in Figure 9.5, there are 16 threads in the block. In the

first iteration, the stride is equal to 1. The first 8 consecutive threads in the

block will satisfy the if condition. The index values calculated for these

threads will be 1, 3, 5, 7, 9, 11, 13, and 15. These threads will perform the

first row of additions in Figure 9.5. In the second iteration, the stride is

equal to 2. Only the first 4 threads in the block will satisfy the if condi-

tion. The index values calculated for these threads will be 3, 7, 11, and 15.

These threads will perform the second row of additions in Figure 9.5.

Note that since we will always be using consecutive threads in each itera-

tion, the control divergence problem does not arise until the number of

active threads drops below the warp size.

The distribution tree is a little more complex to implement. We make

an observation that the stride value decreases from SECTION_SIZE/2 to 1.

In each iteration, we need to “push” the value of the XY element from a

position that is a multiple of the stride value minus 1 to a position that is a

stride away. For example, in Figure 9.5, the stride value decreases from 8

to 1. In the first iteration in Figure 9.5, we would like to push the value of

XY[7] to XY[11], where 7 is 82 1. In the second iteration, we would like

to push the values of XY[3], XY[7], and XY[11] to XY[5], XY[9], and
XY[13]. This can be implemented with the following loop:

for (int stride 5 SECTION_SIZE/4; stride . 0; stride /5 2) {
__syncthreads();
int index 5 (threadIdx.x11)�stride�2-1;
if(index1 stride , BLOCK_SIZE) {

XY[index1 stride] 1 5 XY[index];
}
}
The calculation of index is similar to that in the reduction tree phase.

The final kernel for a work-efficient parallel scan is shown in Figure 9.7.

208 CHAPTER 9 Parallel Patterns: Prefix Sum

Readers should notice that we never need to have more than

SECTION_SIZE/2 threads for either the reduction phase or the distribution

phase. So, we could simply launch a kernel with SECTION_SIZE/2 threads

in a block. Since we can have up to 1,024 threads in a block, each scan

section can have up to 2,048 elements. However, we will need to have

each thread to load two X elements at the beginning and store two Y ele-

ments at the end. This will be left as an exercise.

As was the case of the work-inefficient scan kernel, one can easily

adapt the work-efficient inclusive parallel scan kernel into an exclusive

scan kernel with a minor adjustment to the statement that loads X elements

into XY. Interested readers should also read [Harris 2007] for an interesting

natively exclusive scan kernel that is based on a different way of designing

the distribution tree phase of the scan kernel.

We now analyze the number of operations in the distribution tree stage.

The number of operations are (16/8) 2 11 (16/4)1 (16/2). In general, for

N input elements, the total number of operations would be (N/2)1 (N/4)

__global__ void work_efficient_scan_kernel (float *X, float *Y, int InputSize) {

__shared__ float XY[SECTION_SIZE];

int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < InputSize) {

XY[threadIdx.x] = X[i];
}

for (unsigned int stride = 1; stride < blockDim.x; stride *= 2) {
__ syncthreads();
int index = (threadIdx.x+1) * 2* stride -1;
if (index < blockDim.x) {
XY[index] += XY[index - stride];

}
}

for (int stride = SECTION_SIZE/4; stride > 0; stride /= 2) {
__ syncthreads();
int index = (threadIdx.x+1)*stride*2 - 1;
if(index + stride < BLOCK_SIZE) {
XY[index + stride] += XY[index];

}
}

__ syncthreads();

Y[i] = XY[threadIdx.x];

}

FIGURE 9.7

A work-efficient kernel for an inclusive scan.

2099.4 A Work-Efficient Parallel Scan

1 . . .1 41 22 1, which is less than N 2 2. This makes the total number

of operations in the parallel scan 23N 2 3. Note that the number of

operations is now a proportional to N, rather than N3 log2(N). We com-

pare the number of operations performed by the two algorithms for N

from 16 to 1,024 in Figure 9.8.

The advantage of a work-efficient algorithm is quite clear in the compar-

ison. As the input section becomes bigger, the work-efficient algorithm

never performs more than two times the number of operations performed by

the sequential algorithm. As long as we have at least two times more hard-

ware execution resources, the parallel algorithm will achieve better perfor-

mance than the sequential algorithm. This is not true, however, for the

work-inefficient algorithm. For 102 elements, the parallel algorithm needs

at least nine times the hardware execution resources just to break even.

9.5 PARALLEL SCAN FOR ARBITRARY-LENGTH INPUTS
For many applications, the number of elements to be processed by a scan

operation can be in the millions. Obviously, we cannot expect that all

input elements can fit into the shared memory. Furthermore, it would be a

loss of parallelism opportunity if we used only one thread block to process

these large data sets. Fortunately, there is a hierarchical approach to

extending the scan kernels that we have generated so far to handle inputs

of arbitrary size. The approach is illustrated in Figure 9.9.

For a large data set, we first partition the input into sections that can fit

into the shared memory and processed by a single block. For the current

generation of CUDA devices, the work-efficient kernel in Figure 9.8 can

process up to 2,048 elements in each section using 1,024 threads in each

block. For example, if the input data consists of 2,000,000 elements, we

can use ceil(2,000,000/2,048.0)5 977 thread blocks. With up to 65,536

thread blocks in the x dimension of a grid, the approach can process up to

N 16 32 64 128 256 512 1024

N – 1 15 31 63 127 255 511 1023

N·log2(N) – (N – 1) 49 129 321 769 1793 4097 9217

2·N – 3 29 61 125 253 509 1021 2045

FIGURE 9.8

Work efficiency of the kernels.

210 CHAPTER 9 Parallel Patterns: Prefix Sum

134,217,728 elements in the input set. If the input is even bigger than this,

we can use additional levels of hierarchy to handle a truly arbitrary num-

ber of input elements. However, for this chapter, we will restrict our dis-

cussion to a two-level hierarchy that can process up to 134,217,728

elements.

Assume that the host code launches the kernel in Figure 9.7 on the

input. Note that the kernel uses the familiar i5blockIdx�blockDim.
x1trheadIdx.x statement to direct threads in each block to load their

input values from the appropriate section. At the end of the grid execution,

the threads write their results into the Y array. That is, after the kernel in

Figure 9.7 completes, the Y array contains the scan results for individual

sections, called scan blocks in Figure 9.9. Each result in a scan block only

contains the accumulated values of all preceding elements in the same

scan block. These scan blocks need to be combined into the final result.

That is, we need to write and launch another kernel that adds the sum of

all elements in preceding scan blocks to each element of a scan block.

Initial Array of Arbitrary Values

Scan Block 0

Store Block Sum to Auxiliary Array

+ + +

Scan Block Sums

Time

Add Scanned Block Sum i to All
Values of Scanned Block i + 1

Final Array of Scanned Values

Scan Block 1 Scan Block 2 Scan Block 3

FIGURE 9.9

A hierarchical scan for arbitrary-length inputs.

2119.5 Parallel Scan for Arbitrary-Length Inputs

Figure 9.10 shows a small operational example of the hierarchical scan

approach of Figure 9.9. In this example, there are 16 input elements that

are divided into four scan blocks. The kernel treats the four scan blocks as

independent input data sets. After the scan kernel terminates, each Y ele-

ment contains the scan result with its scan block. For example, scan block

1 has inputs 0, 4, 1, 2. The scan kernel produces the scan result for this

section (0, 4, 5, 7). Note that these results do not contain the contributions

from any of the elements in scan block 0. To produce the final result for

this scan block, the sum of all elements in scan block 0

(21 11 31 15 7) should be added to every result element of scan

block 1.

For another example, the inputs in scan block 2 are 0, 3, 1, and 2. The

kernel produces the scan result for this scan block (0, 3, 4, 6). To produce

the final results for this scan block, the sum of all elements in both scan

blocks 0 and 1 (21 11 31 11 01 41 11 25 14) should be added to

every result element of scan block 2.

It is important to note that the last scan output element of each scan

block gives the sum of all input elements of the scan block. These values

are 7, 7, 6, and 11 in Figure 9.10. This brings us to the second step of the

hierarchical scan algorithm in Figure 9.9, which gathers the last result ele-

ments from each scan block into an array and performs a scan on these

2 1 3 1 0 4 1 2 0 3 1 2 5 3 1 2

2 3 6 7 0 4 5 7 0 3 4 6 5 8 9 11

7 7 6 11

7 14 20 31

22 3 6 7 7 11 12 14 14 17 18 20 25 28 29 31

FIGURE 9.10

An example of a hierarchical scan.

212 CHAPTER 9 Parallel Patterns: Prefix Sum

output elements. This step is also illustrated in Figure 9.10, where the last

scan output elements are all collected into a new array S. This can be done

by changing the code at the end of the scan kernel so that the last thread

of each block writes its result into an S array using its blockIdx.x as the

index. A scan operation is then performed on S to produce output values

7, 14, 20, and 31. Note that each of these second-level scan output values

are the accumulated sum from the beginning location X[0] to the end of

each scan block. That is, the output value in S[0]57 is the accumulated

sum from X[0] to the end of scan block 0, which is X[3]. The output value
in S[1]5 14 is the accumulated sum from X[0] to the end of scan block 1,

which is X[7].
Therefore, the output values in the S array give the scan results at “stra-

tegic” locations of the original scan problem. That is, in Figure 9.10, the

output values in S[0], S[1], S[2], and S[3] give the final scan results for

the original problem at positions X[3], X[7], X[11], and X[15]. These
results can be used to bring the partial results in each scan block to their

final values. This brings us to the last step of the hierarchical scan algo-

rithm in Figure 9.9. The second-level scan output values are added to the

values of their corresponding scan blocks.

For example, in Figure 9.10, the value of S[0] (7) will be added to

Y[0], Y[1], Y[2], and Y[3] of thread block 1, which completes the results

in these positions. The final results in these positions are 7, 11, 12, and 14.

This is because S[0] contains the sum of the values of the original input

X[0] through X[3]. These final results are 14, 17, 18, and 20. The value of

S[1] (14) will be added to Y[8], Y[9], Y[10], and Y[11], which com-

pletes the results in these positions. The value of S[2] will be added to

S[2] (20), which will be added to Y[12], Y[13], Y[14], and Y[15].
Finally, the value of S[3] is the sum of all elements of the original input,

which is also the final result in Y[15].
Readers who are familiar with computer arithmetic algorithms should

recognize that the hierarchical scan algorithm is quite similar to the carry

look-ahead in hardware adders of modern processors.

We can implement the hierarchical scan with three kernels. The first

kernel is largely the same as the kernel in Figure 9.7. We need to add one

more parameter S, which has the dimension of InputSize/SECTION_SIZE.
At the end of the kernel, we add a conditional statement for the last thread

in the block to write the output value of the last XY element in the scan

block to the blockIdx.x position of S:
__synchtrheads();
if (threadIdx.x 5 5 0) {

2139.5 Parallel Scan for Arbitrary-Length Inputs

S[blockIdx.x] 5 XY[SECTION_SIZE � 1];
}
The second kernel is simply the same kernel as Figure 9.7, which takes

S as input and writes S as output.

The third kernel takes the S and Y arrays as inputs and writes the output

back into Y. The body of the kernel adds one of the S elements to all Y
elements:

int i 5 blockIdx.x � blockDim.x1 threadIdx.x;
Y[i] 1 5 S[blockIdx.x];
We leave it as an exercise for readers to complete the details of each

kernel and complete the host code.

9.6 SUMMARY
In this chapter, we studied scan as an important parallel computation

pattern. Scan is used to enable parallel allocation of resources parties of

which the needs are not uniform. It converts seemingly sequential recur-

sive computation into parallel computation, which helps to reduce sequen-

tial bottlenecks in many applications. We showed that a simple sequential

scan algorithm performs only N additions for an input of N elements.

We first introduced a parallel scan algorithm that is conceptually sim-

ple but not work-efficient. As the data set size increases, the number of

execution units needed for a parallel algorithm to break even with the

simple sequential algorithm also increases. For an input of 1,024 elements,

the parallel algorithm performs over nine times more additions than the

sequential algorithm and requires at least nine times more executions to

break even with the sequential algorithm. This makes the work-inefficient

parallel algorithm inappropriate for power-limited environments such as

mobile applications.

We then presented a work-efficient parallel scan algorithm that is con-

ceptually more complicated. Using a reduction tree phase and a distribu-

tion tree phase, the algorithm performs only 23N23 additions no matter

how large the input data sets are. Such work-efficient algorithms of which

the number of operations grows linearly with the size of the input set are

often also referred to as data-scalable algorithms. We also presented a

hierarchical approach to extending the work-efficient parallel scan algo-

rithm to handle the input sets of arbitrary sizes.

214 CHAPTER 9 Parallel Patterns: Prefix Sum

9.7 EXERCISES
9.1. Analyze the parallel scan kernel in Figure 9.2. Show that control

divergence only occurs in the first warp of each block for stride

values up to half of the warp size. That is, for warp size 32, control

divergence will occur to iterations for stride values 1, 2, 4, 8, and 16.

9.2. For the work-efficient scan kernel, assume that we have 2,048

elements. How many add operations will be performed in both the

reduction tree phase and the inverse reduction tree phase?

a. (2,0482 1)3 2

b. (1,0242 1)3 2

c. 1,0243 1,024

d. 103 1,024

9.3. For the work-inefficient scan kernel based on reduction trees, assume

that we have 2,048 elements. Which of the following gives the

closest approximation on how many add operations will be

performed?

a. (2,048-1)3 2

b. (1,024-1)3 2

c. 1,0243 1,024

d. 103 1,024

9.4. Use the algorithm in Figure 9.3 to complete an exclusive scan kernel.

9.5. Complete the host code and all the three kernels for the hierarchical

parallel scan algorithm in Figure 9.9.

9.6. Analyze the hierarchical parallel scan algorithm and show that it is

work-efficient and the total number of additions is no more than

43N2 3.

9.7. Consider the following array: [4 6 7 1 2 8 5 2]. Perform a parallel

inclusive prefix scan on the array using the work-inefficient

algorithm. Report the intermediate states of the array after each step.

9.8. Repeat Exercise 9.7 using the work-efficient algorithm.

2159.7 Exercises

9.9. Using the two-level hierarchical scan discussed in Section 9.5, what

is the largest possible data set that can be handled if computing on a:

a. GeForce GTX280?

b. Tesla C2050?

c. GeForce GTX690?

Reference
Harris, M. Parallel Prefix Sum with CUDA, Available at: 2007 ,http://developer.

download.nvidia.com/compute/cuda/1_1/Website/projects/scan/doc/scan.pdf..

216 CHAPTER 9 Parallel Patterns: Prefix Sum

http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/scan/doc/scan.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/scan/doc/scan.pdf

CHAPTER

10Parallel Patterns: Sparse
Matrix�Vector Multiplication
An Introduction to Compaction and
Regularization in Parallel Algorithms

CHAPTER OUTLINE

10.1 Background ... 218

10.2 Parallel SpMV Using CSR ... 222

10.3 Padding and Transposition ... 224

10.4 Using Hybrid to Control Padding ... 226

10.5 Sorting and Partitioning for Regularization .. 230

10.6 Summary ... 232

10.7 Exercises... 233

References ... 234

Our next parallel pattern is sparse matrix computation. In a sparse matrix,

the vast majority of the elements are zeros. Storing and processing these

zero elements are wasteful in terms of memory, time, and energy. Many

important real-world problems involve sparse matrix computations that are

highly parallel in nature. Due to the importance of these problems, several

sparse matrix storage formats and their corresponding processing methods

have been proposed and widely used in the field. All of them employ

some type of compaction techniques to avoid storing or processing zero

elements at the cost of introducing some level of irregularity into the data

representation. Unfortunately, such irregularity can lead to underutilization

of memory bandwidth, control flow divergence, and load imbalance in

parallel computing. It is therefore important to strike a good balance

between compaction and regularization. Some storage formats achieve a

higher level of compaction at a high level of irregularity. Others achieve a

more modest level of compaction while keeping the representation more

regular. The parallel computation performance of their corresponding

217

methods is known to be heavily dependent on the distribution of nonzero

elements in the sparse matrices. Understanding the wealth of work in

sparse matrix storage formats and their corresponding parallel algorithms

gives a parallel programmer an important background for addressing com-

paction and regularization challenges in solving related problems.

10.1 BACKGROUND
A sparse matrix is a matrix where the majority of the elements are zero.

Sparse matrices arise in many science, engineering, and financial modeling

problems. For example, as we saw in Chapter 7, matrices are often used to

represent the coefficients in a linear system of equations. Each row of the

matrix represents one equation of the linear system. In many science and

engineering problems, there are a large number of variables and the equa-

tions involved are loosely coupled. That is, each equation only involves a

small number of variables. This is illustrated in Figure 10.1, where vari-

ables x0 and x2 are involved in equation 0, none of the variables in equa-

tion 1, variables x1, x2, and x3 in equation 2, and finally variables x0 and

x3 in equation 3.

Sparse matrices are stored in a format that avoids storing zero elements.

We will start with the compressed sparse row (CSR) storage format, which

is illustrated in Figure 10.2. CSR stores only nonzero values in a 1D data

storage, shown as data[] in Figure 10.2. Array data[] stores all the non-

zero values in the sparse matrix in Figure 10.1. This is done by storing

nonzero elements of row 0 (3 and 1) first, followed by nonzero elements

of row 1 (none), followed by nonzero elements of row 2 (2, 4, 1), and

then nonzero elements of row 3 (1, 1). The format compresses away all

zero elements.

With the compressed format, we need to put in two sets of markers to

preserve the structure of the original sparse matrix. The first set of markers

form a column index array, col_index[] in Figure 10.2, that gives the

Row 0 3 0 1 0

Row 1 0 0 0 0

Row 2 0 2 4 1

Row 3 1 0 0 1

FIGURE 10.1

A simple sparse matrix example.

218 CHAPTER 10 Parallel Patterns: Sparse Matrix�Vector Multiplication

column index of every nonzero value in the original sparse matrix. Since

we have squeezed away nonzero elements of each row, we need to use

these markers to remember where the remaining elements were in the orig-

inal row of the sparse matrix. For example, values 3 and 1 came from col-

umns 0 and 2 of row 0 in the original sparse matrix. The col_index[0]
and col_index[1] elements are assigned to store the column indices for

these two elements. For another example, values 2, 4, and 1 came from

columns 1, 2, and 3 in the original sparse matrix. Therefore, col_index
[0], col_index[1], and col_index[2] store indices 1, 2, and 3.

The second set of markers give the starting location of every row in the

compressed storage. This is because the size of each row becomes variable

after zero elements are removed. It is no longer possible to use indexing

based on the row size to find the starting location of each row in the com-

pressed storage. In Figure 10.2, we show a row_ptr[] array of which the

elements are the pointers or indices of the beginning locations of each

row. That is, row_ptr[0] indicates that row 0 starts at location 0 of the

data[] array, row_ptr[1] indicates that row 1 starts at location 2, etc.

Note that row_ptr[1] and row_ptr[2] are both 2. This means that none

of the elements of the row 1 was stored in the compressed format. This

makes sense since row 1 in Figure 10.1 consists entirely of zero values.

Note also that row_ptr[5] stores the starting location of a nonexisting row

4. This is for convenience, as some algorithms need to use the starting

location of the next row to delineate the end of the current row. This extra

marker gives a convenient way to locate the ending location of row 3.

As we discussed in Chapter 7, matrices are often used in solving a lin-

ear system of N equations of N variables in the form of A3X1Y5 0,

where A is an N3N matrix, X is a vector of N variables, and Y is a vec-

tor of N constant values. The objective is to solve for the X variable values

that will satisfy all the questions. An intuitive approach is to Invert the

matrix so that X5A213 (2Y). This can be done through methods such

as Gaussian elimination for moderate-size arrays. While it is theoretically

possible to solve equations represented in sparse matrices, the sheer size

Row 0 Row 2 Row 3
Nonzero values data[7] { 3, 1, 2, 4, 1, 1, 1 }
Column indices col_index[7] { 0, 2, 1, 2, 3, 0, 3 }

Row Pointers row_ptr[5] { 0, 2, 2, 5, 7 }

FIGURE 10.2

Example of CSR format.

21910.1 Background

and the number of zero elements of many sparse linear systems of equa-

tions can simply overwhelm this intuitive approach.

Instead, sparse linear systems can often be better solved with an itera-

tive approach. When the sparse matrix A is positive-definite (i.e.,

xTAx. 0 for all nonzero vectors x in Rn), one can use conjugate gradient

methods to iteratively solve the corresponding linear system with guaran-

teed convergence to a solution [Hest1952]. This is done by guessing a

solution X, perform A3X1Y, and see if the result is close to a 0 vector.

If not, we can use a gradient vector formula to refine the guessed X and

perform another iteration of A3X1Y using the refined X. The most

time-consuming part of such an iterative approach is in the evaluation of

A3X1Y, which is a sparse matrix�vector multiplication and accumula-

tion. Figure 10.3 shows a small example of matrix-vector multiplication,

where A is a sparse matrix. The dark squares in A represent non-zero ele-

ments. In contrast, both X and Y are typically dense vectors. That is, most

of the elements of X and Y hold non-zero values. Due to its importance,

standardized library function interfaces have been created to perform this

operation under the name SpMV (sparse matrix�vector multiplication).

We will use SpMV to illustrate the important trade-offs between different

storage formats of sparse computation.

A sequential implementation of SpMV based on CSR is quite straight-

forward, which is shown in Figure 10.4. We assume that the code has

access to (1) num_rows, a function argument that specifies the number of

rows in the sparse matrix, and (2) a floating-point data[] array and two

integer row_ptr[] and x[] arrays as in Figure 10.3. There are only seven

lines of code. Line 1 is a loop that iterates through all rows of the matrix,

with each iteration calculating a dot product of the current row and the

vector x.
In each row, line 2 first initializes the dot product to zero. It then sets

up the range of data[] array elements that belong to the current row. The

×

A X

+

Y Y

FIGURE 10.3

A small example of matrix�vector multiplication and accumulation.

220 CHAPTER 10 Parallel Patterns: Sparse Matrix�Vector Multiplication

starting and ending locations can be loaded from the row_ptr[] array.

Figure 10.5 illustrates this for the small sparse matrix in Figure 10.1. For

row50, row_ptr[row] is 0 and row_ptr[row11] is 2. Note that the two

elements from row 0 reside in data[0] and data[1]. That is, row_ptr
[row] gives the starting position of the current row and row_ptr[row11]
gives the starting position of the next row, which is one after the ending

position of the current row. This is reflected in the loop in line 5, where

the loop index iterates from the position given by row_ptr[row] to

row_ptr[row11]21.
The loop body in line 6 calculates the dot product for the current row.

For each element, it uses the loop index elem to access the matrix element

in data[elem]. It also uses elem to retrieve the column index for the ele-

ment from col_index[elem]. This column index is then used to access

the appropriate x element for multiplication. For example, the element in

data[0] and data[1] are from column 0 (col_index[0]50) and column

2 (col_index[1]52). So the inner loop will perform the dot product for

1. for (introw = 0; row < num_rows; row++) {
2. float dot = 0;
3. int row_start = row_ptr[row];
4. int row_end = row_ptr[row+1];

5. for (intelem = row_start; elem < row_end; elem++) {
6. dot += data[elem] * x[col_index[elem]];

}

7. y[row] += dot;

}

FIGURE 10.4

A sequential loop that implements SpMV.

3 1 2 4 1 1 1data

0 2 1 2 3 0 3

0 2 2 5 7row_ptr

col_index

FIGURE 10.5

SpMV loop operating on the sparse matrix in Figure 10.1.

22110.1 Background

row 0 as data[0]�x[0]1data[1]�x[2]. Readers are encouraged to work

out the dot product for other rows as an exercise.

CSR completely removes all zero elements from the storage. It does

incur an overhead by introducing the col_index and row_ptr arrays. In

our small example, where the number of zero elements are not much more

than the non-zero elements, the overhead is slightly more than the space

needed for the nonzero elements.

It should be obvious that any SpMV code will reflect the storage format

assumed. Therefore, we will add the storage format to the name of a code to

clarify the combination used. We will refer to the SpMV code in Figure 10.4

as sequential SpMV/CSR. With a good understanding of sequential SpMV/

CSR, we are now ready to discuss parallel sparse computation.

10.2 PARALLEL SPMV USING CSR
Note that the dot product calculation for each row of the sparse matrix is

independent of those of other rows. This is reflected in the fact that all

iterations of the outer loop (line 1) in Figure 10.4 are logically indepen-

dent of each other. We can easily convert this sequential SpMV/CSR into

a parallel CUDA kernel by assigning each iteration of the outer loop to a

thread, which is illustrated in Figure 10.6, where thread 0 calculates the

dot product for row 0, thread 1 for row 1, and so on.

In a real sparse matrix computation, there are usually thousands to mil-

lions of rows, each of which contain tens to hundreds of nonzero elements.

This makes the mapping shown in Figure 10.6 seem very appropriate:

there are many threads and each thread has a substantial amount of work.

We show a parallel SpMV/CSR in Figure 10.7.

It should be clear that the kernel looks almost identical to the sequen-

tial SpMV/CSR loop. The loop construct has been removed since it is

replaced by the thread grid. All the other changes are very similar to the

case of the vector addition kernel in Chapter 3. In line 2, the row index is

calculated as the familiar expression blockIdx.x � blockDim.x 1

Thread 0 3 0 1 0

Thread 1 0 0 0 0

Thread 2 0 2 4 1

Thread 3 1 0 0 1

FIGURE 10.6

Example of mapping threads to rows in parallel SpMV/CSR.

222 CHAPTER 10 Parallel Patterns: Sparse Matrix�Vector Multiplication

threadIdx.x. Also, due to the need to handle an arbitrary number of

rows, line 3 checks if the row index of a thread exceeds the number of

rows. This handles the situation where the number of rows is not a multi-

ple of thread block size.

While the parallel SpMV/CSR kernel is quite simple, it has two major

shortcomings. First the kernel does not make coalesced memory accesses.

If readers examine Figure 10.5, it should be obvious that adjacent threads

will be making simultaneous nonadjacent memory accesses. In our small

example, threads 0, 1, 2, and 3 will access data[0], none, data[2], and
data[5] in the first iteration of their dot product loop. They will then

access data[1], none, data[3], and data[6] in the second iterations, and

so on. It is obvious that these simultaneous accesses made by adjacent

threads are not to adjacent locations. As a result, the parallel SpMV/CSR

kernel does not make efficient use of memory bandwidth.

The second shortcoming of the SpMV/CSR kernel is that it can poten-

tially have significant control flow divergence in all warps. The number of

iterations taken by a thread in the dot product loop depends on the number

of nonzero elements in the row assigned to the thread. Since the distribu-

tion of nonzero elements among rows can be random, adjacent rows can

have a very different number of nonzero elements. As a result, there can

be widespread control flow divergence in most or even all warps.

It should be clear that both the execution efficiency and memory band-

width efficiency of the parallel SpMV kernel depends on the distribution

of the input data matrix. This is quite different from most of the kernels

we have presented so far. However, such data-dependent performance

behavior is quite common in real-world applications. This is one of the

1. __global__ void SpMV_CSR(int num_rows, float *data, int *col_index,
int *row_ptr, float *x, float *y) {

2. int row = blockIdx.x * blockDim.x + threadIdx.x;

3. if (row < num_rows) {
4. float dot = 0;
5. int row_start = row_ptr[row];
6. int row_end = row_ptr[row+1];
7. for (int elem = row_start; elem < row_end; elem++) {
8. dot += data[elem] * x[col_index[elem]];

}
9. y[row] = dot;

}

}

FIGURE 10.7

A parallel SpMV/CSR kernel.

22310.2 Parallel SpMV Using CSR

reasons why parallel SpMV is such an important parallel pattern—it is

simple and yet it illustrates an important behavior in many complex paral-

lel applications. We will discuss the important techniques in the next sec-

tions to address the two shortcomings of the parallel SpMV/CSR kernel.

10.3 PADDING AND TRANSPOSITION
The problems of noncoalesced memory accesses and control divergence

can be addressed with data padding and transposition of matrix layout.

The ideas were used in the ELL storage format, the name of which came

from the sparse matrix package ELLPACK. A simple way to understand

the ELL format is to start with the CSR format, as illustrated in

Figure 10.8.

From a CSR representation, we first determine the rows with the maxi-

mal number of nonzero elements. We then add dummy (zero) elements to

all other rows after the nonzero elements to make them the same length as

the maximal rows. This makes the matrix a rectangular matrix. For our

small sparse matrix example, we determine that row 2 has the maximal

number of elements. We then add one zero element to row 0, three zero

elements to row 1, and one zero element to row 3 to make all them the

same length. These additional zero elements are shown as squares with an
� in Figure 10.8. Now the matrix has become a rectangular matrix. Note

that the col_index array also needs to be padded the same way to pre-

serve their correspondence to the data values.

We can now lay out the padded matrix in column-major order. That is,

we will place all elements of column 0 in consecutive locations, followed

by all elements of column 1, and so on. This is equivalent to transposing

the rectangular matrix and layout out the matrix in the row-major order of

CSR with Padding

* *

*

*

*

*

* * *

*
Transposed

FIGURE 10.8

ELL storage format.

224 CHAPTER 10 Parallel Patterns: Sparse Matrix�Vector Multiplication

C. In terms of our small example, after the transposition, data[0] through

data[3] now contain 3, �, 2, 1, the zero elements of all rows. This is illus-

trated in the bottom portion of Figure 10.9. col_index[0] through

col_index[3] contain the first elements of all rows. Note that we no lon-

ger need the row_ptr since the beginning of row i is now simply data[i].
With the padded elements, it is also very easy to move from the current

element of row i to the next element by simply adding the number of rows

to the index. For example, the zero element of row 2 is in data[2] and

the next element is in data[214]5data[6], where 4 is the number of

rows in our small example.

Using the ELL format, we show a parallel SpMV/ ELL kernel in

Figure 10.10. The kernel receives a slightly different argument. It no lon-

ger needs the row_ptr. Instead, it needs an argument num_elem to know

the number of elements in each row after padding.

A first observation is that the SpMV/ELL kernel code is simpler than

SpMV/CSR. With padding, all rows are now of the same length. In the

dot product loop in line 5, all threads can simply loop through the number

of elements given by num_elem. As a result, there is no longer control

flow divergence in warps: all threads now iterate exactly the same number

of times in the dot product loop. In the case where a dummy element is

used in the multiplication, since its value is zero, it will not affect the final

result.

A second observation is that in the dot product loop body, each thread

accesses its zero element in data[row] and then access its i element in

data[row1i�num_rows]. As we have seen in Figure 10.10, all adjacent

threads are now accessing adjacent memory locations, enabling memory

coalescing and thus making more efficient use of memory bandwidth.

T
hread 0

T
hread 1

T
hread 2

3 * 2 1 1 * 4 1

0 * 1 0 2 * 2 3

* * 1

* 3*

data

index

Iteration 0

*

*

T
hread 3

Values Columns

Thread 0 3 1 *

142

*11

0 2 *

321

*30

Thread 1

Thread 2

Thread 3

FIGURE 10.9

More details of our small example in ELL.

22510.3 Padding and Transposition

By eliminating control flow divergence and enabling memory coalesc-

ing, SpMV/ELL should run faster than SpMV/CSR. Furthermore, SpMV/

ELL is simpler. This seems to make SpMV/ELL an all-winning approach.

However, it is not quite so. Unfortunately, it does have its potential down-

side. In situations where one or a small number of rows have an exceed-

ingly large number of nonzero elements, the ELL format will result in an

excessive number of padded elements. These padded elements will take up

storage, need to be fetched, and take part in calculations even though they

do not contribute to the final result. With enough padded elements, an

SpMV/ELL kernel can actually run more slowly than an SpMV/CSR ker-

nel. This calls for a method to control the number of padded elements in

an ELL representation.

10.4 USING HYBRID TO CONTROL PADDING
The root of the problem with excessive padding in ELL is that one or a

small number of rows have an exceedingly large number of nonzero ele-

ments. If we have a mechanism to “take away” some elements from these

rows, we can reduce the number of padded elements in ELL. The coordi-

nate (COO) format provides such a venue.

The COO format is illustrated in Figure 10.11, where each nonzero ele-

ment is stored with both its column index and row index. We have both

col_index and row_index arrays to accompany the data array. For exam-

ple A[0,0] of our small example is now stored with both its column index

(0 in col_index[0]) and its row index (0 in row_index[0]). With COO

format, one can look at any element in the storage and know where the

1. __global__ void SpMV_ELL(intnum_rows, float *data, int *col_index,
int num_elem, float *x, float *y) {

2. int row = blockIdx.x * blockDim.x + threadIdx.x;
3. if (row < num_rows) {
4. float dot = 0;
5. for (int i = 0; i < num_elem; i++) {
6. dot += data[row+i*num_rows] * x[col_index[row+i*num_rows]];

}
7. y[row] = dot;

}
}

FIGURE 10.10

A parallel SpMV/ELL kernel.

226 CHAPTER 10 Parallel Patterns: Sparse Matrix�Vector Multiplication

nonzero element came from in the original sparse matrix. Like the ELL

format, there is no need for row_ptr since each element self-identifies its

column and row index.

While the COO format does come with the cost of additional storage

for the row_index array, it also comes with the additional benefit of flexi-

bility. We can arbitrarily reorder the elements in a COO format without

losing any information as long as we reorder the data, col_index, and
row_index the same way. This is illustrated using our small example in

Figure 10.12.

In Figure 10.12, we have reordered the elements of data, col_index,
and row_index. Now data[0] actually contains an element from row 0

and column 3 of the small sparse matrix. Because we have also shifted the

row index and column index values along with the data value, we can cor-

rectly identify this element in the original sparse matrix. Readers may ask

why we would want to reorder these elements. Such reordering would dis-

turb the locality and sequential patterns that are important for efficient use

of memory bandwidth.

The answer lies in an important use case for the COO format. It can be

used to curb the length of the CSR or ELL format. First, we will make an

important observation. In the COO format, we can process the elements in

any order we want. For each element in data[i], we can simply perform

a y[row_index[i]] 1 5 data[i] � x[col_index[i]] operation. If we

make sure somehow we perform this operation for all elements of data,

we will calculate the correct final answer.

Row 0 Row 2 Row 3
Nonzero values data[7] { 3, 1, 2, 4, 1, 1, 1 }
Column indices col_index[7] { 0, 2, 1, 2, 3, 0, 3 }

Row indices row_index[7] { 0, 0, 2, 2, 2, 3, 3 }

FIGURE 10.11

Example of COO format.

Nonzero values data[7] { 1 1, 2, 4, 3, 1 1 }

Column indices col_index[7] { 0 2, 1, 2, 0, 3, 3 }

Row indices row_index[7] { 3 0, 2, 2, 0, 2, 3 }

FIGURE 10.12

Reordering COO format.

22710.4 Using Hybrid to Control Padding

More importantly, we can take away some of the elements from the

rows with an exceedingly large number of nonzero elements and place

them into a separate COO format. We can use either CSR or ELL to per-

form SpMV on the remaining elements. With excess elements removed

from the extra-long rows, the number of padded elements for other rows

can be significantly reduced. We can then use a SpMV/COO to finish the

job. This approach of employing two formats to collaboratively complete

a computation is often referred to as a hybrid method.

Let’s illustrate a hybrid ELL and COO method for SpMV using our

small sparse matrix, as shown in Figure 10.13. We see that row 2 has the

most number of nonzero elements. We remove the last nonzero element of

row 2 from the ELL representation and move it into a separate COO repre-

sentation. By removing the last element of row 2, we reduce the maximal

number of nonzero elements among all rows in the small sparse matrix

from 3 to 2. As shown in Figure 10.13, we reduce the number of padded

elements from 5 to 2. More importantly, all threads now only need to take

two iterations rather than three. This can give a 50% acceleration to the

parallel execution of the SpMV/ELL kernel.

A typical way of using an ELL-COO hybrid method is for the host to

convert the format from something like a CSR format into ELL. During

the conversion, the host removes some nonzero elements from the rows

with an exceedingly large number of nonzero elements. The host places

these elements into a COO representation. The host then transfers the ELL

representation of the data to a device. When the device completes the

SpMV/ELL kernel, it transfers the y values back to the host. These values

are missing the contributions from the elements in the COO representation.

values col index

Thread 0 3 1 0 2

Thread 1 * * * *

Thread 2 2 4 1 2

Thread 3 1 1 0 3

row_index

data

col_index 3

1

2

COOELL

T
hread 0

T
hread 1

T
hread 2

3 * 2 1 1 * 4 1

0 * 1 0 2 * 2 3

data

index

Iteration 0

T
hread 3

FIGURE 10.13

Our small example in ELL and COO hybrid.

228 CHAPTER 10 Parallel Patterns: Sparse Matrix�Vector Multiplication

The host performs a sequential SpMV/COO on the COO elements and

finishes their contributions to the y element values.

The user may question whether the additional work done by the host to

separate COO elements from an ELL format could incur too much over-

head. The answer is it depends. In situations where a sparse matrix is only

used in one SpMV calculation, this extra work can indeed incur significant

overhead. However, in many real-world applications, the SpMV is per-

formed on the same sparse kernel repeated in an iterative solver. In each

iteration of the solver, the x and y vectors vary but the sparse matrix

remains the same since its elements correspond to the coefficients of the

linear system of equations being solved and these coefficients do not

change from iteration to iteration. So, the work done to produce both the

ELL and COO representation can be amortized across many iterations. We

will come back to this point in the next section.

In our small example, the device finishes the SpMV/ELL kernel on the

ELL portion of the data. The y values are then transferred back to the

host. The host then adds the contribution of the COO element with the

operation y[2] 1 5 data[0] � x[col_index[0]] 5 1�x[3]. Note that there

are in general multiple nonzero elements in the COO format. So, we

expect that the host code to be a loop as shown in Figure 10.14.

The loop is extremely simple. It iterates through all the data elements

and performs the multiply and accumulate operations on the appropriate x
and y elements using the accompanying col_index and row_index ele-

ments. We will not present a parallel SpMV/COO kernel. It can be easily

constructed using each thread to process a portion of the data elements

and use an atomic operation to accumulate the results into y elements.

This is because the threads are no longer mapped to a particular row. In

fact, many rows will likely be missing from the COO representation; only

the rows that have an exceedingly large number of nonzero elements will

have elements in the COO representation. Therefore, it is better just to

have each thread to take a portion of the data element and use an atomic

operation to make sure that none of the threads will trample the contribu-

tion of other threads.

1. for (int i = 0; i < num_elem; row++)
2. y[row_index[i]] += data[i] * x[col_index[i]];

FIGURE 10.14

A sequential loop that implements SpMV/COO.

22910.4 Using Hybrid to Control Padding

The hybrid SpMV/ELL-COO method is a good illustration of produc-

tive use of both CPUs and GPUs in a heterogeneous computing system.

The CPU can perform SpMV/COO fast using its large cache memory. The

GPU can perform SpMV/ELL fast using its coalesced memory accesses

and large number of hardware execution units. The removal of some ele-

ments from the ELL format is a form of regularization technique: it

reduces the disparity between long and short rows and makes the workload

of all threads more uniform. Such improved uniformity results in benefits

such as less control divergence in a SpMV/CSR kernel or less padding in

a SpMV/ELL kernel.

10.5 SORTING AND PARTITIONING FOR REGULARIZATION
While COO helps to regulate the amount of padding in an ELL representa-

tion, we can further reduce the padding overhead by sorting and partition-

ing the rows of a sparse matrix. The idea is to sort the rows according to

their length, say from the longest to the shortest. This is illustrated with

our small sparse matrix in Figure 10.15. Since the sorted matrix looks

largely like a triangular matrix, the format is often referred to as jagged

diagonal storage (JDS). As we sort the rows, we typically maintain an

additional jds_row_index array that preserves the original index of the

row. For CSR, this is similar to the row_ptr array in that there is one ele-

ment per row. Whenever we exchange two rows in the sorting process, we

also exchange the corresponding elements of the jds_row_index array.

This way, we can always keep track of the original position of all rows.

Once a sparse matrix is in JDS format, we can partition the matrix into

sections of rows. Since the rows have been sorted, all rows in a section

will likely have a more or less uniform number of nonzero elements. In

CSR JDS

FIGURE 10.15

Sorting rows according to their length.

230 CHAPTER 10 Parallel Patterns: Sparse Matrix�Vector Multiplication

Figure 10.15, we can divide the small matrix into three sections: the first

section consists of the one row that has three elements, the second section

consists of the two rows with two elements each, and the third section

consists of one row without any element. We can then generate ELL

representation for each section. Within each section, we only need to pad

the rows to match the row with the maximal number of elements in that

section. This would reduce the number of padded elements. In our exam-

ple, we do not even need to pad within any of the three sections. We can

then transpose each section independently and launch a separate kernel on

each section. In fact, we do not even need to launch a kernel for the sec-

tion of rows with no nonzero elements.

Figure 10.16 shows a JDS-ELL representation of our small sparse

matrix. It assumed the same sorting and partitioning results shown in

Figure 10.15. Out of the three sections, the first section has only one row

so the transposed layout is the same as the original. The second section is

a 2 3 2 matrix and has been transposed. The third section consists of row

1, which does not have any nonzero element. This is reflected in the fact

that its starting location and the next section’s starting position are

identical.

We will not show a SpMV/JDS kernel. The reason is that we would be

just using either an SpMV/CSR kernel on each section of the CSR, or a

SpMV/ELL kernel on each section of the ELL after padding. The host

code required to create a JDS representation and to launch SpMV kernels

on each section of the JDS representation is left as an exercise.

Note that we want each section to have a large number of rows so that

its kernel launch will be worthwhile. In the extreme cases where a very

small number of rows have an extremely large number of nonzero ele-

ments, we can still use the COO hybrid with JDS to allow us to have more

rows in each section.

Nonzero values data[7] { 2, 4, 1, 3, 1, 1, 1 }

Column indices col_index[7] { 1, 2, 3, 0, 2, 0, 3 }

JDS row indices Jds_row_index[4] { 2, 0, 3, 1 }

Section pointers Jds_section_ptr[4] { 0, 3, 7,7 }

2 4 1 3 1 1 1

1 2 3 0 0 2 3

FIGURE 10.16

JDS format and sectioned ELL.

23110.5 Sorting and Partitioning for Regularization

Once again readers should ask whether sorting rows will result into

incorrect solutions to the linear system of equations. Recall that we can

freely reorder equations of a linear system without changing the solution.

As long as we reorder the y elements along with the rows, we are effec-

tively reordering the equations. Therefore, we will end up with the correct

solution. The only extra step is to reorder the final solution back to the

original order using the jds_row_index array.

The other question is whether sorting will incur significant overhead.

The answer is similar to what we saw in the hybrid method. As long as

the SpMV/JDS kernel is used in an iterative solver, one can afford to per-

form such sorting as well as the reordering of the final solution x elements

and amortize the cost among many iterations of the solver.

In more recent devices, the memory coalescing hardware has relaxed

the address alignment requirement. This allows one to simply transpose a

JDS-CSR representation. Note that we do need to adjust the jds_sec-
tion_ptr array after transposition. This further eliminates the need to pad

rows in each section. As memory bandwidth becomes increasingly the lim-

iting factor of performance, eliminating the need to store and fetch padded

elements can be a significant advantage. Indeed, we have observed that

while sectioned JDS-ELL tends to give the best performance on older

CUDA devices, transposed JDS-CSR tends to give the best performance

on Fermi and Kepler.

We would like to make an additional remark on the performance of

sparse matrix computation as compared to dense matrix computation. In

general, the FLOPS rating achieved by either CPUs or GPUs are much

lower for sparse matrix computation than for dense matrix computation.

This is especially true for SpMV, where there is no data reuse in the

sparse matrix. The CGMA value (see Chapter 5) is essentially 1, limiting

the achievable FLOPS rate to a small fraction of the peak performance.

The various formats are important for both CPUs and GPUs since both are

limited by memory bandwidth when performing SpMV. Many folks have

been surprised by the low FLOPS rating of this type of computation on

both CPUs and GPUs in the past. After reading this chapter, one should

no longer be surprised.

10.6 SUMMARY
In this chapter, we presented sparse matrix computation as an important

parallel pattern. Sparse matrices are important in many real-world

232 CHAPTER 10 Parallel Patterns: Sparse Matrix�Vector Multiplication

applications that involve modeling complex phenomenon. Furthermore,

sparse matrix computation is a simple example of data-dependent perfor-

mance behavior of many large real-world applications. Due to the large

amount of zero elements, compaction techniques are used to reduce the

amount of storage, memory accesses, and computation performed on these

zero elements. Unlike most other kernels presented in this book so far, the

SpMV kernels are sensitive to the distribution of nonzero elements in the

sparse matrices. Not only can the performance of each kernel vary signifi-

cantly across matrices, their relative merit can also change significantly.

Using this pattern, we introduce the concept of regularization using hybrid

methods and sorting/partitioning. These regularization methods are used

in many real-world applications. Interestingly, some of the regularization

techniques reintroduce zero elements into the compacted representations.

We use hybrid methods to mitigate the pathological cases where we could

introduce too many zero elements. Readers are referred to [Bell2009] and

encouraged to experiment with different sparse data sets to gain more

insight into the data-dependent performance behavior of the various

SpMV kernels presented in this chapter.

10.7 EXERCISES
10.1. Complete the host code to produce the hybrid ELL-COO format,

launch the ELL kernel on the device, and complete the contributions

of the COO elements.

10.2. Complete the host code for producing JDS-ELL and launch one

kernel for each section of the representation.

10.3. Consider the following sparse matrix:

1 0 7 0
0 0 8 0
0 4 3 0
2 0 0 1

Represent it in each of the following formats: (a) COO, (b) CSR,

and (c) ELL.

10.4. Given a sparse matrix of integers with m rows, n columns, and z

nonzeros, how many integers are needed to represent the matrix in

(a) COO, (b) CSR, and (c) ELL. If the information provided is not

enough, indicate what information is missing.

23310.7 Exercises

References
Hestenes, M., & Stiefel, E. (1952). Methods of conjugate gradients for solv-

ing linear systems. Journal of Research of the National Bureau of

Standards, 49(6).

Bell, N., & Garland, M. Implementing sparse matrix-vector multiplication on

throughput-oriented processors, Proceedings of the ACM Conference on High-

Performance Computing Networking Storage and Analysis (SC’09), 2009.

234 CHAPTER 10 Parallel Patterns: Sparse Matrix�Vector Multiplication

CHAPTER

11Application Case Study:
Advanced MRI
Reconstruction

CHAPTER OUTLINE

11.1 Application Background.. 236

11.2 Iterative Reconstruction ... 239

11.3 Computing FHD ... 241

11.4 Final Evaluation ... 260

11.5 Exercises... 262

References ... 264

Application case studies teach computational thinking and practical pro-

gramming techniques in a concrete manner. They also help demonstrate

how the individual techniques fit into a top-to-bottom development pro-

cess. Most importantly, they help us to visualize the practical use of

these techniques in solving problems. In this chapter, we start with the

background and problem formulation of a relatively simple application.

We show that parallel execution not only speeds up the existing

approaches, but also allows applications experts to pursue approaches

that are known to provide benefit but were previously ignored due to

their excessive computational requirements. We then use an example

algorithm and its implementation source code from such an approach to

illustrate how a developer can systematically determine the kernel paral-

lelism structure, assign variables into CUDA memories, steer around

limitations of the hardware, validate results, and assess the impact of

performance improvements.

235

11.1 APPLICATION BACKGROUND
Magnetic resonance imaging (MRI) is commonly used by the medical

community to safely and noninvasively probe the structure and function of

biological tissues in all regions of the body. Images that are generated

using MRI have made profound impact in both clinical and research set-

tings. MRI consists of two phases: acquisition (scan) and reconstruction.

During the acquisition phase, the scanner samples data in the k-space

domain (i.e., the spatial-frequency domain or Fourier transform domain)

along a predefined trajectory. These samples are then transformed into the

desired image during the reconstruction phase.

The application of MRI is often limited by high noise levels, significant

imaging artifacts, and/or long data acquisition times. In clinical settings, short

scan times not only increase scanner throughput but also reduce patient

discomfort, which tends to mitigate motion-related artifacts. High image

resolution and fidelity are important because they enable earlier detection of

pathology, leading to improved prognoses for patients. However, the goals

of short scan time, high resolution, and high signal-to-noise ratio (SNR) often

conflict; improvements in one metric tend to come at the expense of one or

both of the others. One needs new technological breakthroughs to be able

to simultaneously improve on all of three dimensions. This study presents

a case where massively parallel computing provides such a breakthrough.

Readers are referred to MRI textbooks such as Liang and Lauterbur

[LL1999] for the physics principles behind MRI. For this case study, we will

focus on the computational complexity in the reconstruction phase and how

the complexity is affected by the k-space sampling trajectory. The k-space

sampling trajectory used by the MRI scanner can significantly affect the qual-

ity of the reconstructed image, the time complexity of the reconstruction

algorithm, and the time required for the scanner to acquire the samples.

Equation (11.1) below shows a formulation that relates the k-space samples

to the reconstructed image for a class of reconstruction methods.

m̂ðrÞ5
X

j

WðkjÞsðkjÞei2πkjUr (11.1)

In Eq. (11.1), m(r) is the reconstructed image, s(k) is the measured

k-space data, and W(k) is the weighting function that accounts for nonuni-

form sampling. That is, W(k) decreases the influence of data from k-space

regions where a higher density of sample points are taken. For this class

of reconstructions, W(k) can also serve as an apodization function that

reduces the influence of noise and reduces artifacts due to finite sampling.

236 CHAPTER 11 Application Case Study: Advanced MRI Reconstruction

If data is acquired at uniformly spaced Cartesian grid points in the

k-space under ideal conditions, then the W(k) weighting function is a con-

stant and can thus be factored out of the summation in Eq. (11.1). As a

result, the reconstruction of m(r) becomes an inverse fast Fourier trans-

form (FFT) on s(k), an extremely efficient computation method. A collec-

tion of data measured at such uniformed spaced Cartesian grid points is

referred to as a Cartesian scan trajectory, depicted in Figure 11.1(a). In

practice, Cartesian scan trajectories allow straightforward implementation

on scanners and are widely used in clinical settings today.

Although the inverse FFT reconstruction of Cartesian scan data is com-

putationally efficient, non-Cartesian scan trajectories often have advan-

tages in reduced sensitivity to patient motion, better ability to provide self-

calibrating field inhomogeneity information, and reduced requirements on

scanner hardware performance. As a result, non-Cartesian scan trajectories

like spirals (shown in Figure 11.1c), radial lines (projection imaging), and

rosettes have been proposed to reduce motion-related artifacts and address

scanner hardware performance limitations. These improvements have

recently allowed the reconstructed image pixel values to be used for mea-

suring subtle phenomenon such as tissue chemical anomalies before they

become anatomical pathology. Figure 11.2 shows such a measurement that

generates a map of sodium, a heavily regulated substance in normal

human tissues. The information can be used to track tissue health in stroke

and cancer treatment processes. The variation or shifting of sodium con-

centration gives early signs of disease development or tissue death. For

example, the sodium map of a human brain shown in Figure 11.2 can be

Cartesian Scan Data Spiral Scan Data

Gridding1

FFT LS

kx

ky

kx

kykx

ky

(a) (b) (c)

FIGURE 11.1

Scanner k-space trajectories and their associated reconstruction strategies: (a)

Cartesian trajectory with FFT reconstruction, (b) spiral (or non-Cartesian

trajectory in general) followed by gridding to enable FFT reconstruction, and (c)

spiral (non-Cartesian) trajectory with linear solver�based reconstruction.

23711.1 Application Background

used to give an early indication of brain tumor tissue responsiveness to

chemotherapy protocols, enabling individualized medicine. Because

sodium is much less abundant than water molecules in human tissues, a

reliable measure of sodium levels requires a higher SNR through a higher

number of samples and needs to control the extra scan time with non-

Cartesian scan trajectories.

Image reconstruction from non-Cartesian trajectory data presents both

challenges and opportunities. The main challenge arises from the fact that

the exponential terms are no longer uniformly spaced; the summation does

not have the form of an FFT anymore. Therefore, one can no longer per-

form reconstruction by directly applying an inverse FFT to the k-space

samples. In a commonly used approach called gridding, the samples are

first interpolated onto a uniform Cartesian grid and then reconstructed

using the FFT (see Figure 11.1b). For example, a convolution approach to

gridding takes a k-space data point, convolves it with a gridding kernel,

and accumulates the results on a Cartesian grid. Convolution is quite com-

putationally intensive. Accelerating gridding computation on many-core

processors facilitates the application of the current FFT approach to non-

Cartesian trajectory data. Since we have already studied the convolution

pattern in Chapter 8 and will be examining a convolution-style computa-

tion in Chapter 12, we will not cover it here.

In this chapter, we will cover an iterative, statistically optimal image

reconstruction method that can accurately model imaging physics and

FIGURE 11.2

The use of non-Cartesian k-space sample trajectory and accurate linear

solver�based reconstruction enables new MRI modalities with exciting medial

applications. The improved SNR enables reliable collection of in-vivo

concentration data on a chemical substance such as sodium in human tissues.

The variation or shifting of sodium concentration gives early signs of disease

development or tissue death. For example, the sodium map of a human brain

shown in this Figure can be used to give early indication of brain tumor tissue

responsiveness to chemo-therapy protocols, enabling individualized medicine.

238 CHAPTER 11 Application Case Study: Advanced MRI Reconstruction

bound the noise error in each image pixel value. However, such iterative

reconstructions have been impractical for large-scale 3D problems due to

their excessive computational requirements compared to gridding.

Recently, these reconstructions have become viable in clinical settings

when accelerated on GPUs. In particular, we will show that an iterative

reconstruction algorithm that used to take hours using a high-end sequen-

tial CPU now takes only minutes using both CPUs and GPUs for an image

of moderate resolution, a delay acceptable in clinical settings.

11.2 ITERATIVE RECONSTRUCTION
Haldar, et al [HHB 2007] proposed a linear solver�based iterative

reconstruction algorithm for non-Cartesian scan data, as shown in

Figure 11.1(c). The algorithm allows for explicit modeling and compensa-

tion for the physics of the scanner data acquisition process, and can thus

reduce the artifacts in the reconstructed image. It is, however, computation-

ally expensive. The reconstruction time on high-end sequential CPUs has

been hours for moderate-resolution images and thus impractical in clinical

use. We use this as an example of innovative methods that have required

too much computation time to be considered practical. We will show that

massive parallelism can reduce the reconstruction time to the order of a

minute so that one can deploy the new MRI modalities such as sodium

imaging in clinical settings.

Figure 11.3 shows a solution of the quasi-Bayesian estimation problem

formulation of the iterative linear solver�based reconstruction approach,

Compute FHF + λλWHW

Acquire Data

Compute FHD

Find ρ

(FHF +λWHW) ρ = FHD

FIGURE 11.3

An iterative linear solver�based approach to reconstruction of no-Cartesian

k-space sample data.

23911.2 Iterative Reconstruction

where ρ is a vector containing voxel values for the reconstructed image,

F is a matrix that models the physics of imaging process, D is a vector of

data samples from the scanner, and W is a matrix that can incorporate

prior information such as anatomical constraints. In clinical settings, the

anatomical constraints represented in W are derived from one or more

high-resolution, high-SNR water molecule scans of the patient. These

water molecule scans reveal features such as the location of anatomical

structures. The matrix W is derived from these reference images. The

problem is to solve for ρ given all the other matrices and vectors.

On the surface, the computational solution to the problem formulation

in Figure 11.3 should be very straightforward. It involves matrix�matrix

multiplications and addition (FHF1λWHW), matrix�vector multiplication

(FHD), matrix inversion (FHF1λWHW)21, and finally matrix�matrix multi-

plication ((FHF1λWHW)213 FHD). However, the sizes of the matrices

make this straightforward approach extremely time consuming. FH and F are

3D matrices of which the dimensions are determined by the resolution of

the reconstructed image ρ. Even in a modest resolution 1283-voxel recon-

struction, there are 1283 columns in F with N elements in each column where

N is the number of k-space samples used. Obviously, F is extremely large.

The sizes of the matrices involved are so large that the matrix opera-

tions involved in a direct solution of the equation in Figure 11.3 are practi-

cally intractable. An iterative method for matrix inversion, such as the

conjugate gradient (CG) algorithm, is therefore preferred. The conjugate

gradient algorithm reconstructs the image by iteratively solving the equat-

ion in Figure 11.3 for ρ. During each iteration, the CG algorithm updates

the current image estimate ρ to improve the value of the quasi-Bayesian

cost function. The computational efficiency of the CG technique is largely

determined by the efficiency of matrix�vector multiplication operations

involving FHF1λWHW and ρ, as these operations are required during

each iteration of the CG algorithm.

Fortunately, matrix W often has a sparse structure that permits efficient

multiplication by WHW, and matrix FHF is Toeplitz that enables efficient

matrix�vector multiplication via the FFT. Stone et al. [SHT2008] present

a GPU-accelerated method for calculating Q, a data structure that allows

us to quickly calculate matrix�vector multiplication involving FHF with-

out actually calculating FHF itself. The calculation of Q can take days on a

high-end CPU core. It only needs to be done once for a given trajectory

and can be used for multiple scans.

The matrix�vector multiply to calculate FHD takes about one order

of magnitude less time than Q but can still take about three hours for a

240 CHAPTER 11 Application Case Study: Advanced MRI Reconstruction

1283-voxel reconstruction on a high-end sequential CPU. Since FHD needs

to be computed for every image acquisition, it is desirable to reduce the

computation time of FHD to minutes.1 We will show the details of this

process. As it turns out, the core computational structure of Q is identical

to that of FHD. As a result, the same methodology can be used to acceler-

ate the computation of both.

The “find ρ” step in Figure 11.3 performs the actual CG based on FHD.

As we explained earlier, precalculation of Q makes this step much less

computationally intensive than FHD, and accounts for only less than 1% of

the execution of the reconstruction of each image on a sequential CPU. As

a result, we will leave it out of the parallelization scope and focus on FHD

in this chapter. We will, however, revisit its status at the end of the

chapter.

11.3 COMPUTING FHD
Figure 11.4 shows a sequential C implementation of the computations for

the core step of computing a data structure for multiplications with FHF

(referred to as Q computation in Figure 11.4a) without explicitly calculat-

ing FHF, and that for FHD (Figure 11.4b). It should be clear from a quick

glance at Figures 11.4(a) and (b) that the core steps of Q and FHD have

identical structures. Both computations start with an outer loop that

encloses an inner loop. The only differences are the particular calculation

done in each loop body and the fact that the core step of Q involves a

much larger m, since it implements a matrix�matrix multiplication as

opposed to a matrix�vector multiplication, thus it incurs a much longer

execution time. Thus, it suffices to discuss one of them. We will focus on

FHD, since this is the one that will need to be run for each image being

reconstructed.

A quick glance at Figure 11.4(b) shows that the C implementation of

FHD is an excellent candidate for acceleration on the GPU because it exhi-

bits substantial data parallelism. The algorithm first computes the real and

imaginary components of Mu (rMu and iMu) at each sample point in the

k-space. It then computes the real and imaginary components of FHD at

each voxel in the image space. The value of FHD at any voxel depends on

the values of all k-space sample points. However, no voxel elements of

1Note that the FHD computation can be approximated with gridding and can run in a

few seconds, with perhaps reduced quality of the final reconstructed image.

24111.3 Computing FHD

FHD depend on any other elements of FHD. Therefore, all elements of

FHD can be computed in parallel. Specifically, all iterations of the outer

loop can be done in parallel and all iterations of the inner loop can be

done in parallel. The calculations of the inner loop, however, have a

dependence on the calculation done by the preceding statements in the

same iteration of the outer loop.

Despite the algorithm’s abundant inherent parallelism, potential perfor-

mance bottlenecks are evident. First, in the loop that computes the ele-

ments of FHD, the ratio of floating-point operations to memory accesses is

at best 3:1 and at worst 1:1. The best case assumes that the sin and cos
trigonometry operations are computed using the five-element Taylor series

that requires 13 and 12 floating-point operations, respectively. The worst

case assumes that each trigonometric operation is computed as a single

operation in hardware. As we have seen in Chapter 5, a floating-point to

memory access ratio of 16:1 or more is needed for the kernel to not be

limited by memory bandwidth. Thus, the memory accesses will clearly

limit the performance of the kernel unless the ratio is drastically increased.

Second, the ratio of floating-point arithmetic to floating-point trigo-

nometry functions is only 13:2. Thus, a GPU-based implementation must

tolerate or avoid stalls due to long-latency sin and cos operations.

for (m = 0; m < M; m++) {

 phiMag[m] = rPhi[m]*rPhi[m] +
 iPhi[m]*iPhi[m];

 for (n = 0; n < N; n++) {
 expQ = 2*PI*(kx[m]*x[n] +
 ky[m]*y[n] +
 kz[m]*z[n]);

 rQ[n] +=phiMag[m]*cos(expQ);
 iQ[n] +=phiMag[m]*sin(expQ);
 }
}

(a) Q computation

for (m = 0; m < M; m++) {

 rMu[m] = rPhi[m]*rD[m] +
 iPhi[m]*iD[m];
 iMu[m] = rPhi[m]*iD[m] –
 iPhi[m]*rD[m];

 for (n = 0; n < N; n++) {
 expFhD = 2*PI*(kx[m]*x[n] +
 ky[m]*y[n] +
 kz[m]*z[n]);

 cArg = cos(expFhD);
 sArg = sin(expFhD);

 rFhD[n] += rMu[m]*cArg –
 iMu[m]*sArg;
 iFhD[n] += iMu[m]*cArg +
 rMu[m]*sArg;
 }
} (b) FHd computation

FIGURE 11.4

Computation of (a) Q and (b) FHD.

242 CHAPTER 11 Application Case Study: Advanced MRI Reconstruction

Without a good way to reduce the cost of trigonometry functions, the per-

formance will likely be dominated by the time spent in these functions.

We are now ready to take the steps in converting FHD from sequential

C code to a CUDA kernel.

Step 1: Determine the Kernel Parallelism Structure

The conversion of a loop into a CUDA kernel is conceptually straightfor-

ward. Since all iterations of the outer loop of Figure 11.4(b) can be exe-

cuted in parallel, we can simply convert the outer loop into a CUDA

kernel by mapping its iterations to CUDA threads. Figure 11.5 shows a

kernel from such a straightforward conversion. Each thread implements an

iteration of the original outer loop. That is, we use each thread to calculate

the contribution of one k-space sample to all FHD elements. The original

outer loop has M iterations, and M can be in the millions. We obviously

need to have multiple thread blocks to generate enough threads to imple-

ment all these iterations.

To make performance tuning easy, we declare a constant

FHD_THREADS_PER_BLOCK that defines the number of threads in each

thread block when we invoke the cmpFHd kernel. Thus, we will use

M/FHD_THREADS_PER_BLOCK for the grid size (in terms of number of

blocks) and FHD_THREADS_PER_BLOCK for block size (in terms of number

of threads) for kernel invocation. Within the kernel, each thread calculates

__global__ void cmpFhD(float* rPhi, iPhi, rD, iD,
 kx, ky, kz, x, y, z, rMu, iMu, rFhD, iFhD, int N) {

 int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

 rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
 iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

 for (n = 0; n < N; n++) {
 floatexpFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);

 floatcArg = cos(expFhD); floatsArg = sin(expFhD);

 rFhD[n] += rMu[m]*cArg – iMu[m]*sArg;
 iFhD[n] += iMu[m]*cArg + rMu[m]*sArg;
 }
}

FIGURE 11.5

First version of the FHD kernel. The kernel will not execute correctly due to

conflicts between threads in writing into rFhD and iFhD arrays.

24311.3 Computing FHD

the original iteration of the outer loop that it is assigned to cover using the

formula blockIdx.x � FHD_THREADS_PER_BLOCK1 threadIdx.x. For exam-

ple, assume that there are 65,536 k-space samples and we decided to use

512 threads per block. The grid size at kernel innovation would be

65,53645125 128 blocks. The block size would be 512. The calculation

of m for each thread would be equivalent to blockIdx.x�5121 threadIdx.
While the kernel of Figure 11.5 exploits ample parallelism, it suffers

from a major problem: all threads write into all rFhD and iFhD voxel ele-

ments. This means that the kernel must use atomic operations in the global

memory in the inner loop to keep threads from trashing each other’s con-

tributions to the voxel value. This can seriously affect the performance of

the kernel. Note that as is, the code will not even execute correctly since

no atomic operation is used. We need to explore other options.

The other option is to use each thread to calculate one FhD value from

all k-space samples. To do so, we need to first swap the inner loop and the

outer loop so that each of the new outer loop iterations processes one FhD
element. That is, each of the new outer loop iterations will execute the

new inner loop that accumulates the contribution of all k-space samples to

the FhD element handled by the outer loop iteration. This transformation to

the loop structure is called loop interchange. It requires a perfectly nested

loop, meaning that there is no statement between the outer for loop state-

ment and the inner for loop statement. This is, however, not true for the

FHD code in Figure 11.4(b). We need to find a way to move the calcula-

tion of rMu and iMu elements out of the way.

From a quick inspection of Figure 11.6(a), which is a replicate of

Figure 11.4(b), we see that the FHD calculation can be split into two sepa-

rate loops, as shown in Figure 11.6(b), using a technique called loop

fission or loop splitting. This transformation takes the body of a loop and

splits it into two loops. In the case of FHD, the outer loop consists of two

parts: the statements before the inner loop and the inner loop. As shown in

Figure 11.6(b), we can perform loop fission on the outer loop by placing

the statements before the inner loop into a loop and the inner loop into a

second loop. The transformation changes the relative execution order of

the two parts of the original outer loop. In the original outer loop, both

parts of the first iteration execute before the second iteration. After fission,

the first part of all iterations will execute; they are then followed by the

second part of all iterations. Readers should be able to verify that this

change of execution order does not affect the execution results for FHD.

This is because the execution of the first part of each iteration does not

depend on the result of the second part of any preceding iterations of the

244 CHAPTER 11 Application Case Study: Advanced MRI Reconstruction

original outer loop. Loop fission is a transformation often done by

advanced compilers that are capable of analyzing the (lack of) dependence

between statements across loop iterations.

With loop fission, the FHD computation is now done in two steps. The

first step is a single-level loop that calculates the rMu and iMu elements for

use in the second loop. The second step corresponds to the loop that calcu-

lates the FhD elements based on the rMu and iMu elements calculated in the

first step. Each step can now be converted into a CUDA kernel. The two

CUDA kernels will execute sequentially with respect to each other. Since

the second loop needs to use the results from the first loop, separating

these two loops into two kernels that execute in sequence does not sacri-

fice any parallelism.

The cmpMu() kernel in Figure 11.7 implements the first loop. The con-

version of the first loop from sequential C code to a CUDA kernel is

straightforward: each thread implements one iteration of the original C

code. Since the M value can be very big, reflecting the large number of

k-space samples, such a mapping can result in a large number of threads.

With 512 threads in each block, we will need to use multiple blocks to

for (m = 0; m < M; m++) {

 rMu[m] = rPhi[m]*rD[m] +
 iPhi[m]*iD[m];
 iMu[m] = rPhi[m]*iD[m] –
 iPhi[m]*rD[m];

 for (n = 0; n < N; n++) {
 expFhD = 2*PI*(kx[m]*x[n] +
 ky[m]*y[n] +
 kz[m]*z[n]);

 cArg = cos(expFhD);
 sArg = sin(expFhD);

 rFhD[n] += rMu[m]*cArg –
 iMu[m]*sArg;
 iFhD[n] += iMu[m]*cArg +
 rMu[m]*sArg;
 }
}

(a) FHD computa tion

for (m = 0; m < M; m++) {

 rMu[m] = rPhi[m]*rD[m] +
 iPhi[m]*iD[m];
 iMu[m] = rPhi[m]*iD[m] –
 iPhi[m]*rD[m];
}
for (m = 0; m < M; m++) {
 for (n = 0; n < N; n++) {
 expFhD = 2*PI*(kx[m]*x[n] +
 ky[m]*y[n] +
 kz[m]*z[n]);

 cArg = cos(expFhD);
 sArg = sin(expFhD);

 rFhD[n] += rMu[m]*cArg –
 iMu[m]*sArg;
 iFhD[n] += iMu[m]*cArg +
 rMu[m]*sArg;
 }
} (b) after loop fission

FIGURE 11.6

(a) Loop fission on the FHD computation and (b) after loop fission.

24511.3 Computing FHD

allow the large number of threads. This can be accomplished by having a

number of threads in each block, specified by MU_THREADS_PER_BLOCK in

Figure 11.4(c), and by employing M/MU_THREADS_PER_BLOCK blocks

needed to cover all M iterations of the original loop. For example, if there

are 65,536 k-space samples, the kernel could be invoked with a configura-

tion of 512 threads per block and 65,53645125 128 blocks. This is done

by assigning 512 to MU_THREADS_PER_BLOCK and using

MU_THREADS_PER_BLOCK as the block size and M/MU_THREADS_PER_BLOCK
as the grid size during kernel innovation.

Within the kernel, each thread can identify the iteration assigned to it

using its blockIdx and threadIdx values. Since the threading structure is

one dimensional, only blockIdx.x and threadIdx.x need to be used.

Because each block covers a section of the original iterations, the iteration

covered by a thread is blockIdx.x�MU_THREADS_PER_BLOCK 1 threadIdx.
For example, assume that MU_THREADS_PER_BLOCK5512. The thread with

blockIdx.x50 and threadIdx.x537 covers the 37th iteration of the

original loop, whereas the thread with blockIdx.x55 and threadIdx.
x52 covers the 2,562nd (53 5121 2) iteration of the original loop. Using

this iteration number to access the Mu, Phi, and D arrays ensures that the

arrays are covered by the threads in the same way they were covered by

the iterations of the original loop. Because every thread writes into its own

Mu element, there is no potential conflict between any of these threads.

Determining the structure of the second kernel requires a little more

work. An inspection of the second loop in Figure 11.6(b) shows that there

are at least three options in designing the second kernel. In the first option,

each thread corresponds to one iteration of the inner loop. This option cre-

ates the most number of threads and thus exploits the largest amount of

parallelism. However, the number of threads would be N3M, with both N

in the range of millions and M in the range of hundreds of thousands.

Their product would result in too many threads in the grid.

__global__ void cmpMu(float* rPhi, iPhi, rD, iD, rMu, iMu)
{
 int m = blockIdx.x * MU_THREAEDS_PER_BLOCK + threadIdx.x;

 rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
 iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];
}

FIGURE 11.7

cmpMu kernel.

246 CHAPTER 11 Application Case Study: Advanced MRI Reconstruction

A second option is to use each thread to implement an iteration of the

outer loop. This option employs fewer threads than the first option.

Instead of generating N3M threads, this option generates M threads.

Since M corresponds to the number of k-space samples and a large number

of samples (on the order of a hundred thousand) are typically used to cal-

culate FHD, this option still exploits a large amount of parallelism.

However, this kernel suffers the same problem as the kernel in

Figure 11.5. That is, each thread will write into all rFhD and iFhD ele-

ments, thus creating an extremely large number of conflicts between

threads. As is the case of Figure 11.5, the code in Figure 11.8 will not exe-

cute correctly without adding atomic operations that will significantly

slow down the execution. Thus, this option does not work well.

A third option is to use each thread to compute one pair of rFhD and

iFhD elements. This option requires us to interchange the inner and outer

loops and then use each thread to implement an iteration of the new outer

loop. The transformation is shown in Figure 11.9. Loop interchange is nec-

essary because the loop being implemented by the CUDA threads must be

the outer loop. Loop interchange makes each of the new outer loop itera-

tions process a pair of rFhD and iFhD elements. Loop interchange is per-

missible here because all iterations of both levels of loops are independent

of each other. They can be executed in any order relative to one another.

Loop interchange, which changes the order of the iterations, is allowed

when these iterations can be executed in any order. This option generates

N threads. Since N corresponds to the number of voxels in the recon-

structed image, the N value can be very large for higher-resolution images.

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,
 kx, ky, kz, x, y, z, rMu, iMu, int N) {

 int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

 for (n = 0; n < N; n++) {
 float expFhD = 2*PI*(kx[m]*x[n]+ky[m]*y[n]+kz[m]*z[n]);

 float cArg = cos(expFhD);
 float sArg = sin(expFhD);

 rFhD[n] += rMu[m]*cArg – iMu[m]*sArg;
 iFhD[n] += iMu[m]*cArg + rMu[m]*sArg;
 }
}

FIGURE 11.8

Second option of the FHD kernel.

24711.3 Computing FHD

For a 1283 images, there are 12835 2,097,152 threads, resulting in a large

amount of parallelism. For higher resolutions, such as 5123, we may need

to invoke multiple kernels, and each kernel generates the value of a subset

of the voxels. Note these threads now all accumulate into their own rFhD
and iFhd elements since every thread has a unique n value. There is no

conflict between threads. These threads can run totally in parallel. This

makes the third option the best choice among the three options.

The kernel derived from the interchanged loops is shown in

Figure 11.10. The threads are organized as a two-level structure. The outer

loop has been stripped away; each thread covers an iteration of the outer

(n) loop, where n is equal to blockIdx.x�FHD_THREADS_PER_BLOCK 1

threadIdx.x. Once this iteration (n) value is identified, the thread exe-

cutes the inner loop based on that n value. This kernel can be invoked

with a number of threads in each block, specified by a global constant

FHD_THREADS_PER_BLOCK. Assuming that N is the variable that gives the

number of voxels in the reconstructed image, N/FHD_THREADS_PER_BLOCK
blocks cover all N iterations of the original loop. For example, if there are

65,536 k-space samples, the kernel could be invoked with a configuration

of 512 threads per block and 65,53645125 128 blocks. This is done by

assigning 512 to FHD_THREADS_PER_BLOCK and using FHD_THREADS_PER_BLOCK
as the block size and N/FHD_THREADS_PER_BLOCK as the grid size during kernel

innovation.

for (m = 0; m < M; m++) {
 for (n = 0; n < N; n++) {
 expFhD = 2*PI*(kx[m]*x[n] +
 ky[m]*y[n] +
 kz[m]*z[n]);

 cArg = cos(expFhD);
 sArg = sin(expFhD);

 rFhD[n] += rMu[m]*cArg –
 iMu[m]*sArg;
 iFhD[n] += iMu[m]*cArg +
 rMu[m]*sArg;
 }
} (a) before loop interchange

for (n = 0; n < N; n++) {
 for (m = 0; m < M; m++) {
 expFhD = 2*PI*(kx[m]*x[n] +
 ky[m]*y[n] +
 kz[m]*z[n]);

 cArg = cos(expFhD);
 sArg = sin(expFhD);

 rFhD[n] += rMu[m]*cArg –
 iMu[m]*sArg;
 iFhD[n] += iMu[m]*cArg +
 rMu[m]*sArg;
 }
} (b) after loop interchange

FIGURE 11.9

Loop interchange of the FHD computation.

248 CHAPTER 11 Application Case Study: Advanced MRI Reconstruction

Step 2: Getting Around the Memory Bandwidth Limitation

The simple cmpFhD kernel in Figure 11.10 will provide limited speedup

due to memory bandwidth limitations. A quick analysis shows that the

execution is limited by the low compute to memory access ratio of each

thread. In the original loop, each iteration performs at least 14 memory

accesses: kx[m], ky[m], kz[m], x[n], y[n], z[n], rMu[m] twice, iMu[m]
twice, rFhD[n] read and write, and iFhD[n] read and write. Meanwhile,

about 13 floating-point multiply, add, or trigonometry operations are per-

formed in each iteration. Therefore, the compute to memory access ratio is

approximately 1, which is too low according to our analysis in Chapter 5.

We can immediately improve the compute to memory access ratio by

assigning some of the array elements to automatic variables. As we dis-

cussed in Chapter 5, the automatic variables will reside in registers, thus

converting reads and writes to the global memory into reads and writes to

on-chip registers. A quick review of the kernel in Figure 11.10 shows that

for each thread, the same x[n], y[n], and z[n] elements are used across

all iterations of the for loop. This means that we can load these elements

into automatic variables before the execution enters the loop.2 The kernel

can then use the automatic variables inside the loop, thus converting

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,
 kx, ky, kz, x, y, z, rMu, iMu, int M) {

 int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

 for (m = 0; m < M; m++) {
 float expFhD = 2*PI*(kx[m]*x[n]+ky[m]*y[n]+kz[m]*z[n]);

 float cArg = cos(expFhD);
 float sArg = sin(expFhD);

 rFhD[n] += rMu[m]*cArg – iMu[m]*sArg;
 iFhD[n] += iMu[m]*cArg + rMu[m]*sArg;
 }
}

FIGURE 11.10

Third option of the FHD kernel.

2Note that declaring x[], y[], z[], rFhD[], and iFhD[] as automatic arrays will not

work for our purpose here. Such declaration would have created private copies of all

these five arrays in the local memory of every thread! All we want is to have a private

copy of one element of each array in the registers of each thread.

24911.3 Computing FHD

global memory accesses to register accesses. Furthermore, the loop repeat-

edly reads from and writes into rFhD[n] and iFhD[n]. We can have the

iterations read from and write into two automatic variables and only write

the contents of these automatic variables into rFhD[n] and iFhD[n] after

the execution exits the loop. The resulting code is shown in Figure 11.11.

By increasing the number of registers used by 5 for each thread, we have

reduced the memory access done in each iteration from 14 to 7. Thus, we

have increased the compute to memory access ratio from 13:14 to 13:7.

This is a very good improvement and a good use of the precious register

resource.

Recall that the register usage can limit the number of blocks that can

run in a streaming multiprocessor (SM). By increasing the register usage

by 5 in the kernel code, we increase the register usage of each thread

block by 5�FHD_THREADS_PER_BLOCK. Assuming that we have 128 threads

per block, we just increased the block register usage by 640. Since each

SM can accommodate a combined register usage of 65,536 registers

among all blocks assigned to it (at least in SM version 3.5), we need to be

careful, as any further increase of register usage can begin to limit the

number of blocks that can be assigned to an SM. Fortunately, the register

usage is not a limiting factor to parallelism for this kernel.

We want to further improve the compute to memory access ratio to

something closer to 10:1 by eliminating more global memory accesses in

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,
 kx, ky, kz, x, y, z, rMu, iMu, int M) {

 int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

 float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];
 float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

 for (m = 0; m < M; m++) {
 float expFhD = 2*PI*(kx[m]*xn_r+ky[m]*yn_r+kz[m]*zn_r);

 float cArg = cos(expFhD);
 float sArg = sin(expFhD);

 rFhDn_r += rMu[m]*cArg – iMu[m]*sArg;
 iFhDn_r += iMu[m]*cArg + rMu[m]*sArg;
 }
 rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;
}

FIGURE 11.11

Using registers to reduce memory accesses in the FHD kernel.

250 CHAPTER 11 Application Case Study: Advanced MRI Reconstruction

the cmpFHD kernel. The next candidates to consider are the k-space samples

kx[m], ky[m], and kz[m]. These array elements are accessed differently

than the x[n], y[n], and z[n] elements: different elements of kx, ky, and
kz are accessed in each iteration of the loop in Figure 11.11. This means

that we cannot load each k-space element into an automatic variable regis-

ter and access that automatic variable off a register through all the itera-

tions. So, registers will not help here. However, we should notice that the

k-space elements are not modified by the kernel. This means that we might

be able to place the k-space elements into the constant memory. Perhaps

the cache for the constant memory can eliminate most of the memory

accesses.

An analysis of the loop in Figure 11.11 reveals that the k-space ele-

ments are indeed excellent candidates for constant memory. The index

used for accessing kx, ky, and kz is m. m is independent of threadIdx,
which implies that all threads in a warp will be accessing the same ele-

ment of kx, ky, and kz. This is an ideal access pattern for cached constant

memory: every time an element is brought into the cache, it will be used

at least by all 32 threads in a warp for a current generation device. This

means that for every 32 accesses to the constant memory, at least 31 of

them will be served by the cache. This allows the cache to effectively

eliminate 96% or more of the accesses to the constant memory. Better yet,

each time when a constant is accessed from the cache, it can be broadcast

to all the threads in a warp. This means that no delays are incurred due to

any bank conflicts in the access to the cache. This makes constant memory

almost as efficient as registers for accessing k-space elements.3

There is, however, a technical issue involved in placing the k-space ele-

ments into the constant memory. Recall that constant memory has a capac-

ity of 64 KB. However, the size of the k-space samples can be much

larger, in the order of hundreds of thousands or even millions. A typical

way of working around the limitation of constant memory capacity is to

break down a large data set into chunks or 64 KB or smaller. The devel-

oper must reorganize the kernel so that the kernel will be invoked multiple

times, with each invocation of the kernel consuming only a chunk of the

large data set. This turns out to be quite easy for the cmpFHD kernel.

A careful examination of the loop in Figure 11.11 reveals that all

threads will sequentially march through the k-space arrays. That is, all

threads in the grid access the same k-space element during each iteration.

3The reason why a constant memory access is not exactly as efficient as a register access

is that a memory load instruction is still needed for access to the constant memory.

25111.3 Computing FHD

For large data sets, the loop in the kernel simply iterates more times.

This means that we can divide up the loop into sections, with each section

processing a chunk of the k-space elements that fit into the 64 KB capacity

of the constant memory.4 The host code now invokes the kernel multiple

times. Each time the host invokes the kernel, it places a new chunk into

the constant memory before calling the kernel function. This is illustrated

in Figure 11.12. (For more recent devices and CUDA versions, a

const __restrict__ declaration of kernel parameters makes the corre-

sponding input data available in the “read-only data” cache, which is

a simpler way of getting the same effect as using constant memory.)

In Figure 11.12, the cmpFHd kernel is called from a loop. The code

assumes that kx, ky, and kz arrays are in the host memory. The dimensions

of kx, ky, and kz are given by M. At each iteration, the host code calls the

cudaMemcpy() function to transfer a chunk of the k-space data into the

device constant memory. The kernel is then invoked to process the chunk.

__constant__ float kx_c[CHUNK_SIZE],
 ky_c[CHUNK_SIZE], kz_c[CHUNK_SIZE];
…
__ void main() {

 int i;
 for (i = 0; i < M/CHUNK_SIZE; i++);
 cudaMemcpyToSymbol(kx_c,&kx[i*CHUNK_SIZE],4*CHUNK_SIZE,
 cudaMemCpyHostToDevice);
 cudaMemcpyToSymbol(ky_c,&ky[i*CHUNK_SIZE],4*CHUNK_SIZE,
 cudaMemCpyHostToDevice);
 cudaMemcpyToSymbol(ky_c,&ky[i*CHUNK_SIZE],4*CHUNK_SIZE,
 cudaMemCpyHostToDevice);
 …
 cmpFHD<<<FHD_THREADS_PER_BLOCK, N/FHD_THREADS_PER_BLOCK>>>
 (rPhi, iPhi, phiMag, x, y, z, rMu, iMu, CHUNK_SIZE);
 }
 /* Need to call kernel one more time if M is not */
 /* perfect multiple of CHUNK SIZE */
}

FIGURE 11.12

Chunking k-space data to fit into constant memory.

4Note not all accesses to read-only data are as favorable for constant memory as what

we have here. In Chapter 12 we present a case where threads in different blocks access

different elements in the same iteration. This more diverged access pattern makes it

much harder to fit enough of the data into the constant memory for a kernel launch.

252 CHAPTER 11 Application Case Study: Advanced MRI Reconstruction

Note that when M is not a perfect multiple of CHUNK_SIZE, the host code

will need to have an additional round of cudaMemcpy() and one more ker-

nel invocation to finish the remaining k-space data.

Figure 11.13 shows the revised kernel that accesses the k-space data

from constant memory. Note that pointers to kx, ky, and kz are no longer

in the parameter list of the kernel function. Since we cannot use pointers

to access variables in the constant memory, the kx_c, ky_c, and kz_c
arrays are accessed as global variables declared under the __constant__
keyword as shown Figure 11.12. By accessing these elements from the

constant cache, the kernel now has effectively only four global memory

accesses to the rMu and iMu arrays. The compiler will typically recognize

that the four array accesses are made to only two locations. It will only

perform two global accesses, one to rMu[m] and one to iMu[m]. The values
will be stored in temporary register variables for use in the other two. This

makes the final number of memory accesses two. The compute to memory

access ratio is up to 13:2. This is still not quite the desired 10:1 ratio but

is sufficiently high that the memory bandwidth limitation is no longer the

only factor that limits performance. As we will see, we can perform a few

other optimizations that make computation more efficient and further

improve performance.

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,
 x, y, z, rMu, iMu, int M) {

 int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

 float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];
 float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

 for (m = 0; m < M; m++) {
 float expFhD =
 2*PI*(kx_c[m]*xn_r+ky_c[m]*yn_r+kz_c[m]*zn_r);

 float cArg = cos(expFhD);
 float sArg = sin(expFhD);

 rFhDn_r += rMu[m]*cArg – iMu[m]*sArg;
 iFhDn_r += iMu[m]*cArg + rMu[m]*sArg;
 }
 rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;
}

FIGURE 11.13

Revised FHD kernel to use constant memory.

25311.3 Computing FHD

If we ran the code in Figures 11.12 and 11.13, we would have found

out that the performance enhancement was not as high as we expected for

some devices. As it turns out, the code shown in these figures does not

result in as much memory bandwidth reduction as we expected. The rea-

son is that the constant cache does not perform very well for the code.

This has to do with the design of the constant cache and the memory lay-

out of the k-space data. As shown in Figure 11.14, each constant cache

entry is designed to store multiple consecutive words. This design reduces

the cost of constant cache hardware. If multiple data elements that are

used by each thread are not in consecutive words, as illustrated in

Figure 11.14(a), they will end up taking multiple cache entries. Due to

cost constraints, the constant cache has only a very small number of

entries. As shown in Figures 11.12 and 11.13, the k-space data is stored in

three arrays: kx_c, ky_c, and kz_c. During each iteration of the loop, three

entries of the constant cache are needed to hold the three k-space elements

being processed. Since different warps can be at very different iterations,

they may require many entries altogether. As it turns out, the constant

cache capacity in some devices may not be sufficient to provide a suffi-

cient number of entries for all the warps active in an SM.

The problem of inefficient use of cache entries has been well studied in

the literature and can be solved by adjusting the memory layout of the k-

space data. The solution is illustrated in Figure 11.14(b) and the code

based on this solution is shown in Figure 11.15. Rather than having the x,

y, and z components of the k-space data stored in three separate arrays, the

solution stores these components in an array of which the elements com-

prise a struct. In the literature, this style of declaration is often referred

to as array of structs. The declaration of the array is shown at the top of

kx[i] ky[i] kz[i] phi[i]

Constant Memory

Scan Data
kx
ky
kz
phi

kx[i]
ky[i]
ky[i]
phi[i]

Constant Memory

Scan Data

(a) k-space data stored in separate arrays. (b) k-space data stored in an array
whose elements are structs.

FIGURE 11.14

Effect of k-space data layout on constant cache efficiency: (a) k-space data

stored in separate arrays, and (b) k-space data stored in an array whose

elements are structs.

254 CHAPTER 11 Application Case Study: Advanced MRI Reconstruction

Figure 11.15. By storing the x, y, and z components in the three fields of

an array element, the developer forces these components to be stored in

consecutive locations of the constant memory. Therefore, all three compo-

nents used by an iteration can now fit into one cache entry, reducing the

number of entries needed to support the execution of all the active warps.

Note that since we have only one array to hold all k-space data, we can

just use one cudaMemcpyToSymbol to copy the entire chunk to the device

constant memory. The size of the transfer is adjusted from 4�CHUNK_SIZE
to 12�CHUNK_SIZE to reflect the transfer of all the three components in one

cudaMemcpy call.

With the new data structure layout, we also need to revise the kernel so

that the access is done according to the new layout. The new kernel is

shown in Figure 11.16. Note that kx[m] has become k[m].x, ky[m] has

become k[m].y, and so on. As we will see later, this small change to the

code can result in significant enhancement of its execution speed.

Step 3: Using Hardware Trigonometry Functions

CUDA offers hardware implementations of mathematic functions that pro-

vide much higher throughput than their software counterparts. These func-

tions are implemented as hardware instructions executed by the SFUs

(special function units). The procedure for using these functions is quite

easy. In the case of the cmpFHd kernel, what we need to do is change the

struct kdata {
 float x, float y, float z;
} k;

__constant__ struct kdata k_c[CHUNK_SIZE];
…

__ void main() {

 int i;

 for (i = 0; i < M/CHUNK_SIZE; i++);
 cudaMemcpyToSymbol(k_c,k,12*CHUNK_SIZE,
 cudaMemCpyHostToDevice);

 cmpFHD<<<FHD_THREADS_PER_BLOCK, N/FHD_THREADS_PER_BLOCK>>>
 (…);

 }

FIGURE 11.15

Adjusting k-space data layout to improve cache efficiency.

25511.3 Computing FHD

calls to sin() and cos() functions into their hardware versions: __sin()
and __cos(). These are intrinsic functions that are recognized by the com-

piler and translated into SFU instructions. Because these functions are

called in a heavily executed loop body, we expect that the change will

result in a very significant performance improvement. The resulting

cmpFHd kernel is shown in Figure 11.17.

However, we need to be careful about the reduced accuracy when

switching from software functions to hardware functions. As we dis-

cussed in Chapter 7, hardware implementations currently have slightly

less accuracy than software libraries (the details are available in the

CUDA Programming Guide). In the case of MRI, we need to make sure

that the hardware implementation passes provide enough accuracy, as

shown in Figure 11.18. The testing process involves a “perfect” image

(I0). We use a reverse process to generate a corresponding “scanned”

k-space data that is synthesized. The synthesized scanned data is then

processed by the proposed reconstruction system to generate a recon-

structed image (I). The values of the voxels in the perfect and recon-

structed images are then fed into the peak signal-to-noise ratio (PSNR)

formula shown in Figure 11.18.

The criteria for passing the test depend on the application that the

image is intended for. In our case, we worked with experts in clinical MRI

to ensure that the PSNR changes due to hardware functions are well within

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,
 x, y, z, rMu, iMu, int M) {

 int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

 float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];
 float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

 for (m = 0; m < M; m++) {
 float expFhD = 2*PI*(k[m].x*xn_r+k[m].y*yn_r+k[m].z*zn_r);

 float cArg = cos(expFhD);
 float sArg = sin(expFhD);

 rFhDn_r += rMu[m]*cArg – iMu[m]*sArg;
 iFhDn_r += iMu[m]*cArg + rMu[m]*sArg;
 }
 rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;
}

FIGURE 11.16

Adjusting the k-space data memory layout in the FHD kernel.

256 CHAPTER 11 Application Case Study: Advanced MRI Reconstruction

the accepted limits for their applications. In applications where the images

are used by physicians to form an impression of injury or evaluate a dis-

ease, one also needs to have visual inspection of the image quality.

Figure 11.19 shows the visual comparison of the original “true” image. It

then shows that the PSNR achieved by CPU double-precision and single-

precision implementations are both 27.6 dB, an acceptable level for the

application. A visual inspection also shows that the reconstructed image

indeed corresponds well with the original image.

The advantage of iterative reconstruction compared to a simple bilinear

interpolation gridding/iFFT is also obvious in Figure 11.19. The image

reconstructed with the simple gridding/iFFT has a PSNR of only 16.8 dB,

substantially lower than the PSNR of 27.6 dB achieved by the iterative

FIGURE 11.18

Metrics used to validate the accuracy of hardware functions. I0 is perfect image.

I is reconstructed image. PSNR is Peak signal-to-noise ratio.

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,
 x, y, z, rMu, iMu, int M) {

 int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

 float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];
 float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

 for (m = 0; m < M; m++) {
 float expFhD = 2*PI*(k[m].x*xn_r+k[m].y*yn_r+k[m].z*zn_r);

 float cArg = __cos(expFhD);
 float sArg = __sin(expFhD);

 rFhDn_r += rMu[m]*cArg – iMu[m]*sArg;
 iFhDn_r += iMu[m]*cArg + rMu[m]*sArg;
 }
 rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;
}

FIGURE 11.17

Using hardware __sin() and __cos() functions.

25711.3 Computing FHD

reconstruction method. A visual inspection of the gridding/iFFT image in

Figure 11.19(2) shows that there are severe artifacts that can significantly

impact the usability of the image for diagnostic purposes. These artifacts

do not occur in the images from the iterative reconstruction method.

When we moved from double-precision to single-precision arithmetic

on the CPU, there was no measurable degradation of PSNR, which

FIGURE 11.19

Validation of floating-point precision and accuracy of the different FHD

implementations.

258 CHAPTER 11 Application Case Study: Advanced MRI Reconstruction

remains at 27.6 dB. When we moved the trigonometry function from the

software library to the hardware units, we observed a negligible degrada-

tion of PSNR, from 27.6 dB to 27.5 dB. The slight loss of PSNR is within

an acceptable range for the application. A visual inspection confirms that

the reconstructed image does not have significant artifacts compared to the

original image.

Step 4: Experimental Performance Tuning

Up to this point, we have not determined the appropriate values for the

configuration parameters for the kernel. For example, we need to deter-

mine the optimal number of threads for each block. On one hand, using a

large number of threads in a block is needed to fully utilize the thread

capacity of each SM (given that 16 blocks can be assigned to each SM at

maximum). On the other hand, having more threads in each block

increases the register usage of each block and can reduce the number of

blocks that can fit into an SM. Some possible values of number of threads

per block are 32, 64, 128, 256, and 512. One could also consider non-

power-of-two numbers.

Another kernel configuration parameter is the number of times one

should unroll the body of the for loop. This can be set using a #pragma
unroll followed by the number of unrolls we want the compiler to per-

form on a loop. On one hand, unrolling the loop can reduce the number of

overhead instructions, and potentially reduce the number of clock cycles

to process each k-space sample data. On the other hand, too much unrol-

ling can potentially increase the usage of registers and reduce the number

of blocks that can fit into an SM.

Note that the effects of these configurations are not isolated from each

other. Increasing one parameter value can potentially use the resource that

could be used to increase another parameter value. As a result, one needs

to evaluate these parameters jointly in an experimental manner. That is,

one may need to change the source code for each joint configuration and

measure the runtime. There can be a large number of source code versions

to try. In the case of FHD, the performance improves about 20% by sys-

tematically searching all the combinations and choosing the one with the

best measured runtime, as compared to a heuristic tuning search effort that

only explores some promising trends. Ryoo et al. present a pareto optimal

curve�based method to screen away most of the inferior combinations

[RRS2008].

25911.3 Computing FHD

11.4 FINAL EVALUATION
To obtain a reasonable baseline, we implemented two versions of FHD on

the CPU. Version CPU.DP uses double precision for all floating-point

values and operations, while version CPU.SP uses single precision. Both

CPU versions are compiled with Intel’s ICC (version 10.1) using flags

-O3 -msse3 -axT -vec-report3 -fp-model fast5 2, which (1) vectorizes the

algorithm’s dominant loops using instructions tuned for the Core 2 archi-

tecture, and (2) links the trigonometric operations to fast, approximate

functions in the math library. Based on experimental tuning with a smaller

data set, the inner loops are unrolled by a factor of four and the scan data

is tiled to improve locality in the L1 cache.

Each GPU version of FHD is compiled using NVCC-O3 (CUDA ver-

sion 1.1) and executed on a 1.35 GHz Quadro FX5600. The Quadro card

is housed in a system with a 2.4 GHz dual-socket, dual-core Opteron 2216

CPU. Each core has a 1 MB L2 cache. The CPU versions use p-threads to

execute on all four cores of a 2.66 GHz Core 2 Extreme quad-core CPU,

which has peak theoretical capacity of 21.2 GFLOPS per core and a 4 MB

L2 cache. The CPU versions perform substantially better on the Core 2

Extreme quad-core than on the dual-socket, dual-core Opteron. Therefore,

we will use the Core 2 Extreme quad-core results for the CPU.

All reconstructions use the CPU version of the linear solver, which exe-

cutes 60 iterations on the Quadro FX5600. Two versions of Q were com-

puted on the Core 2 Extreme, one using double precision and the other

using single precision. The single-precision Q was used for all GPU-based

reconstructions and for the reconstruction involving CPU.SP, while the

double-precision Q was used only for the reconstruction involving CPU.

DP. As the computation of Q is not on the reconstruction’s critical path,

we give Q no further consideration.

To facilitate comparison of the iterative reconstruction with a conven-

tional reconstruction, we also evaluated a reconstruction based on bilinear

interpolation gridding and inverse FFT. Our version of the gridded recon-

struction is not optimized for performance, but it is already quite fast.

All reconstructions are performed on sample data obtained from a sim-

ulated, 3D, non-Cartesian scan of a phantom image. There are 284,592

sample points in the scan data set, and the image is reconstructed at 1,283

resolution, for a total of 221 voxels. In the first set of experiments, the

simulated data contains no noise. In the second set of experiments, we

added complex white Gaussian noise to the simulated data. When deter-

mining the quality of the reconstructed images, the percent error and

260 CHAPTER 11 Application Case Study: Advanced MRI Reconstruction

PSNR metrics are used. The percent error is the root-mean-square (RMS)

of the voxel error divided by the RMS voxel value in the true image (after

the true image has been sampled at 1,283 resolution).

The data (runtime, GFLOPS, and images) was obtained by reconstruct-

ing each image once with each of the implementations of the FHD algo-

rithm described before. There are two exceptions to this policy. For GPU.

Tune and GPU.Multi, the time required to compute FHD is so small that

runtime variations in performance became non-negligible. Therefore, for

these configurations we computed FHD three times and reported the aver-

age performance.

As shown in Figure 11.20, the total reconstruction time for the test

image using bilinear interpolation gridding followed by inverse FFT takes

less than one minute on a high-end sequential CPU. This confirms that

there is little value in parallelizing this traditional reconstruction strategy.

It is, however, obvious from Figure 11.19(2) that the resulting image exhi-

bits an unacceptable level of artifacts.

The LS (CPU, DP) row shows the execution timing of reconstructing

the test image using double-precision, floating-point arithmetic on the

CPU. The timing shows the core step (Q) of calculating FHF1λWHW.

The first observation is that the Q computation for a moderate resolution

image based on a moderate-size data sample takes an

unacceptable amount of time (more than 65 hours) on the CPU for setting

up the system for a patient. Note that this time is eventually reduced to 6.5

minutes on the GPU with all the optimizations described in Section 11.3.

Q FHD Total
Reconstruction Run Time

(m)
GFLO

P
Run
Time
(m)

GFLOP Linear
Solver

(m)

Recon.
Time (m)

Gridding + FFT

(CPU, DP)
N/A N/A N/A N/A N/A 0.39

LS (CPU, DP) 4009.0 0.3 518.0 0.4 1.59 519.59

LS (CPU, SP) 2678.7 0.5 342.3 0.7 1.61 343.91

LS (GPU, Naïve) 260.2 5.1 41.0 5.4 1.65 42.65

LS (GPU, CMem) 72.0 18.6 9.8 22.8 1.57 11.37

LS (GPU, CMem,

SFU, Exp)
7.5 178.9 1.5 144.5 1.69 3.19

108X228X357X

FIGURE 11.20

Summary of performance improvements.

26111.4 Final Evaluation

The second observation is that the total reconstruction time of each image

requires more than 8 hours, with only 1.59 minutes spent in the linear

solver. This validates our decision to focus our parallelization effort on

FHD.

The LS (CPU, SP) row shows that we can reduce the execution time

significantly when we convert the computation from double-precision,

floating-point arithmetic to single precision on the CPU. This is because

the streaming SIMD instruction (SSE) instructions have higher throughput,

that is, they calculate more data elements per clock cycle when executing

in single-precision mode. The execution times, however, are still

unacceptable for practical use.

The LS (GPU, Naı̈ve) row shows that a straightforward CUDA imple-

mentation can achieve a speedup about 103 for Q and 83 for the recon-

struction of each image. This is a good speedup, but the resulting

execution times are still unacceptable for practical use.

The LS (GPU, CMem) row shows that significant further speedup is

achieved by using registers and constant cache to get around the global

memory bandwidth limitations. These enhancements achieve about 43
speedup over the naı̈ve CUDA code! This shows the importance of achiev-

ing optimal compute to memory ratios in CUDA kernels. These enhance-

ments bring the CUDA code to about 403 speedup over the single-

precision CPU code.

The LS (GPU, CMem, SPU, Exp) row shows the use of hardware trigo-

nometry functions and experimental tuning together, and results in a dra-

matic speedup. A separate experiment, not shown in the figure, shows that

most of the speedup comes from hardware trigonometry functions. The

total speedup over CPU single-precision code is very impressive: 3573
for Q and 1083 for the reconstruction of each image.

An interesting observation is that in the end, the linear solver actually

takes more time than FHD. This is because we have accelerated FHD dra-

matically (2283). What used to be close to 100% of the per-image recon-

struction time now accounts for less than 50%. Any further acceleration

will now require acceleration of the linear solver, a much more difficult

type of computation for massively parallel execution.

11.5 EXERCISES
11.1. Loop fission splits a loop into two loops. Use the FHD code in

Figure 11.4(b) and enumerate the execution order of the two parts

262 CHAPTER 11 Application Case Study: Advanced MRI Reconstruction

of the outer loop body: (1) the statements before the inner loop and

(2) the inner loop.

(a) List the execution order of these parts from different iterations

of the outer loop before fission.

(b) List the execution order of these parts from the two loops after

fission. Determine if the execution results will be identical. The

execution results are identical if all data required by a part is

properly generated and preserved for its consumption before

that part executes, and the execution result of the part is not

overwritten by other parts that should come after the part in the

original execution order.

11.2. Loop interchange swaps the inner loop into the outer loop and vice

versa. Use the loops from Figure 11.9 and enumerate the execution

order of the instances of the loop body before and after the loop

exchange.

(a) List the execution order of the loop body from different

iterations before the loop interchange. Identify these iterations

with the values of m and n.

(b) List the execution order of the loop body from different

iterations after the loop interchange. Identify these iterations

with the values of m and n.

(c) Determine if the (a) and (b) execution results will be identical.

The execution results are identical if all data required by a part

is properly generated and preserved for its consumption before

that part executes and the execution result of the part is not

overwritten by other parts that should come after the part in the

original execution order.

11.3. In Figure 11.11, identify the difference between the access to x[]
and kx[] in the nature of indices used. Use the difference to explain

why it does not make sense to try to load kx[n] into a register for

the kernel shown in Figure 11.11.

11.4. During a meeting, a new graduate student told his advisor that he

improved his kernel performance by using cudaMalloc() to allocate

constant memory and by using cudaMemcpy() to transfer read-only

data from the CPU memory to the constant memory. If you were his

advisor, what would be your response?

26311.5 Exercises

References
Liang, Z. P., & Lauterbur, P. (1999). Principles of Magnetic Resonance Imaging:

A Signal Processing Perspective New York: John Wiley and Sons.

Haldar, J. P., Hernando, D., Budde, M. D., Wang, Q., Song, S. -K., & Liang., Z. -P.

(2007). High-resolution MR metabolic imaging. In Proc. IEEE EMBS,

4324�4326.

Ryoo, S., Ridrigues, C. I., & Stone, S. S., et al. (2008). Program optimization

carving for GPU computing. Journal of Parallel and Distributed Computing, .

doi:10.1016/j.jpdc.2008.05.011.

S. S. Stone, J. P. Haldar, S. C. Tsao, W. W. Hwu, B. P. Sutton, and Z. P. Liang,

Accelerating advanced MRI reconstruction on GPUs, Journal of Parallel and

Distributed Computing, 2008, doi:10.1016/j.jpdc.2008.05.013.

264 CHAPTER 11 Application Case Study: Advanced MRI Reconstruction

CHAPTER

12Application Case Study:
Molecular Visualization
and Analysis

With special contributions from John Stone

CHAPTER OUTLINE

12.1 Application Background.. 266

12.2 A Simple Kernel Implementation ... 268

12.3 Thread Granularity Adjustment .. 272

12.4 Memory Coalescing.. 274

12.5 Summary ... 277

12.6 Exercises... 279

References ... 279

The previous case study illustrated the process of selecting an appropriate

level of a loop nest for parallel execution, the use of constant memory for

magnifying the memory bandwidth for read-only data, the use of registers

to reduce the consumption of memory bandwidth, and the use of special

hardware functional units to accelerate trigonometry functions. In this case

study, we use an application based on regular grid data structures to illus-

trate the use of additional practical techniques that achieve global memory

access coalescing and improved computation throughput. We present a

series of implementations of an electrostatic potential map calculation ker-

nel, with each version improving upon the previous one. Each version

adopts one or more practical techniques. This computation pattern of this

application is one of the best matches for massively parallel computing.

This application case study shows that the effective use of these practical

techniques can significantly improve the execution throughput and is criti-

cal for the application to achieve its potential performance.

265

12.1 APPLICATION BACKGROUND
This case study is based on VMD (Visual Molecular Dynamics)

[HDS1996], a popular software system designed for displaying, animating,

and analyzing biomolecular systems. As of 2012, VMD has more than

200,000 registered users. While it has strong built-in support for analyzing

biomolecular systems, such as calculating electrostatic potential values at

spatial grid points of a molecular system, it has also been a popular tool

for displaying other large data sets, such as sequencing data, quantum

chemistry simulation data, and volumetric data, due to its versatility and

user extensibility.

While VMD is designed to run on a diverse range of hardware—lap-

tops, desktops, clusters, and supercomputers—most users use VMD as a

desktop science application for interactive 3D visualization and analysis.

For computation that runs too long for interactive use, VMD can also be

used in a batch mode to render movies for later use. A motivation for

accelerating VMD is to make batch mode jobs fast enough for interactive

use. This can drastically improve the productivity of scientific investiga-

tions. With CUDA devices widely available in desktop PCs, such accelera-

tion can have broad impact on the VMD user community. To date,

multiple aspects of VMD have been accelerated with CUDA, including

electrostatic potential calculation, ion placement, molecular orbital calcula-

tion and display, and imaging of gas migration pathways in proteins.

The particular calculation used in this case study is the calculation of

electrostatic potential maps in a grid space. This calculation is often used

in placement of ions into a structure for molecular dynamics simulation.

Figure 12.1 shows the placement of ions into a protein structure in prepa-

ration for molecular dynamics simulation. In this application, the electro-

static potential map is used to identify spatial locations where ions (round

dots around the large molecules) can fit in according to physical laws. The

function can also be used to calculate time-averaged potentials during

molecular dynamics simulation, which is useful for the simulation process

as well as the visualization/analysis of simulation results.

There are several methods for calculating electrostatic potential maps.

Among them, direct coulomb summation (DCS) is a highly accurate

method that is particularly suitable for GPUs [SPF2007]. The DCS method

calculates the electrostatic potential value of each grid point as the sum of

contributions from all atoms in the system. This is illustrated in

Figure 12.2. The contribution of atom i to a lattice point j is the charge of

that atom divided by the distance from lattice point j to atom i. Since this

266 CHAPTER 12 Application Case Study

needs to be done for all grid points and all atoms, the number of calcula-

tions is proportional to the product of the total number of atoms in the sys-

tem and the total number of grid points. For a realistic molecular system,

this product can be very large. Therefore, the calculation of the electro-

static potential map has been traditionally done as a batch job in VMD.

FIGURE 12.1

Electrostatic potential map is used in building stable structures for molecular

dynamics simulation.

FIGURE 12.2

The contribution of atom[i] to the electrostatic potential at lattice point j

(potential[j]) is atom[i].charge/rij. In the DCS method, the total potential

at lattice point j is the sum of contributions from all atoms in the system.

26712.1 Application Background

12.2 A SIMPLE KERNEL IMPLEMENTATION
Figure 12.3 shows the base C code of the DCS code. The function is writ-

ten to process a 2D slice of a 3D grid. The function will be called repeat-

edly for all the slices of the modeled space. The structure of the function

is quite simple with three levels of for loops. The outer two levels iterate

over the y dimension and the x dimension of the grid point space. For

each grid point, the innermost for loop iterates over all atoms, calculating

the contribution of electrostatic potential energy from all atoms to the grid

point. Note that each atom is represented by four consecutive elements of

the atoms[] array. The first three elements store the x, y, and z coordinates

of the atom and the fourth element the electrical charge of the atom. At

the end of the innermost loop, the accumulated value of the grid point is

written out to the grid data structure. The outer loops then iterate and take

the execution to the next grid point.

Note that the DCS function in Figure 12.3 calculates the x and y coor-

dinates of each grid point on-the-fly by multiplying the grid point index

values by the spacing between grid points. This is a uniform grid method

where all grid points are spaced at the same distance in all three

FIGURE 12.3

Base coulomb potential calculation code for a 2D slice.

268 CHAPTER 12 Application Case Study

dimensions. The function does take advantage of the fact that all the

grid points in the same slice have the same z coordinate. This value is

precalculated by the caller of the function and passed in as a function

parameter (z).
Based on what we learned from the MRI case study, two attributes of

the DCS method should be apparent. First, the computation is massively

parallel: the computation of electrostatic potential for each grid point is

independent of that of other grid points. There are two alternative

approaches to organizing parallel execution. In the first option, we can use

each thread to calculate the contribution of one atom to all grid points.

This would be a poor choice since each thread would be writing to all grid

points, requiring extensive use of atomic memory operations to coordinate

the updates done by different threads to each grid point. The second option

uses each thread to calculate the accumulated contributions of all atoms to

one grid point. This is a preferred approach since each thread will be writ-

ing into its own grid point and there is no need to use atomic operations.

We will form a 2D thread grid that matches the 2D energy grid point

organization. To do so, we need to modify the two outer loops into per-

fectly nested loops so that we can use each thread to execute one iteration

of the two-level loop. We can either perform a loop fission, or we move

the calculation of the y coordinate into the inner loop. The former would

require us to create a new array to hold all y values and result in two ker-

nels communicating data through global memory. The latter increases the

number of times that the y coordinate will be calculated. In this case, we

choose to perform the latter since there is only a small amount of calcula-

tion that can be easily accommodated into the inner loop without a signifi-

cant increase in execution time of the inner loop. The former would have

added a kernel launch overhead for a kernel where threads do very little

work. The selected transformation allows all i and j iterations to be exe-

cuted in parallel. This is a trade-off between the amount of calculation

done and the level of parallelism achieved.

The second experience that we can apply from the MRI case study is

that the electrical charge of every atom will be read by all threads. This is

because every atom contributes to every grid point in the DCS method.

Furthermore, the values of the atomic electrical charges are not modified

during the computation. This means that the atomic charge values can be

efficiently stored in the constant memory (in the GPU box in Figure 12.4).

Figure 12.4 shows an overview of the DCS kernel design. The host pro-

gram (host box in Figure 12.4) inputs and maintains the atomic charges

and their coordinates in the system memory. It also maintains the grid

26912.2 A Simple Kernel Implementation

point data structure in the system memory (left side in the host box). The

DCS kernel is designed to process a 2D slice of the energy grid point

structure (not to be confused with thread grids). The right side grid in the

host box shows an example of a 2D slice. For each 2D slice, the CPU

transfers its grid data to the device global memory. The atom information

is divided into chunks to fit into the constant memory. For each chunk of

the atom information, the CPU transfers the chunk into the device constant

memory, invokes the DCS kernel to calculate the contribution of the cur-

rent chunk to the current slice, and prepares to transfer the next chunk.

After all chunks of the atom information have been processed for the cur-

rent slice, the slice is transferred back to update the grid point data struc-

ture in the CPU system memory. The system moves on to the next slice.

Within each kernel invocation, the thread blocks are organized to cal-

culate the electrostatic potential of tiles of the grid structure. In the sim-

plest kernel, each thread calculates the value at one grid point. In more

sophisticated kernels, each thread calculates multiple grid points and

exploits the redundancy between the calculations of the grid points to

improve execution speed. This is illustrated in the left side portion labeled

as “thread blocks” in Figure 12.4 and is an example of the granularity

adjustment optimization discussed in Chapter 6.

Host

Atomic
Coordinates

Charges

Constant Memory

Threads compute
up to 8 potentials,

skipping by half-warps

Cache Cache Cache Cache Cache Cache

Texture Texture Texture

Global Memory

Texture Texture Texture

GPU

Grid of thread blocks

Lattice padding

Thread blocks:
64-256 threads

FIGURE 12.4

Overview of the DCS kernel design.

270 CHAPTER 12 Application Case Study

Figure 12.5 shows the resulting CUDA kernel code. We omitted some

of the declarations. As was the case in the MRI case study, the atominfo
[] array is declared in the constant memory by the host code. The host

code also needs to divide up the atom information into chunks that fit into

the constant memory for each kernel invocation. This means that the ker-

nel will be invoked multiple times when there are multiple chunks of

atoms. Since this is similar to the MRI case study, we will not show the

details.

The outer two levels of the loop in Figure 12.3 have been removed

from the kernel code and are replaced by the execution configuration para-

meters in the kernel invocation. Since this is also similar to one of the

steps we took in the MRI case study, we will not show the kernel invoca-

tion but leave it as an exercise for readers. The rest of the kernel code is

straightforward and corresponds directly to the original loop body of the

innermost loop.

One particular aspect of the kernel is somewhat subtle and worth men-

tioning. The kernel code calculates the contribution of a chunk of atoms to

a grid point. The grid point must be preserved in the global memory and

updated by each kernel invocation. This means that the kernel needs to

read the current grid point value, add the contributions by the current

chunk of atoms, and write the updated value to global memory. The code

attempts to hide the global memory latency by loading the grid value at

the beginning of the kernel and using it at the end of the kernel. This helps

FIGURE 12.5

DCS kernel version 1.

27112.2 A Simple Kernel Implementation

to reduce the number of warps needed by the streaming multiprocessor

(SM) scheduler to hide the global memory latency.

The performance of the kernel in Figure 12.5 is quite good, measured

at 186 GFLOPS on a G80, a first-generation CUDA device. In terms of

application-level performance, the implementation can process 18.6 billion

atom evaluations per second. A quick glance over the code shows that

each thread does nine floating-point operations for every four memory ele-

ments accessed. On the surface, this is not a very good ratio. We need at

least a ratio of 8 to avoid global memory congestion. However, all four

memory accesses are done to the atominfo[] array. These atominfo[]
array elements for each atom are cached in a hardware cache memory in

each SM and are broadcast to a large number of threads. A similar calcula-

tion to that in the MRI case study shows that the massive reuse of memory

elements across threads make the constant cache extremely effective,

boosting the effective ratio of floating operations per global memory

access much higher than 10:1. As a result, global memory bandwidth is

not a limiting factor for this kernel.

12.3 THREAD GRANULARITY ADJUSTMENT
Although the kernel in Figure 12.5 avoids global memory bottleneck

through constant caching, it still needs to execute four constant memory

access instructions for every nine floating-point operations performed.

These memory access instructions consume hardware resources that could

be otherwise used to increase the execution throughput of floating-point

instructions. This section shows that we can fuse several threads together

so that the atominfo[] data can be fetched once from the constant mem-

ory, stored into registers, and used for multiple grid points. This idea is

illustrated in Figure 12.6.

Furthermore, all grid points along the same row have the same y coor-

dinate. Therefore, the difference between the y coordinate of an atom and

the y coordinate of any grid point along a row has the same value. In the

DCS kernel version 1 in Figure 12.5, this calculation is redundantly done

by all threads for all grid points in a row when calculating the distance

between the atom and the grid points. We can eliminate this redundancy

and improve the execution efficiency.

The idea is to have each thread to calculate the electrostatic potential

for multiple grid points. The kernel in Figure 12.7 has each thread calcu-

late four grid points. For each atom, the code calculates dy, the difference

272 CHAPTER 12 Application Case Study

of the y coordinate in line 2. It then calculates the expression dy�dy plus

the precalculated dz�dz information and saves it to the auto variable

dysqpdzsq, which is assigned to a register by default. This value is the

same for all four grid points. Therefore, the calculation of energyvalx1
through energyvalx4 can all just use the value stored in the register.

Furthermore, the electrical charge information is also accessed from con-

stant memory and stored in the automatic variable charge. Similarly, the

x coordinate of the atom is also read from constant memory into auto vari-

able x. Altogether, this kernel eliminates three accesses to constant mem-

ory for atominfo[atomid].y, three accesses to constant memory for

atominfo[atomid].x, three accesses to constant memory for atominfo
[atomid].w, three floating-point subtraction operations, five floating-point

multiply operations, and nine floating-point add operations when proces-

sing an atom for four grid points. A quick inspection of the kernel code in

FIGURE 12.6

Reusing information among multiple grid points.

FIGURE 12.7

DCS kernel version 2.

27312.3 Thread Granularity Adjustment

Figure 12.7 shows that each iteration of the loop performs four constant

memory accesses, five floating-point subtractions, nine floating-point addi-

tions, and five floating-point multiplications for four grid points.

Readers should also verify that the version of DCS kernel in

Figure 12.5 performs 16 constant memory accesses, 8 floating-point sub-

tractions, 12 floating-point additions, and 12 floating-point multiplications,

for a total of 48 operations for the same four grid points. Going from

Figure 12.5 to Figure 12.7, there is a total reduction from 48 operations

down to 25 operations, a sizable reduction. This is translated into an

increased execution speed from 186 GFLOPS to 259 GFLOPS on a G80.

In terms of application-level throughput, the performance increases from

18.6 billion atom evaluations per second to 33.4 billion atom evaluations

per second. The reason that the application-level performance improve-

ment is higher than the FLOPS improvement is that some of the floating-

point operations have been eliminated.

The cost of the optimization is that more registers are used by each

thread. This reduces the number of threads that can be assigned to each

SM. However, as the results show, this is a good trade-off with an excel-

lent performance improvement.

12.4 MEMORY COALESCING
While the performance of the DCS kernel version 2 in Figure 12.7 is quite

high, a quick profiling run reveals that the threads perform memory writes

inefficiently. As shown in Figures 12.6 and 12.7, each thread calculates

four neighboring grid points. This seems to be a reasonable choice.

However, as we illustrate in Figure 12.8, the access pattern of threads will

result in uncoalesced global memory writes.

There are two problems that cause the uncoalesced writes in DCS ker-

nel version 2. First, each thread calculates four adjacent neighboring grid

points. Thus, for each statement that accesses the energygrid[] array, the

threads in a warp are not accessing adjacent locations. Note that two adja-

cent threads access memory locations that are three elements apart. Thus,

the 16 locations to be written by all the threads in warp write are spread

out, with three elements in between the loaded/written locations. This

problem can be solved by assigning adjacent grid points to adjacent

threads in each half-warp. Assuming that we still want to have each thread

calculate four grid points, we first assign 16 consecutive grid points to the

16 threads in a half-warp. We then assign the next 16 consecutive grid

274 CHAPTER 12 Application Case Study

points to the same 16 threads. We repeat the assignment until each thread

has the number of grid points desired. This assignment is illustrated in

Figure 12.8. With some experimentation, the best number of grid points

per thread turns out to be 8 for G80.

The kernel code with a warp-aware assignment of grid points to threads

is shown in Figure 12.9. Note that the x coordinates used to calculate the

distances are offset by the variable gridspacing_coalescing, which is

the original grid spacing times the constant BLOCKSIZE (16). This reflects

the fact that the x coordinates of the 8 grid points are 16 grid points away

from each other. Also, after the end of the loop, memory writes to the

energygrid[] array are indexed by outaddr, outaddr1BLOCKSIZE, . . .,
outaddr17�BLOCKSIZE. Each of these indices is one BLOCKSIZE (16) away

from the previous one. The detailed thread block organization for this ker-

nel is left as an exercise. Readers should keep in mind that by setting the

x dimension size of the thread block to be equal to the half-warp size (16),

we can simplify the indexing in the kernel.

The other cause of uncoalesced memory writes is the layout of the

energygrid[] array, which is a 3D array. If the x dimension of the array

is not a multiple of half-warp size, the beginning location of the second

row, as well as those of the subsequent rows, will no longer be at the 16-

word boundaries. In older devices, this means that the half-warp accesses

will not be coalesced, even though they write to consecutive locations.

This problem can be corrected by padding each row with additional

FIGURE 12.8

Organizing threads and memory layout for coalesced writes.

27512.4 Memory Coalescing

elements so that the total length of the x dimension is a multiple of 16.

This can require adding up to 15 elements, or 60 bytes to each row, as

shown in Figure 12.8. With the kernel of Figure 12.9, the number of ele-

ments in the x dimension needs to be a multiple of 83 165 128. This is

because each thread actually writes 8 elements in each iteration. Thus, one

may need to pad up to 127 elements, or 1,016 bytes, to each row.

Furthermore, there is a potential problem with the last row of thread

blocks. Since the grid array may not have enough rows, some of the threads

may end up writing outside the grid data structure. Since the grid data struc-

ture is a 3D array, these threads will write into the next slice of grid points.

As we discussed in Chapter 3, we can add a test in the kernel and avoid

writing the array elements that are out of the known y dimension size.

However, this would have added a number of overhead instructions and

incurred control divergence. Another solution is to pad the y dimension of

the grid structure so that it contains a multiple of tiles covered by thread

blocks. This is shown in Figure 12.8 as the bottom padding in the grid struc-

ture. In general, one may need to add up to 15 rows due to this padding.

The cost of padding can be substantial for smaller grid structures. For

example, if the energy grid has 1003 100 grid points in each 2D slice, it

would be padded into a 1283 112 slice. The total number of grid points

FIGURE 12.9

DCS kernel version 3.

276 CHAPTER 12 Application Case Study

increase from 10,000 to 14,336, or a 43% overhead. If we had to pad the

entire 3D structure, the grid points would have increased from

1003 1003 100 (1,000,000) to 1283 1123 112 (1,605,632), or a 60%

overhead! This is part of the reason why we calculate the energy grids in

2D slices and use the host code to iterate over these 2D slices. Writing a sin-

gle kernel to process the entire 3D structure would have incurred a lot more

extra overhead. This type of trade-off appears frequently in simulation mod-

els, differential equation solvers, and video processing applications.

The DCS version 3 kernel shown in Figure 12.9 achieves about 291

GFLOPs, or 39.5 billion atom evaluations per second on a G80. On a later

Fermi device, it achieves 535.16 GFLOPS, or 72.56 billion atom evalua-

tions per sec. On a recent GeForce GTX680 Kepler 1, it achieves a whop-

ping 1267.26 GFLOPS, or 171.83 billion atom evaluations per sec! This

measured speed of the kernel also includes a slight boost from moving the

read access to the energygrid[] array from the beginning of the kernel to

the end of the kernel. The contribution to the grid points are first calcu-

lated in the loop. The code loads the original grid point data after the

loop, adds the contribution to the data, and writes the updated values back.

Although this movement exposes more of the global memory latency to

each thread, it saves the consumption of eight registers. Since the kernel is

already using many registers to hold the atom data and the distances, such

savings in number of registers used relieves a critical bottleneck for the

kernel. This allows more thread blocks to be assigned to each SM and

achieves an overall performance improvement.

12.5 SUMMARY
Figure 12.10 shows a summary of the performance comparison between

the various DCS kernel implementations and how they compare with an

optimized single-core CPU execution. One important observation is that

the relative merit of the kernels varies with grid dimension lengths.

However, the DCS version 3 (CUDA-Unroll8clx) performs consistently

better than all others once the grid dimension length is larger than 300.

A detailed comparison between the CPU performance and the

CPU�GPU joint performance shows a commonly observed trade-off.

Figure 12.11 shows plot of the execution time of a medium-size grid system

for a varying number of atoms to be evaluated. For 400 atoms or fewer, the

CPU performs better. This is because the GPU has a fixed initialization

overhead of 110 ms regardless of the number of atoms to be evaluated.

27712.5 Summary

FIGURE 12.10

Performance comparison of various DCS kernel versions.

FIGURE 12.11

Single-thread CPU versus CPU�GPU comparison.

278 CHAPTER 12 Application Case Study

Also, for a small number of atoms, the GPU is underutilized, thus the curve

of the GPU execution time is quite flat between 100 and 1,000 atoms.

The plot in Figure 12.11 reenforces a commonly held principle that

GPUs perform better for large amounts of data. Once the number of atoms

reaches 10,000, the GPU is fully utilized. The slopes of the CPU and the

CPU�GPU execution time become virtually identical, with the

CPU�GPU execution being consistently 443 times faster than the CPU

execution for all input sizes.

12.6 EXERCISES
12.1. Complete the implementation of the DCS kernel as outlined in

Figure 12.5. Fill in all the missing declarations. Give the kernel

launch statement with all the execution configuration parameters.

12.2. Compare the number of operations (memory loads, floating-point

arithmetic, branches) executed in each iteration of the kernel in

Figure 12.7 compared to that in Figure 12.5. Keep in mind that each

iteration of the former corresponds to four iterations of the latter.

12.3. Complete the implementation of the DCS kernel version 3 in

Figure 12.9. Explain in your own words how the thread accesses are

coalesced in this implementation.

12.4. For the memory padding in Figure 12.8 and DCS kernel version 3

in Figure 12.9, show why one needs to pad up to 127 elements in

the x dimension but only up to 15 elements in the y dimension.

12.5. Give two reasons for adding extra “padding” elements to arrays

allocated in the GPU global memory, as shown in Figure 12.8.

12.6. Give two potential disadvantages associated with increasing the

amount of work done in each CUDA thread, as shown in

Section 12.3.

References
Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD—Visual Molecular

Dynamics. Journal of Molecular Graphics, 14, 33�38.

Stone, J. E., Phillips, J. C., Freddolino, P. L., Hardy, D. J., Trabuco, L. G., &

Schulten, K. (2007). Accelerating molecular modeling applications with gra-

phics processors. Journal of Computational Chemistry, 28, 2618�2640.

279References

This page intentionally left blank

CHAPTER

13Parallel Programming and
Computational Thinking

CHAPTER OUTLINE

13.1 Goals of Parallel Computing.. 282

13.2 Problem Decomposition .. 283

13.3 Algorithm Selection.. 287

13.4 Computational Thinking .. 293

13.5 Summary ... 294

13.6 Exercises... 294

References ... 295

We have so far concentrated on the practical experience of parallel

programming, which consists of CUDA programming model features,

performance and numerical considerations, parallel patterns, and applica-

tion case studies. We will now switch gear to more abstract concepts. We

will first generalize parallel programming into a computational thinking

process of decomposing a domain problem into well-defined, coordinated

work units that can each be realized with efficient numerical methods and

well-known algorithms. A programmer with strong computational thinking

skills not only analyzes but also transforms the structure of a domain

problem: which parts are inherently serial, which parts are amenable to

high-performance parallel execution, and the trade-offs involved in moving

parts from the former category to the latter. With good problem decomposi-

tion, the programmer can select and implement algorithms that achieve an

appropriate compromise between parallelism, computational efficiency,

and memory bandwidth consumption. A strong combination of domain

knowledge and computational thinking skills is often needed for creating

successful computational solutions to challenging domain problems. This

chapter will give readers more insight into parallel programming and

computational thinking in general.

281

13.1 GOALS OF PARALLEL COMPUTING
Before we discuss the fundamental concepts of parallel programming, it is

important for us to first review the three main reasons why people adopt

parallel computing. The first goal is to solve a given problem in less time.

For example, an investment firm may need to run a financial portfolio sce-

nario risk analysis package on all its portfolios during after-trading hours.

Such an analysis may require 200 hours on a sequential computer.

However, the portfolio management process may require that analysis be

completed in four hours to be in time for major decisions based on that

information. Using parallel computing may speed up the analysis and

allow it to complete within the required time window.

The second goal of using parallel computing is to solve bigger problems

within a given amount of time. In our financial portfolio analysis example,

the investment firm may be able to run the portfolio scenario risk analysis

on its current portfolio within a given time window using sequential com-

puting. However, the firm is planning on expanding the number of holdings

in its portfolio. The enlarged problem size would cause the running time of

analysis under sequential computation to exceed the time window. Parallel

computing that reduces the running time of the bigger problem size can

help accommodate the planned expansion to the portfolio.

The third goal of using parallel computing is to achieve better solutions

for a given problem and a given amount of time. The investment firm may

have been using an approximate model in its portfolio scenario risk analy-

sis. Using a more accurate model may increase the computational complexity

and increase the running time on a sequential computer beyond the allowed

window. For example, a more accurate model may require consideration of

interactions between more types of risk factors using a more numerically com-

plex formula. Parallel computing that reduces the running time of the more

accurate model may complete the analysis within the allowed time window.

In practice, parallel computing may be driven by a combination of the

aforementioned three goals. It should be clear from our discussion that

parallel computing is primarily motivated by increased speed. The first goal

is achieved by increased speed in running the existing model on the current

problem size. The second goal is achieved by increased speed in running the

existing model on a larger problem size. The third goal is achieved by

increased speed in running a more complex model on the current problem

size. Obviously, the increased speed through parallel computing can be used

to achieve a combination of these goals. For example, parallel computing can

reduce the runtime of a more complex model on a larger problem size.

282 CHAPTER 13 Parallel Programming and Computational Thinking

It should also be clear from our discussion that applications that are

good candidates for parallel computing typically involve large problem

sizes and high modeling complexity. That is, these applications process a

large amount of data, perform many iterations on the data, or both. For

such a problem to be solved with parallel computing, the problem must be

formulated in such a way that it can be decomposed into subproblems that

can be safely solved at the same time. Under such formulation and decom-

position, the programmer writes code and organizes data to solve these

subproblems concurrently.

In Chapters 11 and 12 we presented two problems that are good candi-

dates for parallel computing. The MRI reconstruction problem involves a

large amount of k-space sample data. Each k-space sample data is also used

many times for calculating its contributions to the reconstructed voxel data.

For a reasonably high-resolution reconstruction, each sample data is used a

very large number of times. We showed that a good decomposition of the

FHD problem in MRI reconstruction is to form subproblems that each calcu-

late the value of an FHD element. All these subproblems can be solved in

parallel with each other. We use a massive number of CUDA threads to

solve these subproblems.

Figure 12.11 further shows that the electrostatic potential calculation

problem should be solved with a massively parallel CUDA device only if

there are 400 or more atoms. A realistic molecular dynamic system model

typically involves at least hundreds of thousands of atoms and millions of

energy grid points. The electrostatic charge information of each atom is

used many times in calculating its contributions to the energy grid points.

We showed that a good decomposition of the electrostatic potential calcula-

tion problem is to form subproblems that each calculate the energy value of

a grid point. All the subproblems can be solved in parallel with each other.

We use a massive number of CUDA threads to solve these subproblems.

The process of parallel programming can typically be divided into four

steps: problem decomposition, algorithm selection, implementation in a

language, and performance tuning. The last two steps were the focus of

previous chapters. In the next two sections, we will discuss the first two

steps with more generality as well as depth.

13.2 PROBLEM DECOMPOSITION
Finding parallelism in large computational problems is often conceptually

simple but can be challenging in practice. The key is to identify the work

28313.2 Problem Decomposition

to be performed by each unit of parallel execution, which is a thread in

CUDA, so that the inherent parallelism of the problem is well utilized. For

example, in the electrostatic potential map calculation problem, it is clear

that all atoms can be processed in parallel and all energy grid points can

be calculated in parallel. However, one must take care when decomposing

the calculation work into units of parallel execution, which will be referred

to as threading arrangement. As we discussed in Section 12.2, the decom-

position of the electrostatic potential map calculation problem can be

atom-centric or grid-centric. In an atom-centric threading arrangement,

each thread is responsible for calculating the effect of one atom on all grid

points. In contrast, a grid-centric threading arrangement uses each thread

to calculate the effect of all atoms on a grid point.

While both threading arrangements lead to similar levels of parallel

execution and same execution results, they can exhibit very different per-

formance in a given hardware system. The grid-centric arrangement has a

memory access behavior called gather, where each thread gathers or col-

lects the effect of input atoms into a grid point. Figure 13.1(a) illustrates

the gather access behavior. Gather is a desirable thread arrangement in

CUDA devices because the threads can accumulate their results in their

private registers. Also, multiple threads share input atom values, and can

effectively use constant memory caching or shared memory to conserve

global memory bandwidth.

The atom-centric arrangement, on the other hand, exhibits a memory

access behavior called scatter, where each thread scatters or distributes the

in

out

in

out

Thread
1

Thread
1

Thread
2

Thread
2

(a) (b)

FIGURE 13.1

(a) Gather and (b) scatter based thread arrangements.

284 CHAPTER 13 Parallel Programming and Computational Thinking

effect of an atom into grid points. The scatter behavior is illustrated in

Figure 13.1(b). This is an undesirable arrangement in CUDA devices

because the multiple threads can write into the same grid point at the same

time. The grid points must be stored in a memory that can be written by

all the threads involved. Atomic operations must be used to prevent race

conditions and loss of value during simultaneous writes to a grid point by

multiple threads. These atomic operations are much slower than the regis-

ter accesses used in the atom-centric arrangement. Understanding the

behavior of the threading arrangement and the limitations of hardware

allows a parallel programmer to steer toward the more desired gather-

based arrangement.

A real application often consists of multiple modules that work

together. The electrostatic potential map calculation is one such module

in molecular dynamics applications. Figure 13.2 shows an overview of

major modules of a molecular dynamics application. For each atom in

the system, the application needs to calculate the various forms of forces

(e.g. vibrational, rotational, and nonbonded) that are exerted on the atom.

Each form of force is calculated by a different method. At the high level,

a programmer needs to decide how the work is organized. Note that the

amount of work can vary dramatically between these modules. The non-

bonded force calculation typically involves interactions among many

atoms and incurs much more calculations than the vibrational and rota-

tional forces. Therefore, these modules tend to be realized as separate

passes over the force data structure. The programmer needs to decide if

each pass is worth implementing in a CUDA device. For example, he or

Neighbor List

Vibrational and
Rotational Forces

Non-bonded Force

Next Time Step

Update atomic positions and velocities

FIGURE 13.2

Major tasks of a molecular dynamics application.

28513.2 Problem Decomposition

she may decide that the vibrational and rotational force calculations do

not involve a sufficient amount of work to warrant execution on a

device. Such a decision would lead to a CUDA program that launches a

kernel that calculates nonbonding forces for all the grid points while con-

tinuing to calculate the vibrational and rotational forces for the grid points

on the host. The module that updates atomic positions and velocities may

also run on the host. It first combines the vibrational and rotational forces

from the host and the nonbonding forces from the device. It then uses the

combined forces to calculate the new atomic positions and velocities.

The portion of work done by the device will ultimately decide the

application-level speedup achieved by parallelization. For example, assume

that the nonbonding force calculation accounts for 95% of the original

sequential execution time and it is accelerated by 1003 using a CUDA

device. Further assume that the rest of the application remains on the host

and receives no speedup. The application-level speedup is 1/(5%1 95%/

100)5 1/(5%1 0.95%)5 1/(5.95%)5 173. This is a demonstration of

Amdahl’s law: the application speedup due to parallel computing is limited

by the sequential portion of the application. In this case, even though the

sequential portion of the application is quite small (5%), it limits the

application-level speedup to 173 even though the nonbonding force calcu-

lation has a speedup of 1003. This example illustrates a major challenge in

decomposing large applications: the accumulated execution time of small

activities that are not worth parallel execution on a CUDA device can

become a limiting factor in the speedup seen by the end users.

Amdahl’s law often motivates task-level parallelization. Although some

of these smaller activities do not warrant fine-grained massive parallel exe-

cution, it may be desirable to execute some of these activities in parallel

with each other when the data set is large enough. This could be achieved

by using a multicore host to execute such tasks in parallel. Alternatively,

we could try to simultaneously execute multiple small kernels, each corre-

sponding to one task. The previous CUDA devices did not support such

parallelism but the new generation devices such as Kepler do.

An alternative approach to reducing the effect of sequential tasks is to

exploit data parallelism in a hierarchical manner. For example, in a

Message Passing Interface (MPI) [MPI2009] implementation, a molecular

dynamics application would typically distribute large chunks of the spatial

grids and their associated atoms to nodes of a networked computing cluster.

By using the host of each node to calculate the vibrational and rotational

force for its chunk of atoms, we can take advantage of multiple host CPUs

to achieve speedup for these lesser modules. Each node can use a CUDA

286 CHAPTER 13 Parallel Programming and Computational Thinking

device to calculate the nonbonding force at a higher level of speedup. The

nodes will need to exchange data to accommodate forces that go across

chunks and atoms that move across chunk boundaries. We will discuss

more details of joint MPI-CUDA programming in Chapter 19. The main

point here is that MPI and CUDA can be used in a complementary way in

applications to jointly achieve a higher-level of speed with large data sets.

13.3 ALGORITHM SELECTION
An algorithm is a step-by-step procedure where each step is precisely

stated and can be carried out by a computer. An algorithm must exhibit

three essential properties: definiteness, effective computability, and finite-

ness. Definiteness refers to the notion that each step is precisely stated;

there is no room for ambiguity as to what is to be done. Effective comput-

ability refers to the fact that each step can be carried out by a computer.

Finiteness means that the algorithm must be guaranteed to terminate.

Given a problem, we can typically come up with multiple algorithms to

solve the problem. Some require fewer steps of computation than others;

some allow higher degrees of parallel execution than others; some have

better numerical stability than others; and some consume less memory

bandwidth than others. Unfortunately, there is often not a single algorithm

that is better than others in all the four aspects. Given a problem and a

decomposition strategy, a parallel programmer often needs to select an

algorithm that achieves the best compromise for a given hardware system.

In our matrix�matrix multiplication example, we decided to decom-

pose the problem by having each thread compute the dot product for an

output element. Given this decomposition, we presented two different

algorithms. The algorithm in Section 4.3 is a straightforward algorithm

where every thread simply performs an entire dot product. Although the

algorithm fully utilizes the parallelism available in the decomposition, it

consumes too much global memory bandwidth. In Section 5.4, we intro-

duced tiling, an important algorithm strategy for conserving memory

bandwidth. Note that the tiled algorithm partitions the dot products into

phases. All threads involved in a tile must synchronize with each other so

that they can collaboratively load the tile of input data into the shared

memory and collectively utilize the loaded data before they move on to

the next phase. As we showed in Figure 5.12, the tiled algorithm requires

each thread to execute more statements and incur more overhead in index-

ing the input arrays than the original algorithm. However, it runs much

28713.3 Algorithm Selection

faster because it consumes much less global memory bandwidth. In gen-

eral, tiling is one of the most important algorithm strategies for matrix

applications to achieve high performance.

As we demonstrated in Sections 6.4 and 12.3, we can systematically

merge threads to achieve a higher level of instruction and memory access

efficiency. In Section 6.4, threads that handle the same columns of neigh-

boring tiles are combined into a new thread. This allows the new thread to

access each M element only once while calculating multiple dot products,

reducing the number of address calculation and memory load instructions

executed. It also further reduces the consumption of global memory band-

width. The same technique, when applied to the DCS kernel in electro-

static potential calculation, further reduces the number of distance

calculations while achieving similar reduction in address calculations and

memory load instructions.

One can often come up with even more aggressive algorithm strategies.

An important algorithm strategy, referred to as cutoff binning, can signifi-

cantly improve the execution efficiency of grid algorithms by sacrificing a

small amount of accuracy. This is based on the observation that many grid

calculation problems are based on physical laws where numerical contri-

butions from particles or samples that are far away from a grid point can

be collectively treated with an implicit method at much lower computa-

tional complexity. This is illustrated for the electrostatic potential calcula-

tion in Figure 13.3. Figure 13.3(a) shows the direct summation algorithms

discussed in Chapter 12. Each grid point receives contributions from all

atoms. While this is a very parallel approach and achieves excellent

speedup over CPU-only execution for moderate-size energy grid systems,

as we showed in Figure 12.11, it does not scale well to very large energy

grid systems where the number of atoms increases proportional to the vol-

ume of the system. The amount of computation increases with the square

of the volume. For large-volume systems, such an increase makes the

computation excessively long even for massively parallel devices.

In practice, we know that each grid point needs to receive contributions

from atoms that are close to it. The atoms that are far away from a grid

point will have negligible contribution to the energy value at the grid point

because the contribution is inversely proportional to the distance.

Figure 13.3(b) illustrates this observation with a circle drawn around a

grid point. The contributions to the grid point energy from atoms outside

the circle (maroon) are negligible. If we can devise an algorithm where

each grid point only receives contributions from atoms within a fixed

radius of its coordinate (green), the computational complexity of the

288 CHAPTER 13 Parallel Programming and Computational Thinking

algorithm would be reduced to linearly proportional to the volume of the

system. This would make the computation time of the algorithm linearly

proportional to the volume of the system. Such algorithms have been used

extensively in sequential computation.

In sequential computing, a simple cutoff algorithm handles one atom at

a time. For each atom, the algorithm iterates through the grid points that

fall within a radius of the atom’s coordinate. This is a straightforward pro-

cedure since the grid points are in an array that can be easily indexed as a

function of their coordinates. However, this simple procedure does not

carry easily to parallel execution. The reason is what we discussed in

Section 13.2: the atom-centric decomposition does not work well due to it

scatter memory access behavior. However, as we discussed in Chapter 9,

it is important that a parallel algorithm matches the work efficiency of an

efficient sequential algorithm.

Therefore, we need to find a cutoff binning algorithm based on the

grid-centric decomposition: each thread calculates the energy value at one

grid point. Fortunately, there is a well-known approach to adapting the

direct summation algorithm, such as the one in Figure 12.9, into a cutoff

binning algorithm. Rodrigues et al. present such an algorithm for the elec-

trostatic potential problem [RSH 2008].

(a) Direct summation
At each grid point, sum the
electrostatic potential from
all charges

(b) Cutoff summation
Electrostatic potential from
nearby charges summed;
spatially sort charges first

(c) Cutoff summation using
direct summation kernel
Spatially sort charges into
bins; adapt direct
summation to process a bin

FIGURE 13.3

Cutoff summation algorithm.

28913.3 Algorithm Selection

The key idea of the algorithm is to first sort the input atoms into bins

according to their coordinates. Each bin corresponds to a box in the grid

space and it contains all atoms of which the coordinate falls into the box.

We define a “neighborhood” of bins for a grid point to be the collection of

bins that contain all the atoms that can contribute to the energy value of a

grid point. If we have an efficient way of managing neighborhood bins for

all grid points, we can calculate the energy value for a grid point by exam-

ining the neighborhood bins for the grid point. This is illustrated in

Figure 13.3(c). Although Figure 13.3(c) shows only one layer (2D) of bins

that immediately surround that containing a grid point as its neighborhood,

a real algorithm will typically have multiple layers (3D) of bins in a grid’s

neighborhood. In this algorithm, all threads iterate through their own

neighborhood. They use their block and thread indices to identify the

appropriate bins. Note that some of the atoms in the surrounding bins may

not fall into the radius. Therefore, when processing an atom, all threads

need to check if the atom falls into its radius. This can cause some control

divergence among threads in a warp.

The main source of improvement in work efficiency comes from the fact

that each thread now examines a much smaller set of atoms in a large grid

system. This, however, makes constant memory much less attractive for

holding the atoms. Since thread blocks will be accessing different neighbor-

hoods, the limited-size constant memory will unlikely be able to hold all

the atoms that are needed by all active thread blocks. This motivates the use

of global memory to hold a much larger set of atoms. To mitigate the band-

width consumption, threads in a block collaborate in loading the atom infor-

mation in the common neighborhood into the shared memory. All threads

then examine the atoms out of shared memory. Readers are referred to

Rodrigues et al. [RHS2008] for more details of this algorithm.

One subtle issue with binning is that bins may end up with a different

number of atoms. Since the atoms are statistically distributed in the grid

system, some bins may have lots of atoms and some bins may end up with

no atom at all. To guarantee memory coalescing, it is important that all

bins are of the same size and aligned at appropriate coalescing boundaries.

To accommodate the bins with the largest number of atoms, we would

need to make the size of all other bins the same size. This would require

us to fill many bins with dummy atoms of which the electrical charge is 0,

which causes two negative effects. First, the dummy atoms still occupy

global memory and shared memory storage. They also consumer data

transfer bandwidth to the device. Second, the dummy atoms extend the

execution time of the thread blocks of which the bins have few real atoms.

290 CHAPTER 13 Parallel Programming and Computational Thinking

A well-known solution is to set the bin size at a reasonable level, typi-

cally much smaller than the largest possible number of atoms in a bin. The

binning process maintains an overflow list. When processing an atom, if

the atom’s home bin is full, the atom is added to the overflow list instead.

After the device completes a kernel, the result grid point energy values are

transferred back to the host. The host executes a sequential cutoff

algorithm on the atoms in the overflow list to complete the missing contri-

butions from these overflow atoms. As long as the overflow atoms account

for only a small percentage of the atoms, the additional sequential proces-

sing time of the overflow atoms is typically shorter than that of the device

execution time. One can also design the kernel so that each kernel invoca-

tion calculates the energy values for a subvolume of grid points. After

each kernel completes, the host launches the next kernel and processes the

overflow atoms for the completed kernel. Thus, the host will be processing

the overflow atoms while the device executes the next kernel. This

approach can hide most if not all the delays in processing overflow atoms

since it is done in parallel with the execution of the next kernel.

Figure 13.4 shows a comparison of scalability and performance of the

various electrostatic potential map algorithms. Note that the CPU-SSE3

curve is based on a sequential cutoff algorithm. For a map with small

volumes, around 1,000 Angstrom3, the host (CPU with SSE) executes fas-

ter than the DCS kernel shown in Figure 13.4. This is because there is not

enough work to fully utilize a CUDA device for such a small volume.

Same scalability
among all cutoff
implementations

1000

100

10

1

0.1

0.01

0.001
1000 8000 64000

CPU-SSE3
LargeBin
SmallBin

SmallBin-Overlap
DirectSum

Volume of potential map (Angstom3)
1e+06 8e+06

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

FIGURE 13.4

Scalability and performance of difference algorithms for calculating an

electrostatic potential map.

29113.3 Algorithm Selection

However, for moderate volumes, between 2,000 and 500,000 Angstrom3,

the direct summation kernel performs significantly better than the host due

to its massive execution. As we anticipated, the direct summation kernel

scales poorly when the volume size reaches about 1,000,000 Angstrom3,

and runs longer than the sequential algorithm on the CPU! This is due to

the fact that the algorithm complexity of the DCS kernel is higher than the

sequential algorithm and thus the amount of work done by the kernel

grows much faster than that done by the sequential algorithm. For a vol-

ume size larger than 1,000,000 Angstrom3, the amount of work is so large

that it swamps the hardware execution resources.

Figure 13.4 also shows the running time of three binned cutoff algo-

rithms. The LargeBin algorithm is a straightforward adaptation of the

DCS kernel for the cutoff. The kernel is designed to process a subvolume

of the grid points. Before each kernel launch, the CPU transfers all atoms

that are in the combined neighborhood of all the grid points in the subvo-

lume. These atoms are still stored in the constant memory. All threads

examine all atoms in the joint neighborhood. The advantage of the kernel

is its simplicity. It is essentially the same as the direct summation kernel

with a relatively large, preselected neighborhood of atoms. Note that the

LargeBin approach performs reasonably well for moderate volumes and

scales well for large volumes.

The SmallBin algorithm allows the threads running the same kernel to

process a different neighborhood of atoms. This is the algorithm that uses

global memory and shared memory for storing atoms. The algorithm

achieves higher efficiency than the LargeBin algorithm because each thread

needs to examine a smaller number of atoms. For moderate volumes,

around 8,000 Angstrom3, the LargeBin algorithm slightly outperforms the

SmallBin algorithm. The reason is that the SmallBin algorithm does incur

more instruction overhead for loading atoms from global memory into

shared memory. For a moderate volume, there is a limited number of atoms

in the entire system. The ability to examine a smaller number of atoms does

not provide sufficient advantage to overcome the additional instruction

overhead. However, the difference is so small at 8,000 Angstrom3 that the

SmallBin algorithm is still a clear win across all volume sizes. The

SmallBin-Overlap algorithm overlaps the sequential overflow atom

processing with the next kernel execution. It provides a slight but noticeable

improvement in running time over the SmallBin algorithm. The

SmallBin�Overlap algorithm achieves a 173 speedup over an efficiently

implemented sequential CPU-SSE cutoff algorithm, and maintains the same

scalability for large volumes.

292 CHAPTER 13 Parallel Programming and Computational Thinking

13.4 COMPUTATIONAL THINKING
Computational thinking is arguably the most important aspect of parallel

application development [Wing2006]. We define computational thinking

as the thought process of formulating domain problems in terms of compu-

tation steps and algorithms. Like any other thought processes and

problem-solving skills, computational thinking is an art. As we mentioned

in Chapter 1, we believe that computational thinking is best taught with an

iterative approach where students bounce back and forth between practical

experience and abstract concepts.

The electrostatic potential map kernels used in Chapter 12 and this

chapter serve as good examples of computational thinking. To develop an

efficient parallel application that solves the electrostatic potential map

problem, one must come up with a good high-level decomposition of the

problem. As we showed in Section 13.2, one must have a clear under-

standing of the desirable (e.g., gather in CUDA) and undesirable (e.g.,

scatter in CUDA) memory access behaviors to make a wise decision.

Given a problem decomposition, parallel programmers face a poten-

tially overwhelming task of designing algorithms to overcome major

challenges in parallelism, execution efficiency, and memory bandwidth

consumption. There is a very large volume of literature on a wide range of

algorithm techniques that can be hard to understand. It is beyond the scope

of this book to have a comprehensive coverage of the available techniques.

We did discuss a substantial set of techniques that have broad applicabil-

ity. While these techniques are based on CUDA, they help readers build

up the foundation for computational thinking in general. We believe that

humans understand best when we learn from the bottom up. That is, we

first learn the concepts in the context of a particular programming model,

which provides us with solid footing before we generalize our knowledge

to other programming models. An in-depth experience with the CUDA

model also enables us to gain maturity, which will help us learn concepts

that may not even be pertinent to the CUDA model.

There is a myriad of skills needed for a parallel programmer to be an

effective computational thinker. We summarize these foundational skills

as follows:

• Computer architecture: memory organization, caching and locality,

memory bandwidth, SIMT versus SPMD versus SIMD execution, and

floating-point precision versus accuracy. These concepts are critical in

understanding the trade-offs between algorithms.

29313.4 Computational Thinking

• Programming models and compilers: parallel execution models, types

of available memories, array data layout, and thread granularity

transformation. These concepts are needed for thinking through the

arrangements of data structures and loop structures to achieve better

performance.

• Algorithm techniques: tiling, cutoff, scatter�gather, binning, and

others. These techniques form the toolbox for designing superior

parallel algorithms. Understanding the scalability, efficiency, and

memory bandwidth implications of these techniques is essential in

computational thinking.

• Domain knowledge: numerical methods, precision, accuracy, and

numerical stability. Understanding these ground rules allows a

developer to be much more creative in applying algorithm techniques.

Our goal for this book is to provide a solid foundation for all the four

areas. Readers should continue to broaden their knowledge in these areas

after finishing this book. Most importantly, the best way of building up

more computational thinking skills is to keep solving challenging pro-

blems with excellent computational solutions.

13.5 SUMMARY
In summary, we have discussed the main dimensions of algorithm selec-

tion and computational thinking. The key lesson is that given a problem

decomposition decision, programmers will typically have to select from a

variety of algorithms. Some of these algorithms achieve different trade-

offs while maintaining the same numerical accuracy. Others involve

sacrificing some level of accuracy to achieve much more scalable running

times. The cutoff strategy is perhaps the most popular of such strategies.

Even though we introduced cutoff in the context of electrostatic potential

map calculation, it is used in many domains including ray tracing in

graphics and collision detection in games. Computational thinking skills

allow an algorithm designer to work around the roadblocks and reach a

good solution.

13.6 EXERCISES
13.1 Write a host function to perform binning of atoms. Determine the

representation of the bins as arrays. Think about coalescing

294 CHAPTER 13 Parallel Programming and Computational Thinking

requirements. Make sure that every thread can easily find the bins it

needs to process.

13.2 Write the part of the cutoff kernel function that determines if an

atom is in the neighborhood of a grid point based on the coordinates

of the atoms and the grid points.

References
Message Passing Interface Forum, MPI—A Message Passing Interface Standard

Version 2.2, Available at: ,http://www.mpi-forum.org/docs/mpi-2.2/mpi22-

report.pdf., 04.09.09.

Mattson, T. G., Sanders, B. A., & Massingill, B. L. (2004). Patterns of Parallel

Programming, Reading, MA: Addison-Wesley Professional.

Rodrigues, C. I., Stone, J., Hardy, D., Hwu, W. W.GPU Acceleration of Cutoff-

Based Potential Summation. ACM Computing Frontier Conference 2008,

Italy: May 2008.

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3),

pp. 33�35.

295References

http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

This page intentionally left blank

CHAPTER

14An Introduction to OpenCLTM

CHAPTER OUTLINE

14.1 Background ... 297

14.2 Data Parallelism Model .. 299

14.3 Device Architecture.. 301

14.4 Kernel Functions .. 303

14.5 Device Management and Kernel Launch .. 304

14.6 Electrostatic Potential Map in OpenCL... 307

14.7 Summary ... 311

14.8 Exercises... 312

References ... 313

Now that we have discussed high-performance parallel programming using

CUDA C, we would like to introduce another way to exploit the parallel

computing capabilities of heterogeneous computing systems with GPUs

and CPUs: OpenCLTM. In this chapter, we will give a brief overview of

OpenCL for CUDA programmers. The fundamental programming model

of OpenCL is so similar to CUDA that there is a one-to-one correspon-

dence for most features. With your understanding of CUDA, you will be

able to start writing OpenCL programs with the material presented in

this chapter. In our opinion, the best way to learn OpenCL is actually to

learn CUDA first and then map the OpenCL features to their CUDA

equivalents.

14.1 BACKGROUND
OpenCL is a standardized, cross-platform parallel computing API based

on the C language. It is designed to enable the development of

297

portable parallel applications for systems with heterogeneous computing

devices. The development of OpenCL was motivated by the need for a

standardized high-performance application development platform for the

fast-growing variety of parallel computing platforms. In particular, it

addresses significant application portability limitations of the previous pro-

gramming models for heterogeneous parallel computing systems.

CPU-based parallel programming models have been typically based on

standards such as OpenMP but usually do not encompass the use of special

memory types or SIMD (single instruction, multiple data) execution by

high-performance programmers. Joint CPU�GPU heterogeneous parallel

programming models such as CUDA have constructs that address complex

memory hierarchies and SIMD execution but have been platform-, vendor-,

or hardware-specific. These limitations make it difficult for an application

developer to access the computing power of CPUs, GPUs, and other types

of processing units from a single multiplatform source code base.

The development of OpenCL was initiated by Apple and managed by

the Khronos Group, the same group that manages the OpenGL standard.

On one hand, it draws heavily on CUDA in the areas of supporting a sin-

gle code base for heterogeneous parallel computing, data parallelism, and

complex memory hierarchies. This is the reason why a CUDA program-

mer will find these aspects of OpenCL familiar once we connect the termi-

nologies. Readers will especially appreciate the similarities between

OpenCL and the low-level CUDA driver model.

On the other hand, OpenCL has a more complex platform and device

management model that reflects its support for multiplatform and multi-

vendor portability. OpenCL implementations already exist on AMD/ATI

and NVIDIA GPUs as well as X86 CPUs. In principle, one can envision

OpenCL implementations on other types of devices such as digital signal

processors (DSPs) and field programmable gate arrays (FPGAs). While

the OpenCL standard is designed to support code portability across devices

produced by different vendors, such portability does not come for free.

OpenCL programs must be prepared to deal with much greater hardware

diversity and thus will exhibit more complexity. Also, many OpenCL fea-

tures are optional and may not be supported on all devices. A

portable OpenCL code will need to avoid using these optional features.

However, some of these optional features allow applications to achieve

significantly more performance in devices that support them. As a result, a

portable OpenCL code may not be able to achieve its performance poten-

tial on any of the devices. Therefore, one should expect that a

portable application that achieves high performance on multiple devices

298 CHAPTER 14 An Introduction to OpenCLTM

will employ sophisticated runtime tests and chose among multiple code

paths according to the capabilities of the actual device used.

The objective of this chapter is not to provide full details on all pro-

gramming features of OpenCL. Rather, the objective is to give a CUDA

programmer a conceptual understanding of the OpenCL programming

model features. It also provides some basic host and kernel code patterns

for jumpstarting an OpenCL coding project. With this foundation, readers

can immediately start to program in OpenCL and consult the OpenCL

specification [KHR] and programming guides [NVIDIA,AMD] on a need

basis.

14.2 DATA PARALLELISM MODEL
OpenCL employs a data-parallel execution model that has direct corre-

spondence with CUDA. An OpenCL program consists of two parts: ker-

nels that execute on one or more OpenCL devices and a host program that

manages the execution of kernels. Table 14.1 summarizes the mapping of

OpenCL data parallelism concepts to their CUDA equivalents. Like

CUDA, the way to submit work for parallel execution in OpenCL is for

the host program to launch kernel functions. We will discuss the additional

kernel preparation, device selection, and management work that an

OpenCL host program needs to do as compared to its CUDA counterpart

in Section 14.4.

When a kernel function is launched, its code is run by work items, which

correspond to CUDA threads. An index space defines the work items and

how data is mapped to the work items. That is, OpenCL work items are

identified by global dimension index ranges (NDRanges). Work items form

work groups that correspond to CUDA thread blocks. Work items in the

Table 14.1 Mapping between OpenCL and CUDA Data Parallelism

Model Concepts

OpenCL Parallelism Concept CUDA Equivalent

Kernel Kernel
Host program Host program
NDRange (index space) Grid
Work item Thread
Work group Block

29914.2 Data Parallelism Model

same work group can synchronize with each other using barriers that are

equivalent to __syncthreads() in CUDA. Work items in different work

groups cannot synchronize with each other except by terminating the kernel

function and launching a new one. As we discussed in Chapter 4, this lim-

ited scope of barrier synchronization enables transparent scaling.

Figure 14.1 illustrates the OpenCL data-parallel execution model.

Readers should compare Figure 14.1 with Figure 12.8 for similarities. The

NDRange (CUDA grid) contains all work items (CUDA threads). For this

example, we assume that the kernel is launched with a 2D NDRange.

All work items have their own unique global index values. There is a

minor difference between OpenCL and CUDA in the way they manage

these index values. In CUDA, each thread has a blockIdx value and a

threadIdx value. The two values are combined to form a global thread ID

value for the thread. For example, if a CUDA grid and its blocks are orga-

nized as 2D arrays, the kernel code can form a unique global thread index

value in the x dimension as blockIdx.x�blockDim.x1threadIdx.x.
These blockIdx and threadIdx values are accessible in a CUDA kernel

as predefined variables.

In an OpenCL kernel, a thread can get its unique global index values

by calling an API function get_global_id() with a parameter that identi-

fies the dimension. See the get_global_id(0) entry in Table 14.2. The

Lo
ca

l S
iz

e(
1)

Local Size(0)

Work Group

Group ID
0,0 0,1 …

…

………

1,11,0

G
lo

ba
l S

iz
e(

1)

Global Size(0)

Work Item

FIGURE 14.1

Overview of the OpenCL parallel execution model.

300 CHAPTER 14 An Introduction to OpenCLTM

functions get_global_id(0) and get_global_id(1) return the global

thread index values in the x dimension and the y dimension, respectively.

The global index value in the x dimension is equivalent to the blockIdx.
x�blockDim.x1threadIdx.x in CUDA. See Table 14.2 for the get_loca-
l_id(0) function, which is equivalent to threadIdx.x. We did not show

the parameter values in Table 14.2 for selecting the higher-dimension indi-

ces: 1 for the y dimension and 2 for the z dimension.

An OpenCL kernel can also call an API function get_global_size()
with a parameter that identifies the dimensional sizes of its NDRanges.

The calls get_global_size(0) and get_global_size(1) return the total

number of work items in the x and y dimensions of the NDRanges. Note

that this is slightly different from the CUDA gridDim values, which are in

terms of blocks. The CUDA equivalent for the get_global_size(0)
return value would be gridDim.x � blockDim.x.

14.3 DEVICE ARCHITECTURE
Like CUDA, OpenCL models a heterogeneous parallel computing system

as a host and one or more OpenCL devices. The host is a traditional CPU

that executes the host program. Figure 14.2 shows the conceptual architec-

ture of an OpenCL device. Each device consists of one or more compute

units (CUs) that correspond to CUDA streaming multiprocessors (SMs).

However, a compute unit can also correspond to CPU cores or other types

of execution units in compute accelerators such as DSPs and FPGAs.

Table 14.2 Mapping of OpenCL Dimensions and Indices to CUDA Dimensions

and Indices

OpenCL API Call Explanation CUDA Equivalent

get_global_id
(0)

Global index of the work item in the
x dimension

blockIdx.
x�blockDim.
x1threadIdx.x

get_local_id(0) Local index of the work item within
the work group in the x dimension

threadIdx.x

get_global_size
(0)

Size of NDRange in the x
dimension

gridDim.
x�blockDim.x

get_local_size
(0)

Size of each work group in the x
dimension

blockDim.x

30114.3 Device Architecture

Each compute unit, in turn, consists of one or more processing elements

(PEs), which corresponds to the streaming processors (SPs) in CUDA.

Computation on a device ultimately happens in individual PEs.

Like CUDA, OpenCL also exposes a hierarchy of memory types that

can be used by programmers. Figure 14.2 illustrates these memory types:

global, constant, local, and private. Table 14.3 summarizes the supported

use of OpenCL memory types and the mapping of these memory types to

CUDA memory types. The OpenCL global memory corresponds to the

CUDA global memory. Like CUDA, the global memory can be dynami-

cally allocated by the host program and supports read/write access by both

host and devices.

Unlike CUDA, the constant memory can be dynamically allocated by

the host. Like CUDA, the constant memory supports read/write access by

the host and read-only access by devices. To support multiple platforms,

OpenCL provides a device query that returns the constant memory size

supported by the device.

The mapping of OpenCL local memory and private memory to CUDA

memory types is more interesting. The OpenCL local memory actually

Compute Device

Compute unit 1 Compute unit N

Private
memory 1

Local
memory 1

Local
memory N

Global/Constant Memory Data Cache

Global Memory

Constant Memory

Compute Device Memory

Private
memory 1

PE 1 PE M PE 1 PE M

Private
memory M

Private
memory M

… … …

FIGURE 14.2

Conceptual OpenCL device architecture.

302 CHAPTER 14 An Introduction to OpenCLTM

corresponds to CUDA shared memory. The OpenCL local memory can be

dynamically allocated by the host or statically allocated in the device

code. Like the CUDA shared memory, the OpenCL local memory cannot

be accessed by the host and it supports shared read/write access by all

work items in a work group. The private memory of OpenCL corresponds

to the CUDA automatic variables.

14.4 KERNEL FUNCTIONS
OpenCL kernels have an identical basic structure as CUDA kernels. All

OpenCL kernel declarations start with a __kernel keyword, which is

equivalent to the __global__ keyword in CUDA. Figure 14.3 shows a

simple OpenCL kernel that performs vector addition.

The function takes three arguments: pointers to the two input arrays

and one pointer to the output array. The __global declarations in the func-

tion header indicate that the input and output arrays all reside in the global

memory. Note that this keyword has the same meaning in OpenCL as in

CUDA, except that there are two underscore characters (__) after the

global keyword in CUDA.

The body of the kernel function is instantiated once for each work

item. In Figure 14.3, each work item calls the get_global_id(0) function

Table 14.3 Mapping of OpenCL Memory Types to CUDA Memory Types

Memory
Type

Host Access Device Access CUDA
Equivalent

Global
memory

Dynamic
allocation; read/
write access

No allocation; read/write access by all
work items in all work groups, large and
slow, but may be cached in some
devices

Global
memory

Constant
memory

Dynamic
allocation; read/
write access

Static allocation; read-only access by all
work items

Constant
memory

Local
memory

Dynamic
allocation; no
access

Static allocation; shared read/write
access by all work items in a work
group

Shared
memory

Private
memory

No allocation; no
access

Static allocation; read/write access by a
single work item

Registers
and local
memory

30314.4 Kernel Functions

to receive their unique global index. This index value is then used by the

work item to select the array elements to work on. Once the array element

index i is formed, the rest of the kernel is virtually identical to the CUDA

kernel.

14.5 DEVICE MANAGEMENT AND KERNEL LAUNCH
OpenCL defines a much more complex model of device management than

CUDA. The extra complexity stems from the OpenCL support for multiple

hardware platforms. OpenCL supports runtime construction and compila-

tion of kernels to maximize an application’s ability to address portability

challenges across a wide range of CPUs and GPUs. Interested readers

should refer to the OpenCL specification for more insight into the work

that went into the OpenCL specification to cover as many types of poten-

tial OpenCL devices as possible [KHR2011].

In OpenCL, devices are managed through contexts. Figure 14.4 illus-

trates the main concepts of device management in OpenCL. To manage

one or more devices in the system, the OpenCL programmer first creates a

context that contains these devices. A context is essentially an address

space that contains the accessible memory locations to the OpenCL

devices in the system. This can be done by calling either

clCreateContext() or clCreateContextFromType() in the OpenCL API.

Figure 14.5 show a simple host code pattern for managing OpenCL

devices. In line 4, we use clGetContextInfo() to get the number of bytes

needed (parmsz) to hold the device information, which is used in line 5 to

allocate enough memory to hold the information about all the devices

available in the system. This is because the amount of memory needed to

hold the information depends on the number of OpenCL devices in the

system. We then call clGetContextInfo() again in line 6 with the size of

the device information and a pointer to the allocated memory for the

__kernel void vadd(__global const float *a,
 __global const float *b, __global float *result) {

 int i = get_global_id(0);
 result[i] = a[i] + b[i];
}

FIGURE 14.3

A simple OpenCL kernel example.

304 CHAPTER 14 An Introduction to OpenCLTM

device information so that the function can deposit information on all the

devices in the system into the allocated memory. An application could

also use the clGetDeviceIDs() API function to determine the number and

types of devices that exist in a system. Readers should read the OpenCL

Programming Guide on the details of the parameters to be used for these

functions [Khronos].

To submit work for execution by a device, the host program must first cre-

ate a command queue for the device. This can be done by calling the

clCreateCommandQueue() function is the OpenCL API. Once a command

queue is created for a device, the host code can perform a sequence of API

function calls to insert a kernel along with its execution configuration

Application Kernel

Kernel

OpenCL Context

Cmd Queue

Cmd Queue

OpenCL Device OpenCL Device

FIGURE 14.4

An OpenCL context is needed to manage devices.

…
1. cl_int clerr = CL_SUCCESS;

2. cl_context clctx=clCreateContextFromType(0, CL_DEVICE_TYPE_ALL,
 NULL, NULL, &clerr);

3. size_t parmsz;
4. clerr= clGetContextInfo(clctx, CL_CONTEXT_DEVICES, 0, NULL, &parmsz);

5. cl_device_id* cldevs= (cl_device_id *) malloc(parmsz);
6. clerr= clGetContextInfo(clctx, CL_CONTEXT_DEVICES, parmsz, cldevs, NULL);

7. cl_command_queue clcmdq=clCreateCommandQueue(clctx, cldevs[0], 0, &clerr);

FIGURE 14.5

Creating OpenCL context and command queue.

30514.5 Device Management and Kernel Launch

parameters into the command queue. When the device is available for execut-

ing the next kernel, it removes the kernel at the head of the queue for

execution.

Figure 14.5 shows a simple host program that creates a context for a

device and submits a kernel for execution by the device. Line 2 shows a

call to create a context that includes all OpenCL available devices in the

system. Line 4 calls the clGetContextInfo() function to inquire about

the number of devices in the context. Since line 2 asks that all OpenCL

available devices be included in the context, the application does not

know the number of devices actually included in the context after the con-

text is created. The second argument of the call in line 4 specifies that the

information being requested is the list of all devices included in the con-

text. However, the fourth argument, which is a pointer to a memory buffer

where the list should be deposited, is a NULL pointer. This means that the

call does not want the list itself. The reason is that the application does

not know the number of devices in the context and does not know the size

of the memory buffer required to hold the list.

Rather, line 4 provides a pointer to the variable parmsz. After line 4,

the parmsz variable holds the size of the buffer needed to accommodate

the list of devices in the context. The application now knows the amount

of memory buffer needed to hold the list of devices in the context. It allo-

cates the memory buffer using parmsz and assigns the address of the

buffer to the pointer variable cldevs at line 5.

Line 6 calls clGetContextInfo() again with the pointer to the memory

buffer in the fourth argument and the size of the buffer in the third argu-

ment. Since this is based on the information from the call at line 4, the

buffer is guaranteed to be the right size for the list of devices to be

returned. The clGetContextInfo function now fills the device list infor-

mation into the memory buffer pointed to by cldevs.
Line 7 creates a command queue for the first OpenCL device in the

list. This is done by treating cldevs as an array of which the elements are

descriptors of OpenCL devices in the system. Line 7 passes cldevs[0] as

the second argument into the clCreateCommandQueue(0) function.

Therefore, the call generates a command queue for the first device in the

list returned by the clGetContextInfo() function.

Readers may wonder why we did not need to see this complex

sequence of API calls in our CUDA host programs. The reason is that we

have been using the CUDA runtime API that hides all this complexity for

the common case where there is only one CUDA device in the system.

The kernel launch in CUDA handles all the complexities on behalf of the

306 CHAPTER 14 An Introduction to OpenCLTM

host code. If the developer wanted to have direct access to all CUDA

devices in the system, he or she would need to use the CUDA driver API,

where similar API calling sequences would be used. To date, OpenCL has

not defined a higher-level API that is equivalent to the CUDA runtime

API. Until such a higher-level interface is available, OpenCL will remain

much more tedious to use than the CUDA runtime API. The benefit, of

course, is that an OpenCL application can execute on a wide range of

devices.

14.6 ELECTROSTATIC POTENTIAL MAP IN OPENCL
We now present an OpenCL case study based on the DCS kernel in

Figure 12.9. This case study is designed to give a CUDA program a practi-

cal, top-to-bottom experience with OpenCL. The first step in porting the

kernel to OpenCL is to design the organization of the NDRange, which is

illustrated in Figure 14.5. The design is a straightforward mapping of

CUDA threads to OpenCL work items and CUDA blocks to OpenCL

work groups. As shown in Figure 14.6, each work item will calculate up

to eight grid points and each work group will have 64 to 256 work items.

All the efficiency considerations in Chapter 12 also apply here.

The work groups are assigned to the CUs the same way that CUDA

blocks are assigned to the SMs. Such assignment is illustrated in

(unrolled, coalesced)
Grid of thread blocks:

Work Groups:

Work items compute up to
8 potentials, skipping by
memory coalescing width

Padding waste

0,0 0,1

1,11,0

… … …

…

…64-256 work items

Unrolling increases
computational tile size

FIGURE 14.6

DCS kernel version 3 NDRange configuration.

30714.6 Electrostatic Potential Map in Opencl

Figure 14.7. One can use the same methodology used in Chapters 6 and

12 to derive high-performance OpenCL DCS kernel. Although the syntax

is different, the underlying thought process involved in developing a high-

performance OpenCL kernel is very much the same as CUDA.

The OpenCL kernel function implementation matches closely the

CUDA implementation. Figure 14.8 shows the key differences. One is the

__kernel keyword in OpenCL versus the __global keyword in CUDA.

The main difference lies in the way the data access indices are calculated.

In this case, the OpenCL get_global_id(0) function returns the equiva-

lent of CUDA blockIdx.x�blockDim.x1threadIdx.x.
Figure 14.9 shows the inner loop of the OpenCL kernel. Readers should

compare this inner loop with the CUDA code in Figure 12.9. The only dif-

ference is that the __rsqrt() call has been changed to the native_rsqrt()
call, the OpenCL way for using the hardware implementation of math func-

tions on a particular device.

OpenCL adopts a dynamic compilation model. Unlike CUDA, the host

program can explicitly compile and create a kernel program at runtime.

This is illustrated in Figure 14.10 for the DCS kernel. Line 1 declares the

entire OpenCL DCS kernel source code as a string. Line 3 delivers the

NDRrange containing
all work items,
decomposed into
work groups

Atomic
Coordinates

Charges

Host

GPUConstant Memory

Cache Cache Cache Cache Cache Cache

Texture Texture Texture Texture

Global Memory

Texture Texture

Work items compute
up to 8 potentials,

skipping by coalesced
memory width

Lattice padding

Work groups
64-256 work items

FIGURE 14.7

Mapping DCS NDRange to OpenCL device.

308 CHAPTER 14 An Introduction to OpenCLTM

source code string to the OpenCL runtime system by calling the

clCreateProgramWith Source() function. Line 4 sets up the compiler

flags for the runtime compilation process. Line 5 invokes the runtime

compiler to build the program. Line 6 requests that the OpenCL runtime

create the kernel and its data structures so that it can be properly launched.

After line 6, clkern points to the kernel that can be submitted to a com-

mand queue for execution.

Figure 14.11 shows the host code that launches the DCS kernel. It

assumes that the host code for managing OpenCL devices in Figure 14.5

Device
OpenCL:
__kernel voidclenergy(…) {
unsigned int xindex= get_global_id(0);
unsigned int yindex= get_global_id(1);
unsigned int outaddr= get_global_size(0) * UNROLLX
*yindex+xindex;

CUDA:
__global__ void cuenergy(…) {
Unsigned int xindex= blockIdx.x *blockDim.x +threadIdx.x;
unsigned int yindex= blockIdx.y *blockDim.y +threadIdx.y;
unsigned int outaddr= gridDim.x *blockDim.x *
UNROLLX*yindex+xindex

FIGURE 14.8

Data access indexing in OpenCL and CUDA.

…
for (atomid=0; atomid<numatoms; atomid++) {
float dy = coory -atominfo[atomid].y;
float dyz2= (dy * dy) + atominfo[atomid].z;
float dx1 = coorx –atominfo[atomid].x;
float dx2 = dx1 + gridspacing_coalesce;
float dx3 = dx2 + gridspacing_coalesce;
float dx4 = dx3 + gridspacing_coalesce;
float charge = atominfo[atomid].w;
energyvalx1 += charge* native_rsqrt(dx1*dx1 + dyz2);
energyvalx2 += charge* native_rsqrt(dx2*dx2 + dyz2);
energyvalx3 += charge* native_rsqrt(dx3*dx3 + dyz2);
energyvalx4 += charge* native_rsqrt(dx4*dx4 + dyz2);
}

FIGURE 14.9

Inner loop of the OpenCL DCS kernel.

30914.6 Electrostatic Potential Map in Opencl

FIGURE 14.10

Building OpenCL kernel.

1. doutput= clCreateBuffer(clctx, CL_MEM_READ_WRITE,volmemsz,
 NULL, NULL);
2. datominfo= clCreateBuffer(clctx, CL_MEM_READ_ONLY,
 MAXATOMS *sizeof(cl_float4), NULL, NULL);
…
3. clerr= clSetKernelArg(clkern, 0,sizeof(int), &runatoms);
4. clerr= clSetKernelArg(clkern, 1,sizeof(float), &zplane);
5. clerr= clSetKernelArg(clkern, 2,sizeof(cl_mem), &doutput);
6. clerr= clSetKernelArg(clkern, 3,sizeof(cl_mem), &datominfo);
7. cl_event event;
8. clerr= clEnqueueNDRangeKernel(clcmdq,clkern, 2, NULL,
 Gsz,Bsz, 0, NULL, &event);
9. clerr= clWaitForEvents(1, &event);
10. clerr= clReleaseEvent(event);
…
11. clEnqueueReadBuffer(clcmdq,doutput, CL_TRUE, 0,
 volmemsz, energy, 0, NULL, NULL);
12. clReleaseMemObject(doutput);
13. clReleaseMemObject(datominfo);

FIGURE 14.11

OpenCL host code for kernel launch and

310 CHAPTER 14 An Introduction to OpenCLTM

has been executed. Lines 1 and 2 allocate memory for the energy grid data

and the atom information. The clCreateBuffer() function corresponds to

the cudaMalloc() function. The constant memory is implicitly requested

by setting the mode of access to read only for the atominfo array. Note

that each memory buffer is associated with a context, which is specified

by the first argument to the clCreateBuffer() function call.

Lines 3�6 in Figure 14.11 set up the arguments to be passed into the

kernel function. In CUDA, the kernel functions are launched with C func-

tion call syntax extended with ,, , .. . , which is followed by the reg-

ular list of arguments. In OpenCL, there is no explicit call to kernel

functions. Therefore, one needs to use the clSetKernelArg() functions to

set up the arguments for the kernel function.

Line 8 in Figure 14.11 submits the DCS kernel for launch. The argu-

ments to the clEnqueueNDRangeKernel() function specifies the command

queue for the device that will execute the kernel, a pointer to the kernel,

and the global and local sizes of the NDRange. Lines 9 and 10 check for

errors if any.

Line 11 transfers the contents of the output data back into the energy

array in the host memory. The OpenCL clEnqueueReadBuffer() copies

data from the device memory to the host memory and corresponds to the

device the host direction of the cudaMemcpy() function.

The clReleaseMemObject() function is a little more sophisticated than

cudaFree(). OpenCL maintains a reference count for data objects. OpenCL

host program modules can retain (clRetainMemObject()) and release

(clReleaseMemObject()) data objects. Note that clCreateBuffer() also

serves as a retain call. With each retain call, the reference count of the

object is incremented. With each release call, the reference count is decre-

mented. When the reference count for an object reaches 0, the object is

freed. This way, a library module can “hang on” to a memory object even

though the other parts of the application no longer need the object and thus

have released the object.

14.7 SUMMARY
OpenCL is a standardized, cross-platform API designed to support

portable parallel application development on heterogeneous computing

systems. Like CUDA, OpenCL addresses complex memory hierarchies

and data-parallel execution. It draws heavily on the CUDA driver API

experience. This is the reason why a CUDA programmer finds these

31114.7 Summary

aspects of OpenCL familiar. We have seen this through the mappings of

the OpenCL data parallelism model concepts, NDRange API calls, and

memory types to their CUDA equivalents.

On the other hand, OpenCL has a more complex device management

model that reflects its support for multiplatform and multivendor portabil-

ity. While the OpenCL standard is designed to support code portability

across devices produced by different vendors, such portability does not

come for free. OpenCL programs must be prepared to deal with much

greater hardware diversity and thus will exhibit more complexity. We see

that the OpenCL device management model, the OpenCL kernel compila-

tion model, and the OpenCL kernel launch are much more complex than

their CUDA counterparts.

We have by no means covered all the programming features of

OpenCL. Readers are encouraged to read the OpenCL specification

[KHR2011] and tutorials [Khronos] for more OpenCL features. In particu-

lar, we recommend that readers pay special attention to the device query,

object query, and task parallelism model.

14.8 EXERCISES
14.1 Use the code base in Appendix A and examples in Chapters 3, 4, 5,

and 6 to develop an OpenCL version of the matrix�matrix

multiplication application.

14.2 Read the “OpenCL Platform Layer” section of the OpenCL

specification. Compare the platform querying API functions with

what you have learned in CUDA.

14.3 Read the “Memory Objects” section of the OpenCL specification.

Compare the object creation and access API functions with what you

have learned in CUDA.

14.4 Read the “Kernel Objects” section of the OpenCL specification.

Compare the kernel creation and launching API functions with what

you have learned in CUDA.

14.5 Read the “OpenCL Programming Language” section of the OpenCL

specification. Compare the keywords and types with what you have

learned in CUDA.

312 CHAPTER 14 An Introduction to OpenCLTM

References
AMD OpenCL Resources. Available at: ,http://developer.amd.com/gpu/

ATIStreamSDK/pages/TutorialOpenCL.aspx..

Khronos Group, The OpenCL Specification version 1.1, rev44. Available at:

,http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf., 2011.

Khronos OpenCL samples, tutorials, etc., Available at: ,http://www.khronos.org/

developers/resources/opencl/. .

NVIDIA OpenCL Resources. Available at: ,http://www.nvidia.com/object/

cuda_opencl.html..

313References

http://www.developer.amd.com/gpu/ATIStreamSDK/pages/TutorialOpenCL.aspx
http://www.developer.amd.com/gpu/ATIStreamSDK/pages/TutorialOpenCL.aspx
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/developers/resources/opencl/
http://www.khronos.org/developers/resources/opencl/
http://www.nvidia.com/object/cuda_opencl.html
http://www.nvidia.com/object/cuda_opencl.html

This page intentionally left blank

CHAPTER

15Parallel Programming with
OpenACC

With special contributions from Yuan Lin and Vinod Grover

CHAPTER OUTLINE

15.1 OpenACC Versus CUDA C .. 315

15.2 Execution Model ... 318

15.3 Memory Model... 319

15.4 Basic OpenACC Programs ... 320

15.5 Future Directions of OpenACC.. 336

15.6 Exercises... 337

The OpenACC Application Programming Interface (API) provides a set of

compiler directives, library routines, and environment variables that can

be used to write data-parallel FORTRAN, C, and C11 programs that run

on accelerator devices, including GPUs. It is an extension to the host

language. The OpenACC specification was initially developed by the

Portland Group (PGI), Cray Inc., and NVIDIA, with support from CAPS

enterprise. This chapter presents an introduction to OpenACC to parallel

programmers who are already familiar with CUDA C.

15.1 OPENACC VERSUS CUDA C
One big difference between OpenACC and CUDA C is the use of

compiler directives in OpenACC. To understand what a compiler directive

is and the advantages of using compiler directives, let’s take a look at our

first OpenACC program in Figure 15.1, which does the matrix multiplica-

tion that we’ve already seen before.

315

The code in the figure is almost identical to the sequential version,

except for the two lines with #pragma at lines 4 and 6. In C and C11,

the #pragma directive is the method to provide, to the compiler, informa-

tion that is not specified in the standard language. OpenACC uses the

compiler directive mechanism to extend the base language. In this exam-

ple, the #pragma at line 4 tells the compiler to generate code for the i loop

at lines 5-16 so that the loop iterations are executed in parallel on the

accelerator. The copyin clause and the copyout clause specify how the

matrix data should be transferred between the host and the accelerator.

The #pragma at line 6 instructs the compiler to map the inner j loop to the

second level of parallelism on the accelerator.

Compared with CUDA C/C11/FORTRAN, by using compiler direc-

tives, OpenACC brings quite a few benefits to programmers:

• OpenACC programmers can often start with writing a sequential version

and then annotate their sequential program with OpenACC directives.

They can leave most of the heavy lifting to the OpenACC compiler. The

details of data transfer between host and accelerator memories, data

caching, kernel launching, thread scheduling, and parallelism mapping are

all handled by OpenACC compiler and runtime. The entry barrier of

heterogeneous programmers for accelerators becomes much lower with

OpenACC.

1 void computeAcc(float *P, const float *M, const float *N, int Mh,
 int Mw, int Nw)
2 {
3
4 #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Nw*Mw])
 copyout(P[0:Mh*Nw])
5 for (int i=0; i<Mh; i++) {
6 #pragma acc loop
7 for (int j=0; j<Nw; j++) {
8 float sum = 0;
9 for (int k=0; k<Mw; k++) {
10 float a = M[i*Mw+k];
11 float b = N[k*Nw+j];
12 sum += a*b;
13 }
14 P[i*Nw+j] = sum;
15 }
16 }
17 }

FIGURE 15.1

Our first OpenACC program.

316 CHAPTER 15 Parallel Programming with OpenACC

• OpenACC provides an incremental path for moving legacy applications to

accelerators. This is attractive because adding directives disturbs the

existing code less than other approaches. Some existing scientific

applications are large and their developers don’t want to rewrite them for

accelerators. OpenACC lets these developers keep their applications

looking like normal C, C11, or FORTRAN code, and they can go in and

put the directives in the code where they are needed one place a time.

• A non-OpenACC compiler is not required to understand and process

OpenACC directives, therefore it can just ignore the directives and

compile the rest of the program as usual. By using the compiler

directive approach, OpenACC allows a programmer to write OpenACC

programs in such a way that when the directives are ignored, the

program can still run sequentially and gives the same result as when

the program is run in parallel. Parallel programs that have equivalent

sequential versions are much easier to debug than those that don’t

have. The matrix multiplication code in Figure 15.1 has this property—

the code gives the same result regardless of whether lines 4 and 6 are

honored or not. Such programs essentially have both the parallel

version and the sequential version in one. OpenACC permits a common

code base for accelerated and nonaccelerated enabled systems.

OpenACC users need to be aware of the following issues:

• Some OpenACC directives are hints to the OpenACC compiler, which

may or may not be able to take full advantage of such hints. Therefore,

the performance of an OpenACC program depends more on the

capability of the OpenACC compiler used. On the other hand, a CUDA

C/C11/FORTRAN program expresses parallelism explicitly and

relies less on the compiler for parallel performance.

• While it is possible to write OpenACC programs that give the same

execution result as when the directives are ignored, this property does

not hold automatically for all OpenACC programs. If compiler

directives are ignored, some OpenACC programs may give different

results or some may not work correctly.

In the rest of this chapter, we first explain the execution model and mem-

ory model used by OpenACC. We then walk through some concrete code

examples to illustrate usage of some of the more commonly used OpenACC

directives and APIs. We also show how an OpenACC implementation can

map parallel regions and kernel regions to the CUDA GPU architecture.

We believe certain behind-the-scenes knowledge can help users to get the

31715.1 OpenACC Versus CUDA C

better performance out of OpenACC implementations. We conclude this

article by outlining the future directions we see OpenACC going in.

15.2 EXECUTION MODEL
The OpenACC target machine has a host and an attached accelerator

device, such as a GPU. Most accelerator devices can support multiple

levels of parallelism. Figure 15.2 illustrates a typical accelerator that sup-

ports three levels of parallelism. At the outermost coarse-grain level, there

are multiple execution units. Within each execution unit, there are multiple

threads. At the innermost level, each thread is capable of executing vector

operations. Currently, OpenACC does not assume any synchronization

capability on the accelerator, except for thread forking and joining. Once

work is distributed among the execution units, they will execute in parallel

from start to finish. Similarly, once work is distributed among the threads

within an execution unit, the threads execute in parallel. Vector operations

are executed in lockstep.

An OpenACC program starts its execution on the host single-threaded

(Figure 15.3). When the host thread encounters a parallel or a kernels
construct, a parallel region or a kernels region that comprises all the code

enclosed in the construct is created and launched on the accelerator device.

The parallel region or kernels region can optionally execute asynchronously

with the host thread and join with the host thread at a future synchronization

point. The parallel region is executed entirely on the accelerator device.

thread

vector

execution unit

thread

vector

execution unit

thread

vector

execution unit

thread

vector

execution unit

accelerator

FIGURE 15.2

A typical accelerator device

318 CHAPTER 15 Parallel Programming with OpenACC

The kernels region may contain a sequence of kernels, each of which is

executed on the accelerator device.

The kernel execution follows a fork-join model. A group of gangs are

used to execute each kernel. A group of workers can be forked to execute

a parallel work-sharing loop that belongs to a gang. The workers are

disbanded when the loop is done. Typically a gang executes on one execu-

tion unit, and a worker runs on one thread within an execution unit.

The programmer can instruct how the work within a parallel region or

a kernels region is to be distributed among the different levels of parallel-

ism on the accelerator.

15.3 MEMORY MODEL
In an OpenACC memory model, the host memory and the device memory

are treated as separated. It is assumed that the host is not able to access

device memory directly and the device is not able to access host memory

directly. This is to ensure that the OpenACC programming model can sup-

port a wide range of accelerator devices, including most of the current

GPUs that do not have the capability of unified memory access between

launch

sync

Host Accelerator Device

gang

workers

vector operations

FIGURE 15.3

OpenACC execution model.

31915.3 Memory Model

GPUs and CPUs. The unified virtual addressing and the GPUDirect intro-

duced by NVIDIA in CUDA 4.0 allow a single virtual address space for

both host memory and device memory and allow direct cross-device mem-

ory access between different GPUs. However, cross-host and device

memory access is still not possible.

Just like in CUDA C/C11, in OpenACC input data needs to be transferred

from the host to the device before kernel launches and result data needs to be

transferred back from the device to the host. However, unlike in CUDA C/

C11 where programmers need to explicitly code data movement through

API calls, in OpenACC they can just annotate which memory objects need to

be transferred, as shown by line 4 in Figure 15.1. The OpenACC compiler will

automatically generate code for memory allocation, copying, and de-allocation.

OpenACC adopts a fairly weak consistency model for memory on the

accelerator device. Although data on the accelerator can be shared by all

execution units, OpenACC does not provide a reliable way to allow one

execution unit to consume the data produced by another execution unit.

There are two reasons for this. First, recall OpenACC does not provide any

mechanism for synchronization between execution units. Second, memories

between different execution units are not coherent. Although some hard-

ware provides instructions to explicitly invalidate and update cache, they

are not exposed at the OpenACC level. Therefore, in OpenACC, different

execution units are expected to work on disjoint memory sets. Threads

within an execution unit can also share memory and threads have coherent

memory. However, OpenACC currently only mandates a memory fence at

the thread fork and join, which are also the only synchronizations

OpenACC provides for threads. While the device memory model may

appear very limiting, it is not so in practice. For data�race free OpenACC

data-parallel applications, the weak memory model works quite well.

15.4 BASIC OPENACC PROGRAMS
In this section, we will dive in to details of how one can write basic

OpenACC programs.

Parallel Construct
Parallel Region, Gangs, and Workers
The single #pragma at line 4 in Figure 15.1 is actually a syntax sugar of

two #pragma (Figure 15.4). We explain the parallel construct here and

will explain the loop construct in the next section.

320 CHAPTER 15 Parallel Programming with OpenACC

The parallel construct is one of the two constructs (the other is the

kernels construct) that can be used to specify which part of the program is to

be executed on the accelerator. When a program encounters a parallel con-

struct, the execution of the code within the structured block of the construct (also

called a parallel region) is moved to the accelerator. Gangs of workers on the

accelerator are created to execute the parallel region, as shown in Figure 15.3.

Initially only one worker (let us call it a gang lead) within each gang will execute

the parallel region. The other workers are conceptually idle at this point. They

will be deployed when there is more parallel work at an inner level. The number

of gangs can be specified by the num_gangs clause, and the number of workers

within each gang can be specified by the num_workers clause.
In this example (Figure 15.5), a total of 1,0243 325 32,768 workers are

created. The a523 statement will be executed in parallel and redundantly by

1,024 gang leads. You may ask why anyone would want to write accelerator

code like this. The usefulness of the parallel construct will become clear

when it is used with the loop construct.

#pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Nw*Mw])
 copyout(P[0:Mh*Nw])
for (int i=0; i<Mh; i++) {
 …
}

#pragma acc parallel copyin(M[0:Mh*Mw]) copyin(N[0:Nw*Mw])
 copyout(P[0:Mh*Nw])
{
 #pragma acc loop
 for (int i=0; i<Mh; i++) {
 …
 }
}

FIGURE 15.4

#pragma acc parallel loop is #pragma acc parallel and #pragma acc
loop in one.

#pragma acc parallel copyout(a) num_gangs(1024) num_workers(32)
{
a = 23;
}

FIGURE 15.5

Redundant execution in a parallel region.

32115.4 Basic OpenACC Programs

If a parallel construct does not have an explicit num_gangs clause or

an explicit num_workers clause, then the implementation will pick the

numbers at runtime. Once a parallel region starts executing, the number of

gangs and the number of workers within each gang remain fixed during

the execution of the parallel region. This is similar to CUDA in which

once a kernel is launched, the number of blocks in the grid and the number

of threads in a block cannot be changed.

Loop Construct
Gang Loop
Suppose you have a loop where all the iterations can be independently

executed in parallel and you want to speed up its execution by running it

on the accelerator. Can you write the code like Figure 15.6?

As we learned from the previous section, although the loop will be exe-

cuted on the accelerator, you won’t get any speedup because all 2,048

iterations will be executed sequentially and redundantly by the 1,024 gang

leads. To get speedup, you need to distribute the 2,048 iterations among

the gangs. And to do that, you need to use the gang loop construct, as

shown in Figure 15.7.

#pragma acc parallel num_gangs(1024)
{
 for (int i=0; i<2048; i++) {
 …
 }
}

FIGURE 15.6

An unannotated loop in a parallel region is also redundantly executed.

#pragma acc parallel num_gangs(1024)
{
 #pragma acc loop gang
 for (int i=0; i<2048; i++) {
 …
 }
}

FIGURE 15.7

Use the loop construct to make a loop work-shared.

322 CHAPTER 15 Parallel Programming with OpenACC

A gang loop construct is always associated with a loop. The gang loop
construct is a work-sharing construct. The compiler and runtime will make

sure that the iterations of a gang loop are shared among all gang leads

encountered in the loop construct. In Figure 15.7, because 1,024 gang

leads will encounter the loop construct, each lead will be assigned two

iterations. Now the execution of the parallel loop will be more efficient

and likely to achieve speedup.

Worker Loop
What if you also have an inner loop that can be executed in parallel?

Well, that is when the worker loop construct can be beneficial.

The worker loop construct is also a work-sharing construct. The com-

piler and runtime will make sure that the iterations of a worker loop are

shared among all workers within a gang. In Figure 15.8, the 32 workers in

a gang will work collectively on the 512 iterations of the j loop in each of

the two iterations of the i loop assigned to the gang. A total of

2,0483 5125 1 M instances of foo() will be executed in the sequential

version or the parallel version. In the parallel version, 1,0243 325 32 K

workers are used and each worker will execute 1 M432 K5 32 instances

of foo().

OpenACC Versus CUDA
Readers who are familiar with CUDA C may ask how the OpenACC code in

Figure 15.8 is different from the CUDA C code in Figure 15.9? They may

wonder, can’t I just write the CUDA C version and achieve the same effect?

Yes, they are similar in this case. And as a matter of fact, some

OpenACC implementations may actually generate the CUDA C version in

Figure 15.9 from the OpenACC version in Figure 15.8 and pass it to the

#pragma acc parallel num_gangs(1024)
num_workers(32)
{
 #pragma acc loop gang
 for (int i=0; i<2048; i++) {
 #pragma acc loop worker
 for (int j=0; j<512; j++) {
 foo(i,j);
 }
 }
}

FIGURE 15.8

Using the worker clause.

32315.4 Basic OpenACC Programs

CUDA C compiler. But one clear advantage of the OpenACC version is

that it is much closer to the sequential version than the CUDA C version.

Only a few code modifications are required. Compared with CUDA C,

OpenACC gives you less control of how the final code on the accelerator

will be. However, the strength of OpenACC lies in its ability to tackle

more complicated existing sequential code, especially when the original

code you want to port to execute on the accelerator is not a perfectly

nested loop nest.

Take the code snippet in Figure 15.10 for example. Let’s assume both

loops are parallel loops. If you want to move the whole code snippet to

__global__ void kernel(…)
{
 for (int ii=0; ii<2; ii++) {
 int i=blockidx.x*2+ii;
 for (int jj=0; jj<16; jj++) {
 int j=threadidx.x*16+jj;
 foo(i,j);
 }
 }
}
… = kernel<<<1024, 32>>>(…);

FIGURE 15.9

A possible CUDA C implementation of the parallel region in Figure 15.8.

{
 Statement 1;
 Statement 2;
 for (int i=0; i<n; i++) {
 Statement 3;
 Statement 4;
 }
 Statement 5;
 Statement 6;
 for (int i=0; i<m; i++) {
 Statement 7;
 Statement 8;
 }
 Statement 9;
 if (condition)
 Statement 10;
}

FIGURE 15.10

A piece of nontrivial code.

324 CHAPTER 15 Parallel Programming with OpenACC

execute on the accelerator, it is much easier with OpenACC. If the code

can give you the same result when statements 1, 2, 5, 6, 9, and 10 are

executed redundantly by multiple gang leaders, then you can do what is

shown in Figure 15.11.

The first pragma in Figure 15.11 creates 32 gangs. Statements 1 and 2

are executed by all gangs. Note that in the original code, these statements

are executed only once. However, after the annotation, the compiler will

generate code that executes these statements 32 times. This is equivalent

to moving a statement into a loop. As long as the statement can be exe-

cuted extra times without producing incorrect results, this is not a

problem.

The second pragma in Figure 15.11 assigns the work of the for loop to

the 32 gangs. Each gang will further distribute its share of the work to

multiple workers. The exact number of workers in each gang will likely

be decided at runtime when the number of iterations and the number of

execution units are known.

If statements 1, 2, 5, 6, 9, and 10 can only be executed once, then you

can still make the annotations shown in Figure 15.12. In this case, only

one gang with 32 workers will be created. The gang leader will execute

statements 1, 2, 5, 6, 9, and 10. It will assign the work for the two for

#pragma acc parallel num_gangs(32)
{
 Statement 1;
 Statement 2;
 #pragma acc loop gang
 for (int i=0; i<n; i++) {
 Statement 3;
 Statement 4;
 }
 Statement 5;
 Statement 6;
 #pragma acc loop gang
 for (int i=0; i<m; i++) {
 Statement 7;
 Statement 8;
 }
 Statement 9;
 if (condition)
 Statement 10;
}

FIGURE 15.11

Porting is easier with OpenACC (Part 1).

32515.4 Basic OpenACC Programs

loops to its 32 workers. Obviously, the number of workers will be much

lower than the previous case, which employs 32 gangs, each of which has

multiple workers.

The important point here is that to achieve the same effect with

CUDA, more significant code changes are required between the two cases.

In the first case, statements 1 and 2 need to be pushed into the loop so that

a kernel can be formed with statements 1, 2, 3, and 4. Similarly, another

kernel needs to be formed with statements 5, 6, 7, 8, 9, and 10. In the

second case, statements 1, 2, 5, 6, 9, and 10 will remain as the host code,

whereas statements 1 and 2 will form a kernel and statements 7 and 8 will

form a second kernel. We leave the detailed implementation of the kernels

in both cases as exercises.

Vector Loop
Recall that OpenACC was designed to support multiple levels of parallel-

ism found in a typical accelerator. The vector clause on a loop construct

is often used to express the innermost vector or SIMD (single instruction,

multiple data) mode loop in an accelerator region, as illustrated in

Figure 15.13.

#pragma acc parallel num_gangs(1) num_workers(32)
{
 Statement 1;
 Statement 2;
 #pragma acc loop worker
 for (int i=0; i<n; i++) {
 Statement 3;
 Statement 4;
 }
 Statement 5;
 Statement 6;
 #pragma acc loop worker
 for (int i=0; i<m; i++) {
 Statement 7;
 Statement 8;
 }
 Statement 9;
 if (condition)
 Statement 10;
}

FIGURE 15.12

Porting is easier with OpenACC (Part 2).

326 CHAPTER 15 Parallel Programming with OpenACC

On a GPU, a possible implementation is to map a gang to a CUDA

block, a worker to a CUDA warp, and a vector element to a thread within

a warp. However, this is not mandated by the OpenACC specification and

an implementation (compiler/runtime) may choose a different mapping

based on the code pattern within an accelerator region for best

performance.

Kernels Construct
Prescriptive Versus Descriptive
Like the parallel construct, the kernels construct also allows a program-

mer to specify which part of a program he or she wants to be executed on

an accelerator. And a loop construct can be used inside a kernels con-

struct. One major difference between the two is that a kernels region may

be broken into a sequence of kernels, each of which will be executed on

the accelerator, while the whole parallel region will become a kernel and

be executed on the accelerator. Typically, each loop nest in a kernels
construct may become a kernel, as illustrated in Figure 15.14.

In the figure, the kernels region may be broken into three kernels, one

for each loop, and they will be executed on the accelerator in order. It is

also possible that some implementations may decide not to generate a ker-

nel for the k loop and therefore this kernels region will contain two

kernels—one for the i loop and the j loop each and the k loop is executed

on the host.

#pragma acc parallel num_gangs(1024) num_workers(32)
vector_length(32)
{
 #pragma acc loop gang
 for (int i=0; i<2048; i++) {
 #pragma acc loop worker
 for (int j=0; j<512; j++) {
 #pragma acc loop vector
 for (int k=0; k<1024; k++) {
 foo(i,j,k);
 }
 }
 }
}

FIGURE 15.13

Using the vector clause.

32715.4 Basic OpenACC Programs

A kernels region may contain multiple kernels and each may use a

different number of gangs, a different number of workers, and different

vector lengths. Therefore, there is no num_gangs, num_workers, or vec-
tor_length clause on the kernels construct. You can specify them on the

enclosed loop construct if you want to, as illustrated in Figure 15.14.

Now let’s take a look at another major difference between the paral-
lel construct and the kernels construct. In Figure 15.14, how many times

will the k loop be executed? Previously we’ve learned that the non-work-

sharing code inside a parallel construct will be executed redundantly by

the gang leads (see Figures 15.5 and 15.6). If the k loop in Figure 15.14

were inside a parallel construct, then the statement d[k] 5 c[k] is exe-

cuted 2,048 times the number of gangs. This is different in a kernels
construct, in which case it is just 2,048 times.

The parallel construct and the kernels construct were designed from

two different perspectives. The kernels construct is more descriptive. It

describes the intention of the programmer. The compiler is responsible for

mapping and partitioning the program to the underlying hardware. Notice

we use the word “may” when we explain the kernels code in

Figure 15.14. It is possible that an OpenACC-compliant compiler decides

not to generate any kernels at all for the kernels region in Figure 15.14.

The loop constructs used for the i and j loops tells the compiler to gener-

ate such code that the loop iterations will be shared among the gang lea-

ders only if the compiler decides to generate kernels for these loops. There

are two common reasons why a compiler decides not to generate a kernel

for a loop construct. One reason is safety. The compiler checks whether

#pragma acc kernels
{
 #pragma acc loop num_gangs(1024)
 for (int i=0; i<2048; i++) {
 a[i] = b[i];
 }
 #pragma acc loop num_gangs(512)
 for (int j=0; j<2048; j++) {
 c[j] = a[j]*2;
 }
 for (int k=0; k<2048; k++) {
 d[k] = c[k];
 }
}

FIGURE 15.14

A kernels region may be broken into a sequence of kernels.

328 CHAPTER 15 Parallel Programming with OpenACC

parallelizing the loop will give the same execution result as the sequential

version does. A series of analyses will be performed on the loop and the

rest of the program. If the compiler finds it is not safe to parallelize the

loop or cannot decide whether it is safe due to lack of information, then

the compiler will not parallelize the loop and hence will not generate a

kernel for the loop construct. The other reason is performance. The ulti-

mate goal for using OpenACC directive is to get speedup. The compiler

may decide not to parallelize and execute a loop on the accelerator if it

finds doing so will only slow down the program. Since the compiler will

mostly take care of the parallelization issues, the descriptive approach

makes porting programs to OpenACC relatively easier. The downside is

the quality of the generated accelerated code depends significantly on the

capability of the compiler used. A high-quality compiler is expected to

give feedbacks to the programmer on how it compiles kernels constructs

and why it does not parallelize certain loops. With this information, the

programmer can be sure whether his or her intension is achieved and may

provide more hints to the compiler to achieve his or her goal. In the next

section, we will show a few ways to help an OpenACC compiler.

The parallel construct is more prescriptive. The compiler does what

the programmer instructs it to do. The programmer ultimately has more

control of where to generate kernels and how to parallelize and schedule

loops. Different OpenACC compilers should perform the similar transfor-

mations to a parallel construct. The downside is that there is no safety

net. If a loop has data dependence between different iterations and is

unsafe to be parallelized, then a programmer should not put such a serial

loop inside a loop construct. This is the same philosophy taken by

OpenMP, which is another successful directive-based approach for parallel

programming. Programmers who are familiar with OpenMP should feel

comfortable using parallel constructs.

Ways to Help an OpenACC Compiler
To parallelize a loop inside a kernels region, an OpenACC compiler gen-

erally needs to prove there is no cross-iteration data dependence in the

loop. There is no data dependence in the i loop in Figure 15.15. All itera-

tions can be executed in parallel and give the same result as when the

iterations are executed sequentially. An OpenACC compiler should have

no trouble deciding the i loop is parallelizable. In the j loop, each itera-

tion uses the value of array element a[] defined in the previous iteration,

therefore, the result will be different if the loops are executed in parallel.

32915.4 Basic OpenACC Programs

An OpenACC compiler should have no trouble deciding the ‘j’ loop is

not parallelizable.

For the k loop, there is no data dependence if x[] and y[] are not

aliased. However, this cannot be decided by examining the function foo()
alone. If an OpenACC compiler does not perform interprocedural analysis

or the call site of function foo() is not available, then the compiler has to

conservatively assume there is data dependence. If x[] and y[] are indeed

never aliased, we can add the C restrict qualifier to the declaration of

pointer argument x and y as illustrated in Figure 15.16. An OpenACC

compiler should then be able to use this information to decide if the k
loop is parallelizable.

void foo(int *x, int *y, int n, int m) {
 int a[2048], b[2048];

 #pragma acc kernels copy(x[0:2048], y[0:2048], a, b)
 {
 // No data dependence
 #pragma acc loop
 for (int i=0; i<2047; i++) {
 a[i] = b[i+1] + 1;
 }

 // Data dependence
 #pragma acc loop
 for (int j=0; j<2047; j++) {
 a[j] = a[j+1] + 1;
 }

 // No data dependence if x[] is not aliased with y[]
 #pragma acc loop
 for (int k=0; k<2047; k++) {
 x[k] = y[k+1] + 1;
 }

 // No data dependence if n>=m
 #pragma acc loop
 for (int l=0; l<m; l++) {
 x[l] = x[l+n] + 1;
 }

 }
 …
 }

FIGURE 15.15

Data dependence.

330 CHAPTER 15 Parallel Programming with OpenACC

Now what to do with the 1 loop? This loop is parallelizable if the

value of n is no less than m. Let’s assume this is always true in this

program. However, there is no C language construct to express such

information. In this case, we can add an independent clause to the loop
construct, as illustrated in Figure 15.17. The independent clause simply

tells the compiler that the associated loop is parallelizable and no analy-

sis is required. You can also add the independent clause to the ‘i’. You
could also add the clause to the ‘j’ loop construct, but that would not be

correct.

Data Management
Data Clauses
So far you have seen copy, copyin, and copyout clauses used on paral-
lel and kernels constructs. These are called data clauses. A data clause

has a list of arguments separated by a comma. Each argument can be a

variable name or a subarray specification. The OpenACC compiler and

runtime will create a copy of the variable or subarray in the device mem-

ory. Reference to the variable or subarray within the parallel or kernels
constructs will be made to the device copy.

The code snippet in Figure 15.18 is from the matrix multiplication

example in Figure 15.4. Here, three pieces of memory are allocated on the

device. Arrays M and N are the input data, so they are declared as copyin.
The copyin from the host memory to the device memory happens right

before the parallel region starts execution. Array P is the output data, so it

is declared as copyout. The copyout from the device memory to the host

void foo(int * restrict x, int * restrict y, int n, int m) {

FIGURE 15.16

Use restrict qualifier to specify no alias.

#pragma acc loop independent
for (int l=0; l<m; l++) {
 x[l] = x[l+n] + 1;
}

FIGURE 15.17

Use the ‘independent’ clause to declare a loop is parallelizable.

33115.4 Basic OpenACC Programs

memory happens right after the parallel region ends. The copy clause can

be used to declare data that needs to be both copied in and copied out.

Notice that the subarray specification is used for M, N, and P here.

That’s because M, N, and P are actually pointers and we need to specify the

range of memory that needs to be copied. The value before and after the :
specifies the starting array element and the number of array elements,

respectively. So M[0:Mh�Mw] means M[0], M[1], M[2], . . ., and M[Mh�Mw-1].
A common programmer error is mistaking the second value as the last

array element.

Some variables do not need to be copied in or copyied out—their

values are generated and consumed within a kernel. In such cases, the

create clause can be used.

Another commonly used data clause is the deviceptr clause. This

clause takes a list of pointers as its argument and declares that these are

actually device pointers so that the data does not need to be allocated or

moved between the host and the device for memory pointed by these poin-

ters. When a program uses both OpenACC and CUDA kernels (or CUDA

libraries, such as cuFFT, cuBLAS, etc.), the deviceptr clause becomes

handy. Figure 15.19 shows an example of doing the matrix multiplication

twice, first using a CUDA kernel and then using an OpenACC parallel

region—both work on the same device memory allocated by cudaMalloc
().

Data Construct
In OpenACC, host memory and device memory are separated. Data trans-

fer between the host and the accelerator can play a significant role in the

overall performance of an OpenACC application. For example, when a

computationally intense loop nest of an iterative solver, implemented using

a parallel loop, transfers data back and forth between host and the accel-

erator at every iteration, then there may be a loss of performance. The

OpenACC data construct allows one to exploit reuse by avoiding data

transfers during multiple executions of parallel or kernels regions.

Figure 15.20 shows a simplified implementation of a 2D Jacobi relaxa-

tion. Each element in the array field is updated by taking the average of

 #pragma acc parallel copyin(M[0:Mh*Mw]) copyin(N[0:Nw*Mw])
 copyout(P[0:Mh*Nw])

FIGURE 15.18

Data clauses used in Figure 15.4.

332 CHAPTER 15 Parallel Programming with OpenACC

each element with its eight neighbors. This is repeated 256 times. Another

array tmpfield is used to make the relaxation parallel. In each pass, the

values are read from one array and the average is computed and then it is

written into the same position in the second array. Since the two arrays do

not overlap, the updates are completely data parallel. Lines 6-24 imple-

ment one pass of the relaxation. Each pass is executed in an OpenACC

__global__ void MatrixMulKernel(float *M, float *N, float *P, int n) {
 …
}

void MatrixMulAcc(float *M, float *N, float *P, int n) {
#pragma acc parallel loop deviceptr(M, N, P)
{
 …
}
}

void matrixMul(float *M, float *N, float *P, int n) {
 unsigned int size = n * n * sizeof(float);
 float *Md = NULL;
 float *Nd = NULL;
 float *Pd = NULL;

 cudaMalloc((void**) &Md, size);
 cudaMalloc((void**) &Nd, size);
 cudaMalloc((void**) &Pd, size);

 cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
 cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

 dim3 dimBlock(TILE_WIDTH,TILE_WIDTH);
 dim3 dimGrid(n/TILE_WIDTH, n/TILE_WIDTH);

 // Use CUDA Kernel
 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, n);
 cudaThreadSynchronize();
 cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

 // Use OpenACC
 MatrixMulACC(Md, Nd, Pd, n);
 cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

}

FIGURE 15.19

Use deviceptr to pass cudaMalloc() data to OpenACC parallel or kernels

region.

33315.4 Basic OpenACC Programs

parallel region. We group the 256 passes into 128 pairs. Each pair contains

two parallel regions—one updates tmpfield with field, and the other

updates field with tmpfield. Recall that there is no synchronization

between gangs. Therefore, we need two parallel constructs to make sure

 1 #define N 1024
 2 double field[N*N];
 3 double tmpfield[N*N];
 4 #define pos(i,j) (j)*N+(i)
 5
 6 void relaxation(double *oldValue, double *newValue) {
 7 #pragma acc loop
 8 for (int x=1; x<N-1; x++) {
 9 #pragma acc loop
 10 for (int y=1; y<N-1; y++) {
 11 double sum = oldValue[pos(x,y)];
 12 sum += oldValue[pos(x-1,y)];
 13 sum += oldValue[pos(x+1,y)];
 14 sum += oldValue[pos(x,y+1)];
 15 sum += oldValue[pos(x,y-1)];
 16 sum += oldValue[pos(x+1,y+1)];
 17 sum += oldValue[pos(x-1,y+1)];
 18 sum += oldValue[pos(x+1,y-1)];
 19 sum += oldValue[pos(x-1,y-1)];
 20 sum = sum / 9;
 21 newValue[pos(x,y)] = sum;
 22 }
 23 }
 24 }
 25
 26 void transform() {
 27 ...
 28 #pragma acc data copy(field) create(tmpfield)
 29 {
 30 for (int i=0; i<128; i++) {
 31 #pragma acc parallel
 32 relaxation(field, tmpfield);
 33 #pragma acc parallel
 34 relaxation(tmpfield, field);
 35 if (check) {
 36 #pragma acc update host(field)
 37 display(field);
 38 }
 39 }
 40 }
 41 ...
 42 }

FIGURE 15.20

Use of data and update constructs.

334 CHAPTER 15 Parallel Programming with OpenACC

the writes to one array are completed before the array can be used as the

source of updates in the next pass.

We want the data to stay on the device during all the 256 passes. This

is achieved by using the data construct in line 28. The data region speci-

fied by the data construct is from line 30-38, including all called func-

tions. The copy(field) clause says we need to create a device copy of

array field, copy its data from the host to the device when the data region

starts, and copy its data back to the host when the data region ends. And

for the enclosed parallel constructs at lines 31 and 33, just use this copy

of field. The create(tmpfield) clause says we need to create a device

copy of array tmpfield for this data region, and use this copy for the

enclosed parallel constructs at lines 31 and 33.

Now the data is on the device all the time during the passes. What if

we want to check the intermediate result on the host occasionally? We can

do it by using the update directive, as illustrated at line 36. This says the

value of the host array ‘fields’ should be updated with that of the device

copy at this point. Since the update is performed conditionally in the code,

the data transfer won’t happen if not required. The update directive can

also be used to update the value of the device copy with that of the host

copy.

Asynchronous Computation and Data Transfer

OpenACC provides support for asynchronous computation and data trans-

fer. An async clause can be added to parallel, kernels, or update direc-

tive to enable asynchronous execution. If there is no async clause, the

host process will wait until the parallel region, kernels region, or updates

are complete before continuing. If there is an async clause, the host

process will continue with the code following the directive when the paral-

lel region, kernels region, or updates are processed asynchronously. An

asynchronous event can be waited by using the wait directive or

OpenACC runtime library routines.

In the Jacobi relaxation example in Figure 15.20, the update of the host

copy of field (line 37) and the display of it on the host could happen in

parallel with the compute of tmpfield (lines 31 and 32) on the device.

In Figure 15.21, to enable the asynchronous execution, we move the

update and display in between the two parallel regions, add an async
clause to the parallel directive at line 31, and add a wait directive before

the second parallel directive at line 33.

33515.4 Basic OpenACC Programs

We can replace the wait directive with a call to the OpenACC acc_a-
sync_wait_all() routine and achieve the same effect. OpenACC provides

a richer set of routines to support the asynchronous wait functionality,

including the capability to test whether an asynchronous activity has com-

pleted rather than just waiting for its completion.

15.5 FUTURE DIRECTIONS OF OPENACC
We believe using OpenACC will become a promising and effective

approach to port existing applications to accelerators and even write accel-

erated applications from scratch. The following are a few directions we

see the OpenACC programming model going in.

• Be more general. The current OpenACC model and implementations

have quite a few limitations, such as function calls must be able to be

in-lined, no support for dynamic memory allocation on the device, etc.

It is due to the fact that most OpenACC features were originally

designed at the CUDA 3.0 timeframe. Since then, more software and

hardware features have been developed on the CUDA platform. For

example, in CUDA 4.0, GPUs can be shared across multiple threads,

and C11 new/delete and virtual functions support are added. In

 26 void transform() {
 27 ...
 28 #pragma acc data copy(field) create(tmpfield)
 29 {
 30 for (int i=0; i<128; i++) {
 31 #pragma acc parallel async
 32 relaxation(field, tmpfield);
 35 if (check) {
 36 #pragma acc update host(field)
 37 display(field);
 38 }
 33-1 #pragma acc wait
 33-2 #pragma acc parallel
 34 relaxation(tmpfield, field);
 39 }
 40 }
 41 ...
 42 }

FIGURE 15.21

async and wait.

336 CHAPTER 15 Parallel Programming with OpenACC

CUDA 5.0, separate compilation and device code linking is available.

OpenACC will certainly take advantage of these new technologies to

make the program model more general.

• Integrated with OpenMP. OpenMP and OpenACC both use the

directive approach to parallel programming. OpenMP has traditionally

been focusing on shared memory systems. The OpenMP ARB has

formed an accelerator working group to extend OpenMP support on

accelerators. All OpenACC founding members are members of this

working group. These members intend to merge the two specifications

to create a common one.

Last but not least, we encourage you to follow the latest development

of OpenACC by visiting the official OpenACC web site at openacc.org.

Besides the latest update to the specification itself, the web site provides a

rich resource for documents, FAQs, tutorials, code samples, vendor news,

and discussion forums.

15.6 EXERCISES
15.1. In the following parallel region, how many instances of statement 1

will be executed in total?

#pragma acc parallel gang(1024) worker(32)

{

#pragma acc loop worker

for (int i5 0; i, 2048; i11) {

statement 1;

}

}

15.2. What are the two major differences between the parallel construct

and the kernels construct?

15.3. Implement the matrix multiplication using the kernels construct.

15.4. Reimplement Jacobi relaxation using the kernels constructs. Use a

different number of gangs, works, and vector lengths to see how

they affect performance.

33715.6 Exercises

This page intentionally left blank

CHAPTER

16Thrust: A Productivity-
Oriented Library for CUDA

With special contributions by Nathan Bell, Jared Hoberock and Chris Rodrigues

CHAPTER OUTLINE

16.1 Background ... 339

16.2 Motivation ... 342

16.3 Basic Thrust Features... 343

16.4 Generic Programming ... 347

16.5 Benefits of Abstraction ... 349

16.6 Programmer Productivity .. 349

16.7 Best Practices ... 352

16.8 Exercises... 357

References ... 358

This chapter demonstrates how to leverage the Thrust parallel template

library to implement high-performance applications with minimal pro-

gramming effort. Based on the C11 Standard Template Library (STL),

Thrust brings a familiar high-level interface to the realm of GPU comput-

ing while remaining fully interoperable with the rest of the CUDA soft-

ware ecosystem. Thrust provides a set of type-generic parallel algorithms

that can be used with user-defined data types. These parallel algorithms

can significantly reduce the effort of developing parallel applications.

Applications written with Thrust are concise, readable, and efficient.

16.1 BACKGROUND
C11 provides a way for programmers to define generics. In situations

when a programming problem has the same solution for many different

339

data types, the solution can be written once and for all using generics. For

example, the two C11 functions shown in the following code sum a

float array and an int array. They are defined without using type gener-

ics. The only difference between the first and second function is that

float is changed to int.

float sum(int n, float �p) { int sum(int n, int �p) {
float a 5 0; int a 5 0;
for (int i 5 0; i , n; i11) a
1 5 p[i];

for (int i 5 0; i , n; i11) a
1 5 p[i];

return a; return a;
} }

Instead of writing a different version of sum for each data type, the fol-

lowing generic sum function can be used with any data type. The idea is

that the programmer prepares a template of the sum function that can be

instantiated on different types of array. The template keyword indicates

the beginning of a type-generic definition. From this point on, we will use

type-generic and generic interchangeably.

template,typename T.

T sum(int n, T �p) {
T a 5 0;
for (int i 5 0; i , n; i11) a 1 5 p[i];
return a;
}

The code uses T as a placeholder where the actual type needs to be.

Replacing T by float in the generic code yields one of the two definitions

of sum, while replacing T by int yields the other. T could also be replaced

by other types, including user-defined types. A C11 compiler will make

the appropriate replacement each time the sum function is used.

Consequently, sum behaves much like the preceding overloaded C11
function, and it can be used as if it were an overloaded function. The cen-

tral concept of generic programming is the use of type parameters, like T
in this example, that can be replaced by arbitrary types.

Thrust is a library of generic functions. By providing generic functions

for each type of computation to be supported, Thrust does not need to have

multiple versions of each function replicated for each eligible data type.

340 CHAPTER 16 Thrust: A Productivity-Oriented Library for CUDA

In fact, not all data types can be used with a generic function. Because

sum uses addition and initializes a to 0, it requires the type T to behave

(broadly speaking) like a number. Replacing T by the numeric types int or

float produces a valid function definition, but replacing T by void or FILE�

does not. Such requirements are called concepts, and when a type satisfies a

requirement it is said to model a concept. In sum, whatever replaces T must

model the “number” concept. That is, sum will compute a sum provided that

it’s given a pointer to some type T that acts like a numeric type. Otherwise,

it may produce an error or return a meaningless result. Generic libraries like

Thrust rely on concepts as part of their interface.

C11 classes can be generic as well. The idea is similar to generic

functions, with the extra feature that a class’s fields can depend on type

parameters. Generics are commonly used to define reusable container

classes, such as those in the STL [HB2011]. Container classes are imple-

mentations of data structures, such as queues, linked lists, and hash tables,

that can be used to hold arbitrary data types. For instance, a very simple

generic array container class could be defined as follows:

template,typename T.

class Array {
T contents[10];
public:
T read(int i) {return contents[i];}
void write(int i, T x} {contents[i] 5 x;}
};

Containers for different data types can be created using this generic

class. Their types are written as the generic class name followed by a type

in angle brackets: Array,int. for an array of int, Array,float � .
for an array of float�, and so forth. The type given in angle brackets

replaces the type parameter in the class definition.

While this is not a complete description of how generics work, it con-

veys the essential ideas for understanding the use of generics in this

chapter.

We will introduce one more background concept: iterators. In the same

way that pointers are used to access arrays, iterators are used to access con-

tainer classes. The term iterator refers to both a C11 concept and a value

of which the type is a model of this concept. An iterator represents a posi-

tion within a container: it can be used to access the element at that position,

used to go to a neighboring position, or compared to other positions.

34116.1 Background

Pointers are a model of the iterator concept, and they can be used to

loop over an array as shown in the following:

int a[50];
for (int �i 5 a; i , a1 50; i11) �i 5 1;
Iterators can be used to loop over an STL vector in a very similar way:

vector,int. a(50);
for (vector,int.::iterator i 5 a.begin(); i , a.end(); i11) �i

5 1;

The member functions begin() and end() return iterators referencing

the beginning and just past the end of the vector. The 11, , , and � opera-

tors are overloaded to act like their pointer counterparts. Because many

container classes provide an iterator interface, generic C11 code using

iterators can be reused to process different kinds of containers.

16.2 MOTIVATION
CUDA C allows developers to make fine-grained decisions about how

computations are decomposed into parallel threads and executed on the

device. The level of control offered by CUDA C is an important feature: it

facilitates the development of high-performance algorithms for a variety

of computationally demanding tasks that (1) merit significant optimization,

and (2) profit from low-level control of the mapping onto hardware. For

this class of computational tasks CUDA C is an excellent solution.

Thrust [HB2011] solves a complementary set of problems, namely

those that are (1) implemented efficiently without a detailed mapping of

work onto the target architecture, or those that (2) do not merit or simply

will not receive significant optimization effort by the user. With Thrust,

developers describe their computation using a collection of high-level

algorithms and completely delegate the decision of how to implement the

computation to the library. This abstract interface allows programmers to

describe what to compute without placing any additional restrictions on

how to carry out the computation. By capturing the programmer’s intent at

a high level, Thrust has the discretion to make informed decisions on

behalf of the programmer and select the most efficient implementation.

The value of high-level libraries is broadly recognized in high-

performance computing. For example, the widely used BLAS standard

provides an abstract interface to common linear algebra operations. First

342 CHAPTER 16 Thrust: A Productivity-Oriented Library for CUDA

conceived more than three decades ago, BLAS remains relevant today in

large part because it allows valuable, platform-specific optimizations to be

introduced behind a uniform interface.

Whereas BLAS is focused on numerical linear algebra, Thrust provides

an abstract interface to fundamental parallel algorithms such as scan, sort,

and reduction. Thrust leverages the power of C11 templates to make

these algorithms generic, enabling them to be used with arbitrary user-

defined types and operators. Thrust establishes a durable interface for par-

allel computing with an eye toward generality, programmer productivity,

and real-world performance.

16.3 BASIC THRUST FEATURES
Before going into greater detail, let us consider the program in

Figure 16.1, which illustrates the salient features of Thrust.

#include <thrust/host vector.h>
#include <thrust/device vector.h>
#include <thrust/generate.h>
#include <thrust/sort.h>
#include <thrust/copy.h>
#include <cstdlib>

int main(void)
{
 // generate 16M random numbers on the host

 thrust::host vector<int> h vec(1 << 24);
 thrust::generate(h vec.begin(), h vec.end(), rand);

 // transfer data to the device
 thrust::device vector<int> d_vec = h vec;

 // sort data on the device

 thrust::sort(d vec.begin(), d vec.end());

 // transfer data back to host
 thrust::copy(d vec.begin(), d_vec.end(), h_vec.begin());

 return 0;
}

FIGURE 16.1

A complete Thrust program that sorts data on a GPU.

34316.3 Basic Thrust Features

Thrust provides two vector containers: host_vector and device_vector.
As the names suggest, host_vector is stored in the host memory while

device_vector lives in the device memory on a GPU. Like the vector con-

tainer in the C11 STL, host_vector and device_vector are generic con-

tainers (i.e., they are able to store any data type) that can be resized

dynamically. As the example shows, containers automate the allocation and

de-allocation of memory and simplify the process of exchanging data

between the host and the device.

The program acts on the vector containers using the generate, sort,
and copy algorithms. Here, we adopt the STL convention of specifying

ranges using pairs of iterators. In this example, the iterators h_vec.begin
() and h_vec.end() point to the first element and the element one past

the end of the array, respectively. Together the pair defines a range of

integers of size h_vec.end() � h_vec.begin().
Note that even though the computation implied by the call to the

sort algorithm suggests one or more CUDA kernel launches, the pro-

grammer has not specified a launch configuration. Thrust’s interface

abstracts these details. The choice of performance-sensitive variables

such as grid and block size of the library, the details of memory man-

agement, and even the choice of sorting algorithm are left to the discre-

tion of the implementer.

Iterators and Memory Space

Although vector iterators are similar to pointers, they carry additional

information. Notice that we did not have to instruct the sort algorithm

that it was operating on the elements of a device_vector or hint that the

copy was from the device memory to the host memory. In Thrust the

memory spaces of each range are automatically inferred from the iterator

arguments and used to dispatch the appropriate implementation.

In addition to memory space, Thrust’s iterators implicitly encode a

wealth of information that can guide the dispatch process. For instance,

our sort example in Figure 16.1 operates on int, a primitive data type

with a fundamental comparison operation. In this case, Thrust dispatches a

highly tuned radix sort algorithm [MG2010] that is considerably faster

than alternative comparison-based sorting algorithms such as merge sort

[SHG2009]. It is important to realize that this dispatch process incurs no

performance or storage overhead: metadata encoded by iterators exists

only at compile time, and dispatch strategies based on it are selected

344 CHAPTER 16 Thrust: A Productivity-Oriented Library for CUDA

statically. In general, Thrust’s static dispatch strategies may capitalize on

any information that is derivable from the type of an iterator.

Interoperability

Thrust is implemented entirely within CUDA C/C11 and maintains inter-

operability with the rest of the CUDA ecosystem. Interoperability is an

important feature because no single language or library is the best tool for

every problem. For example, although Thrust algorithms use CUDA fea-

tures like shared memory internally, there is no mechanism for users to

exploit shared memory directly through Thrust. Therefore, it is sometimes

necessary for applications to access CUDA C directly to implement a cer-

tain class of specialized algorithms, as illustrated in the software stack of

Figure 16.2. Interoperability between Thrust and CUDA C allows the pro-

grammer to replace a Thrust kernel with a CUDA kernel and vice versa

by making a small number of changes to the surrounding code.

Interfacing Thrust to CUDA C is straightforward and analogous to the

use of the C11 STL with standard C code. Data that resides in a Thrust

container can be accessed by external libraries by extracting a “raw” pointer

from the vector. The code sample in Figure 16.3 illustrates the use of a raw

pointer cast to obtain an int point to the contents of a device vector.

In Figure 16.3(a), the function raw_pointer_cast() takes the address

of element 0 of a device vector d_vec and returns a raw C pointer

raw_ptr. This pointer can then be used to call CUDA C API functions

Application

Thrust BLAS, FFT ...

CUDA C/C++

CUDA

FIGURE 16.2

Thrust is an abstraction layer on top of CUDA C/C11.

34516.3 Basic Thrust Features

(cudaMemset() in this example) or passed as a parameter to a CUDA C

kernel (my_kernel in this example).

Applying Thrust algorithms to raw C pointers is also straightforward.

Once the raw pointer has been wrapped by a device_ptr it can be used

like an ordinary Thrust iterator. In Figure 16.3(b), the C pointer raw_ptr
points to a piece of device memory allocated by cudaMalloc(). It can be

converted or wrapped into a device pointer to a device vector by the devi-
ce_pointer_cast() function. The wrapped pointer provides the memory

space information Thrust needs to invoke the appropriate algorithm imple-

mentation and also allows a convenient mechanism for accessing device

memory from the host. In this case, the information indicates that dev_ptr
points to a vector in the device memory and the elements are of type int.

Thrust’s native CUDA C interoperability ensures that Thrust always

complements CUDA C and that a Thrust plus CUDA C combination is

never worse than either Thrust or CUDA C alone. Indeed, while it may be

possible to write whole parallel applications entirely with Thrust functions,

it is often valuable to implement domain-specific functionality directly in

CUDA C. The level of abstraction targeted by native CUDA C affords

size t N = 1024;

// raw pointer to device memory
int raw ptr;
cudaMalloc(&raw ptr, N sizeof(int));

// wrap raw pointer with a device ptr
device ptr<int> dev ptr = device
pointer cast(raw ptr);

// use device ptr in Thrust algorithms
sort(dev ptr, dev ptr + N);

// access device memory through device
ptr
dev ptr[0] = 1;

// free memory
cudaFree(raw ptr);

(b) Interfacing CUDA to Thrust

size t N = 1024;

// allocate Thrust container
device vector<int> d vec(N);

// extract raw pointer from
container

int raw ptr = raw pointer cast(&d
vec[0]);

// use raw ptr in non Thrustfunctions

cudaMemset(raw ptr, 0, N
sizeof(int));

// pass raw ptr to a kernel
my kernel<<<N / 128, 128>>>(N, raw
ptr);

// memory is automatically freed

(a) Interfacing Thrust to CUDA

FIGURE 16.3

Thrust interoperates smoothly with CUDA C/C11: (a) interfacing Thrust to

CUDA, and (b) interfacing CUDA to Thrust.

346 CHAPTER 16 Thrust: A Productivity-Oriented Library for CUDA

programmers fine-grained control over the precise mapping of computa-

tional resources to a particular problem. Programming at this level provides

developers the flexibility to implement exotic or otherwise specialized

algorithms. Interoperability also facilitates an iterative development strat-

egy: (1) quickly prototype a parallel application entirely in Thrust, (2) iden-

tify the application’s hot spots, and (3) write more specialized algorithms in

CUDA C and optimize as necessary.

16.4 GENERIC PROGRAMMING
Thrust presents a style of programming emphasizing code reusability and

composability. Indeed, the vast majority of Thrust’s functionality is

derived from four fundamental parallel algorithms: for_each, reduce,
scan, and sort. For example, the transform algorithm is a derivative of

for_each while the inner product is implemented with reduce.
Thrust algorithms are generic in both the type of the data to be pro-

cessed and the operations to be applied to the data. For instance, the

reduce algorithm may be employed to compute the sum of a range of inte-

gers (a plus reduction applied to int data) or the maximum of a range of

floating-point values (a max reduction applied to float data). This general-

ity is implemented via C11 templates, which allows user-defined types

and functions to be used in addition to built-in types such as int or float,
or Thrust operators such as plus.

Generic algorithms are extremely valuable because it is impractical to

anticipate precisely which particular types and operators a user will

require. Indeed, while the computational structure of an algorithm is fixed,

the number of instantiations of the algorithm is limitless. However, it is

also worth mentioning that while Thrust’s interface is general, the abstrac-

tion affords implementors the opportunity to specialize for specific types

and operations known to be important use cases. These opportunities may

be exploited statically.

In Thrust, user-defined operations take the form of C11 function

objects, or functors. Functors allow the programmer to adapt a generic

algorithm to perform a specific user-defined operation. For example, the

code samples in Figure 16.4 implement SAXPY, the well-known BLAS

operation, using CUDA C and Thrust, respectively. The CUDA C code

should be very familiar and is provided for comparison.

The Trust code has two parts. In the first part, the code sets up a

SAXPY functor that receives an input floating value a and maintains it as

34716.4 Generic Programming

a state. It can then be called as an operator that performs a�x 1y on two

input values x and y. Finally, the generic transform algorithm is called

with the user-defined saxpy_functor func. The iterators provided to the

global
void saxpy kernel(int n, float a, “float*” x, “float*” y)
{
const int i = blockDim.x * blockIdx.x + threadIdx.x;

if (i < n) y[i] = a * x[i] + y[i];
}

void saxpy(int n, float a, “float*” x, “float*” y)
{
// set launch configuration parameters int block size = 256;
int grid size = (n + block_size - 1) / block size;

// launch saxpy kernel

saxpy kernel<<< grid_size, block_size>>>(n, a, x, y);
}

(a) CUDA C

struct saxpy_functor
{
 const float a;

 saxpy_functor(float _a) : a(_a) {}

 __host__ __device__
 float operator() (float x, float y)
 {
 return a * x + y;
 }
}

void saxpy(float a, device_vector <float> &x, device_vector<float>
 &y)
{
 // setup functor
 saxpy_functor func(a);

 // call transform
 transform(x.begin(), x.end(), y.begin(), y.end(), func);
}

(b) Thrust

FIGURE 16.4.

SAXPY implementations in (a) CUDA C and (b) Thrust.

348 CHAPTER 16 Thrust: A Productivity-Oriented Library for CUDA

transform algorithm will apply func to each pair of the x and y elements

and produce the SAXPY results. Note that the operator defined in the sax-
py_functor declaration can be overloaded so that different types of a, x, y
can be passed into the transform algorithm and the correct operator will

be invoked to generate the expected output values for each type of inputs.

This makes it possible to create a generic SAXPY function.

C11 FUNCTION OBJECTS
A C library developer can set up a generic function by allowing the user to provide a callback
function. For example, a sort function can allow the user to pass a function pointer as a
parameter to perform the comparison operation for determining the order between two input
values. This allows the user to pass any types of input as long as he or she can define a com-
parison function between two input values.

It is sometimes desirable for a callback function to maintain a state. The C11 function
object, or functor, provides a convenient way to do so. A functor is really a function defined
on an object that holds a state. The function that is passed as the callback function is just a
member function defined in the class declaration of the object. In the case of the saxpy_
functor class, a is the class data and operator is the member function defined on the
data. When an instance of saxpy_functor func is passed to a generic algorithm func-
tion such as transform(), the operator will be called to operate on each pair of x and y
elements.

16.5 BENEFITS OF ABSTRACTION
In this section we’ll describe the benefits of Thrust’s abstraction layer

with respect to programmer productivity, robustness, and real-world

performance.

16.6 PROGRAMMER PRODUCTIVITY
Thrust’s high-level algorithms enhance programmer productivity by auto-

mating the mapping of computational tasks onto the GPU. Recall the two

implementations of SAXPY shown in Figure 16.4. In the CUDA C imple-

mentation of SAXPY the programmer has described a specific decomposi-

tion of the parallel vector operation into a grid of blocks with 256 threads

per block. In contrast, the Thrust implementation does not prescribe a

launch configuration. Instead, the only specifications are the input and out-

put ranges and a functor to apply to them. Otherwise, the two codes are

roughly the same in terms of length and code complexity.

34916.6 Programmer Productivity

Delegating the launch configuration to Thrust has a subtle yet profound

implication: the launch parameters can be automatically chosen based on a

model of machine performance. Currently, Thrust targets maximal occu-

pancy and will compare the resource usage of the kernel (e.g., number of

registers, amount of shared memory) with the resources of the target GPU

to determine a launch configuration with the highest occupancy. While the

maximal occupancy heuristic is not necessarily optimal, it is straightforward

to compute and effective in practice. Furthermore, there is nothing to pre-

clude the use of more sophisticated performance models. For instance, a run-

time tuning system that examined hardware performance counters could be

introduced behind this abstraction without altering client code.

Thrust also boosts programmer productivity by providing a rich set of

algorithms for common patterns. For instance, the map-reduce pattern is

conveniently implemented with Thrust’s sort by key and reduce by key
algorithms, which implement key-value sorting and reduction, respectively.

Robustness

Thrust’s abstraction layer also enhances the robustness of CUDA applica-

tions. In the previous section we noted that by delegating the launch con-

figuration details to Thrust we could automatically obtain maximum

occupancy during execution. In addition to maximizing occupancy, the

abstraction layer also ensures that algorithms “just work,” even in uncom-

mon or pathological use cases. For instance, Thrust automatically handles

limits on grid dimensions (no more than 64 K in current devices), works

around limitations on the size of global function arguments, and accommo-

dates large user-defined types in most algorithms. To the degree possible,

Thrust circumvents such factors and ensures correct program execution

across the full spectrum of CUDA-capable devices.

Real-World Performance

In addition to enhancing programmer productivity and improving robust-

ness, the high-level abstractions provided by Thrust improve performance

in real-world use cases. In this section we examine two instances where

the discretion afforded by Thrust’s high-level interface is exploited for

meaningful performance gains.

To begin, consider the operation of filling an array with a particular value.

In Thrust, this is implemented with the fill algorithm. Unfortunately, a

straightforward implementation of this seemingly simple operation is subject

to severe performance hazards. Recall that processors based on the G80

350 CHAPTER 16 Thrust: A Productivity-Oriented Library for CUDA

architecture (i.e., compute capability 1.0 and 1.1) impose strict conditions on

which memory access patterns may benefit from memory coalescing

[NVIDIA2010]. In particular, memory accesses of subword granularity (i.e.,

less than 4 bytes) are not coalesced by these processors. This artifact is detri-

mental to performance when initializing arrays of char or short types.

Fortunately, the iterators passed to fill implicitly encode all the infor-

mation necessary to intercept this case and substitute an optimized imple-

mentation. Specifically, when fill is dispatched for smaller types, Thrust

selects a “wide” version of the algorithm that issues word-sized accesses

per thread. While this optimization is straightforward to implement, users

are unlikely to invest the effort of making this optimization themselves.

Nevertheless, the benefit, shown in Table 16.1, is worthwhile, particularly

on earlier architectures. Note that with the relaxed coalescing rules on the

more recent processors, the benefit of the optimization has somewhat

decreased but is still significant.

Like fill, Thrust’s sorting functionality exploits the discretion

afforded by the abstract sort and stable sort functions. As long as the

algorithm achieves the promised result, we are free to utilize sophisticated

static (compile-time) and dynamic (runtime) optimizations to implement

the sorting operation in the most efficient manner.

As mentioned in Section 16.3, Thrust statically selects a highly

optimized radix sort algorithm [MG2010] for sorting primitive types (e.g.,

char, int, float, and double) with the standard less and greater
comparison operators. For all other types (e.g., user-defined data types)

Table 16.1 Memory Bandwidth of Two fill Kernels

GPU Data Type Naïve fill Thrust fill Speedup

GeForce GTS8800 char 1.2 GB/s 41.2 GB/s 34.153

short 2.4 GB/s 41.2 GB/s 17.353

int 41.2 GB/s 41.2 GB/s 13

long 40.7 GB/s 40.7 GB/s 13

GeForce GTX280 char 33.9 GB/s 75 GB/s 2.213

short 51.6 GB/s 75 GB/s 1.453

int 75 GB/s 75 GB/s 13

long 69.2 GB/s 69.2 GB/s 13

GeForce GTX480 char 74.1 GB/s 156.9 GB/s 2.123

short 136.6 GB/s 156.9 GB/s 1.153

int 146.1 GB/s 156.9 GB/s 1.073

long 156.9 GB/s 156.9 GB/s 13

35116.6 Programmer Productivity

and comparison operators, Thrust uses a general merge sort algorithm.

Because sorting primitives with radix sort is considerably faster than

merge sort, this static optimization has significant value.

Thrust also applies dynamic optimizations to improve sorting perfor-

mance. Since the cost of radix sort is proportional to the number of signifi-

cant key bits, we can exploit unused key bits to reduce the cost of sorting.

For instance, when all integer keys are in the range [0, 16), only 4 bits

must be sorted, and we observe a 2.713 speedup versus a full 32-bit sort.

The relationship between key bits and radix sort performance is plotted in

Figure 16.5.

16.7 BEST PRACTICES
In this section we highlight three high-level optimization techniques that

programmers may employ to yield significant performance speedups when

using Thrust.

2500

2000

1500

1000

500

0
0 4 8 12 16 20 24 28 32

Bits per key

T
hr

ou
gh

pu
t (

M
ke

ys
/s

)

FIGURE 16.5

Sorting integers on the GeForce GTX480: Thrust’s dynamic sorting optimizations

improve performance by a considerable margin in common use cases where

keys are less than 32 bits.

352 CHAPTER 16 Thrust: A Productivity-Oriented Library for CUDA

Fusion

The balance of computational resources on modern GPUs implies that

algorithms are often bandwidth limited. Specifically, computations with

low CGMA (Computation to Global Memory Access) ratio, the ratio of

calculations per memory access, are constrained by the available memory

bandwidth and do not fully utilize the computational resources of the

GPU. One technique for increasing the computational intensity of an algo-

rithm is to fuse multiple pipeline stages together into a single operation. In

this section we demonstrate how Thrust enables developers to exploit

opportunities for kernel fusion and better utilize GPU memory bandwidth.

The simplest form of kernel fusion is scalar function composition. For

example, suppose we have the functions f (x) - y and g(y) - z and

would like to compute g(f (x))- z for a range of scalar values. The most

straightforward approach is to read x from memory, compute the value

y 5 f (x), and then write y to memory, and then do the same to compute

z 5 g(y). In Thrust this approach would be implemented with two separate

calls to the transform algorithm, one for f and one for g. While this

struct square
{

 __host__ __device__
 float operator() (float x) const
 {
 return x *x;
 }
}

float snrm2_slow(const thrust::device vector<float>& x)
{
 // without fusion
 device vector<float> temp(x.size()); transform(x.begin(),
 x.end(), temp.begin(), square());

 return sqrt(reduce(temp.begin(), temp.end()));
}
float snrm2_fast(const thrust::device vector<float>& x)
{
 // with fusion
 return sqrt(transform_reduce(x.begin(),x.end(),square(),0.0f,
 plus<float>());
}

FIGURE 16.6

snrm2 has low arithmetic intensity and therefore benefits greatly from fusion.

35316.7 Best Practices

approach is straightforward to understand and implement, it needlessly

wastes memory bandwidth, which is a scarce resource.

A better approach is to fuse the functions into a single operation g(f(x))

and halve the number of memory transactions. Unless f and g are compu-

tationally expensive operations, the fused implementation will run approxi-

mately twice as fast as the first approach. In general, scalar function

composition is a profitable optimization and should be applied liberally.

Thrust enables developers to exploit other, less obvious opportunities

for fusion. For example, consider the two Thrust implementations of the

BLAS function snrm2 shown in Figure 16.6, which computes the Euclidean

norm of a float vector.

Note that snrm2 has low arithmetic intensity: each element of the

vector participates in only two floating-point operations—one multiply (to

square the value) and one addition (to sum values together). Therefore, an

implementation of snrm2 using the transform reduce algorithm, which

fuses the square transformation with a plus reduction, should be consider-

ably faster. Indeed, this is true and snrm2_fast is fully 3.8 times faster than

snr2_slow for a 16 M element vector on a Tesla C1060.

While the previous examples represent some of the more common

opportunities for fusion, we have only scratched the surface. As we have

seen, fusing a transformation with other algorithms is a worthwhile optimi-

zation. However, Thrust would become unwieldy if all algorithms came

with a transform variant. For this reason Thrust provides transform
iterator, which allows transformations to be fused with any algorithm.

Indeed, transform reduce is simply a convenience wrapper for the appro-

priate combination of transform iterator and reduce. Similarly, Thrust pro-

vides permutation iterator, which enables gather and scatter operations

to be fused with other algorithms.

Structure of Arrays

In the previous section we examined how fusion minimizes the number of

off-chip memory transactions and conserves bandwidth. Another way to

improve memory efficiency is to ensure that all memory accesses benefit

from coalescing, since coalesced memory access patterns are considerably

faster than noncoalesced transactions.

Perhaps the most common violation of the memory coalescing rules

arises when using a so-called array of structures (AoS) data layout.

Generally speaking, access to the elements of an array filled with C

struct or C11 class variables will be uncoalesced. Only explicitly

354 CHAPTER 16 Thrust: A Productivity-Oriented Library for CUDA

aligned structures such as the uint2 or float4 vector types satisfy the

memory coalescing rules.

An alternative to the AoS layout is the structure of arrays (SoA)

approach, where the components of each struct are stored in separate

arrays. Figure 16.7 illustrates the AoS and SoA methods of representing a

range of 3D float vectors. The advantage of the SoA method is that regu-

lar access to the x, y, and z components of a given vector is coalesceable

(because float satisfies the coalescing rules), while regular access to the

float3 structures in the AoS approach is not.

The problem with SoA is that there is nothing to logically encapsulate

the members of each element into a single entity. Whereas we could

immediately apply Thrust algorithms to AoS containers like device
vector,float3. , we have no direct means of doing the same with three

separate device_vector,float. containers. Fortunately, Thrust pro-

vides zip iterator, which provides encapsulation of SoA ranges.

The zip iterator [BIL] takes a number of iterators and zips them

together into a virtual range of tuples. For instance, binding three device_
vector,float. iterators together yields a range of type tuple,float,
float,float. , which is analogous to the float3 structure.

Consider the code sample in Figure 16.8 that uses zip iterator to con-

struct a range of 3D float vectors stored in SoA format. Each vector is

transformed by a rotation matrix in the rotate tuple functor before being

written out again. Note that zip iterator is used for both input and out-

put ranges, transparently packing the underlying scalar ranges into tuples

and then unpacking the tuples into the scalar ranges. On a Tesla C1060,

 struct float3 struct float3_soa
 {
 {

 float x; float x[100];
 float y; float y[100];
 float z; float z[100];
 } }
 float3 aos[100]; float3_soa soa;

 aos[0].x = 1.0f; soa.x[0] = 1.0f;

 (a) Array of Structures (b) Structure of Arrays

FIGURE 16.7

Data layouts for 3D float vectors: (a) AoS and (b) SoA.

35516.7 Best Practices

SoA implementation is 2.853 faster than the analogous AoS implementa-

tion (not shown).

Implicit Ranges

In the previous sections we considered ways to efficiently transform

ranges of values and ways to construct ad hoc tuples of values from sepa-

rate ranges. In either case, there was some underlying data stored explicitly

in memory. In this section we illustrate the use of implicit ranges, that is,

ranges of which the values are defined programmatically and not stored

anywhere in memory.

For instance, consider the problem of finding the index of the element

with the smallest value in a given range. We could implement a special

reduction kernel for this algorithm, which we’ll call min index, but that
would be time consuming and unnecessary. A better approach is to imple-

ment min_index in terms of existing functionality, such as a specialized

reduction over (value, index) tuples, to achieve the desired result.

Specifically, we can zip the range of values v[0], v[1], v[2], ::: together

with a range of integer indices 0, 1, 2, ::: to form a range of tuples

(v[0], 0), (v[1], 1), (v[2],2), ::: and then implement min index with

struct rotate tuple {

 __host__ __device__

 tuple<float,float,float> operator()(tuple<float,float,float>& t) {

 float x = get<0>(t);

 float y = get<1>(t);

 float z = get<2>(t);

 float rx = 0.36f * x + 0.48f * y + 0.80f * z;

 float ry = 0.80f * x + 0.60f * y + 0.00f * z;

 float rz = 0.48f * x + 0.64f * y + 0.60f * z;

 return make_tuple(rx, ry, rz);

 }

};

device vector<float> x(N), y(N), z(N);

transform(make_zip_iterator(make_tuple(x.begin(), y.begin(), z.begin())),

 make_zip_iterator(make_tuple(x.end(), y.end(), z.end())),

 make_zip_iterator(make_tuple(x.begin(), y.begin(), z.begin())),

 rotate tuple());

FIGURE 16.8

The make_zip_iterator facilitates processing of data in structure of arrays

format.

356 CHAPTER 16 Thrust: A Productivity-Oriented Library for CUDA

the standard reduce algorithm. Unfortunately, this scheme will be much

slower than a customized reduction kernel, since the index range must be

created and stored explicitly in memory.

To resolve this issue Thrust provides counting_iterator [BIL], which

acts just like the explicit range of values we need to implement min_index,
but does not carry any overhead. Specifically, when counting_iterator is

dereferenced it generates the appropriate value on-the-fly and yields that

value to the caller. An efficient implementation of min_index using

counting iterator is shown in Figure 16.9.

16.8 EXERCISES
1. Here counting iterator has allowed us to efficiently implement a

special-purpose reduction algorithm without the need to write a new,

special-purpose kernel. In addition to counting iterator, Thrust
provides constant iterator, which defines an implicit range of

struct smaller_tuple {
 tuple<float,int> operator()(tuple<float,int> a,tuple<float,int> b) {
 // return the tuple with the smaller float value
 if (get<0>(a) < get<0>(b)) return a;
 else return b;
 }
};

int min_index(device vector<float>& values) {
 // [begin,end) form the implicit sequence [0,1,2, ... value.size())
 counting iterator<int> begin(0);
 counting iterator<int> end(values.size());

 // initial value of the reduction
 tuple<float,int> init(values[0], 0);

 // compute the smallest tuple
 tuple<float,int> smallest =
 reduce(make_zip_iterator(make_tuple(values.begin(), begin)),
 make_zip_iterator(make_tuple(values.end(), end)),
 init, smaller_tuple());
 // return the index
 return get<1>(smallest);
}

FIGURE 16.9

Implicit ranges improve performance by conserving memory bandwidth.

35716.8 Exercises

constant value. Note that these implicitly defined iterators can be

combined with the other iterators to create more complex implicit

ranges. For instance, counting iterator can be used in combination

with transform iterator to produce a range of indices with nonunit

stride.

Read Figure 16.9 and explain the operation of the algorithm using as

small example. In practice, there is no need to implement min index
since Thrust’s min element algorithm provides the equivalent

functionality. Nevertheless the min index example is instructive of best

practices. Indeed, Thrust algorithms such as min element, max element,
and find if apply the exact same strategy internally.

References
Boost Iterator Library. Available at: ,www.boost.org/doc/libs/release/libs/iterator/. .

Hoberock, J., & Bell, N. (2011). Thrust: A Parallel Template Library, [version

1.4.0]

Merrill D., & Grimshaw, A., Revisiting sorting for GPGPU stream architectures.

Technical Report CS2010-03. University of virginia, department of computer

science, Charlottesville. 2010.

NVIDIA Corporation. CUDA C best practices guide v3.2. Santa Clara, CA:

NVIDIA Corporation. 2010 (Section 3.2.1).

Satish, N., Harris, M. & Garland, M. Designing efficient orting algorithms for

many-core GPUs. Proceedings twenty third IEEE international parallel and

distributed processing symposium, IEEE computer society. Washington, DC:

2009.

358 CHAPTER 16 Thrust: A Productivity-Oriented Library for CUDA

http://www.boost.org/doc/libs/release/libs/iterator/

CHAPTER

17CUDA FORTRAN

With special contributions from Greg Ruetsch and Massimiliano Fatica

CHAPTER OUTLINE

17.1 CUDA FORTRAN and CUDA C Differences .. 360

17.2 A First CUDA FORTRAN Program... 361

17.3 Multidimensional Array in CUDA FORTRAN ... 363

17.4 Overloading Host/Device Routines With Generic Interfaces 364

17.5 Calling CUDA C Via Iso_C_Binding .. 367
17.6 Kernel Loop Directives and Reduction Operations... 369

17.7 Dynamic Shared Memory .. 370

17.8 Asynchronous Data Transfers .. 371

17.9 Compilation and Profiling ... 377

17.10 Calling Thrust from CUDA FORTRAN ... 378

17.11 Exercises... 382

This chapter gives an introduction to CUDA FORTRAN, the FORTRAN

interface to the CUDA architecture. CUDA FORTRAN was developed in

2009 as a joint effort between the Portland Group (PGI) and NVIDIA.

CUDA FORTRAN shares much in common with CUDA C, as it is based

on the runtime API, however, there are some differences in how the

CUDA concepts are expressed using FORTRAN 90 constructs. The first

section of this chapter discusses some of the basic differences between

CUDA FORTRAN and CUDA C at a high level, and subsequent sections

use various examples to illustrate CUDA FORTRAN programming.

359

17.1 CUDA FORTRAN AND CUDA C DIFFERENCES
CUDA FORTRAN and CUDA C have much in common, as CUDA

FORTRAN is based on the CUDA C runtime API. Just as CUDA C is C

with a few language extensions, CUDA FORTRAN is FORTRAN with a

similar set of language extensions. Before we jump into CUDA

FORTRAN code, it is helpful to summarize some of differences between

these two programming interfaces to the CUDA architecture.

FORTRAN is a strongly typed language, and this strong typing carries

over into the CUDA FORTRAN implementation. Device data declared in

CUDA FORTRAN host code is declared with the device variable attri-

bute, unlike CUDA C where both host and device data are declared the

same way. Differentiating host and device data when variables are

declared can simplify several aspects of dealing with device data.

Allocation of device data can occur where the variable is declared, for

example
real, device :: a_d(N)
will allocate a_d to contain N elements on device 0. Device data can

also be declared as allocatable, and allocated using the FORTRAN 90’s

allocate statement:
real, device, allocatable :: a_d(:)
. . .
allocate(a_d(N))
where the FORTRAN allocate routine has been overloaded to allocate

arrays on the current device in the same way cudaMalloc does in CUDA C.

CUDA FORTRAN’s strong typing also affects how data transfers between

the host and the device can be performed. While one can use the

CudaMemcpy function to perform host-to-device and device-to-host blocking

transfers, it is far easier to use assignment statements:
real :: a(N)
real, device :: a_d(N)
. . .
a_d 5 a
where the FORTRAN array assignment kicks off a cudaMemcpy behind

the scenes. Transfer via assignment statements applies only to blocking

or synchronous transfers; for asynchronous transfers one must use the

cudaMemcpyAsync call.

CUDA FORTRAN makes use of other variable attributes besides the

device attribute. The attributes shared, constant, pinned, and value also

find frequent use in CUDA FORTRAN. Shared memory used in device

code uses the shared variable attribute just as CUDA C uses the

360 CHAPTER 17 CUDA FORTRAN

__shared__ qualifier. Constant memory must be declared in a FORTRAN

module that contains the device code where it is used, and the module

must be used in the host code where it is initialized. The initialization of

constant data in the host code is done via an assignment statement rather

than by function calls. Pinned host memory is declared using the pinned
variable attribute, and must also be declared allocatable. Since FORTRAN

passes data by reference by default and in CUDA we typically deal with

separate memory spaces for the host and the device, host parameters

passed to a kernel via the argument list must be declared in the kernel

with the value variable attribute.

CUDA FORTRAN also uses the attributes(global) and attributes
(device) function attributes in the same way CUDA C uses declaration

specifiers __global__ and __device__ to declare kernels and device

functions.

Within CUDA FORTRAN device code the predefined variables

gridDim, blockDim, blockIdx, and threadIdx are available as they are in

CUDA C. Following typical FORTRAN convention, the components of

blockIdx and threadIdx have a unit, rather than 0, offset, so a typical

index calculation would look like the following:
i 5 blockDim%x � (blockIdx%x - 1)1 threadIdx%x
This is in contrast to CUDA C’s:
i 5 blockDim.x�blockIdx.x1 threadIdx.x;
This rounds out the major differences in the expression of CUDA con-

cepts between CUDA C and CUDA FORTRAN. The CUDA FORTRAN

notation will become clearer as we go through several examples in the fol-

lowing sections.

17.2 A FIRST CUDA FORTRAN PROGRAM
The SAXPY routine has been used several times to illustrate various

aspects of CUDA programming, and we continue this tradition with our

first CUDA FORTRAN example:
module mathOps
contains
attributes(global) subroutine saxpy(x, y, a)
real :: x(:), y(:)
real, value :: a
integer :: i, n
n 5 size(x)
i 5 blockDim%x � (blockIdx%x - 1)1 threadIdx%x
if (i ,5 n) y(i) 5 y(i)1 a�x(i)

36117.2 A First CUDA FORTRAN Program

end subroutine saxpy
end module mathOps

program testSaxpy
use cudafor
use mathOps
implicit none
integer, parameter :: N 5 40000
real :: x(N), y(N), a
real, device :: x_d(N), y_d(N)
type(dim3) :: grid, tBlock

tBlock 5 dim3(256,1,1)
grid 5 dim3(ceiling(real(N)/tBlock%x),1,1)

x 5 1.0; y 5 2.0; a 5 2.0

x_d 5 x
y_d 5 y
call saxpy,, ,grid,tBlock.. .(x_d, y_d, a)
y 5 y_d

write(�,�) 'Max error: ', maxval(abs(y-4.0))
end program testSaxpy
In this complete code the SAXPY kernel is defined in the FORTRAN

module mathOps using the attributes(global) qualifier. The kernel has

three arguments: the 1D arrays x and y, and the scalar value a. The size of

the x and y arrays does not need to be passed as a kernel argument since x
and y are declared as assumed-shape arrays allowing the FORTRAN size
() intrinsic to be used. Because a is defined on the host and must be

passed by value, the value variable attribute is required in a’s declaration
in the kernel. The predefined blockDim, blockIdx, and threadIdx vari-

ables are used to calculate a global index i used to access elements of x
and y. Once again note that blockIdx and threadIdx have a unit offset as

opposed to CUDA C’s zero offset. After checking for inbound access, the

SAXPY operation is performed.

The host code uses the cudafor module, which defines CUDA runtime

API routines, constants, and types, such as the type(dim3) used to declare

the execution configuration variables grid and tBlock. In the host code,

both host arrays x and y are declared as well as their device counterparts,

x_d and y_d, where the latter are declared with the device variable attri-

bute. The thread block and grid are defined in the first executable lines of

host code, where the ceiling function is used to launch enough blocks to

process all array elements in the case that the size of the array is not

362 CHAPTER 17 CUDA FORTRAN

evenly divisible by the number of threads in a thread block. After the host

arrays x and y, as well as the parameter a, are initialized, the assignment

statements x_d5x and y_d5y are used to transfer the data from the host

to the device. The scalar a is not passed to the device in this manner, as it

is passed by value as a kernel argument. Since the transfers by assignment

statement are blocking transfers, we can call the SAXPY kernel after the

transfers without any synchronization. The kernel invocation specifies the

execution configuration in the triple chevrons placed between the kernel

name and its argument list as is done in CUDA C. Also similar to CUDA

C, integer expressions can be used between the triple chevrons in place of

the type(dim3) variables. This is followed by a device-to-host transfer of

the resultant array, which is then checked for correctness.

17.3 MULTIDIMENSIONAL ARRAY IN CUDA FORTRAN
Multidimensional arrays are first-class citizens in FORTRAN, and the ease

of dealing with multidimensional data in FORTRAN is extended to

CUDA FORTRAN. We have already seen one aspect of this in array

assignments used for transfers between the host and the device. The ease

of programming kernel code is evident from the following CUDA

FORTRAN implementation of matrix multiply:
module mathOps
integer, parameter :: TILE_WIDTH 5 16
contains
attributes(global) subroutine matrixMul(Md, Nd, Pd)
implicit none
real, intent(in) :: Md(:,:), Nd(:,:)
real, intent(out) :: Pd(:,:)

real, shared :: Mds(TILE_WIDTH, TILE_WIDTH)
real, shared :: Nds(TILE_WIDTH, TILE_WIDTH)
integer :: i, j, k, m, tx, ty, width
real :: Pvalue

tx 5 threadIdx%x; ty 5 threadIdx%y
i 5 (blockIdx%x-1)�TILE_WIDTH1 tx
j 5 (blockIdx%y-1)�TILE_WIDTH1 ty
width 5 size(Md,2)

Pvalue 5 0.0
do m 5 1, width, TILE_WIDTH
Mds(tx,ty) 5 Md(i,m1ty-1)
Nds(tx,ty) 5 Nd(m1tx-1,j)

36317.3 Multidimensional Array in CUDA FORTRAN

call syncthreads()
do k 5 1, TILE_WIDTH
Pvalue 5 Pvalue1 Mds(tx,k)�Nds(k,ty)
enddo
call syncthreads()
enddo
Pd(i,j) 5 Pvalue

end subroutine matrixMul
end module mathOps

program testMatrixMultiply
use cudafor
use mathOps
implicit none
integer, parameter :: m54�TILE_WIDTH, n56�TILE_WIDTH,
k52�TILE_WIDTH

real :: a(m,k), b(k,n), c(m,n), c2(m,n)
real, device :: a_d(m,k), b_d(k,n), c_d(m,n)
type(dim3) :: grid, tBlock
call random_number(a); a_d 5 a
call random_number(b); b_d 5 b

tBlock 5 dim3(TILE_WIDTH, TILE_WIDTH, 1)
grid 5 dim3(m/TILE_WIDTH, n/TILE_WIDTH, 1)

call matrixMul,, ,grid, tBlock.. .(a_d, b_d, c_d)
c 5 c_d

! test against FORTRAN 90 matmul intrinsic
c2 5 matmul(a, b)
write(�,�) 'max error: ', maxval(abs(c-c2))
end program testMatrixMultiply
The matrixMul kernel uses shared memory tiles Mds and Nds just as in

the CUDA C code, however, passing in 2D arrays as kernel arguments

allows for a more intuitive indexing on the global arrays Md and Nd when

copying to shared memory.

17.4 OVERLOADING HOST/DEVICE ROUTINES WITH
GENERIC INTERFACES

In the preceding matrix multiplication, we used the FORTRAN 90 matmul
intrinsic to check our results. Because of the distinction between host and

device data in the host code, it is possible to build generic interfaces that

364 CHAPTER 17 CUDA FORTRAN

overload routines to execute either on the host or on the device depending

on whether the arguments are host or device data. To illustrate how this is

done, we present a generic interface to the matrix multiplication example

in the previous section:
module mathOps
integer, parameter :: TILE_WIDTH 5 16

interface matrixMultiply
module procedure mmCPU, mmGPU
end interface matrixMultiply
contains
function mmCPU(a, b) result(c)
implicit none
real :: a(:,:), b(:,:), c(:,:)
c 5 matmul(a,b)
end function mmCPU

function mmGPU(a_d, b_d) result(c)
use cudafor
implicit none
real, device :: a_d(:,:), b_d(:,:)
real :: c(:,:)
real, device, allocatable :: c_d(:,:)
integer :: m, n
type(dim3) :: grid, tBlock

m 5 size(c,1); n 5 size(c,2)
allocate(c_d(m,n))
tBlock 5 dim3(TILE_WIDTH, TILE_WIDTH, 1)
grid 5 dim3(m/TILE_WIDTH, n/TILE_WIDTH, 1)
call matrixMul,, ,grid, tBlock.. .(a_d, b_d, c_d)
c 5 c_d
deallocate(c_d)
end function mmGPU

attributes(global) subroutine matrixMul(Md, Nd, Pd)
implicit none
real, intent(in) :: Md(:,:), Nd(:,:)
real, intent(out) :: Pd(:,:)

real, shared :: Mds(TILE_WIDTH, TILE_WIDTH)
real, shared :: Nds(TILE_WIDTH, TILE_WIDTH)
integer :: i, j, k, m, tx, ty, width
real :: Pvalue

tx 5 threadIdx%x; ty 5 threadIdx%y
i 5 (blockIdx%x-1)�TILE_WIDTH1 tx

36517.4 Overloading Host/Device Routines With Generic Interfaces

j 5 (blockIdx%y-1)�TILE_WIDTH1 ty
width 5 size(Md,2)

Pvalue 5 0.0
do m 5 1, width, TILE_WIDTH
Mds(tx,ty) 5 Md(i,m1ty-1)
Nds(tx,ty) 5 Nd(m1tx-1,j)
call syncthreads()
do k 5 1, TILE_WIDTH
Pvalue 5 Pvalue1 Mds(tx,k)�Nds(k,ty)
enddo
call syncthreads()
enddo
Pd(i,j) 5 Pvalue

end subroutine matrixMul
end module mathOps

program testMatrixMultiply
use cudafor
use mathOps
implicit none
integer, parameter :: m54�TILE_WIDTH, n56�TILE_WIDTH,
k52�TILE_WIDTH

real :: a(m,k), b(k,n), c(m,n), c2(m,n)
real, device :: a_d(m,k), b_d(k,n)

call random_number(a); a_d 5 a
call random_number(b); b_d 5 b

c 5 matrixMultiply(a_d, b_d)
c2 5 matrixMultiply(a, b)

write(�,�) 'max error: ', maxval(abs(c-c2))
end program testMatrixMultiply

The interface to matrixMultiply in this code is overloaded using two

procedures defined in the module, mmCPU and mmGPU. mmCPU operates on

host data and simply calls the FORTRAN 90 intrinsic matmul. mmGPU takes

device data for the input matrices, and returns a host array with the result.

(It could just have easily been defined to return a device array.) The

device array used for the result in mmGPU, c_d, is a local array that is

declared on the sixth line of mmGPU, and allocated on the tenth line of that

routine. After this allocation, the locally defined execution configuration

parameters are determined and the kernel is launched, which is followed

by a device-to-host transfer and the de-allocation of c_d. The actual matrix

366 CHAPTER 17 CUDA FORTRAN

multiple kernel is not modified from the previous section. In the host

code, matrixMultiply is used to access both of these routines.

17.5 CALLING CUDA C VIA ISO_C_BINDING

In the previous section we demonstrated how an interface can be used to

allow a single call to perform operations on either the host or device

depending on where the input data resides. An interface can also be used

to call C or CUDA C functions from CUDA FORTRAN using the iso_-
c_binding module introduced in FORTRAN 2003. Such functions can

either be CUDA C routines developed by the user or library routines. In

our matrix multiplication code, for example, we might wish to call the

CUBLAS version of SGEMM rather than our hand-coded version. This

can be done in the following manner:
module cublas_m
interface cublasInit
integer function cublasInit() bind(C,name5'cublasInit')
end function cublasInit
end interface
interface cublasSgemm
subroutine cublasSgemm(cta,ctb,m,n,k,alpha,A,lda,B,ldb,beta,
c,ldc) &

bind(C,name5'cublasSgemm')
use iso_c_binding
character(1,c_char), value :: cta, ctb
integer(c_int), value :: k, m, n, lda, ldb, ldc
real(c_float), value :: alpha, beta
real(c_float), device :: A(lda,�), B(ldb,�), C(ldc,�)
end subroutine cublasSgemm
end interface cublasSgemm
end module cublas_m

program sgemmDevice
use cublas_m
use cudafor
implicit none
integer, parameter :: m 5 100, n 5 100, k 5 100
real :: a(m,k), b(k,n), c(m,n), c2(m,n)
real, device :: a_d(m,k), b_d(k,n), c_d(m,n)
real, parameter :: alpha 5 1.0, beta 5 0.0
integer :: lda 5 m, ldb 5 k, ldc 5 m
integer :: istat

call random_number(a); a_d 5 a

36717.5 Calling CUDA C Via Iso_C_Binding

call random_number(b); b_d 5 b
istat 5 cublasInit()
call cublasSgemm('n','n',m,n,k,alpha,a_d,lda,b_d,ldb,beta,
c_d,ldc)

c 5 c_d

c2 5 matmul(a,b)
write(�,�) 'max error 5', maxval(abs(c-c2))
end program sgemmDevice
Here the module cublas_m contains interfaces for the CUBLAS rou-

tines cublasInit and cublasSgemm, which are bound to C functions as

dictated by the bind(C,name5’. . .’) clause. The iso_c_binding module

is used in the cublasSgemm interface as this module contains the type kind

parameters used in the declarations for the function arguments.

One could manually write these interfaces for all of the CUBLAS rou-

tines, but this has already been done in the cublas module provided with

the PGI CUDA FORTRAN compiler. In the preceding code, one can sim-

ply remove the cublas_m module and change the use cublas_m to use
cublas in the main program. The cublas module also contains generic

interfaces to overload the standard BLAS functions to execute the

CUBLAS versions when the array arguments are device arrays. So we can

further change the preceding program to call sgemm rather than

cublasSgemm. The complete program then becomes as follows:
program sgemmDevice
use cublas
use cudafor
implicit none
integer, parameter :: m 5 100, n 5 100, k 5 100
real :: a(m,k), b(k,n), c(m,n), c2(m,n)
real, device :: a_d(m,k), b_d(k,n), c_d(m,n)
real, parameter :: alpha 5 1.0, beta 5 0.0
integer :: lda 5 m, ldb 5 k, ldc 5 m
integer :: istat

call random_number(a); a_d 5 a
call random_number(b); b_d 5 b

istat 5 cublasInit()
call sgemm('n','n',m,n,k,alpha,a_d,lda,b_d,ldb,beta,c_d,ldc)
c 5 c_d

c2 5 matmul(a,b)
write(�,�) 'max error 5', maxval(abs(c-c2))
end program sgemmDevice

368 CHAPTER 17 CUDA FORTRAN

17.6 KERNEL LOOP DIRECTIVES AND REDUCTION
OPERATIONS

There are many occasions when one wishes to perform simple operations

on device data, such as scaling or normalization of a device array. For

such operations, it can be cumbersome to write separate kernels, and fortu-

nately CUDA FORTRAN provides kernel CUDA FORTRAN loop direc-

tives, or CUF kernels. CUF kernels essentially allow the programmer to

inline simple kernels in host code. For example, our SAXPY code using

CUF kernels becomes
program testSaxpy
use cudafor
implicit none
integer, parameter :: N 5 40000
real :: x(N), y(N), a
real, device :: x_d(N), y_d(N)
integer :: i

x 5 1.0; x_d 5 x
y 5 2.0; y_d 5 y
a 5 2.0

!$cuf kernel do ,, , �,� .. .

do i 5 1, N
y_d(i) 5 y_d(i)1 a�x_d(i)
end do

y 5 y_d

write(�,�) 'Max error: ', maxval(abs(y-4.0))
end program testSaxpy
In this complete code, the module containing the saxpy kernel has

been removed and in its place in the host code is the loop that contains

device arrays. The directive !$cuf kernel do informs the compiler to

generate a kernel for the operation in the following do loop. The execu-

tion configuration can be manually specified in the ,, , . . .,. , or

asterisks can be used to have the compiler choose an execution, as is

done in this case. CUF kernels can operate on nested loops, and can use

nondefault streams.

One particular useful aspect of CUF kernels is their ability to perform

reductions. When the left side of an expression in a CUF kernel loop is a

host scalar variable, a reduction operation is performed on the device. This

is useful because coding a well-performing reduction in CUDA is not a

36917.6 Kernel Loop Directives and Reduction Operations

trivial matter. The calculation of the sum of the device array elements

using compiler-generated CUF kernels looks like the following:
program testReduction
use cudafor
implicit none
integer, parameter :: N 5 40000
real :: x(N), xsum
real, device :: x_d(N)
integer :: i

x 5 1.0; x_d 5 x
xsum 5 0.0

!$cuf kernel do ,, , �,� .. .

do i 5 1, N
xsum 5 xsum1 x_d(i)
end do
write(�,�) 'Error: ', abs(xsum - sum(x))
end program testReduction

17.7 DYNAMIC SHARED MEMORY
In our matrix multiplication example we demonstrated how static shared

memory is used, which is essentially analogous to how it is declared in

CUDA C. For dynamic shared memory, there are several options in

CUDA FORTRAN. If a single dynamic shared memory array is used, then

once again the CUDA FORTRAN implementation parallels what is done

in CUDA C:
attributes(global) subroutine dynamicReverse1(d)
real :: d(:)
integer :: t, tr
real, shared :: s(�)

t 5 threadIdx%x
tr 5 size(d)-t11

s(t) 5 d(t)
call syncthreads()
d(t) 5 s(tr)
end subroutine dynamicReverse1
where the shared memory array s, used to reverse elements of a single

thread block array in this kernel, is declared with as an assumed-size array.

The size of this dynamic shared memory array is determined from the

370 CHAPTER 17 CUDA FORTRAN

number of bytes of dynamic shared memory specified in the third execu-

tion configuration parameter:
threadBlock 5 dim3(n,1,1)
grid 5 dim3 (1 ,1 ,1)
. . .
call dynamicReverse1,, ,grid,threadBlock,4�threadBlock%x.. .
(d_d)

When multiple dynamic shared memory arrays are used in CUDA C,

essentially one large block of memory is allocated and pointer arithmetic

is used to determine offsets into this block for the various variables. In

CUDA FORTRAN, automatic arrays are used:
attributes (global) subroutine dynamicReverse2(d, nSize)
real :: d(nSize)
integer, value :: nSize

integer :: t, tr
real, shared :: s(nSize)
t 5 threadIdx%x
tr 5 nSize-t11

s(t) 5 d(t)
call syncthreads()
d(t) 5 s(tr)
end subroutine dynamicReverse2
Here nSize is not known at compile time, hence s is not a static shared

memory array. Any in-scope variable, such as a variable declared in the

module that contains this kernel, can be used to determine the size of the

automatic shared memory arrays. Multiple dynamic shared memory arrays

of different types can be specified in this fashion. The total amount of

dynamic shared memory must still be specified in the third execution con-

figuration parameter.

17.8 ASYNCHRONOUS DATA TRANSFERS
Asynchronous data transfers are performed using the cudaMemcpy�Async()
API calls as is done in CUDA C, with a couple of differences that apply

not only to these asynchronous data transfer API calls but also to the syn-

chronous cudaMemcpy�() variants. The first difference is that the size of

the transfer specified in the third argument is in terms of the number of

elements rather than the number of bytes, and the second is that the direc-

tion of transfer is an optional argument since the direction can be inferred

from the types of the first two arguments.

37117.8 Asynchronous Data Transfers

As with CUDA C, for asynchronous transfers the host memory must be

pinned, which is accomplished through the pinned variable attribute rather

than through a specific allocation function. Pinned memory in CUDA

FORTRAN must be allocatable, and can be allocated and de-allocated

through the FORTRAN 90 allocate() and deallocate() statements.

To overlap kernel execution and data transfers, in addition to pinned

host memory, the data transfer and kernel must use different, nondefault

streams. Nondefault streams are required for this overlap because memory

copy, memory set functions, and kernel calls that use the default stream

begin only after all preceding calls on the device (in any stream) have

completed, and no operation on the device (in any stream) commences

until they are finished. The following is an example of overlapping kernel

execution and data transfer:
real, allocatable, pinned :: a(:)
. . .
integer (kind5cuda_stream_kind) :: stream1, stream2
. . .
allocate(a(nElements))
istat 5 cudaStreamCreate(stream1)
istat 5 cudaStreamCreate(stream2)
istat 5 cudaMemcpyAsync(a_d , a, nElements, stream1)
call kernel ,, ,gridSize ,blockSize ,0, stream2 .. .(b_d)
In this example, two streams are created and used in the data transfer

and kernel executions as specified in the last arguments of the

cudaMemcpyAsync() call and the kernels execution configuration. We

make use of two device arrays, a_d and b_d, and assign work on a_d to

stream1 and b_d to stream2.
If the operations on a single data array in a kernel are independent,

then data can be broken into chunks and transferred in multiple stages,

multiple kernels launched to operate on each chunk as it arrives, and each

chunk’s results transferred back to the host when the relevant kernel com-

pletes. The following code segments demonstrate two ways of breaking up

data transfers and kernel work to hide transfer time:
! baseline case - sequential transfer and execute
a 5 0
istat 5 cudaEventRecord(startEvent ,0)
a_d 5 a
call kernel ,, ,n/blockSize , blockSize .. .(a_d, 0)
a 5 a_d

istat 5 cudaEventRecord(stopEvent , 0)

! Setup for multiple stream processing

372 CHAPTER 17 CUDA FORTRAN

strSize 5 n / nStreams
strGridSize 5 strSize / blocksize
i 5 1, nStreams
istat 5 cudaStreamCreate(stream(i))
enddo

! asynchronous version 1: loop over {copy, kernel, copy}
a 5 0
istat 5 cudaEventRecord(startEvent ,0)
do i 5 1, nStreams
offset 5 (i-1)� strSize
istat5cudaMemcpyAsync(a_d(offset11), a(offset11), strSize,
stream(i))

call kernel ,, ,strGridSize, blockSize, 0, stream(i).. .
(a_d, offset)

istat5cudaMemcpyAsync(a(offset11), a_d(offset11), strSize,
stream(i))

enddo
istat 5 cudaEventRecord(stopEvent , 0)
! asynchronous version 2:
! loop over copy, loop over kernel, loop over copy
a 5 0
istat 5 cudaEventRecord(startEvent ,0)

do i 5 1, nStreams
offset 5 (i-1)� strSize
istat5cudaMemcpyAsync(a_d(offset11), a(offset11), strSize,
stream(i))

enddo
do i 5 1, nStreams
offset 5 (i-1)� strSize
call kernel ,, ,strGridSize, blockSize, 0, stream(i).. .
(a_d, offset)

enddo
do i 5 1, nStreams
offset 5 (i-1)� strSize
istat 5 cudaMemcpyAsync(a(offset11), a_d(offset11), strSize
,stream(i))

enddo
istat 5 cudaEventRecord(stopEvent , 0)

The asynchronous cases are similar to the sequential case, only that

there are multiple data transfers and kernel launches that are distinguished

by different streams and an offset corresponding to the particular stream.

In this code, we limit the number of streams to four, although for large

arrays there is no reason why a larger number of streams could not be

37317.8 Asynchronous Data Transfers

used. Note that the same kernel is used in the sequential and asynchronous

cases in the code, as an offset is sent to the kernel to accommodate the

data in different streams. The difference between the two asynchronous

versions is the order in which the copies and kernels are executed. The

first version loops over each stream and for each stream issues a host-to-

device copy, kernel, and device-to-host copy. The second version issues

all host-to-device copies, then all kernel launches, and then all device-to-

host copies. We also make use of a third approach, which is a variant of

the second where a dummy event is recorded after each kernel launch:
do i 5 1, nStreams
offset 5 (i-1)� strSize
call kernel ,, ,strGridSize, blockSize, 0, stream(i).. .
(a_d, offset)

! Add a dummy event
istat 5 cudaEventRecord(dummyEvent, stream(i))
enddo
At this point you may be asking why we have three versions of the

asynchronous case. The reason is that these variants perform differently on

different hardware. Running this code on the NVIDIA Tesla C1060 pro-

duces the following:
Device: Tesla C1060
Time for sequential transfer and execute (ms): 12.92381
Time for asynchronous V1 transfer and execute (ms): 13.63690
Time for asynchronous V2 transfer and execute (ms): 8.845888
Time for asynchronous V3 transfer and execute (ms): 8.998560
And on the NVIDIA Tesla C2050 we get the following:
Device: Tesla C2050
Time for sequential transfer and execute (ms): 9.984512
Time for asynchronous V1 transfer and execute (ms): 5.735584
Time for asynchronous V2 transfer and execute (ms): 7.597984
Time for asynchronous V3 transfer and execute (ms): 5.735424
To decipher these results we need to understand a bit more about how

devices schedule and execute various tasks. CUDA devices contain engines

for various tasks, and operations are queued up in these engines as they are

issued. Dependencies between tasks in different engines are maintained, but

within any engine all dependence is lost, as tasks in an engine’s queue are

executed in the order they are issued by the host thread. For example, the

C1060 has a single copy engine and a single kernel engine. For the preceding

code, timelines for the execution on the device are schematically shown in

Figure 17.1. In this schematic we have assumed that the time required for the

host-to-device transfer, kernel execution, and device-to-host transfer are

374 CHAPTER 17 CUDA FORTRAN

approximately the same, and in the code provided, a kernel was chosen to

make these times comparable.

For the sequential kernel, there is no overlap in any of the operations

as one would expect. For the first asynchronous version of our code the

order of execution in the copy engine is: H2D stream(1), D2H stream(1),

H2D stream(2), D2H stream(2), and so forth. This is why we do not see

any speedup when using the first asynchronous version on the C1060:

tasks were issued to the copy engine in an order that precludes any overlap

of kernel execution and data transfer. For versions two and three, however,

where all the host-to-device transfers are issued before any of the device-

to-host transfers, overlap is possible as indicated by the lower execution

time. From our schematic, we would expect the execution of versions two

and three to be 8/12 of the sequential version, or 8.7 ms, which is what is

observed in the timing in the code.

On the C2050, two features interact to cause different behavior than

that observed on the C1060. The C2050 has two copy engines, one for

host-to-device transfers and another for device-to-host transfers, in addi-

tion to a single kernel engine. Having two copy engines explains why the

first asynchronous version achieves good speedup on the C2050: the

Sequential Version
Copy Engine

Kernel Engine

Copy Engine

Kernel Engine

H2D - Stream 0

CI060 Executiom Time Lines

H2D - 1 H2D - 2 H2D - 3 H2D - 4D2H - 1

1 2 3 4

D2H - 2

Copy Engine

Kernel Engine

H2D - 1 H2D - 2 H2D - 3 H2D - 4 H2D - 3

1 2 3

Time

4

D2H - 2 D2H - 4D2H - 1

D2H - 3 D2H - 4

D2H - 0

0

Asynchronous Version 1

Asynchronous Version 2 and 3

FIGURE 17.1

Data transfer and kernel execution timing for the sequential and asynchronous

versions when there is only one copy engine.

37517.8 Asynchronous Data Transfers

device-to-host transfer of data in stream(i) does not block the host-to-

device transfer of data in stream(i11) as it did on the C1060 because

these two operations are in different engines on the C2050, which is sche-

matically shown in Figure 17.2.

From the schematic we would expect the execution time to be cut in

half relative to the sequential version, which is roughly what is observed

in the timings in the code. This does not explain the performance degrada-

tion observed in the second asynchronous approach, however, which is

related to the C2050’s support to concurrently run multiple kernels. When

multiple kernels are issued back-to-back, the scheduler tries to enable con-

current execution of these kernels, and as a result delays a signal that nor-

mally occurs after each kernel completion (and is responsible for kicking

off the device-to-host transfer) until all kernels complete. So, while there

is overlap between host-to-device transfers and kernel execution in the

second version of our asynchronous code, there is no overlap between ker-

nel execution and device-to-host transfers. From Figure 17.2 one would

expect an overall time for the second asynchronous version to be 9/12 of

the time for the sequential version, or 7.5 ms, which is what we observe

from the timings in the code. This situation can be rectified by recording a

dummy CUDA event between each kernel, which will inhibit concurrent

Sequential Version
Copy Engine

Kernel Engine

Stream 3

H2D Engine

D2H Engine

D2H Engine

Kernel Engine

H2D Engine

D2H Engine

Kernel Engine

1

1 2 3 4

1 2 3 4

2 3 4

1 2 3

Time

4

1 2 3 4

1 2 3 4

0

0

Asynchronous Versions 1 and 3

Asynchronous Version 2

FIGURE 17.2

Data transfer and kernel execution timing for the sequential and asynchronous

versions when there are two copy engines.

376 CHAPTER 17 CUDA FORTRAN

kernel execution but will enable overlap of data transfers and kernel exe-

cution, as is done in the third asynchronous version.

17.9 COMPILATION AND PROFILING
CUDA FORTRAN codes are compiled using PGI FORTRAN compiler.

Files with the .cuf or .CUF extensions have CUDA FORTRAN enabled

automatically, and the compiler option -Mcuda can be used when compil-

ing a file with other extensions to enable CUDA FORTRAN. Compilation

of CUDA FORTRAN code can be as simple as issuing the command
pgf90 saxpy.cuf

Behind the scenes, a multistep process takes place. The first step is a

source-to-source compilation where CUDA C device code is generated by

CUDA FORTRAN. From there, compilation is similar to compilation of

CUDA C. The device code is compiled into the intermediate representa-

tion PTX, and the PTX code is then further compiled to an

executable code for a particular compute capability. The host code is com-

piled using pgFORTRAN. The final executable contains the host binary, the

device binary, and the PTX. The PTX is included so that a new device

binary can be created when the executable is run on a card of different

compute capability than originally compiled for.

Specifics of this compilation process can be controlled through options

to -Mcuda. A specific compute capability can be targeted, for example,

-Mcuda5cc20 generates executables for devices of compute capability

2.0. There is an emulation mode where device code is run on the host,

specified by -Mcuda5emu. The specific version of the CUDA toolkit can

be specified, for example, -Mcuda5cuda4.0 causes compilation with the

4.0 CUDA toolkit. CUDA has a set of fast, but less accurate, intrinsics for

single-precision functions like sin() and cos(), which can be enabled by

the -Mcuda5fastmath option. Use of these functions requires no change

in the CUDA FORTRAN source code, as the intermediate CUDA C code

will be generated with the corresponding __sinf() and __cosf() func-

tions, respectively. For finer (selective) control, the latter versions are

available when the cudadevice module is used in the device code. The

option -Mucda5maxregcount:N can be used to limit the number of regis-

ters used per thread to N. And the option -Mcuda5ptxinfo prints informa-

tion on memory usage in kernels. Multiple options to -Mcuda can be given

in a comma-separated list, for example, -Mcuda5cc20,cuda4.0,ptxinfo.

37717.9 Compilation and Profiling

Profiling CUDA FORTRAN codes can be performed using the

command-line profiling facility used in CUDA C. Setting the environment

variable COMPUTE_PROFILE to 1,

% export COMPUTE_PROFILE51

and executing the code generates a file of profiling results, by default

cuda_profile_0.log. For use of the command-line profiler see the docu-

mentation distributed with the CUDA toolkit.

17.10 CALLING THRUST FROM CUDA FORTRAN
Previously, we demonstrated calling external CUDA C libraries from

CUDA FORTRAN, in particular the CUBLAS library, using the iso_-
c_binding module. In this section we demonstrate how CUDA

FORTRAN can interface with Thrust, the standard template library for the

GPU discussed in Chapter 16. Relative to calling CUDA C functions,

interfacing with Thrust requires the additional step of creating C pointers

that access the Thrust device containers, such as in the following code

segment:
// allocate device vector
thrust::device_vector d_vec(4);
// obtain raw pointer to device vector’s memory
int �ptr 5 thrust::raw_pointer_cast(&d_vec[0]);

The basic procedure to interface Thrust with CUDA FORTRAN is to

create C wrapper functions that access Thrust’s functions through standard

C pointers, and then use the iso_c_binding module to access these func-

tions through a generic interface in CUDA FORTRAN. For an example,

we use Thrust’s sort routine. The wrapper functions for the int, float,
and double sort routines are as follows:

// Filename: csort.cu
// nvcc -c -arch sm_20 csort.cu
#include ,thrust/device_vector.h.

#include ,thrust/device_vector.h.
#include ,thrust/sort.h.
extern "C" {
//Sort for integer arrays
void sort_int_wrapper(int �data, int N)
{
// Wrap raw pointer with a device_ptr

378 CHAPTER 17 CUDA FORTRAN

thrust::device_ptr ,int. dev_ptr(data);
// Use device_ptr in Thrust sort algorithm
thrust::sort(dev_ptr, dev_ptr1N);
}
//Sort for float arrays
void sort_float_wrapper(float �data, int N)
{
thrust::device_ptr ,float. dev_ptr(data);
thrust::sort(dev_ptr, dev_ptr1N);
}
//Sort for double arrays
void sort_double_wrapper(double �data, int N)
{
thrust::device_ptr ,double. dev_ptr(data);
thrust::sort(dev_ptr, dev_ptr1N);
}
}
Compiling the code using
nvcc -c -arch sm_20 csort.cu
will generate an object file, csort.o, that we will use later on in the

linking stage of the CUDA FORTRAN code.

With the C wrapper functions available, we can now write a

FORTRAN module with a generic interface to Thust’s sort functionality:
module thrust
interface thrustsort
subroutine sort_int(input,N) bind(C,name5"sort_int_wrapper")
use iso_c_binding
integer(c_int),device:: input(�)
integer(c_int),value:: N
end subroutine sort_int
subroutine sort_float(input,N) bind(C,name5"sort_float_wrapper")
use iso_c_binding
real(c_float),device:: input(�)
integer(c_int),value:: N
end subroutine sort_float
subroutine sort_double(input,N) bind(C,
name5"sort_double_wrapper")

use iso_c_binding
real(c_double),device:: input(�)
integer(c_int),value:: N
end subroutine sort_double
end interface thrustsort
end module thrust

37917.10 Calling Thrust from CUDA FORTRAN

With the C wrapper functions and the FORTRAN module written, we

can now turn to the main FORTRAN code that generates and transfers the

data to the device, calls the sort functions, and transfers the data back to

the host:
program testsort
use thrust
! Declare two arrays, one on CPU (cpuData), one on GPU (gpuData)
real, allocatable :: cpuData(:)
real, allocatable, device :: gpuData(:)
integer:: N510
! Allocate the arrays using standard allocate
allocate(cpuData(N),gpuData(N))

! Generate random numbers on the CPU
do i51,N
cpuData(i)5random(i)
end do
cpuData(5)5100.

print �,"Before sorting", cpuData

! Copy the data to GPU with a simple assignment
gpuData5cpuData

! Call the Thrust sorting function. The generic interface will
! select the proper routine, in this case the one operating on
floats

call thrustsort(gpuData,size(gpuData))

! Copy the data back to CPU with a simple assignment
cpuData5gpuData

print �,"After sorting", cpuData

! Deallocate the arrays using standard deallocate
allocate(cpuData(N),gpuData(N))
end program testsort
If we save the module in a file mod_thrust.cuf and the program in

simplesort.cuf, we are ready to compile and execute:
$ pgf90 -Mcuda5cc20 -O3 -o simple_sort mod_thrust.cuf simple_-
sort.cuf csort.o

$./simple_sort
Before sorting 4.1630346E-02 0.9124327 0.7832350 0.6540373
100.0000 0.3956419 0.2664442 0.1372465
8.0488138E-03 0.8788511

380 CHAPTER 17 CUDA FORTRAN

After sorting 8.0488138E-03 4.1630346E-02 0.1372465 0.2664442
0.3956419 0.6540373 0.7832350 0.8788511
0.9124327 100.0000
We can modify the main code to evaluate the performance using the

CUDA event API as follows:
program timesort
use cudafor
use thrust
implicit none
real, allocatable :: cpuData(:)
real, allocatable, device :: gpuData(:)
integer:: i,N5100000000
! CUDA events for elapsing time
type (cudaEvent):: startEvent , stopEvent
real:: time, random
integer:: istat

! Create events
istat 5 cudaEventCreate(startEvent)
istat 5 cudaEventCreate(stopEvent)

! Allocate arrays
allocate(cpuData(N),gpuData(N))

do i51,N
cpuData(i)5random(i)
end do

print �,"Sorting array of ",N, " single precision"

gpuData5cpuData

istat 5 cudaEventRecord (startEvent , 0)
call thrustsort(gpuData,size(gpuData))

istat 5 cudaEventRecord (stopEvent , 0)
istat 5 cudaEventSynchronize (stopEvent)
istat 5 cudaEventElapsedTime (time , startEvent , stopEvent)

cpuData5gpuData

print �," Sorted array in:",time," (ms)"

!Print the first five elements and the last five.
print �,"After sorting", cpuData(1:5),cpuData(N-4:N)
end program timesort

38117.10 Calling Thrust from CUDA FORTRAN

With the CUDA events, we are timing only the execution time of the

sorting kernel. We can sort a vector of 100 M elements in 0.222 second on

a Tesla M2050 with ECC on when the data is resident in GPU memory:
$ pgf90 -Mcuda5cc20 -O3 -o time_sort mod_thrust.cuf time_sort.
cuf csort.o

$./time_sort
Sorting array of 100000000 single precision
Sorted array in: 222.1711 (ms)
After sorting 7.0585919E-09 1.0318221E-08 1.9398616E-08
3.1738640E-08

4.4078664E-08 0.9999999 0.9999999 1.000000 1.000000 1.000000

17.11 EXERCISES
17.1. Write a CUF kernel version of a matrix multiplication.

17.2. Write a CUDA FORTRAN code that reverses elements of a 4,096-

element array.

382 CHAPTER 17 CUDA FORTRAN

CHAPTER

18An Introduction to C11
AMP

With special contributions from David Callahan

CHAPTER OUTLINE

18.1 Core C11 Amp Features... 384

18.2 Details of the C11 AMP Execution Model ... 391

18.3 Managing Accelerators... 395

18.4 Tiled Execution .. 398

18.5 C11 AMP Graphics Features .. 401

18.6 Summary ... 405

18.7 Exercises... 405

C11 Accelerated Massive Parallelism, or C11 AMP, is a programming

model for expressing data-parallel algorithms and exploiting heteroge-

neous computers using mainstream tools. C11 AMP was designed to

offer productivity, portability, and performance. Developed initially by

Microsoft, C11 AMP is defined by an open specification which takes

input from multiple sources, including from AMD and NVIDIA. In this

chapter we provide an overview of C11 AMP.

The focus of C11 AMP is to express the important data-parallel algo-

rithm pattern while providing minimum new language features and shield-

ing common scenarios from the intricacies of today’s GPU programming.

This provides a foundation of portability for applications written in C11
AMP across a range of different hardware. This portability creates future-

proofing to preserve investment as hardware continues to evolve, as well

as improving reusability of code across different devices and different

manufacturers. At the same time, the full C11 AMP feature set includes

advanced mechanisms for achieving performance when system intricacies

must be addressed. In this chapter, we discuss first the most

383

straightforward examples of C11 AMP, and then we more lightly address

these advanced features.

C11 AMP is a small extension to the current C11 11 standard and is

dependent on some of the core features of that standard. In particular, we

will assume readers are familiar with modern C11, including the use of

lambda expressions to build function closures, the use of templates for

type-generic programming, the use of namespaces to control visibility of

names, and the standard template library (STL). The common patterns are

simple, so a deep understanding is not a prerequisite to use C11 AMP.

Unlike CUDA and OpenCL, C11 AMP allows a rich subset of C11
inside data-parallel computations as well as using C11 for the host.

C11 AMP has the same base compilation model as C11 with header

files for interface specification and separate compilation units combined

into a single executable.

C11 AMP does rely on two extensions to the language. The first

places restrictions on the C11 operations that may be used in bodies of

functions, and the second supports a form of limited cross-thread data

sharing within data-parallel kernels. Both of these will be illustrated in

Section 18.1. All other aspects of C11 AMP are delivered as a library

accessed via a few header files.

C11 AMP shares many concepts with CUDA. In the following text

we will illustrate this by showing C11 AMP equivalents for CUDA

examples from earlier chapters. C11 AMP terminology differs from

CUDA in small ways and we will highlight those differences as they arise.

18.1 CORE C11 AMP FEATURES
We describe the core features of C11 AMP by translating an example

used in Chapter 3 from CUDA into C11 AMP. Figure 18.1 is the CUDA

code for performing vector addition on host vectors using a CUDA device.

The corresponding C11 AMP code is shown in Figure 18.2. Line 1

includes the C11 AMP header, amp.h, which provides the declarations of

the core features. The C11 AMP classes and functions are part of the

concurrency namespace. The using directive on the next line makes the

C11 AMP names visible in the current scope. It is optional but avoids

the need to prefix C11 AMP names with a concurrency:: scope

specifier.

The function vecAdd on line 4 in Figure 18.2 is functionally identical

to the same function starting in line 6 in Figure 18.1. This function is

384 CHAPTER 18 An Introduction to C11AMP

executed by a thread running on the host and it contains a data-parallel

computation that may be accelerated. The term host has the same meaning

in C11 AMP documentation as in CUDA. While CUDA uses the term

device to refer to the execution environment used for accelerated

__global__ void vecAddKernel(float* d_A, float* d_B, float* d_C,
int n)
{
 int i = blockDim.x * blockIdx.x + threadIdx.x;
 if (i < n) C[i] = A[i] + B[i];
}
void vecAdd(float* A, float* B, float* C, int n)
{
 int size = n * sizeof (float); float* d_A, d_B, d_C;
 cudaMalloc((void **) &d_A, size);
 cudaMemcpy(d_A, A, size, cudaMemcpyHostToDevice);
 cudaMalloc((void **) &d_B, size);
 cudaMemcpy(d_B, B, size, cudaMemcpyHostToDevice);
 cudaMalloc((void **) &d_C, size);
 vecAddKernel<<<ceil(n/256.0), 256>>>(d_A, d_B, d_C, n);
 cudaMemcpy(C, d_C, size, cudaMemcpyDeviceToHost);
 cudaFree(d_A); cudaFree(d_B); cudaFree (d_C);
}

FIGURE 18.1

CUDA vector addition from Chapter 3.

FIGURE 18.2

Vector addition in C11 AMP.

38518.1 Core C11 Amp Features

execution, C11 AMP uses the term accelerator, which is discussed more

in Section 18.3.

In C11 AMP, the primary vehicle for reading and writing large data

collections is the class template array_view. An array_view provides a

multidimensional reference to a rectangular collection of data locations.

This is not a new copy of the data but rather a new way to access the exist-

ing memory locations. The template has two parameters: the type of the

elements of the source data, and an integer that indicates the dimensional-

ity of the array_view. Throughout C11 AMP, template parameters that

indicate dimensionality are referred to as the rank of the type or object.

In this example, we have a 1D array_view (or an array_view of rank 1)

of C11 float values.

The constructor for array views of rank 1, such as CV on line 7 in

Figure 18.2, takes two parameters. The first is an integer value that is the

number of data elements. In general, the set of per-dimension lengths is

referred to as an extent. To represent and manipulate extents, C11 AMP

provides a class template, extent, with a single-integer template parameter

that captures the rank. For objects with a low number of dimensions, vari-

ous constructors are overloaded to allow specification of an extent as one

or more integer values as is done for CV. The second parameter to the CV
constructor is a pointer to the host data. In vecAdd the host data is

expressed as a C-style pointer to contiguous data. An array_view may

also overlay STL containers (see Section 16.1) such as std::vector when

they support a data method to access underlying contiguous storage.

The CUDA code explicitly allocates memory (Figure 18.1, lines 9�13)

that is accessible by the device and copies host data into it. These actions

are implicit in C11 AMP by creating the association between an array_
view and host data and subsequently accessing the data through the

array_view on the accelerator. The method array_view::discard_data
optimizes data transfers for some accelerators and is discussed in the next

section. In this example, it is used when existing data values are immate-

rial because they are about to be overwritten.

Line 9 in Figure 18.2 illustrates the parallel_for_each construct that

is the C11 AMP code pattern for a data-parallel computation. This corre-

sponds to the kernel launch in CUDA (Figure 18.1, line 14). In CUDA ter-

minology (as in Figure 3.3), the parallel_for_each creates a grid of

threads. In C11 AMP the set of elements for which a computation is per-

formed is called the compute domain and is defined by an extent object.

Like in CUDA, each thread will invoke the same function for every point

and threads are distinguished only by their location in the domain (grid).

386 CHAPTER 18 An Introduction to C11AMP

Unlike CUDA, this domain need not be treated as an array of thread

blocks (as in Figure 3.12). The index parameter combines information

needed for common cases from the separate CUDA keyword blockIdx.x,
blockDim.x, and threadIdx.x.

Similar to the standard C11 STL algorithm for_each, the parallel_
for_each function template specifies a function to be applied to a collec-

tion of values. The first argument to a parallel_for_each is a C11
AMP extent object that describes the domain over which a data-parallel

computation is performed. In this example, we perform an operation

over every element in an array_view and so the extent passed into the

parallel_for_each is the extent of the CV array view. In the example,

this is accessed through the extent property of the array_view type.

This is a 1D extent and the domain of the computation consists of integer

values 0..(n 2 1).

The second argument to a parallel_for_each is a C11 function

object (or functor). In these examples we use the C11 11 lambda syntax

as a convenient way to build such an object. The core semantics of a par-
allel_for_each is to invoke the function defined by the second parameter

exactly once for every element in the compute domain defined by the

extent argument.

The leading [5] indicates that variables declared inside the containing

function but referenced inside the lambda are “captured” and copied into

data members of the function object built for the lambda. In this case, this

will be the three array_view objects. The function invoked has a single

parameter that is initialized to the location of a thread within the compute

domain. This is again represented by a class template, index, which repre-

sents a short vector of integer values. The rank of an index is the length of

this vector and is the same as the rank of the extent. The index parameter

conveys the same information as the explicitly computed value i in the

CUDA code (see Figure 18.1, line 3). These index values can be used to

select elements in an array view as illustrated on line 11 of Figure 18.2.

A key extension to C11 is shown in this example: the restrict(amp)
modifier. In C11 AMP, the existing C99 keyword restrict is borrowed

and allowed in a new context: it may trail the formal parameter list of a

function (including lambda functions). The restrict keyword is then fol-

lowed by a parenthesized list of one or more restriction specifiers. While

other uses are possible, in C11 AMP there are only two such specifiers

defined: amp and cpu.
The function object passed to parallel_for_each must have its call

operator annotated with a restrict(amp) specification. Any function called

38718.1 Core C11 Amp Features

from the body of that operator must similarly be restricted. The restrict
(amp) specification is analogous to the __device__ keyword in CUDA. It

identifies functions that may be invoked on a hardware accelerator.

Analogously, restrict(cpu) corresponds to the CUDA __host__ keyword

and indicates functions that may be invoked on the host. When no restriction

is specified, the default is restrict(cpu). C11 AMP has no need for an

analog to the CUDA __global__ keyword. A function may have both restric-

tions, restrict(cpu,amp), in which case it may be called in either host or

accelerator contexts and must satisfy the restrictions of both contexts.

The restrict modifier allows a subset of C11 to be defined for use

in a body of code. In the first release of C11 AMP, the restrictions reflect

current common limitations of GPUs when used as accelerators of data-

parallel code. The set of restrictions includes:

• No reference may be made to global or static variables except when

they have a const type qualification and can be reduced to an integer

literal value that is only used as an rvalue.
• A lambda expression used in a parallel_for_each must capture most

variables by value with the exception of C11 AMP array and

texture objects, each described later.

• Targets of function calls may not be virtual methods, pointers to

functions, or pointers to member functions.

• Functions may not be recursively invoked and must be inlineable.

• Only bool, int, unsigned int, long, unsigned long, float, double,
and void may be used as C11 primitive types.

• C11 compound user-defined types are generally permitted but may

not have virtual base classes or bit fields, and all data members and

base classes must be 4-byte aligned.

• No use of dynamic_cast or typeid is permitted.

• No use of goto statements is permitted.

• No use of asm statements is permitted.

• No use of try, catch, or throw is permitted.

These restrictions reflect a common set of limitations for the GPU-

based accelerators broadly available today. Over time we expect these

restrictions to be lifted, and the open specification for C11 AMP includes

a possible roadmap of future versions that are less restrictive. The

restrict(cpu) specifier, of course, permits all of the capabilities of C11
but, because some functions that are part of C11 AMP are accelerator-

specific, they do not have restrict(cpu) versions and so they may only

be used in restrict(amp) code.

388 CHAPTER 18 An Introduction to C11AMP

The restriction specifiers for a function are part of the type of the func-

tion, and function names may be overloaded when they have different

restrictions. Thus, two functions may have identical signatures except one

has the restrict(amp) specification and the other has the restrict(cpu)
specification. This allows context-specific implementations of functions to

be created. A function that has two overloads, one for each context, may

be called from a restrict(amp,cpu) function, and the appropriate over-

load will be invoked that corresponds to whether the function is being

invoked on the host or on an accelerator. In particular, this capability is

used within C11 AMP to allow context-specific implementations of

mathematic operations, but it is also available to application and library

developers.

Inside the body of the restrict(amp) lambda (Figure 18.2, lines

10-12), there are references to the array_view objects declared in the con-

taining scope. These are “captured” into the function object that is created

to implement the lambda. Other variables from the function scope may

also be captured by value. Each of these other values is made available to

each invocation of the function executed on the accelerator. As for any

C11 11 nonmutable lambda, variables captured by value may not be

modified in the body of the lambda. However, the elements of an array_
view may be modified and those modifications will be reflected back to

the host. In this example, any changes to CV made inside the parallel_
for_each will be reflected in the host data C before the function vecAdd
returns.

The final statement on line 13 in Figure 18.2 uses the array_view::
synchronize method to ensure the underlying host data structure is updated

with any changes. This is also discussed in the next section. This operation

is not needed if the host accesses the data through the array view CV, but is

needed to reliably access the data through the host pointer C. The central

purpose of the array_view is to allow coherent access to data from both

the host and the accelerator without the need for explicit synchronization or

data copies.

Figure 18.3 is a more complex example borrowed from Chapter 12 and

Figure 12.3. It performs a calculation on a slice of a 3D data structure. We

use it to illustrate the handing of higher-dimensional array_view objects and

compute domains. The function interface is essentially identical to the source

where the CUDA dim3 type is replaced with a C11 AMP extent,3.

for the grid parameter. The contiguous data pointed to by energygrid
is overlaid with a 3D array_view (named energygrid_view). C11 AMP

follows a row-major storage layout so higher-numbered dimensions are less

38918.1 Core C11 Amp Features

significant in the linear storage order. C11 AMP has mechanisms to create

an array_view that is a section of another array_view and also to project

down to select a lower-dimensional slice. This operation is used on line 6 of

Figure 18.3 to select the portion of the data actually defined by the kernel.

As before, we use the discard_data method to avoid copying the immaterial

existing values to the GPU. We overlay the atoms data with the 2D array_
view named atom_view to simplify the expression of the accesses. This does

not fundamentally change how the actual addressing arithmetic is performed,

but seems to model the problem more accurately.

The data-parallel computation is then over the extent of the slice where

the original sequential loop indices j and i are translated into the

index,2. ji. Except for the indexing of atom_view, and the indexing

into energy_slice, the body of the loop is largely unchanged.

C11 AMP provides a set of basic math operations for use

in restrict(amp) contexts. These functions are accessed by including

amp_math.h (which is not shown). The concurrency::fast_math and

concurrency::precise_math names spaces respectively declare faster and

more precise versions of functions. In the example, we chose to use

#include <amp_math.h>
void cenergy_2(float * energygrid, extent<3> grid,
 float gridspacing, float z, int k,
 const float * atoms, int numatoms) {
 array_view<float,3> energygrid_view(grid, energygrid);
 array_view<float,2> energy_slice = energygrid_view(k);
 energy_slice.discard_data();
 array_view<const float,2> atom_view(numatoms,4,atoms);
 parallel_for_each(energy_slice.extent, [=](index<2> ji)
 restrict(amp) {
 float y = gridspacing * float(ji[0]);
 float x = gridspacing * float(ji[1]);
 float energy = 0.0f;
 for(int n =0; n < numatoms; n++) {
 float dx = x - atom_view(n,0);
 float dy = y - atom_view(n,1);
 float dz = z - atom_view(n,2);
 energy + = atom_view(n,3)/
 precise_math::sqrtf(dx*dx + dy*dy+dz*dz);
 }
 energy_slice[ji] = energy;
 });
 energy_slice.synchronize();
}

FIGURE 18.3

Base coulomb potential calculation code for a 2D slice.

390 CHAPTER 18 An Introduction to C11AMP

precise_math::sqrtf for illustration. In restrict(cpu) code, both of

these namespaces establish aliases to std:: implementations of these func-

tions, so a function that is declared restrict(cpu,amp) can still reference

math functions and get the best implementation for the target.

To summarize this section, the core C11 AMP concepts include an

array_view, which provides a multidimensional view into rectangular

data; an extent, which is the shape of such a view and also the shape of

a data-parallel computation; an index, which is used to select elements of

an array_view or a data-parallel computation; the parallel_for_each,
which launches a data-parallel computation; and restrict(amp) modified

functions, which are evaluated at each point in that computation.

18.2 DETAILS OF THE C11 AMP EXECUTION MODEL
The core C11 AMP features noted in the previous section focus on

expressing data parallelism essentially as a concurrent invocation of a col-

lection of threads that access multidimensional arrays of data. Many accel-

erators today run in a separate memory and cannot directly access host

data. Furthermore, these accelerators run concurrently with the continuing

execution of host code. While minimizing the impact of these concerns,

these aspects are part of the execution model of C11 AMP.

Explicit and Implicit Data Copies

C11 AMP provides the class template array to allocate storage on an

accelerator. Similar to an array_view and with a nearly identical interface,

an array has element type and rank template parameters. The constructor

includes extent information. Unlike an array_view, an array allocates

new storage on an accelerator. The data elements of an array may only be

accessed from that accelerator and all operations that copy data between

an array and host memory are explicit.

To illustrate this, consider Figure 18.4, which rewrites Figure 18.2 to

use explicit array operations. Each array_view is replaced with an array
declaration of the same extent. Lines 5 and 6 show explicit copies from

host data to an array using the C11 AMP copy function template. The

lambda is changed slightly to capture array variables by reference rather

than the default mode of capturing variables by value as in the other

examples. C11 AMP array objects must be captured by reference while

array_view objects must be captured by value for the lambda used in a

39118.2 Details of the C11 AMP Execution Model

parallel_for_each. Line 12 specifies the data to be copied back to the

host after completion of the computation.

On an accelerator that cannot access host memory, all of the operations

in Figure 18.4 also happen for the code in Figure 18.2 but they are per-

formed transparently either when the parallel_for_each is launched or

when array_view::synchronize is called. The intended use of the

explicit mechanisms is to provide more control of memory management

and allow copy operations to be initiated earlier and overlapped with other

computations (although overlapped copies can be achieved through other

means).

When an array_view overlays storage on the host but is accessed on

the accelerator, the data is copied to an unnamed array on that accelerator

and the access is made to that array. This copy of the host data may per-

sist for the remainder of the lifetime of the array_view. This allows the

C11 AMP runtime to avoid redundant copies of the same data to the

accelerator. C11 AMP provides operations to influence how and when

data is copied between these implicit copies and the source storage. Line 8

of Figure 18.2 shows the use of array_view::discard_data. This method

is an assertion that the values stored in the host storage are immaterial, for

example, because they are about to be overwritten. The effect of this asser-

tion is that when the array_view is subsequently used in a parallel_
for_each, no copy is performed from the source data to the implicit array
created for accelerator access.

When an unnamed array is created to hold a copy of data associated

with an array_view, and that array may be modified, the C11 AMP

1
2
3
4
5
6
7
8
9
10
11
12
13

void vecAdd(float* A, float* B, float* C, int n)
{
 array<float,1> AA(n), BA(n);
 array<float,1> CA(n);
 copy(A,AA);
 copy(B,BA);
 parallel_for_each(CA.extent,
 [&AA,&BA,&CA](index<1> i) restrict(amp)
 {
 CA[i] = AA[i] + BA[i];
 });
 copy(CA,C);
}

FIGURE 18.4

Explicit memory and copy management.

392 CHAPTER 18 An Introduction to C11AMP

runtime system is permitted to copy the values back to the host storage

immediately or leave them on the accelerator. If the array_view is des-

tructed or an element is accessed on the host, then values will be copied

promptly to make sure host accesses get the most recent definition. The

method array_view::synchronize is available to force any such copies

to be performed by a particular program point. The method array_view::
refresh indicates to the C11 AMP runtime that all cached copies of the

host data should be discarded. Generally, this method would be used when

the underlying host data is modified directly without accessing through the

array_view. This coherence between implicit cached copies and the

underlying host data is the responsibility of the programmer.

An array_view may also refer to an array. This allows data allocated

on an accelerator to be accessed by the host. Again, where necessary, this

may involve creating copies of the data that are accessible by the host.

The copies of data values between the source storage on the accelerator

and the copies on the host are controlled using the same mechanisms and

functions as before.

Asynchronous Operation

Most C11 AMP operations that initiate work on an accelerator, including

operations to copy data to the accelerator, are asynchronous. This means

that the host operation returns and the host thread continues to the next

statement before the work completes. We illustrate this in Figure 18.5,

which shows three strands of concurrent activity where time logically

flows from the top to the bottom of the figure. On the left is the sequence

of host operations that initiate accelerator operations. In the middle, we

indicate three copy operations that take some duration each. On the right,

we show the actual data-parallel computation that begins after the two

copies to the accelerator complete and finishes before the final copy back

to the host begins. On the host, the final copy-out is called before the data

is ready and that operation blocks until the copy completes. When it

returns, the return statement executes and the function returns with

updated host data.

To provide finer-grain notification on which operation on the accelera-

tor is complete, C11 AMP provides the completion_future class. This

class is analogous to std::shared_future, the C11 standard method for

coordination with asynchronous operations. In particular, it provides the

completion_future::get method that blocks the calling thread until

the asynchronous operation completes. C11 AMP has variants of the

39318.2 Details of the C11 AMP Execution Model

methods discussed here that are nonblocking and return a completion_
future. In particular there are array_view::synchronize_async and vari-

ous overloads of copy_async. These will initiate the data transfer implied

and return a synchronization object immediately rather than blocking the

thread until the operation has completed. Figure 18.6 provides a simple

illustration where we assume that following the vector add computation

there is some other computation involving the unmodified host data A
and B. Upon completion of that other processing, the host then waits for

the results from the parallel_for_each to be available on the host by

using the completion_future::get call on the object returned from the

array_view::synchronize_async method. After the get call returns,

the host vector C will hold the results.

FIGURE 18.5

Concurrent host/accelerator execution.

FIGURE 18.6

Overlapped accelerator and host processing.

394 CHAPTER 18 An Introduction to C11AMP

As discussed in Chapter 3, CUDA has an explicit notion of global

memory, which is accessible by all threads in a kernel. In C11 AMP this

concept is only available by having array objects associated with an

accelerator. C11 AMP does not provide a facility for having file-scope

objects accessible by functions running on the accelerator the way CUDA

interprets __device__ as a qualification on file-scope object declarations.

Similarly, C11 AMP does not expose a concept of constant memory

although values captured in the top-level lambda passed to a parallel_
for_each may be stored in constant memory. The differences between

CUDA and C11 AMP represent conscious design choices for C11
AMP to simplify the programming model. Some elements of CUDA

reflect specifics of current GPU architectures that are not necessarily pres-

ent in other forms of accelerators or may be significantly less common in

the future. C11 AMP chose to leave these as implementation details

rather than part of the model.

Section Summary

In this section we have discussed the features of C11 AMP that support

a discrete accelerator that does not share memory with the host and runs

concurrently with host computations. The key features are the array data

container, explicit copy operations, and explicit asynchronous work

mechanisms. We also indicated when and where such copies are made

when the more flexible array_view is used when targeting discrete accel-

erators. We discussed the relationship of CUDA memory types with that

of C11 AMP.

18.3 MANAGING ACCELERATORS
A computer system may include multiple accelerators suitable for imple-

menting C11 AMP data-parallel computations. This includes both

specialized hardware accelerators such as GPUs and simply the use of

multicore CPUs with SIMD instructions. A system may also have multiple

GPUs that may or may not have similar hardware characteristics. C11
AMP has mechanisms to enumerate available accelerators and to manage

how work is mapped to those accelerators.

The class accelerator is the C11 AMP abstraction used for a

specific mechanism for implementing data parallelism. As shown in

Figure 18.7, the accelerator::get_all static method returns a vector of

39518.3 Managing Accelerators

available accelerators in the system. A few properties associated with each

accelerator may be used to select one when special requirements are

required. For example, support of double-precision data types is an

optional feature. For compute-intensive applications, it may be desirable

to avoid placing work on the GPU that is used to drive an interactive dis-

play. Other properties include the amount of memory dedicated to the

accelerator (accelerator::dedicated_memory) and a std::wstring that

uniquely identifies the device (accelerator::device_path). The example

uses the STL std::find algorithm to capture this search.

In addition to finding a specific accelerator, a system may support mul-

tiple suitable accelerators. C11 AMP enables off-loading work from one

or more host threads to multiple accelerators. All such accelerator

instances are returned by the call to accelerator::get_all and they may

be used concurrently by an application.

In C11 AMP, an accelerator_view is an object that refers to a spe-

cific underlying accelerator and can be used to specify that accelerator
for the purpose of indicating where an array is allocated and where work

for a particular parallel_for_each should be executed. Similar to a

CUDA stream, (cudaStream_t), various operations performed against a

particular accelerator_view are performed in order but operations on dif-

ferent accelerator_views have no defined order.

In C11 AMP there is a default accelerator that is automatically

selected by the runtime but can be explicitly set using the accelerator::
set_default static method, which takes a device path string parameter.

Each accelerator has a default accelerator_view (accelerator::

FIGURE 18.7

Example of finding an accelerator.

396 CHAPTER 18 An Introduction to C11AMP

default_view). The default view of the default accelerator is used for

allocating an array when none is specified. A parallel_for_each may

also have an explicit accelerator_view. Figure 18.8 is a variant of the

vector add sample that makes use of defaults explicit. It is not necessary

to use explicit arrays to direct work using an accelerator_view. Even
when all data is accessed with array_view objects that overlay host data,

a parallel_for_each may have an explicit accelerator_view indicating

where the work should be performed.

Figure 18.9 is another illustration of explicit use of an accelerator_
view. Here we provide a modified vector add operation that is parameter-

ized by an accelerator_view that identifies where the work should be

performed. The function determines the memory available on the accel-
erator, converted from kilobytes to bytes and used to determine the larg-

est block size (block) where three blocks may be stored concurrently.

Line 8 then loops over the input vectors in chunks of this size. For each

chunk, a computation is launched as was done in Figure 18.2 but here the

accelerator is explicitly specified by the first parameter, acc, to the paral-
lel_for_each. On line 17, we initiate an asynchronous transfer of the

results back to the host data structure. The completion_future returned

by this operation is moved into a vector of such results. After all opera-

tions are started, lines 19 and 20 iterate over the vector of results using

C11 STL methods and wait for each one to complete by calling the get
method before the function returns to the caller.

void vecAdd (float* A, float* B, float* C, intn)
{
 accelerator acc;
 accelerator_viewview(acc.default_view);
 array<float,1> AA(n,view), BA(n,view);
 array<float,1> CA(n,view);
 copy(A,AA);
 copy(B,BA);
 parallel_for_each(view, CA.extent,
 [&AA,&BA,&CA](index<1> i) restrict(amp)
 {
 CA[i] = AA[i] + BA[i];
 });
 copy(CA,C);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

FIGURE 18.8

Explicit accelerator use.

39718.3 Managing Accelerators

18.4 TILED EXECUTION
This section touches on a topic important for some scenarios. We discuss

a “tiled” version of data parallelism and the additional tools for optimizing

memory available in that model.

As described earlier, a data-parallel computation has an associated

computational domain defined by a C11 AMP extent object. A compu-

tational domain of rank 3 or less may also be blocked into regular, rectan-

gular subdomains called tiles. The widths of these tiles must be compile-

time constants. The threads that are associated with the same tile may

share variables and participate in barrier synchronization. In CUDA, the

term block is used to describe these groups of threads. A new storage class

is also added to C11 AMP, tile_static, to indicate a variable that has

a single instance per-tile that is shared by all threads (in CUDA this is

indicated with the __shared__ keyword). Chapter 5 discusses the motiva-

tion for using tiling and tile-shared variables to optimize memory band-

width. Objects with this storage class may only be accessed in restrict
(amp) code.

We illustrate tiling as was done in Chapter 5 by using matrix multipli-

cation. Figure 5.12 shows a CUDA kernel that we expand here into a host

FIGURE 18.9

Explicit accelerator with asynchronous transfers.

398 CHAPTER 18 An Introduction to C11AMP

function (Figure 18.10) containing the kernel, as well as assuming host

pointers are used to refer to dense arrays following the interface from

Chapter 5. As before, we overlay array_view objects on top of the host

data and discard the output data that is about to be overwritten so it is not

copied to the accelerator.

A tiled_extent is a form of extent that captures tile dimensions as

template parameters. C11 AMP only supports tiling for one, two, and

three dimensions, and the rank of a tiled_extent object is inferred from

the number of tile dimensions specified. In this case, the tiled_extent
has rank 2 (line 6).

The parallel_for_each method has an overload for tiled_extent.
The structure is the same as before and the lambda function will be

invoked once for each element in the compute domain. C11 AMP

requires that the extent of the compute domain must be evenly divisible

by the tile size. In this example, Width must be multiples of TILE_WIDTH.
When this condition is not met, a runtime exception is thrown.

FIGURE 18.10

Tiled matrix multiplication; compare Figure 5.12.

39918.4 Tiled Execution

In the case of a parallel_for_each for a tiled_extent, the parameter

to the lambda must be a tiled_index instead of an index. The tiled_
index is a class template where again the tile sizes are captured as tem-

plate parameters. The tiled_index (t_idx in Figure 18.10) provides both

a mapping for each thread into the compute domain (t_idx.global) as

well as the relative position of a thread within its tile (t_idx.local).
Line 9 declares a tile_static array named Mds that is shared by

all threads in a tile. It will hold a copy of the values in M that are needed

to perform a sub-block matrix multiplication computation for all of the

threads in the tile. Similarly, line 10 declares analogous Nds to hold

sub-blocks of N.
As in Figure 5.12, the loop on Figure 18.10, line 14, multiplies a block-

row times a block column in tile-size chunks. The variable Width is used

uniformly by all threads and is captured from the containing function

scope for reuse in the lambda automatically. The threads in the tile cooper-

atively copy blocks of M and N into tile_static storage. Line 17 is the

barrier synchronization point where all threads in the tile wait for the

stores into shared variables to complete. A second barrier on line 20

makes sure all of the reads from shared variables are completed before

writes on the next iteration begin. In C11 AMP, the object of type

tile_index includes a tile_barrier object as a data member and that

object provides methods to perform barriers. C11 AMP provides differ-

ent forms of barriers that indicate whether the barrier applies to just

tile_static data, global data, or both. Here we only need to protect

tile_static data and so could use wait_with_tile_static_memory_
fence, but chose to use the wait method to match the source from

Chapter 5.

Figure 18.11 illustrates some details of C11 AMP tiling. It shows a

203 20 compute domain as a grid of small squares and the variable e in

the code fragment. Rows (dimension 0) are shown as numbered from top

to bottom and columns (dimension 1) from left to right. This domain

might be blocked into 83 8 tiles. These tiles are illustrated with the larger

black squares and the variable te or alternately the variable te2, which

shows the extent::tile method template for creating a tiled_extent.
We also illustrate the use of C11 11 auto keyword to infer types of vari-

ables from their initializers.

Note that the tile size in this example does not evenly divide the

dimensions of the compute domain. A tiled parallel_for_each requires

the extent be a multiple of the tile size in each dimension, and the devel-

oper must explicitly handle the boundary cases when this is not the case.

400 CHAPTER 18 An Introduction to C11AMP

The tiled_extent class template provides methods to either pad or trun-

cate the underlying extent. In the example, variable pte corresponds to the

padded exetent, extent,2.(24,24), while the variable tte corresponds

to the truncated extent, extent,2.(16,16).
The tiled_index parameter supports a variety of members to facilitate

tiled computations. The global member is an index,2. holding the

position in the underlying compute domain. The solid square in the

figure cooresponds to position (9,6) in the compute domain. The set of

tiles (large squares) forms a domain, extent,2.(3,3) in this case,

which is returned by the tile_extent member. The tile member is an

index,2. holding the position of a point projected into this domain. The

highlighed point (9,6) is in tile (1,0). The single lightly shaded square at

the left edge is the first element in each dimension in the same tile as point

(9,6). This is available as tile_origin and in this example corresponds to

the global index (8,0). Finally, the points within a tile can be thought of as

a small domain and the local member returns the position in this space

(1,6) formed basically by subtracting tile_origin from global.

18.5 C11 AMP GRAPHICS FEATURES
The primary motivation for C11 AMP is to support data parallelism as

an important algorithm pattern for general computing. Rendering and

imaging processing are very important mainstream workloads for which

C11 AMP includes some more specialized support, discussed briefly in

FIGURE 18.11

Illustration of tiling 203 20 compute domain.

40118.5 C11 AMP Graphics Features

this section. These facilities include normalized floating points, short vec-

tor types, textures, and, optionally on Microsoft platforms, interoperations

with DirectX. Many of these features are segregated into a separate name-

space, concurrency::graphics. Figure 18.12 illustrates some of the types

defined in that namespace and discussed in this section.

C11 AMP provides two types, norm and unorm, which provide arith-

metic that is floating point in nature but of bounded range. The norm type

holds signed values with magnitude no more than one while the unorm
type holds non-negative values with magnitude no more than one.

Common arithmetic operations are defined on these types where result

values that would exceed the range are forced to the extreme value

(“clamped”). These types may be mixed with C11 types and convert to

float. They may also be used as element types for C11 AMP composite

types array, array_view, and the texture objects described in the

following.

Graphics programs frequently manipulate short vectors of primitive

types. C11 AMP supports graphics programming by including definitions

of these. For C11 AMP types, int, unsigned int (as uint), float,
double, norm, and unorm, and for each vector length 2, 3, and 4, there

exist types such as int_2, uint_3, and float_4. Each of these holds a

number of component values that are accessed by name. The names sup-

ported are x, y, z, and w, or alternately r, g, b, and w. Thus, given the

declarations in Figure 18.12, we might access a component f4.z, which is

FIGURE 18.12

Example of types from concurrency::graphics.

402 CHAPTER 18 An Introduction to C11AMP

a single float that can be used as either an rvalue or an lvalue. Certain
compound patterns are also supported, such as f4.xy, which corresponds

to a short vector of suitable length, float_2 in this case, that may be used

as either an rvalue or lvalue. Assignment and arithmetic on short vectors

is done in a component-wise style with scalar arguments promoted to vec-

tors with that value in each component.

A texture is a special form of array that allows data-parallel code to

access values that are stored using reduced precision. This is a common

representation for image data and is the only method in the first version of

C11 AMP to access partial word data types in a restrict(amp) context.

Like an array, a texture is a class template that is parameterized by an

element type and a rank. The set of allowed element types is constrained

to be a subset of the restrict(amp) compatible primitive types and their

short vector variants.

When a texture is constructed, in addition to the extent and a data

source, a final unsigned integer argument indicates the number of bits

per primitive data value used to store the value. Line 15 shows an exam-

ple texture with a four-wide vector of unsigned normalized floating-point

values. The 16U passed to the constructor indicates each of these values

is stored with only 16 bits of information. Not all combinations of data

type, vector length, and storage width are supported (details in the

specification are listed in the C11 AMP open specification, http://blogs.

msdn.com/b/nativeconcurrency/archive/2012/02/03/c-amp-open-spec-

published.aspx).

A texture is a storage container like an array and may be associated

with a particular accelerator_view. A texture is also indexed like an

array with overloads of the index operator with an index instance of

suitable rank as a parameter. As for array, these operations are restrict
(amp) and may not be used in the host code. Overloads of the function

template copy support transfers to and from host data structures.

A subset of textures may be written to directly and this is done explic-

itly via a texture::set method. For texture formats for which writing is

not directly supported by hardware accelerators, C11 AMP provides the

writeonly_texture_view class template illustrated with the variable

named wotv (line 16 of Figure 18.12). The set method on this object may

be used in a restrict(amp) context that is defining values in a texture.

Beyond support for these types, C11 AMP on Microsoft platforms

includes specific features to enable interoperation with the DirectX frame-

work. These interfaces are available in two namespaces : concurrency::
direct3d contains make_array, get_buffer and create_accelerator_view

40318.5 C11 AMP Graphics Features

http://blogs.msdn.com/b/nativeconcurrency/archive/2012/02/03/c-amp-open-spec-published.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/02/03/c-amp-open-spec-published.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/02/03/c-amp-open-spec-published.aspx

while concurrency::graphics::direct3d contains make_texture. They

include the following capabilities:

• Treating an existing Direct 3D device interface pointer as a C11 AMP

acclerator_view.
• Treating an existing Direct 3D buffer interface pointer as a C11 AMP

array.
• Treating an existing Direct 3D texture interface pointer as a C11 AMP

texture.

These capabilities allow C11 AMP to provide a C11 language solu-

tion for GPU compute scenarios that integrates smoothly with the DirectX

rendering framework.

Figure 18.13 illustrates the interop features. Function my_rotate con-

sumes a vector of vertex data that is located on the host. Parameter d3dde-
vice is the existing DirectX interface that is used to first construct an

accelerator_view and then an array. The parallel_for_each performs

a rotation of the vertices where the result is left on the accelerator. Since

the array instance vertices is located on a particular accelerator_view,
the parallel_for_each will be executed on that same accelerator_view.
We extract the underlying buffer object (typed only as IUnknown) and

return this to the caller for subsequent use in scene rendering.

FIGURE 18.13

Example DirectX interop—rotate vertex list.

404 CHAPTER 18 An Introduction to C11AMP

18.6 SUMMARY
This chapter has presented an overview of C11 AMP, a small extension

to C11 11 to support hardware acceleration of data-parallel computa-

tions. The discussion is not complete, but the full specification is available

at http://blogs.msdn.com/b/nativeconcurrency/archive/2012/02/03/c-amp-

open-spec-published.aspx. The focus of C11 AMP is to create features

that integrate well into modern C11 and leverage features such as tem-

plates, lambdas, and futures to provide a highly productive set of abstrac-

tions that compose with other aspects of C11 and parallelism. The

features are layered to allow use by a very broad set of developers with

limited knowledge of computer architecture, as well as providing access to

the rich execution model needed for the most performance-critical scenar-

ios. Lowering the barrier to expressing data parallelism and ensuring por-

tability across hardware platforms will help more applications deliver the

benefits of hardware acceleration and heterogeneous computing.

18.7 EXERCISES
18.1. Translate the simple, untiled version of matrix multiplication into

C11 AMP. The CUDA kernel is shown in Figure 4.7. Write a host

function that applies this computation to three

array_view,float,2. inputs. Rather than implementing C 5 A�B,
accumulate in the output and implement C15 A�B.

18.2. Given an array view of rank 2, X, index,2. ij, and extent,2.

e, the operation X.section(ij,e) returns a new array_view that

overlays the same data as X. If we denote this new view as S, then
for all valid indices idx of S we have S[idx] is the same location as

X[idx1ij].
Assume now there are three array_view,float,2. objects, A,

B, and C. Assume they will not fit simultaneously in the

dedicated_memory of the accelerator in the system. Use the

array_view::section method, explicit array objects, and the

matrix multiply building block from the first exercise to implement

matrix multiplication for the large arrays.

18.3. Assume std::vector gpu holds two elements of type

accelerator_view that refer to different but similar GPUs in a

40518.7 Exercises

http://blogs.msdn.com/b/nativeconcurrency/archive/2012/02/03/c-amp-open-spec-published.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/02/03/c-amp-open-spec-published.aspx

system. Modify the solution to Exercise 18.3 to use both

accelerators to implement the work.

18.4. Translate the tiled version of matrix transpose from Exercise 4.2

into C11 AMP.

18.5. The inner loop in Figure 18.3 redundantly loads data through

atom_view that is used in multiple threads and these references are

not coalesced (see Section 6.2). Rewrite the function in Figure 18.3

to use tile_static memory to improve the memory efficiency for

accessing the data in atom_view.

406 CHAPTER 18 An Introduction to C11AMP

CHAPTER

19Programming a
Heterogeneous Computing
Cluster

With Special Contributions from Isaac Gelado and Javier Cabezas

CHAPTER OUTLINE

19.1 Background ... 408

19.2 A Running Example .. 408

19.3 MPI Basics .. 410

19.4 MPI Point-to-Point Communication Types .. 414

19.5 Overlapping Computation and Communication .. 421

19.6 MPI Collective Communication.. 431

19.7 Summary ... 431

19.8 Exercises... 432

References ... 433

So far we have focused on programming a heterogeneous computing sys-

tem with one host and one device. In high-performance computing (HPC),

many applications require the aggregate computing power of a cluster of

computing nodes. Many of the HPC clusters today have one or more hosts

and one or more devices in each node. Historically, these clusters have

been programmed predominately with the Message Passing Interface

(MPI). In this chapter, we will present an introduction to joint MPI/CUDA

programming. Readers should be able to easily extend the material to joint

MPI/OpenCL, MPI/OpenACC, and so on. We will only present the key

MPI concepts that programmers need to understand to scale their heteroge-

neous applications to multiple nodes in a cluster environment. In particu-

lar, we will focus on domain partitioning, point-to-point communication,

and collective communication in the context of scaling a CUDA kernel

into multiple nodes.

407

19.1 BACKGROUND
While there was practically no top supercomputer using GPUs before

2009, the need for better energy efficiency has led to fast adoption of

GPUs in recent years. Many of the top supercomputers in the world today

use both CPUs and GPUs in each node. The effectiveness of this approach

is validated by their high rankings in the Green 500 list, which reflects

their high energy efficiency.

The dominating programming interface for computing clusters today is

MPI [Gropp1999], which is a set of API functions for communication

between processes running in a computing cluster. MPI assumes a distributed

memory model where processes exchange information by sending messages

to each other. When an application uses API communication functions, it

does not need to deal with the details of the interconnect network. The MPI

implementation allows the processes to address each other using logical num-

bers, much the same way as using phone numbers in a telephone system: tele-

phone users can dial each other using phone numbers without knowing

exactly where the called person is and how the call is routed.

In a typical MPI application, data and work are partitioned among pro-

cesses. As shown in Figure 19.1, each node can contain one or more pro-

cesses, shown as clouds within nodes. As these processes progress, they

may need data from each other. This need is satisfied by sending and

receiving messages. In some cases, the processes also need to synchronize

with each other and generate collective results when collaborating on a

large task. This is done with collective communication API functions.

19.2 A RUNNING EXAMPLE
We will use a 3D stencil computation as a running example. We assume

that the computation calculates heat transfer based on a finite difference

Node Node Node Node

Interconnect

FIGURE 19.1

Programmer’s view of MPI processes.

408 CHAPTER 19 Programming a Heterogeneous Computing Cluster

method for solving a partial differential equation that describes the physi-

cal laws of heat transfer. In each step, the value of a grid point is calcu-

lated as a weighted sum of neighbors (north, east, south, west, up, down)

and its own value from the previous time step. To achieve high numerical

stability, multiple indirect neighbors in each direction are also used in the

computation of a grid point. This is referred to as a higher-order stencil

computation. For the purpose of this chapter, we assume that four points

in each direction will be used. As shown in Figure 19.2, there are a total

of 24 neighbor points for calculating the next step value of a grid point.

As shown in Figure 19.2, each point in the grid has an x, y, and z coordi-

nate. For a grid point where the coordinate value is x5 i, y5 j, and z5 k,

or (i,j,k), its 24 neighbors are (i2 4,j,k), (i2 3,j,k), (i2 2,j,k), (i2 1,j,k),

(i1 1,j,k), (i1 2,j,k), (i1 3,j,k), (i1 4,j,k), (i,j2 4,k), (i,j2 3,k), (i,j2 2,k),

(i,j2 1,k), (i,j1 1,k), (i,j1 2,k), (i,j1 3,k), (i,j1 4,k), (i,j,k2 4), (i,j,k2 3),

(i,j,k2 2), (i,j,k2 1), (i,j,k1 1), (i,j,k1 2), (i,j,k1 3), and (i,j,k1 4). Since

the next data value of each grid point is calculated based on the current

data values of 25 points (24 neighbors and itself), the type of computation

is often called 25-stencil computation.

We assume that the system is modeled as a structured grid, where spac-

ing between grid points is constant within each direction. This allows us

to use a 3D array where each element stores the state of a grid point. The

physical distance between adjacent elements in each dimension can be

represented by a spacing variable. Figure 19.3 illustrates a 3D array that

represents a rectangular ventilation duct, with x and y dimensions as the

cross-sections of the duct and the z dimension the direction of the heat

flow along the duct.

FIGURE 19.2

A 25-stencil computation example, where the neighbors are in the x, y, and z

directions.

40919.2 A Running Example

We assume that the data is laid out in the memory space and that x is

the lowest dimension, y is the next, and z is the highest. That is, all ele-

ments with y5 0 and z5 0 will be placed in consecutive memory loca-

tions according to their x coordinate. Figure 19.4 shows a small example

of the grid data layout. This small example has only 16 data elements in

the grid: two elements in the x dimension, two in the y dimension, and

four in the z dimension. Both x elements with y5 0 and z5 0 are placed

in memory first. They are followed by all elements with y5 1 and z5 0.

The next group will be elements with y5 0 and z5 1.

When one uses a cluster, it is common to divide the input data into sev-

eral partitions, called domain partitions, and assign each partition to a

node in the cluster. In Figure 19.3, we show that the 3D array is divided

into four domain partitions: D1, D2, D3, and D4. Each of the partitions

will be assigned to an MPI compute process.

The domain partition can be further illustrated with Figure 19.4. The

first section, or slice, of four elements (z5 0) in Figure 19.4 is in the first

partition, the second section (z5 1) the second partition, the third section

(z5 2) the third partition, and the fourth section (z5 3) the fourth parti-

tion. This is obviously a toy example. In a real application, there are typi-

cally hundreds or even thousands of elements in each dimension. For the

rest of this chapter, it is useful to remember that all elements in a z slice

are in consecutive memory locations.

19.3 MPI BASICS
Like CUDA, MPI programs are based on the SPMD (single program, mul-

tiple data) parallel execution model. All MPI processes execute the same

y z

x

D1

D2

D3

D4

FIGURE 19.3

3D grid array for modeling the heat transfer in a duct.

410 CHAPTER 19 Programming a Heterogeneous Computing Cluster

program. The MPI system provides a set of API functions to establish

communication systems that allow the processes to communicate with

each other. Figure 19.5 shows five essential API functions that set up and

tear down communication systems for an MPI application. Figure 19.6

shows a simple MPI program that uses these API functions. A user needs

to supply the executable file of the program to the mpirun command or

the mpiexec command in a cluster.

Each process starts by initializing the MPI runtime with a MPI_Init()
call. This initializes the communication system for all the processes run-

ning the application. Once the MPI runtime is initialized, each process

calls two functions to prepare for communication. The first function is

MPI_Comm_rank(), which returns a unique number to calling each process,

called an MPI rank or process ID. The numbers received by the processes

vary from 0 to the number of processes minus 1. MPI rank for a process is

equivalent to the expression blockIdx.x�blockDim.x1threadIdx.x for a

CUDA thread. It uniquely identifies the process in a communication, simi-

lar to the phone number in a telephone system.

The MPI_Comm_rank() takes two parameters. The first one is an MPI

built-in type MPI_Comm that specifies the scope of the request. Values of

the MPI_Comm are commonly referred to as a communicator. MPI_Comm and

other MPI built-in types are defined in a mpi.h header file that should be

included in all C program files that use MPI. This is similar to the cuda.h
header file for CUDA programs. An MPI application can create one or

more intracommunicators. Members of each intracommunicator are MPI

processes. MPI_Comm_rank() assigns a unique ID to each process in an

intracommunicator. In Figure 19.6, the parameter value passed is

MPI_COMM_WORLD, which means that the intracommunicator includes all

MPI processes running the application.

The second parameter to the MPI_Comm_rank() function is a pointer to

an integer variable into which the function will deposit the returned rank

value. In Figure 19.6, a variable pid is declared for this purpose. After the

MPI_Comm_rank() returns, the pid variable will contain the unique ID for

the calling process.

x=1x=0

D z=0
y=0

x=1x=0 x=1x=0 x=1x=0 x=1x=0 x=1x=0 x=1x=0

z=0
y=1

z=1
y=0

z=1
y=1

z=2
y=0

z=2
y=1

z=3
y=0

x=1x=0

z=3
y=1

FIGURE 19.4

A small example of memory layout for the 3D grid.

41119.3 MPI Basics

The second API function is MPI_Comm_size(), which returns the total

number of MPI processes running in the intracommunicator. The

MPI_Comm_size() function takes two parameters. The first one is an MPI

• int MPI_Init (int*argc, char***argv)
– Initialize MPI

• int MPI_Comm_rank (MPI_Comm comm, int *rank)
– Rank of the calling process in group of comm

• int MPI_Comm_size (MPI_Comm comm, int *size)
– Number of processes in the group of comm

• int MPI_Comm_abort (MPI_Comm comm)
– Terminate MPI comminication connection with an error flag

• int MPI_Finalize ()
– Ending an MPI application, close all resources

FIGURE 19.5

Five basic MPI�API functions for establishing and closing a communication

system.

#include "mpi.h“

int main(int argc, char *argv[]) {
int pad = 0, dimx = 480+pad, dimy = 480, dimz = 400, nreps = 100;
int pid=-1, np=-1;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
MPI_Comm_size(MPI_COMM_WORLD, &np);

if(np< 3) {
if(0 == pid) printf(“Needed 3 or more processes.\n");
MPI_Abort(MPI_COMM_WORLD, 1); return 1;

}

}

if(pid < np - 1)
compute_process(dimx, dimy, dimz/ (np - 1), nreps);

else
data_server(dimx,dimy,dimz);

MPI_Finalize();
return 0;

FIGURE 19.6

A simple MPI main program.

412 CHAPTER 19 Programming a Heterogeneous Computing Cluster

built-in type MPI_Comm that gives the scope of the request. In Figure 19.6,

the scope is MPI_COMM_WORLD. Since we use MPI_COMM_WORLD, the returned

value is the number of MPI processes running the application. This is

requested by a user when the application is submitted using the mpirun
command or the mpiexec command. However, the user may not have

requested a sufficient number of processes. Also, the system may or may

not be able to create all the processes requested. Therefore, it is good prac-

tice for an MPI application program to check the actual number of pro-

cesses running.

The second parameter is a pointer to an integer variable into which the

MPI_Comm_size() function will deposit the return value. In Figure 19.6, a

variable np is declared for this purpose. After the function returns, the var-

iable np contains the number of MPI processes running the application. In

Figure 19.6, we assume that the application requires at least three MPI

processes. Therefore, it checks if the number of processes is at least three.

If not, it calls the MPI_Comm_abort() function to terminate the communi-

cation connections and return with an error flag value of 1.

Figure 19.6 also shows a common pattern for reporting errors or other

chores. There are multiple MPI processes but we need to report the error

only once. The application code designates the process with pid50 to do

the reporting.

As shown in Figure 19.5, the MPI_Comm_abort() function takes two

parameters. The first is the scope of the request. In Figure 19.6, the scope

is all MPI processes running the application. The second parameter is a

code for the type of error that caused the abort. Any number other than 0

indicates that an error has happened.

If the number of processes satisfies the requirement, the application

program goes on to perform the calculation. In Figure 19.6, the application

uses np-1 processes (pid from 0 to np-2) to perform the calculation and

one process (the last one of which the pid is np-1) to perform an input/

output (I/O) service for the other processes. We will refer to the process

that performs the I/O services as the data server and the processes that per-

form the calculation as compute processes. In Figure 19.6, if the pid of a

process is within the range from 0 to np-2, it is a compute process and

calls the compute_process() function. If the process pid is np-1, it is the
data server and calls the data_server() function.

After the application completes its computation, it notifies the MPI run-

time with a call to the MPI_Finalize(), which frees all MPI communica-

tion resources allocated to the application. The application can then exit

with a return value 0, which indicates that no error occurred.

41319.3 MPI Basics

19.4 MPI POINT-TO-POINT COMMUNICATION TYPES
MPI supports two major types of communication. The first is the point-to-

point type, which involves one source process and one destination process.

The source process calls the MPI_Send() function and the destination pro-

cess calls the MPI_Recv() function. This is analogous to a caller dialing a

call and a receiver answering a call in a telephone system.

Figure 19.7 shows the syntax for using the MPI_Send() function. The

first parameter is a pointer to the starting location of the memory area

where the data to be sent can be found. The second parameter is an integer

that gives that number of data elements to be sent. The third parameter is

of an MPI built-in type MPI_Datatype. It specifies the type of each data

element being sent. The MPI_Datatype is defined in mpi.h and includes

MPI_DOUBLE (double precision, floating point), MPI_FLOAT (single preci-

sion, floating point), MPI_INT (integer), and MPI_CHAR (character). The

exact sizes of these types depend on the size of the corresponding C types

in the host processor. See the MPI programming guild for more sophisti-

cated uses of MPI types [Gropp 1999].

The fourth parameter for MPI_Send is an integer that gives the MPI

rank of the destination process. The fifth parameter gives a tag that can be

used to classify the messages sent by the same process. The sixth parame-

ter is a communicator that selects the processes to be considered in the

communication.

Figure 19.8 shows the syntax for using the MPI_Recv() function. The

first parameter is a pointer to the area in memory where the received data

should be deposited. The second parameter is an integer that gives the

maximal number of elements that the MPI_Recv() function is allowed to

receive. The third parameter is an MPI_Datatype that specifies the type

• int MPI_Send (void *buf, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm)
– Buf: starting address of send buffer (pointer)
– Count: Number of elements in send buffer (nonnegative integer)
– Datatype: Datatype of each send buffer element (MPI_Datatype)
– Dest: Rank of destination (integer)
– Tag: Message tag (integer)
– Comm: Communicator (handle)

FIGURE 19.7

Syntax for the MPI_Send() function.

414 CHAPTER 19 Programming a Heterogeneous Computing Cluster

(size) of each element to be received. The fourth parameter is an integer

that gives the process ID of the source of the message.

The fifth parameter is an integer that specifies the particular tag value

expected by the destination process. If the destination process does not want

to be limited to a particular tag value, it can use MPI_ANY_TAG, which means

that the receiver is willing to accept messages of any tag value from the

source.

We will first use the data server to illustrate the use of point-to-point

communication. In a real application, the data server process would typi-

cally perform data input and output operations for the compute processes.

However, input and output have too much system-dependent complexity.

Since I/O is not the focus of our discussion, we will avoid the complexity

of I/O operations in a cluster environment. That is, instead of reading data

from a file system, we will just have the data server initialize the data

with random numbers and distribute the data to the compute processes.

The first part of the data server code is shown in Figure 19.9.

The data server function takes four parameters. The first three parameters

specify the size of the 3D grid: number of elements in the x dimension is

dimx, the number of elements in the y dimension is dimy, and the number of

elements in the z dimension is dimz. The fourth parameter specifies the num-

ber of iterations that need to be done for all the data points in the grid.

In Figure 19.9, line 1 declares variable np that will contain the number

of processes running the application. Line 2 calls MPI_Comm_size(), which
will deposit the information into np. Line 3 declares and initializes several

helper variables. The variable num_comp_procs contains the number of

compute processes. Since we are reserving one process as the data server,

there are np-1 compute processes. The variable first_proc gives the

• int MPI_Recv (void *buf, int count,
MPI_Datatype datatype, int source, int tag,
MPI_Comm comm, MPI_Status *status)
– buf: starting address of receive buffer (pointer)
– Count: Maximum number of elements in receive buffer (integer)
– Datatype: Datatype of each receive buffer element (MPI_Datatype)
– Source: Rank of source (integer)
– Tag: Message tag (integer)
– Comm: Communicator (handle)
– Status: Status object (Status)

FIGURE 19.8

Syntax for the MPI_Recv() function.

41519.4 MPI Point-to-Point Communication Types

process ID of the first compute process, which is 0. The variable

last_proc gives the process ID of the last compute process, which is

np-2. That is, line 3 designates the first np-1 processes, 0 through np-2, as
compute processes. This reflects the design decision and the process with

the largest rank serves as the data server. This decision will also be

reflected in the compute process code.

Line 4 declares and initializes the num_points variable that gives the

total number of grid data points to be processed, which is simply the prod-

uct of the number of elements in each dimension, or dimx � dimy � dimz.
Line 5 declares and initializes the num_bytes variable that gives the total

number of bytes needed to store all the grid data points. Since each grid

data point is a float, this value is num_points � sizeof(float).
Line 6 declares two pointer variables: input and output. These two

pointers will point to the input data buffer and the output data buffer,

respectively. Lines 7 and 8 allocate memory for the input and output buf-

fers and assign their addresses to their respective pointers. Line 9 checks

if the memory allocations were successful. If either of the memory alloca-

tions fail, the corresponding pointer will receive a NULL pointer from the

malloc() function. In this case, the code aborts the application and reports

an error.

void data_server(int dimx, int dimy, int dimz, int nreps) {
1. int np,
/* Set MPI Communication Size */
2. MPI_Comm_size(MPI_COMM_WORLD, &np);

3. num_comp_nodes = np – 1, first_node = 0, last_node = np - 2;
4. unsigned int num_points = dimx * dimy * dimz;
5. unsigned int num_bytes = num_points * sizeof(float);
6. float *input=0, *output=0;
 /* Allocate input data */
7. input = (float *)malloc(num_bytes);
8. output = (float *)malloc(num_bytes);
9. if(input == NULL || output == NULL) {
 printf("server couldn't allocate memory\n");
 MPI_Abort(MPI_COMM_WORLD, 1);
 }
 /* Initialize input data */
10. random_data(input, dimx, dimy ,dimz , 1, 10);
 /* Calculate number of shared points */
11. int edge_num_points = dimx * dimy * (dimz / num_comp_nodes + 4);
12. int int_num_points = dimx * dimy * (dimz / num_comp_nodes + 8);
13. float *send_address = input;

FIGURE 19.9

Data server process code (part 1).

416 CHAPTER 19 Programming a Heterogeneous Computing Cluster

Lines 11 and 12 calculate the number of grid point array elements that

should be sent to each compute process. As shown in Figure 19.3, there

are two types of compute processes. The first process (process 0) and the

last process (process 3) compute an “edge” partition that has neighbors

only on one side. Partition 0 assigned to the first process has a neighbor

only on the right side (partition 1). Partition 3 assigned to the last process

has a neighbor only on the left side (partition 2). We call the compute pro-

cesses that compute edge partitions the edge processes.

Each of the rest of the processes computes an internal partition that has

neighbors on both sizes. For example, the second process (process 1) com-

putes a partition (partition 1) that has a left neighbor (partition 0) and a

right neighbor (partition 2). We call the processes that compute internal

partitions internal processes.

Recall that each calculation step for a grid point needs the values of its

immediate neighbors from the previous step. This creates a need for halo

cells for grid points at the left and right boundaries of a partition, shown

as slices defined by dotted lines at the edge of each partition in

Figure 19.3. Note that these halo cells are similar to those in the convolu-

tion pattern presented in Chapter 8. Therefore, each process also needs to

receive one slice of halo cells that contains all neighbors for the boundary

grid points of its partition. For example, in Figure 19.3, partition D2 needs

a halo slice from D1 and a halo slice from D3. Note that a halo slice for

D2 is a boundary slice for D1 or D3.

Recall that the total number of grid points is dimx�dimy�dimz. Since we

are partitioning the grid along the z dimension, the number of grid points

in each partition should be dimx�dimy�(dimz / num_comp_procs). Recall
that we will need four neighbor slices in each direction to calculate values

within each slice. Because we need to send four slices of grid points for

each neighbor, the number of grid points that should be sent to each inter-

nal process should be dimx�dimy�(dimz/num_comp_procs 1 8). As for an

edge process, there is only one neighbor. Like in the case of convolution,

we assume that zero values will be used for the ghost cells and no input

data needs to be sent for them. For example, partition D1 only needs the

neighbor slice from D2 on the right side. Therefore, the number of grid

points to be sent to an edge process should be dimx�dimy�(dimz/
num_comp_procs14). That is, each process receives four slices of halo

grid points from the neighbor partition on each side.

Line 13 of Figure 19.9 sets the send_address pointer to point to the

beginning of the input grid point array. To send the appropriate partition

41719.4 MPI Point-to-Point Communication Types

to each process, we need to add the appropriate offset to this beginning

address for each MPI_Send(). We will come back to this point later.

We are now ready to complete the code for the data server, shown in

Figure 19.10. Line 14 sends process 0 its partition. Since this is the first

partition, its starting address is also the starting address of the entire grid,

which was set up in line 13. Process 0 is an edge process and it does not

have a left neighbor. Therefore, the number of grid points to be sent is the

value edge_num_points, that is, dimx�dimy�(dimz/num_comp_procs 14).
The third parameter specifies that the type of each element is an

MPI_FLOAT, which is a C float (single precision, 4 bytes). The fourth

parameter specifies that the value of first_node (i.e., 0) is the MPI rank

of the destination process. The fifth parameter specifies 0 for the MPI tag.

This is because we are not using tags to distinguish between messages

sent from the data server. The sixth parameter specifies that the communi-

cator to be used for sending the message should be all MPI processes for

the current application.

Line 15 of Figure 19.10 advances the send_address pointer to the

beginning of the data to be sent to process 1. From Figure 19.3, there are

dimx�dimy�(dimz/num_comp_procs) elements in partition D1, which

means D2 starts at a location that is dimx�dimy�(dimz/num_comp_procs)
elements from the starting location of input. Recall that we also need to

send the halo cells from D1 as well. Therefore, we adjust the starting

address for the MPI_Send() back by four slices, which results in the

expression for advancing the send_address pointer in line 15: dimx�dimy�

(dimz/num_comp_procs-4).

 /* Send data to the first compute node */
14. MPI_Send(send_address, edge_num_points, MPI_FLOAT, first_node,
 0, MPI_COMM_WORLD);

15. send_address += dimx * dimy * (dimz / num_comp_nodes - 4);
 /* Send data to "internal" compute nodes */
16. for(int process = 1; process < last_node; process++) {
17. MPI_Send(send_address, int_num_points, MPI_FLOAT, process,
 0, MPI_COMM_WORLD);
18. send_address += dimx * dimy * (dimz / num_comp_nodes);
 }

 /* Send data to the last compute node */
19. MPI_Send(send_address, edge_num_points, MPI_FLOAT, last_node,
 0, MPI_COMM_WORLD);

FIGURE 19.10

Data server process code (part 2).

418 CHAPTER 19 Programming a Heterogeneous Computing Cluster

Line 16 is a loop that sends out the MPI messages to process 1 through

process np-3. In our small example for four compute processes, np is 5.

The loop sends the MPI messages to processes 1, 2, and 3. These are inter-

nal processes that need to receive halo grid points for neighbors on both

sides. Therefore, the second parameter of the MPI_Send() in line 17 uses

int_num_nodes, that is, dimx�dimy�(dimz/num_comp_procs18). The rest

of the parameters are similar to that for the MPI_Send() in line 14 with the

obvious exception that the destination process is specified by the loop var-

iable process, which is incremented from 1 to np-3 (last_node is np-2).
Line 18 advances the send address for each internal process by the

number of grid points in each partition: dimx�dimy�dimz/num_comp_nodes.
Note that the starting locations of the halo grid points for internal pro-

cesses are dimx�dimy�dimz/num_comp_procs points apart. Although we

need to pull back the starting address by four slices to accommodate halo

grid points, we do so for every internal process so the net distance

between the starting locations remains as the number of grid points in

each partition.

Line 19 sends the data to the process np-2, the last compute process

that has only one neighbor to the left. Readers should be able to reason

through all the parameter values used. Note that we are not quite done

with the data server code. We will come back later for the final part of the

data server that collects the output values from all compute processes.

We now turn our attention to the compute processes that receive the

input from the data server process. In Figure 19.11, lines 1 and 2 establish

the process ID for the process and the total number of processes for the

application. Line 3 establishes that the data server is process np-1. Lines 4
and 5 calculate the number of grid points and the number of bytes that

should be processed by each internal process. Lines 6 and 7 calculate the

number of grid points and the number of bytes in each halo (four slices).

Lines 8-10 allocate the host memory and device memory for the input

data. Note that although the edge processes need less halo data, they still

allocate the same amount of memory for simplicity; part of the allocated

memory will not be used by the edge processes. Line 10 sets the starting

address of the host memory for receiving the input data from the data

server. For all compute processes except process 0, the starting receiving

location is simply the starting location of the allocated memory for the

input data. However, we adjust the receiving location by four slices. This

is because for simplicity, we assume that the host memory for receiving

the input data is arranged the same way for all compute processes: four

slices of halo from the left neighbor followed by the partition, followed by

41919.4 MPI Point-to-Point Communication Types

four slices of halo from the right neighbor. However, we showed in line 4

of Figure 19.10 that the data server will not send any halo data from the

left neighbor to process 0. That is, for process 0, the MPI message from

the data server only contains the partition and the halo from the right

neighbor. Therefore, line 10 adjusts the starting host memory location by

four slices so that process 0 will correctly interpret the input data from the

data server.

Line 12 receives the MPI message from the data server. Most of the

parameters should be familiar. The last parameter reflects any error condi-

tion that occurred when the data is received. The second parameter speci-

fies that all compute processes will receive the full amount of data from

the data server. However, the data server will send less data to process 0

and process np-2. This is not reflected in the code because MPI_Recv()
allows the second parameter to specify a larger number of data points than

what is actually received, and will only place the actual number of bytes

received from the sender into the receiving memory. In the case of process

0, the input data from the data server contains only the partition and the

halo from the right neighbor. The received input will be placed by skip-

ping the first four slices of the allocated memory, which should correspond

to the halo for the (nonexistent) left neighbor. This effect is achieved with

void compute_node_stencil(int dimx, int dimy, int dimz, int nreps) {
 int np, pid;
1. MPI_Comm_rank(MPI_COMM_WORLD, &pid);
2. MPI_Comm_size(MPI_COMM_WORLD, &np);
3. int server_process = np - 1;

4. unsigned int num_points = dimx * dimy * (dimz + 8);
5. unsigned int num_bytes = num_points * sizeof(float);
6. unsigned int num_halo_points = 4 * dimx * dimy;
7. unsigned int num_halo_bytes = num_halo_points * sizeof(float);

 /* Alloc host memory */
8. float *h_input = (float *)malloc(num_bytes);
 /* Alloca device memory for input and output data */
9. float *d_input = NULL;
10. cudaMalloc((void **)&d_input, num_bytes);
11. float *rcv_address = h_input + num_halo_points * (0 == pid);
12. MPI_Recv(rcv_address, num_points, MPI_FLOAT, server_process,
 MPI_ANY_TAG, MPI_COMM_WORLD, &status);
13. cudaMemcpy(d_input, h_input, num_bytes, cudaMemcpyHostToDevice);

FIGURE 19.11

Compute process code (part 1).

420 CHAPTER 19 Programming a Heterogeneous Computing Cluster

the term num_halo_points�(pid5 50) in line 11. In the case of process

np-2, the input data contains the halo from the left neighbor and the parti-

tion. The received input will be placed from the beginning of the allocated

memory, leaving the last four slices of the allocated memory unused.

Line 13 copies the received input data to the device memory. In the case

of process 0, the left halo points are not valid. In the case of process np-2,
the right halo points are not valid. However, for simplicity, all compute

nodes send the full size to the device memory. The assumption is that the

kernels will be launched in such a way that these invalid portions will be

correctly ignored. After line 13, all the input data is in the device memory.

Figure 19.12 shows part 2 of the compute process code. Lines 14-16

allocate host memory and device memory for the output data. The output

data buffer in the device memory will actually be used as a ping-pong

buffer with the input data buffer. That is, they will switch roles in each

iteration. We will return to this point later.

We are now ready to present the code that performs computation steps

on the grid points.

19.5 OVERLAPPING COMPUTATION AND COMMUNICATION
A simple way to perform the computation steps is for each compute pro-

cess to perform a computation step on its entire partition, exchange halo

data with the left and right neighbors, and repeat. While this is a very sim-

ple strategy, it is not very effective. The reason is that this strategy forces

the system to be in one of the two modes. In the first mode, all compute

processes are performing computation steps. During this time, the commu-

nication network is not used. In the second mode, all compute processes

exchange halo data with their left and right neighbors. During this time,

the computation hardware is not well utilized. Ideally, we would like to

achieve better performance by utilizing both the communication network

and computation hardware all the time. This can be achieved by dividing

the computation tasks of each compute process into two stages, as illus-

trated in Figure 19.13.

During the first stage (stage 1), each compute process calculates its

boundary slices that will be needed as halo cells by its neighbors in the

next iteration. Let’s continue to assume that we use four slices of halo

data. Figure 19.13 shows that the collection of four halo slices as a dashed

transparent piece and the four boundary slices as a solid piece. Note that

the solid piece of process i will be copied into the dashed piece of process

42119.5 Overlapping Computation and Communication

i11 and vice versa during the next communication. For process 0, the

first phase calculates the right four slices of boundary data for four compu-

tation steps. For an internal node, it calculates the left four slices and the

right four slices of its boundary data. For process n-2, it calculates the

right four pieces of its boundary data. The rationale is that these boundary

slices are needed by their neighbors for the next iteration. By calculating

these boundary slices first, the data can be communicated to the neighbors

while the compute processes calculate the rest of its grid points.

During the second stage (stage 2), each compute process performs two

parallel activities. The first is to communicate its new boundary values to

its neighbor processes. This is done by first copying the data from the

device memory into the host memory, followed by sending MPI messages

to the neighbors. As we will discuss later, we need to be careful that the

data received from the neighbors is used in the next iteration, not the

current iteration. The second activity is to calculate the rest of the data

in the partition. If the communication activity takes a shorter amount of

time than the calculation activity, we can hide the communication delay

and fully utilize the computing hardware all the time. This is usually

achieved by having enough slices in the internal part of each partition

allow each compute process to perform computation steps in between

communications.

To support the parallel activities in stage 2, we need to use two

advanced features of the CUDA programming model: pinned memory allo-

cation and streams. A pinned memory allocation requests that the memory

y z

x

Stage 1

Stage 2

Process i Process i+1

FIGURE 19.12

A two-stage strategy for overlapping computation with communication.

422 CHAPTER 19 Programming a Heterogeneous Computing Cluster

allocated will not be paged out by the operating system. This is done with

the cudaHostAlloc() API call. Lines 19-22 allocate memory buffers for

the left and right boundary slices and the left and right halo slices. The

left and right boundary slices need to be sent from the device memory to

the left and right neighbor processes. The buffers are used as a host mem-

ory staging area for the device to copy data into, and then used as the

source buffer for MPI_Send() to neighbor processes. The left and right

halo slices need to be received from neighbor processes. The buffers are

used as a host memory staging area for MPI_Recv() to use as a destination

buffer and then copied to the device memory.

Note that the host memory allocation is done with the cudaHostAlloc()
function rather than the standard malloc() function. The difference is that

the cudaHostAlloc() function allocates a pinned memory buffer, some-

times also referred to as page-locked memory buffer. We need to present a

little more background on the memory management in operating systems to

fully understand the concept of pinned memory buffers.

In a modern computer system, the operating system manages a virtual

memory space for applications. Each application has access to a large,

consecutive address space. In reality, the system has a limited amount of

physical memory that needs to be shared among all running applications.

This sharing is performed by partitioning the virtual memory space into

pages and mapping only the actively used pages into physical memory.

When there is much demand for memory, the operating system needs to

“page out” some of the pages from the physical memory to mass storage

such as disks. Therefore, an application may have its data paged out any

time during its execution.

14. float *h_output = NULL, *d_output = NULL, *d_vsq = NULL;
15. float *h_output = (float *)malloc(num_bytes);
16. cudaMalloc((void **)&d_output, num_bytes);

17. float *h_left_boundary = NULL, *h_right_boundary = NULL;
18. float *h_left_halo = NULL, *h_right_halo = NULL;

 /* Alloc host memory for halo data */
19. cudaHostAlloc((void **)&h_left_boundary, num_halo_bytes, cudaHostAllocDefault);
20. cudaHostAlloc((void **)&h_right_boundary,num_halo_bytes, cudaHostAllocDefault);
21. cudaHostAlloc((void **)&h_left_halo, num_halo_bytes, cudaHostAllocDefault);
22. cudaHostAlloc((void **)&h_right_halo, num_halo_bytes, cudaHostAllocDefault);

 /* Create streams used for stencil computation */
23. cudaStream_t stream0, stream1;
24. cudaStreamCreate(&stream0);
25. cudaStreamCreate(&stream1);

FIGURE 19.13

Compute process code (part 2).

42319.5 Overlapping Computation and Communication

The implementation of cudaMemcpy() uses a type of hardware called a

direct memory access (DMA) device. When a cudaMemcpy() function is

called to copy between the host and device memories, its implementation

uses a DMA device to complete the task. On the host memory side, the

DMA hardware operates on physical addresses. That is, the operating sys-

tem needs to give a translated physical address to the DMA device.

However, there is a chance that the data may be paged out before the

DMA operation is complete. The physical memory locations for the data

may be reassigned to another virtual memory data. In this case, the DMA

operation can be potentially corrupted since its data can be overwritten by

the paging activity.

A common solution to this corruption problem is for the CUDA run-

time to perform the copy operation in two steps. For a host-to-device

copy, the CUDA runtime first copies the source host memory data into a

“pinned” memory buffer, which means the memory locations are marked

so that the operating paging mechanism will not page out the data. It then

uses the DMA device to copy the data from the pinned memory buffer to

the device memory. For a device-to-host copy, the CUDA runtime first

uses a DMA device to copy the data from the device memory into a

pinned memory buffer. It then copies the data from the pinned memory to

the destination host memory location. By using an extra pinned memory

buffer, the DMA copy will be safe from any paging activities.

There are two problems with this approach. One is that the extra copy

adds delay to the cudaMemcpy() operation. The second is that the extra

complexity involved leads to a synchronous implementation of the

cudaMemcpy() function. That is, the host program cannot continue to exe-

cute until the cudaMemcpy() function completes its operation and returns.

This serializes all copy operations. To support fast copies with more paral-

lelism, CUDA provides a cudaMemcpyAsync() function.

To use the cudaMemcpyAsync() function, the host memory buffer must

be allocated as a pinned memory buffer. This is done in lines 19-22 for

the host memory buffers of the left boundary, right boundary, left halo,

and right halo slices. These buffers are allocated with a special

cudaHostAlloc() function, which ensures that the allocated memory is

pinned or page-locked from paging activities. Note that the

cudaHostAlloc() function takes three parameters. The first two are the

same as cudaMalloc(). The third specifies some options for more

advanced usage. For most basic use cases, we can simply use the default

value cudaHostAllocDefault.

424 CHAPTER 19 Programming a Heterogeneous Computing Cluster

The second advanced CUDA feature is streams, which supports the man-

aged concurrent execution of CUDA API functions. A stream is an ordered

sequence of operations. When a host code calls a cudaMemcpyAsync() func-

tion or launches a kernel, it can specify a stream as one of its parameters.

All operations in the same stream will be done sequentially. Operations

from two different streams can be executed in parallel.

Line 23 of Figure 19.13 declares two variables that are of CUDA built-

in type cudaStream_t. Recall that the CUDA built-in types are declared in

cuda.h. These variables are then used in calling the cudaStreamCreate()
function. Each call to the cudaStreamCreate() creates a new stream and

deposits a pointer to the stream into its parameter. After the calls in lines

24 and 25, the host code can use either stream0 or stream1 in subsequent

cudaMemcpyAsync() calls and kernel launches.

Figure 19.14 shows part 3 of the compute process. Lines 27 and 28 cal-

culate the process ID of the left and right neighbors of the compute pro-

cess. The left_neighbor and right_neighbor variables will be used by

compute processes as parameters when they send messages to and receive

messages from their neighbors. For process 0, there is no left neighbor, so

line 27 assigns an MPI constant MPI_PROC_NULL to left_neighbor to note

this fact. For process np-2, there is no right neighbor, so line 28 assigns

MPI_PROC_NULL to right_neighbor. For all the internal processes, line 27

assigns pid-1 to left_neighbor and pid11 to right_neighbor.
Lines 31-33 set up several offsets that will be used to launch kernels

and exchange data so that the computation and communication can be

overlapped. These offsets define the regions of grid points that will need

to be calculated at each stage of Figure 19.12. They are also visualized in

Figure 19.15. Note that the total number of slices in each device memory

is four slices of left halo points (dashed white), plus four slices of left

boundary points, plus dimx�dimy�(dimz-8) internal points, plus four slices

of boundary points, and four slices of right halo points (dashed white).

Variable left_stage1_offset defines the starting point of the slices that

are needed to calculate the left boundary slices. This includes 12 slices of

data: 4 slices of left neighbor halo points, 4 slices of boundary points, and

4 slices of internal points. These slices are the leftmost in the partition so

the offset value is set to 0 in line 31. Variable right_stage2_offset
defines the starting point of the slices that are needed for calculating the

right boundary slices. This also includes 12 slices: 4 slices of internal

points, 4 slices of right boundary points, and 4 slices of right halo cells.

The beginning point of these 12 slices can be derived by subtracting the

42519.5 Overlapping Computation and Communication

total number of slices dimz18 by 12. Therefore, the starting offset for

these 12 slices is dimx�dimy�(dimz-4).
Line 35 is an MPI barrier synchronization, which is similar to the

CUDA_syncthreads(). An MPI barrier forces all MPI processes specified

by the parameter to wait for each other. None of the processes can con-

tinue their execution beyond this point until everyone has reached this

point. The reason why we want a barrier synchronization here is to make

sure that all compute nodes have received their input data and are ready to

perform the computation steps. Since they will be exchanging data with

each other, we would like to make them all start at about the same time.

This way, we will not be in a situation where a few tardy processes delay

all other processes during the data exchange. MPI_Barrier() is a collec-

tive communication function. We will discuss more details about collective

communication API functions in the next section.

Line 35 starts a loop that performs the computation steps. For each iter-

ation, each compute process will perform one cycle of the two-stage pro-

cess in Figure 19.12.

Line 36 calls a function that will perform four computation steps to

generate the four slices of the left boundary points in stage 1. We assume

26. MPI_Status status;
27. int left_neighbor = (pid > 0) ? (pid - 1) : MPI_PROC_NULL;
28. int right_neighbor = (pid < np - 2) ? (pid + 1) : MPI_PROC_NULL;

 /* Upload stencil cofficients */
 upload_coefficients(coeff, 5);

29. int left_halo_offset = 0;
30. int right_halo_offset = dimx * dimy * (4 + dimz);
31. int left_stage1_offset = 0;
32. int right_stage1_offset = dimx * dimy * (dimz - 4);
32. int stage2_offset = num_halo_points;

34. MPI_Barrier(MPI_COMM_WORLD);
35. for(int i=0; I < nreps; i++) {
 /* Compute boundary values needed by other nodes first */
36. launch_kernel(d_output + left_stage1_offset,
 d_input + left_stage1_offset, dimx, dimy, 12, stream0);
37. launch_kernel(d_output + right_stage1_offset,
 d_input + right_stage1_offset, dimx, dimy, 12, stream0);

 /* Compute the remaining points */
38. launch_kernel(d_output + stage2_offset, d_input + stage2_offset,
 dimx, dimy, dimz, stream1);

FIGURE 19.14

Compute process code (part 3).

426 CHAPTER 19 Programming a Heterogeneous Computing Cluster

that there is a kernel that performs one computation step on a region of

grip points. The launch_kernel() function takes several parameters. The

first parameter is a pointer to the output data area for the kernel. The sec-

ond parameter is a pointer to the input data area. In both cases, we add the

left_stage1_offset to the input and output data in the device memory.

The next three parameters specify the dimensions of the portion of the

grid to be processed, which is 12 slices in this case. Note that we need to

have four slices on each side. Line 37 does the same for the right bound-

ary points in stage 1. Note that these kernels will be launched within

stream0 and will be executed sequentially.

Line 38 launches a kernel to generate the dimx�dimy�(dimz-8) internal

points in stage 2. Note that this also requires four slices of input boundary

values on each side so the total number of input slices is dimx�dimy�dimz.
The kernel is launched in stream1 and will be executed in parallel with

those launched by lines 36 and 37.

Figure 19.16 shows part 4 of the compute process code. Line 39 copies

the four slices of left boundary points to the host memory in preparation

for data exchange with the left neighbor process. Line 40 copies the four

slices of the right boundary points to the host memory in preparation for

data exchange with the right neighbor process. Both are asynchronous cop-

ies in stream0 and will wait for the two kernels in stream0 to complete

before they copy data. Line 40 is a synchronization that forces the process

to wait for all operations in stream0 to complete before it can continue.

This makes sure that the left and right boundary points are in the host

memory before the process proceeds with data exchange.

y z

x

Left halo offset Right halo offset

Left stage 1 offset
Right stage 1 offset

FIGURE 19.15

Device memory offsets used for data exchange with neighbor processes.

42719.5 Overlapping Computation and Communication

During the data exchange phase, we will have all MPI processes send

their boundary points to their left neighbors. That is, all processes will

have their right neighbors sending data to them. It is, therefore, convenient

to have an MPI function that sends data to a destination and receives data

from a source. This reduces the number of MPI function calls. The

MPI_Sendrecv() function in Figure 19.17 is such a function. It is essen-

tially a combination of MPI_Send() and MPI_Recv(), so we will not fur-

ther elaborate on the meaning of the parameters.

Figure 19.18 shows part 5 of the compute process code. Line 42 sends

four slices of left boundary points to the left neighbor and receives four

slices of right halo points from the right neighbors. Line 43 sends four

slices of right boundary points to the right neighbor and receives four

slices of left halo points from the left neighbor. In the case of process 0,

its left_neighbor has been set to MPI_PROC_NULL in line 27, so the MPI

runtime will not send out the message in line 42 or receive the message in

line 43 for process 0. Likewise, the MPI runtime will not receive the mes-

sage in line 42 or send out the message in line 43 for process np-2.
Therefore, the conditional assignments in lines 27 and 28 eliminate the

need for special if-the-else statements in lines 42 and 43.

After the MPI messages have been sent and received, lines 44 and 45

transfer the newly received halo points to the d_output buffer of the

device memory. These copies are done in stream0 so they will execute in

parallel with the kernel launched in line 38.

Line 46 is a synchronize operation for all device activities. This call

forces the process to wait for all device activities, including kernels and

data copies to complete. When the cudaDeviceSynchronize() function

returns, all d_output data from the current computation step are in place:

left halo data from the left neighbor process, boundary data from the ker-

nel launched in line 36, internal data from the kernel launched in line 38,

right boundary data from the kernel launched in line 37, and right halo

data from the right neighbor.

 /* Copy the data needed by other nodes to the host */
39. cudaMemcpyAsync(h_left_boundary, d_output + num_halo_points,
 num_halo_bytes, cudaMemcpyDeviceToHost, stream0);
40. cudaMemcpyAsync(h_right_boundary,
 d_output + right_stage1_offset + num_halo_points,
 num_halo_bytes, cudaMemcpyDeviceToHost, stream0);
41. cudaStreamSynchronize(stream0);

FIGURE 19.16

Compute process code (part 4).

428 CHAPTER 19 Programming a Heterogeneous Computing Cluster

• int MPI_Sendrecv(void *sendbuf, int sendcount,
MPI_Datatype sendtype, int dest, int sendtag, void
*recvbuf, int recvcount, MPI_Datatype recvtype, int
source, int recvtag, MPI_Comm comm, MPI_Status *status)
– Sendbuf: Initial address of send buffer (choice)
– Sendcount: Number of elements in send buffer (integer)
– Sendtype: Type of elements in send buffer (handle)
– Dest: Rank of destination (integer)
– Sendtag: Send tag (integer)
– Recvcount: Number of elements in receive buffer (integer)
– Recvtype: Type of elements in receive buffer (handle)
– Source: Rank of source (integer)
– Recvtag: Receive tag (integer)
– Comm: Communicator (handle)
– Recvbuf: Initial address of receive buffer (choice)
– Status: Status object (Status). This refers to the receive

operation.

FIGURE 19.17

Syntax for the MPI_Sendrecv() function.

 /* Send data to left, get data from right */
42. MPI_Sendrecv(h_left_boundary, num_halo_points, MPI_FLOAT,
 left_neighbor, i, h_right_halo,
 num_halo_points, MPI_FLOAT, right_neighbor, i,
 MPI_COMM_WORLD, &status);
 /* Send data to right, get data from left */
43. MPI_Sendrecv(h_right_boundary, num_halo_points, MPI_FLOAT,
 right_neighbor, i, h_left_halo,
 num_halo_points, MPI_FLOAT, left_neighbor, i,
 MPI_COMM_WORLD, &status);

44. cudaMemcpyAsync(d_output+left_halo_offset, h_left_halo,
 num_halo_bytes, cudaMemcpyHostToDevice, stream0);
45. cudaMemcpyAsync(d_output+right_ghost_offset, h_right_ghost,
 num_halo_bytes, cudaMemcpyHostToDevice, stream0);
46. cudaDeviceSynchronize();

47. float *temp = d_output;
48. d_output = d_input; d_input = temp;
 }

FIGURE 19.18

Compute process code (part 5).

42919.5 Overlapping Computation and Communication

Lines 47 and 48 swap the d_input and d_output pointers. This

changes the output of the d_ouput data of the current computation step

into the d_input data of the next computation step. The execution then

proceeds to the next computation step by going to the next iteration of the

loop of line 35. This will continue until all compute processes complete

the number of computations specified by the parameter nreps.
Figure 19.19 shows part 6, the final part, of the compute process code.

Line 46 is a barrier synchronization that forces all processes to wait for

each other to finish their computation steps. Lines 50-52 swap d_output
with d_input. This is because lines 47 and 48 swapped d_output with

d_input in preparation for the next computation step. However, this is

unnecessary for the last computation step. So, we use lines 50-52 to undo

the swap. Line 53 copies the final output to the host memory. Line 54 sends

the output to the data server. Line 55 waits for all processes to complete.

Lines 56-59 free all the resources before returning to the main program.

Figure 19.20 shows part 3, the final part, of the data server process

code, which continues from Figure 19.10. Line 20 waits for all compute

nodes to complete their computation steps and send their outputs. This bar-

rier corresponds to the barrier at line 55 of the compute process. Line 22

receives the output data from all the compute processes. Line 23 stores the

output into an external storage. Lines 24 and 25 free resources before

returning to the main program.

 /* Wait for previous communications */
49. MPI_Barrier(MPI_COMM_WORLD);

50. float *temp = d_output;
51. d_output = d_input;
52. d_input = temp;

 /* Send the output, skipping halo points */
53. cudaMemcpy(h_output, d_output, num_bytes, cudaMemcpyDeviceToHost);
 float *send_address = h_output + num_ghost_points;
54. MPI_Send(send_address, dimx * dimy * dimz, MPI_REAL,
 server_process, DATA_COLLECT, MPI_COMM_WORLD);
55. MPI_Barrier(MPI_COMM_WORLD);

 /* Release resources */
56. free(h_input); free(h_output);
57. cudaFreeHost(h_left_ghost_own); cudaFreeHost(h_right_ghost_own);
58. cudaFreeHost(h_left_ghost); cudaFreeHost(h_right_ghost);
59. cudaFree(d_input); cudaFree(d_output);
}

FIGURE 19.19

Compute process code (part 6).

430 CHAPTER 19 Programming a Heterogeneous Computing Cluster

19.6 MPI COLLECTIVE COMMUNICATION
The second type of MPI communication is collective communication,

which involves a group of MPI processes. We have seen an example of

the second type of MPI communication API: MPI_Barrier. The other

commonly used group collective communication types are broadcast,

reduction, gather, and scatter.

Barrier synchronization MPI_Barrier() is perhaps the most commonly

used collective communication function. As we have seen in the stencil

example, barriers are used to ensure that all MPI processes are ready

before they begin to interact with each other. We will not elaborate on the

other types of MPI collective communication functions but encourage

readers to read up on the details of these functions. In general, collective

communication functions are highly optimized by the MPI runtime develo-

pers and system vendors. Using them usually leads to better performance

as well as readability and productivity.

19.7 SUMMARY
We covered basic patterns of joint CUDA/MPI programming in this chap-

ter. All processes in an MPI application run the same program. However,

each process can follow different control flow and function call paths to

specialize their roles, as is the case of the data server and the compute

 /* Wait for nodes to compute */
20. MPI_Barrier(MPI_COMM_WORLD);

 /* Collect output data */
21. MPI_Status status;
22. for(int process = 0; process < num_comp_nodes; process++)
 MPI_Recv(output + process * num_points / num_comp_nodes,
 num_points / num_comp_nodes, MPI_REAL, process,
 DATA_COLLECT, MPI_COMM_WORLD, &status);

 /* Store output data */
23. store_output(output, dimx, dimy, dimz);

 /* Release resources */
24. free(input);
25. free(output);
}

FIGURE 19.20

Data server process code (part 3).

43119.7 Summary

processes in our example in this chapter. We also presented a common

pattern where compute processes exchange data. We presented the use of

CUDA streams and asynchronous data transfers to enable the overlap of

computation and communication. We would like to point out that while

MPI is a very different programming system, all major MPI concepts that

we covered in this chapter—SPMD, MPI ranks, and barriers—have coun-

terparts in the CUDA programming model. This confirms our belief that

by teaching parallel programming with one model well, our students can

quickly pick up other programming models easily. We would like to

encourage readers to build on the foundation from this chapter and study

more advanced MPI features and other important patterns.

19.8 EXERCISES
19.1. For vector addition, if there are 100,000 elements in each vector and

we are using three compute processes, how many elements are we

sending to the last compute process?

a. 5

b. 300

c. 333

d. 334

19.2. If the MPI call MPI_Send(ptr_a, 1000, MPI_FLOAT, 2000, 4,
MPI_COMM_WORLD) resulted in a data transfer of 40,000 bytes, what is

the size of each data element being sent?

a. 1 byte

b. 2 bytes

c. 4 bytes

d. 8 bytes

19.3. Which of the following statements is true?

a. MPI_Send() is blocking by default.

b. MPI_Recv() is blocking by default.

c. MPI messages must be at least 128 bytes.

432 CHAPTER 19 Programming a Heterogeneous Computing Cluster

d. MPI processes can access the same variable through shared

memory.

19.4. Use the code base in Appendix A and examples in Chapters 3, 4, 5,

and 6 to develop an OpenCL version of the matrix�matrix

multiplication application.

Reference
Gropp, W., Lusk, E., & Skjellum, A. (1999). Using MPI: Portable Parallel

Programming with the Message Passing Interface (2nd ed.Cambridge, MA:

MIT Press, Scientific and Engineering Computation Series.

433Reference

This page intentionally left blank

CHAPTER

20CUDA Dynamic Parallelism

CHAPTER OUTLINE

20.1 Background ... 436

20.2 Dynamic Parallelism Overview .. 438

20.3 Important Details.. 439

20.4 Memory Visibility ... 442

20.5 A Simple Example .. 444

20.6 Runtime Limitations.. 446

20.7 A More Complex Example ... 449

20.8 Summary ... 456

Reference... 457

CUDA dynamic parallelism is an extension to the CUDA programming

model enabling a CUDA kernel to create new thread grids by launching

new kernels. Dynamic parallelism is introduced with the Kepler architec-

ture, first appearing in the GK110 chip. In previous CUDA systems,

kernels can only be launched from the host code. Algorithms that

involved recursion, irregular loop structures, time-space variation, or other

constructs that do not fit a flat, single level of parallelism needed to be

implemented with multiple kernel launches, which increases burden on

the host and amount of host-device communication. The dynamic parallel-

ism support allows algorithms that dynamically discover new work to

prepare and launch kernels without burdening the host. This chapter

describes the extended capabilities of the CUDA architecture that enables

dynamic parallelism, including the modifications and additions to the

CUDA programming model necessary to take advantage of these, as well

as guidelines and best practices for exploiting this added capacity.

435

20.1 BACKGROUND
Many real-world applications employ algorithms that dynamically vary the

amount of work performed. For example, Figure 20.1 shows a turbulence

simulation example where the level of required modeling details varies

across space and time. As the combustion flow moves from left to right,

the level of activities and intensity increases. The level of details required

to model the right side of the model is much higher than that for the left

side of the model. On one hand, using a fixed fine grid would incur too

much work for no gain for the left side of the model. On the other hand,

using a fixed coarse grid would sacrifice too much accuracy for the right

side of the model. Ideally, one should use fine grids for the parts of the

model that require more details and coarse grids for those that do not

require as many details.

Previous CUDA systems require all kernels to be launched from the

host code. The amount of work done by a thread grid is predetermined

during kernel launch. With the SPMD programming style for the kernel

code, it is tedious if not extremely difficult to have thread blocks to use

different grid spacing. This limitation favors the use of fixed-grid systems

FIGURE 20.1

Fixed versus dynamic grids for a turbulence simulation model.

436 CHAPTER 20 CUDA Dynamic Parallelism

as we discussed in Chapter 12. To achieve the desired accuracy, such a

fixed-grid approach, as illustrated in Figure 20.1, typically needs to

accommodate the most demanding parts of the model and perform unnec-

essary extra work in parts that do not require as much detail.

A more desirable approach is shown as the dynamic grid in the lower

right portion of Figure 20.1. As the simulation algorithm detects fast-

changing simulation quantities in some areas of the model, it refines the

grid in those areas to achieve the desired level of accuracy. Such refine-

ment does not need to be done for the areas that do not exhibit such inten-

sive activity. This way, the algorithm can dynamically direct more

computation work to the areas of the model that benefit from the addi-

tional work.

Figure 20.2 shows a conceptual comparison between the original

CUDA and the dynamic parallelism version with respect to the simulation

model in Figure 20.1. Without dynamic parallelism, the host code must

launch all kernels. If new work is discovered, such as refining the grid of

an area of the model during the execution of a kernel, it needs to report

back to the host code and have the host code to launch a new kernel. This

is illustrated in Figure 20.2(a), where the host launches a wave of kernels,

receives information from these kernels, and launches the next level of

kernels for any new work discovered by the completed kernels.

Figure 20.2(b) shows that with dynamic parallelism, the threads that

discover new work can just go ahead and launch kernels to do the work.

In our example, when a thread discovers that an area of the model needs

FIGURE 20.2

Kernel launch patterns for algorithms with dynamic work variation: (a) without

dynamic parallelism and (b) with dynamic parallelism.

43720.1 Background

to be refined, it can launch a kernel to perform the computation step on

the refined grid area without the overhead of terminating the kernel,

reporting back to the host, and having the host to launch new kernels.

20.2 DYNAMIC PARALLELISM OVERVIEW
From the programmer’s perspective dynamic parallelism means that he or

she can write a kernel launch statement in a kernel. In Figure 20.3, the

main function (host code) launches three kernels, A, B, and C. These are

kernel launches in the original CUDA model. What is different is that one

of the kernels, B, launches three kernels X, Y, and Z. This would have been

illegal in previous CUDA systems.

The syntax for launching a kernel from a kernel is the same as that for

launching a kernel from host code:

kernel_name,, , Dg, Db, Ns, S .. .([kernel arguments])

• Dg is of type dim3 and specifies the dimensions and size of the grid.

• Db is of type dim3 and specifies the dimensions and size of each thread

block.

• Ns is of type size_t and specifies the number of bytes of shared

memory that are dynamically allocated per thread block for this call,

which is in addition to the statically allocated shared memory. Ns is an

optional argument that defaults to 0.

FIGURE 20.3

A simple example of a kernel (B) launching three kernels (X, Y, and Z).

438 CHAPTER 20 CUDA Dynamic Parallelism

• S is of type cudaStream_t and specifies the stream associated with this

call. The stream must have been allocated in the same thread block where

the call is being made. S is an optional argument that defaults to 0.

20.3 IMPORTANT DETAILS
Although the syntax for launching a kernel from a kernel is similar to that

for launching a kernel from the host code, there are several important dif-

ferences that must be clearly understood by programmers.

Launch Environment Configuration

All device configuration settings (e.g., shared memory and L1 cache size

as returned from cudaDeviceGetCacheConfig(), and device limits as

returned from cudaDeviceGetLimit()) will be inherited from the parent.

That is, if the parent is configured for 16 K bytes of shared memory and

48 K bytes of L1 cache, then the child’s execution settings will be config-

ured identically. Likewise, a parent’s device limits such as stack size will

be passed as-is to its children.

API Errors and Launch Failures

Like CUDA API function calls in host code, any CUDA API function

called within a kernel may return an error code. The last error code

returned is recorded and may be retrieved via the cudaGetLastError()
call. Errors are recorded on a per-thread basis, so that each thread can

identify the most recent error that it has generated. The error code is of

type cudaError_t, which is a 32-bit integer value.

Events

Only the interstream synchronization capabilities of CUDA events are sup-

ported in kernel functions. Events within individual streams are currently not

supported in kernel functions. This means cudaStreamWaitEvent() is sup-

ported, but cudaEventSynchronize(), timing with cudaEventElapsedTime(),
and event query via cudaEventQuery() are not. These may be supported in a

future version.

To ensure that this restriction is clearly seen by the user, dynamic par-

allelism cudaEvents must be created via cudaEventCreateWithFlags(),

43920.3 Important Details

which currently only accepts the cudaEventDisableTiming flag value

when called from a kernel.

Event objects may be shared between the threads within the CUDA

thread-block that created them, but are local to that block and should not

be passed to child/parent kernels. Event handles are not guaranteed unique

between blocks, so using an event handle within a block that did not allo-

cate it will result in undefined behavior.

Streams

Both named and unnamed (NULL) streams are available under dynamic

parallelism. Named streams may be used by any thread within a thread

block, but stream handles should not be passed to other blocks or child/

parent kernels. In other words, a stream should be treated as private to the

block in which it is created. Stream handles are not guaranteed to be

unique between blocks, so using a stream handle within a block that did

not allocate it will result in undefined behavior.

Similar to host-side launch, work launched into separate streams may

run concurrently, but actual concurrency is not guaranteed. Programs that

require concurrency between child kernels are ill-formed and will have

undefined behavior.

The host-side NULL stream’s global synchronization semantic is not sup-

ported under dynamic parallelism. To explicitly indicate this behavior change

all streams must be created using the cudaStreamCreateWithFlags()
API with the cudaStreamNonBlocking flag in a kernel. Calls to

cudaStreamCreate() will fail with a compiler “unrecognized function call”

error, so as to make clear the different stream semantic under dynamic

parallelism.

The cudaStreamSynchronize() API is not available within a kernel;

only cudaDeviceSynchronize() can be used to wait explicitly for

launched work to complete. This is because the underlying system soft-

ware implements only a block-wide synchronization call, and it is undesir-

able to offer an API with incomplete semantics (i.e., the synchronize

guarantees one stream synchronizes, but coincidentally provides a full

barrier as a side effect).

A thread that is part of an executing grid and configures and launches a

new grid belongs to the parent grid, and the grid created by the launch is

the child grid. As shown in Figure 20.4, the creation and completion of

child grids is properly nested, meaning that the parent grid is not consid-

ered complete until all child grids created by its threads have completed.

440 CHAPTER 20 CUDA Dynamic Parallelism

Even if the parent threads do not explicitly synchronize on the child grids

launched, the runtime guarantees an implicit synchronization between the

parent and child by forcing the parent to wait for all its children to exit

execution before it can exit execution.

Synchronization Scope

A thread in the parent grid may only perform synchronization on the grids

launched by that thread (e.g., using cudaDeviceSynchronize()), other

threads in the thread block (e.g., using __synchthreads()), or on streams

created within the same thread block (e.g., using cudaStreamWaitEvent()).
Streams created by a thread within a grid exist only within the thread’s

thread block scope and have undefined behavior when used outside of the

thread block where they were created. Streams created within a thread block

are implicitly synchronized when all threads in the thread block exit execu-

tion. The behavior of operations on a stream that has been modified outside

of the thread block scope is undefined. Streams created on the host have

undefined behavior when used within any kernel, just as streams created by

a parent grid have undefined behavior if used within a child grid.

FIGURE 20.4

Completion sequence for parent and child grids.

44120.3 Important Details

20.4 MEMORY VISIBILITY
Global Memory

Parent and child grids have coherent access to global memory, with weak

consistency guarantees between child and parent. There are two points in

the execution of a child grid when its view of memory is fully consistent

with the parent thread: (1) when the child grid is created by the parent,

and (2) when the child grid completes as signaled by a synchronization

API call in the parent thread.

All global memory operations in the parent thread prior to the child

grid’s invocation are visible to the child grid. All memory operations of

the child grid are visible to the parent after the parent has synchronized on

the child grid’s completion.

Zero-Copy Memory

Zero-copy system memory has identical coherence and consistency guar-

antees as global memory, and follows the semantics just detailed. A kernel

may not allocate or free zero-copy memory, however, but may use poin-

ters passed in from the host code.

Constant Memory

Constants are immutable and may not be written to by a kernel, even

between dynamic parallelism kernel launches. That is, the value of all

__constant__ variables must be set from the host prior to launch of the

first kernel. Constant memory variables are globally visible to all kernels,

and so must remain constant for the lifetime of the dynamic parallelism

launch tree invoked by the host code.

Taking the address of a constant memory object from within a thread

has the same semantics as for non-dynamic parallelism programs, and

passing that pointer from parent to child or from a child to parent is fully

supported.

Local Memory
Local memory is private storage for a thread, and is not visible outside of

that thread. It is illegal to pass a pointer to local memory as a launch argu-

ment when launching a child kernel. The result of dereferencing such a

local memory pointer from a child will be undefined. For example, the

442 CHAPTER 20 CUDA Dynamic Parallelism

following is illegal, with undefined behavior if x_array is accessed by

child_launch:

int x_array[10]; // Creates x_array in parent’s local memory
child_launch,, , 1, 1 .. .(x_array);

It is sometimes difficult for a programmer to be aware of when a variable

is placed into local memory by the compiler. As a general rule, all storage

passed to a child kernel should be allocated explicitly from the global-

memory heap, either with malloc() or new() or by declaring __device__
storage at the global scope. For example, Figure 20.5(a) shows a valid kernel

launch where a pointer to a global memory variable is passed as an argument

into the child kernel. Figure 20.5(b) shows an invalid code where a pointer to

a local memory (register) variable is passed into the child kernel.

The NVIDIA compiler will issue a warning if it detects that a pointer

to local memory is being passed as an argument to a kernel launch.

However, such detections are not guaranteed.

Shared Memory
Shared memory is private storage for an executing thread block, and data

is not visible outside of that thread block. Passing a pointer to shared

memory to a child kernel either through memory or as an argument will

result in undefined behavior.

Texture Memory

Texture memory accesses (read only) are performed on a memory region that

may be aliased to the global memory region that is writable. Coherence for

texture memory is enforced at the invocation of a child grid and when a child

__device__ int value;

__device__ void x() {

 value = 5;

 child<<< 1, 1 >>>(&value);

}

__device__ void y() {

 int value = 5;

 child<<< 1, 1 >>>(&value);

}

(a) Valid – “value” is global storage (b) Invalid– “value” is local storage

FIGURE 20.5

Passing a pointer as an argument to a child kernel: (a) valid (value is global

storage) and (b) invalid (value is local storage).

44320.4 Memory Visibility

grid completes. This means that writes to memory prior to a child kernel

launch are reflected in texture memory accesses of the child. Also, writes to

memory by a child will be reflected in the texture memory accesses by a par-

ent, after the parent synchronizes on the child’s completion.

Concurrent texture memory access and writes to global memory objects

that alias the texture memory objects between a parent and its children or

between multiple children will result in undefined behavior.

20.5 A SIMPLE EXAMPLE
In this section, we provide a simple example of coding in each of two

styles—first in the original CUDA style, and second in the dynamic paral-

lelism style. The example problem is extracted from the divergent phase of

a hypothetical parallel algorithm. It does not compute useful results but pro-

vides a conceptually simple calculation that can be easily verified. It serves

to illustrate the difference between the two styles and how one can use the

dynamic parallelism style to reduce control flow divergence when the

amount of work done by each thread in an algorithm can vary dynamically.

Line 22 of Figure 20.6 shows the host code main function for the

example coded without dynamic parallelism. It allocates the foo variable

on the device (line 25) and initializes it to 0 (line 26). It then launches the

diverge_cta() kernel to perform a calculation on foo (line 27). The ker-

nel is launched with a grid of K (set to 2 in line 5) blocks of 323 M (M set

to 32 in line 4) threads each. Therefore, in this example, we are launching

two blocks of 1,024 threads each.

In the diverge_cta() kernel, threads of which the threadIdx.x values are

not a multiple of 32 will return immediately. In our example, only the threads

with threadIdx.x values of 0, 32, 64, . . ., 960, 992 will continue to execute. In
line 16, all remaining M threads of each block will call the entry() function,

which will increment the foo variable N (set to 128 in line 3) times. This is

done by the for loop in line 8. The atomic operation in line 9 is necessary

because there are multiple blocks calling the entry() function at the same

time. The atomic operation ensures that increments by one of the blocks are not

trampled by those of other blocks. In our case, the atomic operation ensures that

all increments by both thread blocks are properly reflected in the variable foo.
After all blocks have completed their increments, the value of foo should

be K3 M3 N, since there are K blocks and each block has M active threads

each incrementing the foo variable N times. In line 17, thread 0 of each block

initializes a shared memory variable x (declared in line 13) to value 5, which

444 CHAPTER 20 CUDA Dynamic Parallelism

1. #include <stdio.h>
2. #include <cuda.h>

3. #define N 128
4. #define M 32
5. #define K 2

6. __device__ volatile int vint = 0;

7. __device__ void entry(volatile int* foo)
 {
8. for (int i = 0; i < N; ++i) {
9. atomicAdd((int*)foo, 1);
 }
 }
10. extern "C"
11. __global__ void
12. diverge_cta(volatile int *foo)
{
13. __shared__ int x;
14. if ((threadIdx.x%32) != 0) {
15. return;
 }
16. entry(foo);

17. if (threadIdx.x == 0) {
18. x = 5;
19. return;
 }
20. __syncthreads();

21. atomicAdd((int*)foo, x);
 }

22. int main(int argc, char **argv)
{
23. int *foo;
24. int h_foo;

25. cudaMalloc((void**)&foo, sizeof(int));
26. cudaMemset(foo, 0, sizeof(int));
27. printf("foo addr: 0x%x\n", (unsigned)(size_t)foo);

28. diverge_cta<<<K,M*32>>>(foo);
29. cudaDeviceSynchronize();
30. cudaMemcpy(&h_foo, foo, sizeof(int), cudaMemcpyDe viceToHost);
31. if (h_foo == K*(M*N+5*(M-1))) {
32. printf("simple_scan_test test PASSED\n");
33. }
34. else {
35. printf("Result: %d\n", h_foo);
36. printf("simple_scan_test test FAILED\n");
37. }

38. return 0;
39. }

FIGURE 20.6

A simple example of the divergent phase of a hypothetical parallel algorithm

coded in CUDA without dynamic parallelism.

44520.5 A Simple Example

is visible to all threads in the same block. Thread 0 then terminates. After bar-

rier synchronization (line 20), all remaining M-1 threads in each block will

perform an atomic operation on variable foo (line 21). The increment amount

of the atomic operation is the value of x (5). Since there are only M-1 threads

executing (all of which the threadIdx.x values are multiples of 32), all

threads in a block should jointly add 5�(M-1) to the value of foo. With a total

of K blocks in the grid, the total contribution due to line 21 among all blocks

is K�(5�(M-1)).
After the kernel terminates (line 29), the host copies the value of foo

into its variable h_foo (line 30). The host then performs a test and checks

if the total value in h_foo is the expected value of K�N�M 1 K�(5�(M-1)),
which is K�(N�M15�(M-1)) (line 31).

Figure 20.7 shows a version of the source code based on dynamic par-

allelism. The main function is identical to that of Figure 20.6 and is not

shown. Also, we only assign line numbers to the lines that are different

from Figure 20.6. In this version, instead of having thread 0 of each block

to call the device function entry(), we will have each of them to launch

entry() as a kernel. In line 2, the device function entry() in Figure 20.6

is now declared as a kernel function.

In line 3, the diverge_cta() kernel launches the entry() kernel with

only one block, which contains the M thread. K (set to 2) kernel launches

are done. In our example, one is launched by thread 0 of block 0 and one

by thread 0 of block 1. Instead of having each of the remaining M threads

of a block to call entry() as a device function, we use thread 0 of each

block to launch entry() as a kernel with M threads.

Note that the effect on the foo value remains the same. The entry()
kernel is launched K times. For each launch, there are M threads executing

the entry() kernel, and each thread increments the foo value by N.
Therefore, the total changes due to all threads are K�M�N. However, amount

of divergence changes. The original kernel still has divergence. However,

the increments are now done by the entry() kernel where all neighboring

threads are taking the same control flow path. The amount of time the

code spends in control-divergent execution decreases.

20.6 RUNTIME LIMITATIONS
Memory Footprint

Memory is allocated as the backing-store for the parent kernel state to be

used when synchronizing on a child launch. Conservatively, this memory

446 CHAPTER 20 CUDA Dynamic Parallelism

must support storing of state for the maximum number of live threads pos-

sible on the GPU. This in turn means that each level of nesting requires

B150 MB of device memory in a current generation device, which will be

unavailable for program use even if it is not all consumed. The dynamic

parallelism runtime system detects if the parent exits without calling

cudaDeviceSynchronize(). In this case, the runtime does not save the

parent’s state and the memory footprint required for the program will be

much less than the conservative maximum.

 #include <stdio.h>
 #include <cuda.h>
 #include <cuos.h>

 #define N 100
 #define M 32
 #define K 2

 __device__ volatile int vint = 0;

1. __global__ void
 entry(volatile int* foo)
 {
 for (int i = 0; i < N; ++i) {
 atomicAdd((int*)foo, 1);
 }
 }

 extern "C"
 __global__ void
 diverge_cta(volatile int *foo)
 {
 __shared__ int x;
 if ((threadIdx.x%32) != 0) {
 return;
 }
 if (threadIdx.x == 0) {
2. entry<<<1,M>>>(foo);
3. cudaDeviceSynchronize();
 x = 5;
 return;
 }
 __syncthreads();

 atomicAdd((int*)foo, x);
 }

FIGURE 20.7

The diverge_cta() kernel revised using dynamic parallelism.

44720.6 Runtime Limitations

In addition to the thread backing-store, more memory is used by the

system software, for example, to store launch queues and events. The total

memory footprint of dynamic parallelism is difficult to specify exactly,

but may be queried at runtime.

Nesting Depth

Under dynamic parallelism, one kernel may launch another kernel, and

that kernel may launch another, and so on. Each subordinate launch is

considered a new “nesting level,” and the total number of levels is the

“nesting depth” of the program.

The maximum nesting depth is limited in hardware to 64, but in soft-

ware it may be limited to 63 or less. Practically speaking, the real limit

will be the amount of memory required by the system for each new level

(see the preceding “Memory Footprint” section). The number of levels to

be supported must be configured before the top-level kernel is launched

from the host, to guarantee successful execution of a nested program.

Memory Allocation and Lifetime

Currently, cudaMalloc and cudaFree have slightly modified semantics

between the host and device environments (Table 20.1). Within the device

environment the total allocatable memory is limited to the device malloc()
heap size, which may be smaller than the available unused device memory.

Also, it is an error to invoke cudaFree from the host program on a pointer

that was allocated by cudaMalloc on the device, or to invoke cudaFree
from the device program on a pointer that was allocated by cudaMalloc on

the host. These limitations may be removed in a future version.

Table 20.1 Memory allocation and deallocation from host and device.

cudaMalloc() on
Host

cudaMalloc() on Device

cudaFree() on host Supported Not supported
cudaFree() on
device

Not supported Supported

Allocation limit Free device memory cudaLimitMallocHeapSize

448 CHAPTER 20 CUDA Dynamic Parallelism

ECC Errors

No notification of ECC errors is available to code within a CUDA kernel.

ECC errors are only reported at the host side. Any ECC errors that arise

during execution of a dynamic parallelism kernel will either generate an

exception or continue execution (depending on error and configuration).

Streams

Unlimited named streams are supported per block, but the maximum con-

currency supported by the platform is limited. If more streams are created

than can support concurrent execution, some of these may serialize or alias

with each other. In addition to block-scope named streams, each thread

has an unnamed (NULL) stream, but named streams will not synchronize

against it (indeed, all named streams must be created with a flag explicitly

preventing this).

Events

Unlimited events are supported per block, but these consume device mem-

ory. Owing to resource limitations, if too many events are created (exact

number is implementation-dependent), then GPU-launched grids may

attain less concurrency than might be expected. Correct execution is

guaranteed, however.

Launch Pool

When a kernel is launched, all associated data is added to a slot within the

launch pool, which is tracked until the kernel completes. Launch pool stor-

age may be virtualized by the system, between device and host memory;

however, device-side launch pool storage has improved performance. The

amount of device memory reserved for device-side launch pool storage is

configurable prior to the initial kernel launch from the host.

20.7 A MORE COMPLEX EXAMPLE
We now show an example that is a more interesting and useful case of

recursive, adaptive subdivision of spline curves. This illustrates a variable

amount of child kernel launches, according to the workload. The example

is to calculate Bezier curves [Wiki_Bezier 2012], which are frequently

44920.7 A More Complex Example

used in computer graphics to draw smooth, intuitive curves that are

defined by a set of control points, which are typically defined by a user.

Mathematically, a Bezier curve is defined by a set of control points P0

through Pn, where n is called its order (n5 1 for linear, 2 for quadratic,

3 for cubic, etc.). The first and last control points are always the end

points of the curve; however, the intermediate control points (if any) gen-

erally do not lie on the curve.

Linear Bezier Curves

Given two control points P0 and P1, a linear Bezier curve is simply a

straight line connecting between those two points. The coordinates of the

points on the curve are given by the following linear interpolation formula:

BðtÞ5 P0 1 tðP1 2 P0Þ5 ð12 tÞP0 1 tP1; tA ½0; 1�

Quadratic Bezier Curves

A quadratic Bezier curve is defined by three control points P0, P1, and P2.

The points on a quadratic curve are defined as a linear interpolation of

corresponding points on the linear Bezier curves from P0 to P1 and from

P1 to P2, respectively. The calculation of the coordinates of points on the

curve is expressed in the following formula:

BðtÞ5 ð12 tÞ½ð12 tÞP0 1 tP1�1 t½ð12 tÞP11 tP2�; tA½0; 1�
which can be simplified into the following formula:

BðtÞ5 ð12tÞ2P0 1 2ð12 tÞtP11 t2P2; tA½0; 1�:

Bezier Curve Calculation (Predynamic Parallelism)

Figure 20.8 shows a CUDA C program that calculates the coordinates of

points on a Bezier curve. The first part of the code defines several opera-

tors (operator1 , operator2 , operator�, length) for 2D coordinates

that will be used in the kernel code. They should be quite self-explanatory

so we will not elaborate on them.

The main function (line 20) initializes a set of control points to random

values (lines 22, 23, and 24). In a real application, these control points are

450 CHAPTER 20 CUDA Dynamic Parallelism

 #include <stdio.h>
 #include <cuda.h>

 //Some inline vector math functions
 __forceinline__ __device__ float2 operator+(float2 a, float2 b){
 float2 c;
 c.x = a.x + b.x; c.y = a.y + b.y;
 return c;
 }

 __forceinline__ __device__ float2 operator-(float2 a, float2 b){
 float2 c;
 c.x = a.x - b.x; c.y = a.y - b.y;
 return c;
 }

 __forceinline__ __device__ float2 operator*(float a, float2 b){
 float2 c;
 c.x = a * b.x; c.y = a * b.y;
 return c;
 }

 __forceinline__ __device__ float length(float2 a){
 return sqrtf(a.x*a.x + a.y*a.y);
 }

 #define MAX_TESS_POINTS 32

1. struct BezierLine //A structure containing all the parameters we
 need to tessellate a Bezier line
 {
 float2 CP[3]; //Control points for the line
 float2 vertexPos[MAX_TESS_POINTS]; //Vertex position array to
 tessellate into
 int nVertices; //Number of tessellated
 vertices
 };

 __global__ void computeBezierLines(BezierLine *bLines, int nLines)
 {
 int bidx = blockIdx.x;
 if(bidx < nLines){
 //Compute the curvature of the line
2. float curvature = length(bLines[bidx].CP[1] - 0.5f*
 (bLines[bidx].CP[0] + bLines[bidx].CP[2]))/length
 (bLines[bidx].CP[2] - bLines[bidx].CP[0]);
 //From the curvature, compute the number of tessellation points
3. int nTessPoints = min(max((int)(curvature*16.0f),4),32);
4. bLines[bidx].nVertices = nTessPoints;

 //Loop through the vertices to be tessellated, incrementing by
 blockDim.x
5. for(int inc = 0; inc < nTessPoints; inc += blockDim.x){

FIGURE 20.8

Bezier curve calculation without dynamic parallelism.

45120.7 A More Complex Example

6. int idx = inc + threadIdx.x; //Compute a unique index for
 this point
7. if(idx < nTessPoints){
8. float u = (float)idx/(float)(nTessPoints-1); //Compute u
 from idx
9. float omu = 1.0f - u; //pre-compute one minus u

10. float B3u[3]; //Compute quadratic Bezier coefficients
11. B3u[0] = omu*omu;
12. B3u[1] = 2.0f*u*omu;
13. B3u[2] = u*u;

14. float2 position = {0,0}; //Set position to zero
15. for(int i = 0; i < 3; i++){
 //Add the contribution of the i'th control point to position
16. position = position + B3u[i] * bLines[bidx].CP[i];
 }
 //Assign the value of the vertex position to the correct
 array element
17. bLines[bidx].vertexPos[idx] = position;
 }
 }
 }
 }

18. #define N_LINES 256
19. #define BLOCK_DIM 32

20. int main(int argc, char **argv)
 {
21. BezierLine *bLines_h = new BezierLine[N_LINES]; //Allocate array
 of lines in host memory

 float2 last = {0,0}; //Set initial point to zero (last is the
 last point in the previous segment).
22. for(int i = 0; i < N_LINES; i++){
23. bLines_h[i].CP[0] = last; //Set first point of this line to last
 point of previous line
24. for(int j = 1; j < 3; j++){
 bLines_h[i].CP[j].x = (float)rand()/(float)RAND_MAX; //Assign
 random coordinate between 0 and 1
 bLines_h[i].CP[j].y = (float)rand()/(float)RAND_MAX; //Assign
 random coordinate between 0 and 1
 }
 last = bLines_h[i].CP[2]; //keep the last point of this line
 bLines_h[i].nVertices = 0; //Set number of tessellated
 vertices to zero
 }

25. BezierLine *bLines_d; //Pointer to array of Bezier lines in
 device memory
26. cudaMalloc((void**)&bLines_d, N_LINES*sizeof(BezierLine));
 //Allocate device memory for array of Bezier lines

FIGURE 20.8

(continued)

452 CHAPTER 20 CUDA Dynamic Parallelism

most likely inputs from a user. The control points are part of the bLines_h
array of which the element type BezierLine is declared in line 1. The storage
for the bLines_h array is allocated in line 21. The host code then allocates the
corresponding device memory for the bLines_d array and copies the initial-

ized data to bLines_d (lines 26�28). It then calls the computeBezierLine()
kernel to calculate the coordinates of the Bezier curve.

The computeBezierLine() kernel is designed to use a thread block to

calculate the curve points for a set of three control points (of the quadratic

Bezier formula). Each thread block first computes a measure of the curva-

ture of the curve defined by the three control points. Intuitively, the larger

the curvature, the more the points it takes to draw a smooth quadratic

Bezier curve for the three control points. This defines the amount of work

to be done by each thread block. This is reflected in lines 3 and 4, where

the total number of points to be calculated by the current thread block is

proportional to the curvature value.

In the for loop in line 5, all threads calculate a consecutive set of

Bezier curve points in each iteration. The detailed calculation in the loop

body is based on the formula we presented earlier. The key point is that

the number of iterations taken by threads in a block can be very different

from that taken by threads in another block. Depending on the scheduling

policy, such variation of the amount of work done by each thread block

can result in decreased utilization of streaming multiprocessors and thus

reduced performance.

Bezier Curve Calculation (with Dynamic Parallelism)

Figure 20.9 shows a Bezier curve calculation code using dynamic parallelism.

It breaks the computeBezierLine() kernel in Figure 20.8 into two kernels.

The first part, computeBezierLineCDP(), discovers the amount of work to be

27. cudaMemcpy(bLines_d, bLines_h, N_LINES*sizeof(BezierLine),
 cudaMemcpyHostToDevice);

28. computeBezierLines<<<N_LINES, BLOCK_DIM>>>(bLines_d, N_LINES);
 //Call the kernel to tessellate the lines

 //Do something to draw the lines here

 cudaFree(bLines_d); //Free the array of lines in device memory

FIGURE 20.8

(continued)

45320.7 A More Complex Example

1. struct BezierLine
 {
 float2 CP[3]; //Control points for the line
 float2 *vertexPos; //Vertex position array to tessellate into
 int nVertices; //Number of tessellated vertices
 };

2. __global__ void computeBezierLinePositions(int lidx, BezierLine*
 bLines, int nTessPoints)
 {
3. int idx = threadIdx.x + blockDim.x*blockIdx.x; //Compute an
 index unique to this vertex
4. if(idx < nTessPoints){
5. float u = (float)idx/(float)(nTessPoints-1); //Compute u from idx
 float omu = 1.0f - u; //Pre-compute one minus u

 float B3u[3]; //Compute quadratic Bezier coefficients
 B3u[0] = omu*omu;
 B3u[1] = 2.0f*u*omu;
 B3u[2] = u*u;

 float2 position = {0,0}; //Set position to zero
 for(int i = 0; i < 3; i++){
 //Add the contribution of the i'th control point to position
 position = position + B3u[i] * bLines[lidx].CP[i];
 }

 bLines[lidx].vertexPos[idx] = position; //Assign the value of the
 vertex position to the correct array element
 }
 }
 __global__ void computeBezierLinesCDP(BezierLine *bLines, int
 nLines)
 {
6. int lidx = threadIdx.x + blockDim.x*blockIdx.x; //Compute a
 unique index for each Bezier line

7. if(lidx < nLines){
 //Compute the curvature of the line
 float curvature = length(bLines[lidx].CP[1] - 0.5f*(bLines[lidx]
 .CP[0] + bLines[lidx].CP[2]))/length(bLines[lidx].CP[2]-
 bLines[lidx].CP[0]);
 //From the curvature, compute the number of tessellation points
 bLines[lidx].nVertices = min(max((int)(curvature*16.0f),4),
 MAX_TESS_POINTS);

8. cudaMalloc((void**)&bLines[lidx].vertexPos, bLines[lidx]
 .nVertices*sizeof(float2));
 //Call the child kernel to compute the tessellated points for
 each line
9. computeBezierLinePositions<<<ceil((float)bLines[lidx]
 .nVertices/32.0f), 32>>>(lidx, bLines,bLines[lidx].nVertices);
 }
}

FIGURE 20.9

Bezier calculation with dynamic parallelism.

454 CHAPTER 20 CUDA Dynamic Parallelism

 __global__ void freeVertexMem(BezierLine *bLines, int nLines)
 {
 int lidx = threadIdx.x + blockDim.x*blockIdx.x; //Compute a unique
 index for each Bezier line
10. if(lidx < nLines)
11. cudaFree(bLines[lidx].vertexPos); //Free the vertex memory for
 this line
 }

 #define N_LINES 256
 #define BLOCK_DIM 64

12. int main(int argc, char **argv)
 {
 BezierLine *bLines_h = new BezierLine[N_LINES]; //Allocate array
 of lines in host memory

 float2 last = {0,0}; //Set last point to zero
 for(int i = 0; i < N_LINES; i++){
 bLines_h[i].CP[0] = last; //Set first point of this line to
 last point of previous line
 for(int j = 1; j < 3; j++){
 bLines_h[i].CP[j].x = (float)rand()/(float)RAND_MAX; //Assign
 random coordinate between 0 and 1
 bLines_h[i].CP[j].y = (float)rand()/(float)RAND_MAX; //Assign
 random coordinate between 0 and 1
 }
 last = bLines_h[i].CP[2]; //keep the last point of this line
 bLines_h[i].vertexPos = NULL; //Set the vertex position array
 to NULL
 bLines_h[i].nVertices = 0; //Set number of tessellated vertices
 to zero
 }

 BezierLine *bLines_d; //Pointer to array of Bezier lines in
 device memory
 cudaMalloc((void**)&bLines_d, N_LINES*sizeof(BezierLine));
 cudaMemcpy(bLines_d, bLines_h, N_LINES*sizeof(BezierLine),
 cudaMemcpyHostToDevice);

13. computeBezierLinesCDP<<<ceil((float)N_LINES/(float)BLOCK_DIM),
 BLOCK_DIM>>>(bLines_d, N_LINES);

 //Do something to draw the lines here

14. freeVertexMem<<<ceil((float)N_LINES/(float)BLOCK_DIM),
 BLOCK_DIM>>>(bLines_d, N_LINES);
 cudaFree(bLines_d); //Free the array of lines in device memory
 delete[] bLines_h; //Free the array of lines in host memory
 }

FIGURE 20.9

(continued)

45520.7 A More Complex Example

done for each control point. The second part, computeBezierLinePositions(),
performs the calculation.

With the new organization, the amount of work done for each set of

control points by the computeBezierLinesCDP() kernel is much smaller

than the original computeBezierLines() kernel. Therefore, we use one

thread to do this work in computeBezierLinesCDP(), as opposed to using

one block in computeBezierLinesPossitions(). In line 13, we only need

to launch one thread per set of control points. This is reflected by dividing

the N_LINES by BLOCK_DIM to form the number of blocks in the kernel

launch configuration.

There are two key differences between the computeBezierLinesCDP()
kernel and the computeBezierLines() kernel. First, the index used to

access the control points is formed on a thread basis (line 6) rather than a

block basis. This is because the work for each control point is done by

a thread rather than a block as we mentioned before. Second, the memory

for storing the calculated Bezier curve points is dynamically determined

and allocated in line 8. This allows the code to assign just enough memory

to each set of control points in the BezierLine type. Note that in

Figure 20.8, each BezierLine element is declared with a maximal possible

number of points. On the other hand, the declaration in Figure 20.9 has only

a pointer to a dynamically allocated storage. Allowing a kernel to call the

cudaMalloc() function can lead to substantial reduction of memory usage

for situations where the curvature of control points varies significantly.

Once a thread of the computeBezierLinesCDP() kernel determines the

amount of work needed by its set of control points, it launches the

computeBezierPositions() kernel to do the work (line 9). In our exam-

ple, every thread from the parent grid creates a new grid for its assigned

set of control points. This way, the work done by each thread block is bal-

anced. The amount of work done by each child grid varies.

After the computeBezierLinesCDP() kernel terminates, the main func-

tion can copy the data back and draw the curve on an output device. It can

also call a kernel to free all storage allocated to the bLines_d storage in par-

allel (line 14). This can be faster than sequentially calling the cudaFree()
function in a loop.

20.8 SUMMARY
CUDA dynamic parallelism extends the CUDA programming model to

allow kernels to launch kernels. This allows each thread to dynamically

456 CHAPTER 20 CUDA Dynamic Parallelism

discover work and launch new grids according to the amount of work. It

also supports dynamic allocation of device memory by threads. As we

show in the Bezier curve calculation example, these extensions can lead to

better work balance across threads and blocks as well as more efficient

memory usage.

Reference
Bezier Curves, Available at: ,http://en.wikipedia.org/wiki/B%C3%A9zier_curve.,

2012.

457Reference

http://en.wikipedia.org/wiki/B%C3%A9zier_curve

This page intentionally left blank

CHAPTER

21Conclusion and Future
Outlook

CHAPTER OUTLINE

21.1 Goals Revisited .. 459

21.2 Memory Model Evolution .. 461

21.3 Kernel Execution Control Evolution.. 464

21.4 Core Performance .. 467

21.5 Programming Environment .. 467

21.6 Future Outlook ... 468

References ... 469

You made it! We have arrived at the finishing line. In this final chapter,

we will briefly review the goals that we have achieved through this book.

Instead of drawing a conclusion, we will offer our vision for the future

evolution of massively parallel processor architectures and how the

advancements will impact parallel application development.

21.1 GOALS REVISITED
As we stated in Chapter 1, our primary goal is to teach you, the readers,

how to program massively parallel processors. We promised that it would

become easy once you develop the right insight and go about it the right

way. In particular, we promised to focus on computational thinking skills

that would enable you to think about problems in ways that are amenable

to parallel computing.

We delivered on these promises through an introduction to perfor-

mance considerations for CUDA (Chapter 6), three parallel patterns

(Chapters 8, 9, and 10), two detailed application case studies (Chapters

11 and 12), and a chapter dedicated to computational thinking skills

(Chapter 13). Through this process, we introduced the pertinent computer

459

architecture knowledge needed to understand the hardware limitations that

must be addressed in high-performance parallel programming. In particu-

lar, we focused on the memory bandwidth limitations that will remain as

the primary performance limiting factor in massively parallel computing

systems (Chapters 4, 5, 6, 8, 9, 10, 11, 12, and 13). We also introduced

the concept of floating-point precision/accuracy and numerical stability,

and how they relate to parallel algorithms (Chapter 7). With these

insights, high-performance parallel programming becomes a manageable

process, rather than a black art.

We stated that our second goal was to teach high-performance parallel

programming styles that naturally avoid subtle correctness issues. To

deliver on this promise, we showed that the simple data-parallel CUDA

programming model (Chapters 3 and 4) based on barrier synchronization

can be used to develop very high-performance applications. This disci-

plined way of parallel programming naturally avoids the subtle race condi-

tions that plague many other parallel programming systems.

We promised to teach parallel programming styles that transparently

scale across future hardware generations, which will be more and more

parallel. With the CUDA threading model (Chapter 4), a massive number

of thread blocks can be executed in any order relative to each other. Your

application will be able to benefit from more parallel hardware coming in

the future. We also presented algorithm techniques, such as tiling and cut-

off, that allow your application to scale naturally to very large data sets

(Chapters 8, 9, 10, 11, 12, and 13).

We promised to teach the programming skills in such a way that you

will be able to apply them to other programming models and languages.

To help you branch out to other programming models, we introduced

OpenCL (Chapter 14), OpenACC (Chapter 15), Thrust (Chapter 16),

CUDA FORTRAN (Chapter 17), C11 AMD (Chapter 18), and MPI-

CUDA (Chapter 19). In each chapter, we explained how the programming

model/language relates to CUDA and how you can apply the skills you

learned based on CUDA to these models/languages.

We hope that you have enjoyed the book.

Now that we have reviewed our promises, we would like to share our

view of the coming evolution of the massively parallel processor architec-

tures and how the advancements will likely impact application develop-

ment. We hope that these outlooks will help you to peek into the future of

parallel programming. Our comments are based on the new features in

GPUs based on NVIDIA’s Kepler compute architecture that arrived at the

market when this book went into press.

460 CHAPTER 21 Conclusion and Future Outlook

21.2 MEMORY MODEL EVOLUTION
Large virtual and physical address spaces. GPUs have traditionally used

only a physical address space with up to 32 address bits, which limited the

GPU DRAM to 4 gigabytes or less. This is because graphics applications

have not demanded more than a few hundred megabytes of frame buffer

and texture memory. This is in contrast to the 64-bit virtual space and

401 bits of physical space that CPU programmers have been taking for

granted for many years. However, more recent graphics applications have

demanded more.

More recent GPU families such as Fermi and Kepler have adopted

CPU-style virtual memory architecture with a 64-bit virtual address space

and a physical address space of at least 40 bits. The obvious benefit is that

Fermi and Kepler GPUs can incorporate more than 4 gigabytes of DRAM

and that CUDA kernels can now operate on very large data sets, whether

hosted entirely in on-board GPU DRAM, or by accessing mapped host

memory.

The Fermi virtual memory architecture also lays the foundation for a

potentially profound enhancement to the programming model. The CPU

system physical memory and the GPU physical memory can now be

mapped within a single, shared virtual address space [GNS 2009]. A shared

global address space allows all variables in an application to have unique

addresses. Such memory architecture, when exposed by programming tools

and a runtime system to applications, can result in several major benefits.

First, new runtime systems can be designed to allow CPUs and GPUs

to access the entire volume of application data under traditional protection

models. Such a capability would allow applications to use a single pointer

system to access application variables, removing a confusing aspect of the

current CUDA programming model where developers must not derefer-

ence a pointer to the device memory in host functions.

These variables can reside in the CPU physical memory, the GPU physi-

cal memory, or even both. The runtime and hardware can implement data

migration and coherence support like the GMAC system [GNS 2009]. If a

CPU function dereferences a pointer and accesses a variable mapped to the

GPU physical memory, the data access would still be serviced, but perhaps

at a longer latency. Such capability would allow the CUDA programs to

more easily call legacy libraries that have not been ported to GPUs. In the

current CUDA memory architecture, the developer must manually transfer

data from the device memory to the host memory to use legacy library func-

tions to process them on the CPU. GMAC is built on a current CUDA

46121.2 Memory Model Evolution

runtime API and gives the developer the option to either rely on the runtime

system to service such accesses or to manually transfer data as a perfor-

mance optimization. However, the GMAC system currently does not have a

clean mechanism for supporting multiple GPUs. The new virtual memory

capability would enable a much more elegant implementation.

Ultimately, the virtual memory capability will also enable a mechanism

similar to the zero-copy feature in CUDA 2.2 to allow the GPU to directly

access very large physical CPU system memories. In some application

areas such as CAD, the CPU physical memory system may have hundreds

of gigabytes of capacity. These physical memory systems are needed

because the applications require the entire data set to be “in core.” It is

currently infeasible for such applications to take advantage of GPU

computing. With the ability to directly access very large CPU physical

memories, it becomes feasible for GPUs to accelerate these applications.

The second potential benefit is that the shared global address space

enables peer-to-peer direct data transfer between devices in a multidevice

system. This is supported in CUDA 4.0 and later, using the GPUDirectt
feature. In older CUDA systems, devices must first transfer data to the

host memory before delivering them to a peer device. A shared global

address space enables the implementation of a runtime system to provide

an API to directly transfer data from one device memory to another device

memory. Ultimately, a runtime system can be designed to automate such

transfers when devices reference data in each other’s memory, but still

allow the use of explicit data transfer APIs as a performance optimization.

In CUDA 5.0, it is possible not only to reference data on other GPUs

within a multi-GPU system, but also data on GPUs on other local systems.

The third benefit is that one can implement I/O-related memory transfers

directly in and out of the device memory. In older CUDA systems, I/O input

data must first be transferred into the host memory before it can be copied

into the device memory. The ability to directly transfer data in and out of

the device memory can significantly reduce the copying cost and enhance

the performance of applications that process large data sets.

Unified device memory space. In early CUDA memory models, con-

stant memory, shared memory, local memory, and global memory form

their own separate address spaces. The developer can use pointers into the

global memory but not others. Starting with the Fermi architecture, these

memories are parts of a unified address space. This makes it easier to

abstract which memory contains a particular operand, allowing the pro-

grammer to deal with this only during allocation, and making it simpler to

pass CUDA data objects into other procedures and functions, irrespective

462 CHAPTER 21 Conclusion and Future Outlook

of which memory area they come from. It makes CUDA code modules

much more “composable.” That is, a CUDA device function can now

accept a pointer that may point to any of these memories. The code would

run faster if a function argument pointer points to a shared memory loca-

tion and slower if it points to a global memory location. The programmer

can still perform manual data placement and transfers as a performance

optimization. This capability will significantly reduce the cost of building

production-quality CUDA libraries.

Configurable caching and scratchpad. The shared memory in early

CUDA systems served as programmer-managed scratch memory and

increased the speed of applications where key data structures have local-

ized, predictable access patterns. Starting with the Fermi architecture, the

shared memory has been enhanced to a larger on-chip memory that can be

configured to be partially cache memory and partially shared memory,

which allows coverage of both predictable and less predictable access

patterns to benefit from on-chip memory. This configurability allows

programmers to apportion the resources according to the best fit for their

application.

Applications in an early design stage that are ported directly from CPU

code will benefit greatly from caching as the dominant part of the on-chip

memory. This would further smooth the performance tuning process by

increasing the level of “easy performance” when a developer ports a CPU

application to a GPU.

Existing CUDA applications and those that have predictable access

patterns will have the ability to increase their use of fast shared memory

by a factor of three while retaining the same device “occupancy” they had

on previous generation devices. For CUDA applications of which the per-

formance or capabilities are limited by the size of the shared memory, the

three times increase in size will be a welcome improvement. For example,

in stencil computation such as finite volume methods for computational

fluid dynamics, the state loaded into the shared memory also includes

“halo” elements from neighboring areas.

The relative portion of halo decreases as the size of the stencil

increases. In 3D simulation models, the halo cells can be comparable in

data size as the main data for current shared memory sizes. This can

significantly reduce the effectiveness of the shared memory due to the sig-

nificant portion of the memory bandwidth spent on loading the halo

elements. For example, if the shared memory allows a thread block to load

an 83 (5 512) cell stencil into the shared memory, with one layer of halo

elements on every surface, only 63 (5 216), or less than half of the loaded

46321.2 Memory Model Evolution

cells, are the main data. The bandwidth spent on loading the halo elements

is actually bigger than that spent on the main data. A three times increase

in shared memory size allows some of these applications to have a more

favorable stencil size where the halo accounts for a much lesser portion of

the data in shared memory. In our example, the increased size would allow

a 113 (5 1,331) tile to be loaded by each thread block. With one layer of

halo elements on each surface, a total of 93 (5 729) cells, or more than

half of the loaded elements, are main data. This significantly improves the

memory bandwidth efficiency, and the performance of the application.

Enhanced atomic operations. The atomic operations in Fermi are much

faster than those in previous CUDA systems, and the atomic operations in

Kepler are still faster. In addition, the Kepler atomic operations are more

general. Atomic operations are frequently used in random scatter computa-

tion patterns such as histograms. Faster atomic operations reduce the need

for algorithm transformations such as prefix sum (Chapter 9) [SHZ 2007]

and sorting [SHG 2009] for implementing such random scattering compu-

tations. These transformations tend to increase the number of kernel invo-

cations needed to perform the target computation. Faster atomic operations

can also reduce the need for involvement of the host CPU in algorithms

that do collective operations or where multiple thread blocks update shared

data structures, and thus reduce the data transfer pressure between the

CPU and the GPU.

Enhanced global memory access. The speed of random memory access

is much faster in Fermi and Kepler than earlier CUDA systems.

Programmers can be less concerned about memory coalescing. This allows

more CPU algorithms to be directly used in the GPU as an acceptable base,

further smoothing the path of porting applications that access a diversity of

data structures such as ray tracing, and other applications that are heavily

object-oriented and may be difficult to convert into perfectly tiled arrays.

21.3 KERNEL EXECUTION CONTROL EVOLUTION
Function calls within kernel functions. Previous CUDA versions did not

allow function calls in kernel code. Although the source code of kernel

functions can appear to have function calls, the compiler must be able to

inline all function bodies into the kernel object so that there is no function

calls in the kernel function at runtime. Although this model works reason-

ably well for performance-critical portions of many applications, it does

not support the software engineering practices in more sophisticated

464 CHAPTER 21 Conclusion and Future Outlook

applications. In particular, it does not support system calls, dynamically

linked library calls, recursive function calls, and virtual functions in

object-oriented languages such as C11.

More recent device architectures such as Kepler support function calls

in kernel functions at runtime. This feature is supported in CUDA 5.0 and

later. The compiler is no longer required to inline the function bodies. It

can still do so as a performance optimization. This capability is partly

enabled by cached, fast implementation of massively parallel call frame

stacks for CUDA threads. It makes CUDA device code much more “com-

posable” by allowing different authors to write different CUDA kernel

components and assemble them all together without heavy redesign costs.

In particular, it allows modern object-oriented techniques such as virtual

function calls, and software engineering practices such as dynamically

linked libraries. It also allows software vendors to release device libraries

without source code for intellectual property protection.

Support for function calls at runtime allows recursion and will signifi-

cantly ease the burden on programmers as they transition from legacy

CPU-oriented algorithms toward GPU-tuned approaches for divide-and-

conquer types of computation. This also allows easier implementation of

graph algorithms where data structure traversal often naturally involves

recursion. In some cases, developers will be able to “cut and paste” CPU

algorithms into a CUDA kernel and obtain a reasonably performing kernel,

although continued performance tuning would still add benefit.

Exception handling in kernel functions. Early CUDA systems did not

support exception handling in kernel code. While not a significant limita-

tion for performance-critical portions of many high-performance applica-

tions, it often incurs software engineering costs in production-quality

applications that rely on exceptions to detect and handle rare conditions

without executing code to explicitly test for such conditions. Also, it does

not allow kernel functions to utilize operating system services, which is

typically avoided in performance-critical portions of the applications

except during debugging situations.

With the availability of exception handling and function call support,

kernels can now call standard library functions such as printf() and

malloc(), which can lead to system call traps. In our experience, the abil-

ity to call printf() in the kernel provides a subtle but important aid in

debugging and supporting kernels in production software. Many end users

are nontechnical and cannot be easily trained to run debuggers to provide

developers with more details on what happened before a crash. The ability

to execute printf() in the kernel allows the developers to add a mode to

46521.3 Kernel Execution Control Evolution

the application to dump the internal state so that the end users can submit

meaningful bug reports.

Simultaneous execution of multiple kernels. Previous CUDA systems

allow only one kernel to execute on each GPU device at any point in time.

Multiple kernel functions can be submitted for execution. However, they

are buffered in a queue that releases the next kernel after the current one

completes execution. Fermi and its successors allow multiple kernels from

the same application to be executed simultaneously, which reduces the pres-

sure for the application developer to “batch” multiple kernels into a larger

kernel to more fully utilize a device. A typical example of benefit is for par-

allel cluster applications that segment work into “local” and “remote” parti-

tions, where remote work is involved in interactions with other nodes and

resides on the critical path of global progress. In previous CUDA systems,

kernels needed to be large to keep the device running efficiently, and one

had to be careful not to launch local work such that global work could be

blocked. This meant choosing between underutilizing the device while wait-

ing for remote work to arrive, or eagerly starting on local work to keep the

device productive at the cost of increased latency for completing remote

work units. With multiple kernel execution, the application can use much

smaller kernel sizes for launching work, and as a result when high-priority

remote work arrives, it can start running with low latency instead of being

stuck behind a large kernel of local computation.

In Kepler and CUDA 5.0, the multiple kernel launch facility is extended

by the addition of multiple hardware queues, which allow much more effi-

cient scheduling of blocks from multiple kernels including kernels in multi-

ple streams. In addition, the CUDA dynamic parallelism feature allows

GPU work creation: GPU kernels can launch child kernels, asynchronously,

dynamically, and in a data-dependent or compute load-dependent fashion.

This reduces CPU�GPU interaction and synchronization, since the GPU

can now manage more complex workloads independently. The CPU is in

turn free to perform other useful computation.

Interruptable kernels. Fermi allows the running kernel to be

“canceled,” which eases the creation of CUDA-accelerated applications

that allow the user to abort a long-running calculation at any time, without

requiring significant design effort on the part of the programmer. Once

software support is available, this will enable implementation of user-level

task scheduling systems that can better perform load balance between

GPU nodes of a computing system, and allows more graceful handling of

cases where one GPU is heavily loaded and may be running slower than

its peers [SH 2009].

466 CHAPTER 21 Conclusion and Future Outlook

21.4 CORE PERFORMANCE
Double-precision speed. Early devices perform double-precision floating-

point arithmetic with significant speed reduction (around eight times

slower) compared to single precision. The floating-point arithmetic units

of Fermi and its successors have been significantly strengthened to per-

form double-precision arithmetic at about half the speed of single preci-

sion. Applications that are intensive in double-precision floating-point

arithmetic benefit tremendously. Other applications that use double preci-

sion carefully and sparingly see less performance impact.

In practice, the most significant benefit will likely be obtained by

developers who are porting CPU-based numerical applications to GPUs.

With the improved double-precision speed, they will have little incentive

to spend the effort to evaluate whether their applications or portions of

their applications can fit into single precision. This can significantly

reduce the development cost for porting CPU applications to GPUs, and

addresses a major criticism of GPUs by the high-performance computing

community. Some applications that are operating on smaller size input

data (8 bits, 16 bits, or single-precision floating point) may continue to

benefit from using single-precision arithmetic, due to the reduced band-

width of using 32-bit versus 64-bit data. Applications such as medical

imaging, remote sensing, radio astronomy, seismic analysis, and other nat-

ural data frequently fit into this category.

Better control flow efficiency. Fermi adopts a general compiler-driven

predication technique [MHM1995] that can more effectively handle control

flow than previous CUDA systems. While this technique was moderately

successful in VLIW systems, it can provide more dramatic speed improve-

ments in GPU warp-style SIMD execution systems. This capability can

potentially broaden the range of applications that can take advantage of

GPUs. In particular, major performance benefits can potentially be realized

for applications that are very data-driven, such as ray tracing, quantum

chemistry visualization [SSH2009], and cellular automata simulation.

21.5 PROGRAMMING ENVIRONMENT
Future CUDA compilers will include enhanced support for C11 tem-

plates and virtual function calls in kernel functions. Although the hardware

enhancements, such as the ability to make function calls at runtime, are in

place, enhanced C11 language support in the compiler has been taking

46721.5 Programming Environment

more time. The C11 try/catch features will also likely be fully supported

in kernel functions in the near future. With these enhancements, future

CUDA compilers will support most mainstream C11 features. The

remaining features in kernel functions such as new, delete, constructors,

and destructors will likely be available in later compiler releases.

New and evolved programming interfaces will continue to improve the

productivity of heterogeneous parallel programmers. As we showed in

Chapter 15, OpenACC allows developers to annotate their sequential loops

with compiler directives to enable a compiler to generate CUDA kernels.

In Chapter 16, we show that one can use the Thrust library of parallel

type-generic functions, classes, and iterators to describe their computation

and have the underlying mechanism to generate and configure the kernels

that implement the computation. In Chapter 17, we presented CUDA

FORTRAN that allows FORTRAN programmers to develop CUDA

kernels in their familiar language. In particular, this interface offers strong

support for indexing into multidimensional arrays. In Chapter 18, we gave

an overview of the C11 AMP interface that allow the developers to

describe their kernels as parallel loops that operate on logical data struc-

tures, such as multidimensional arrays in a C11 application. We fully

expect that new innovations will continue to arise to further boost the

productivity of developers in this exciting area.

21.6 FUTURE OUTLOOK
The new CUDA 5.0 SDK and the new GPUs based on the Kepler architec-

ture mark the beginning of the fourth generation of GPU computing that

places real emphasis on support for developer productivity and modern

software engineering practices. With the new capabilities, the range of

applications that will be able to get reasonable performance at minimal

development cost will expand significantly. We expect that developers

will immediately notice the reduction in application development, porting,

and maintenance cost compared to previous CUDA systems. The existing

applications developed with Thrust and similar high-level tools that auto-

matically generate CUDA code will also likely get an immediate boost in

their performance. While the benefit of hardware enhancements in mem-

ory architecture, kernel execution control, and compute core performance

will be visible in the associated SDK release, the true potential of these

enhancements may take years to be fully exploited in the SDKs and run-

times. For example, the true potential of the hardware virtual memory

468 CHAPTER 21 Conclusion and Future Outlook

capability will likely be fully achieved only when a shared global address

space runtime that supports direct GPU I/O and peer-to-peer data transfer

for multi-GPU systems becomes widely available. We predict an exciting

time for innovations from both industry and academia in programming

tools and runtime environments for massively parallel computing in the

next few years.

Enjoy the ride!

References
Gelado, I., Navarro, N., Stone, J., Patel, S., & Hwu, W. W. (2009). An asymmet-

ric distributed shared memory model for heterogeneous parallel systems,

Technical Report, IMPACT Group, University of Illinois, Urbana-Champaign.

Mahlke, S. A., Hank, R. E., MCormick, J. E., August, D. I., & Hwu, W. W. (June

1995). A comparison of full and partial predicated execution support for ILP

processors, Proceedings of the 22nd Annual International Symposium on

Computer Architecture, Santa Margherita Ligure, Italy, pp. 138�150.

Stone, J. E., & Hwu, W. W. (2009).WorkForce: A Lightweight Framework for

Managing Multi-GPU Computations, Technical Report, IMPACT Group,

University of Illinois, Urbana-Champaign.

Satish, N., Harris, M., & Garland. M. (May 2009). Designing efficient sorting

algorithms for many core GPUs, Proceedings of the 23rd IEEE International

Parallel and Distributed Processing Symposium, Rome, Italy, pp. 177-187.

Sengupta, S., Harris, M., Zhang, Y., & Owens, J. D. (Aug. 2007). Scan Primitives

for GPU computing, Proceedings of Graphics Hardware 2007, San Diego,

California, pp. 97�106.

Stone, J. E., Saam, J., Hardy, D. J., Vandivort, K. L., Hwu, W. W., & Schulten, K.

(March 8, 2009). High performance computation and interactive display of

molecular orbitals on GPUs and multi-core CPUs, the second GPGPU work-

shop, ACM/IEEE Conference on Architecture Support for Programming

Languages and Operating Systems (ASPLOS), pp. 9�18.

469References

This page intentionally left blank

APPENDIX

AMatrix Multiplication
Host-Only Version
Source Code

APPENDIX OUTLINE

A.1 matrixmul.cu.. 471

A.2 matrixmul_gold.cpp.. 474

A.3 matrixmul.h ... 474

A.4 assist.h ... 476

A.5 Expected Output ... 480

This appendix shows a host-only source code that can be used as the base

of your CUDA matrix multiplication code. We have already inserted timer

calls in key places so that you can use the measurement to isolate the exe-

cution time of the function that actually performs the matrix multiplica-

tion. It also has the code that you can use to print out the matrix contents

and verify the results.

A.1 matrixmul.cu

/���

File Name [matrixmul.cu]
Synopsis [This file defines the main function to do matrix-
matrixmultiplication.]
Description []

���/
//--
// Included C libraries
//--
#include ,stdlib.h.

#include ,stdio.h.
#include ,string.h.
#include ,math.h.

471

//--
// Included CUDA libraries
//--
#include ,cutil.h.

//--
// Included helper functions
//--
#include "assist.h"
//--
//Included host matrix-matrix multiplication function
prototype

//--
#include "matrixmul.h"
/� 5 �/
/� �/
/� Synopsis [Main function] �/
/� Description [] �/
/� �/
/� 5 �/

int
main(int argc, char�� argv)
{

bool if_quiet 5 false;
unsigned int timer_compute 5 0;
int i, j;
char � matrix_id 5 NULL, � input_fn 5 NULL, � gold_fn 5 NULL;
int Mw 5 0, Mh 5 0, Nw 5 0, Nh 5 0, Pw 5 0, Ph 5 0;

if (argc 5 5 2) {
matrix_id 5 strdup(argv[1]);

} else {
fprintf(stderr, "Error: Wrong input parameter
numbers.\n");
fprintf(stderr, "Usage:\n"

"$. ./lab1.1-matrixmul ,8, 128, 512,
3072, 4096.\n"
"Examples:\n"
" $. ./lab1.1-matrixmul 128\n"

);
exit(1);

}
Mw 5 Mh 5 Nw 5 Nh 5 Pw 5 Ph 5 atoi(matrix_id);
input_fn 5 (char �) malloc(30�sizeof(char));
gold_fn 5 (char �) malloc(30�sizeof(char));
sprintf(input_fn, "matrix_%s.bin", matrix_id);
sprintf(gold_fn, "matrix_%s.gold", matrix_id);
if (Pw�Ph . 15�15) {

472 APPENDIX A Matrix Multiplication Host-Only Version Source Code

if_quiet 5 true; // If not display matrix contents
}
printf("Input matrix size: %d by %d\n", Mw, Mh);
//——
// Setup host side
//——
printf("Setup host side environment:\n");

// allocate host memory for matrices M and N
printf(" Allocate host memory for matrices M and N.\n");
printf(" M: %d x %d\n", Mw, Mh);
printf(" N: %d x %d\n", Nw, Nh);
unsigned int size_M 5 Mw � Mh;
unsigned int mem_size_M 5 sizeof(float) � size_M;
float� hostM 5 (float�) malloc(mem_size_M);
unsigned int size_N 5 Nw � (Nh);
unsigned int mem_size_N 5 sizeof(float) � size_N;
float� hostN 5 (float�) malloc(mem_size_N);

// allocate memory for the result on host side
printf(" Allocate memory for the result on host side.\n");
unsigned int size_P 5 Pw � Ph;
unsigned int mem_size_P 5 sizeof(float) � size_P;
float� hostP 5 (float�) malloc(mem_size_P);

// Initialize the input matrices.
printf(" Generate input matrix data for matrix M and N.\n");
GenMatrixFile(input_fn, Pw, Ph, if_quiet);
unsigned int � matrix 5 ReadMatrixFile(input_fn, Pw, Ph,

true);
for (i 5 0; i , Mw; i11)

for (j 5 0; j , Nw; j11)
hostM[i � Mw1 j] 5 hostN[i � Mw1 j] 5 (float)
matrix[i�Mw1 j];

free(matrix); matrix 5 NULL;
//5 5

// Do matrix-matrix multiplication
//5 5

printf(" Computing matrix multiplication M x N:\n");
if (Pw�Ph . 512�512) {

printf(" (It takes time since matrix is larger than
512by512.\n");

}
CUT_SAFE_CALL(cutCreateTimer(&timer_compute));
CUT_SAFE_CALL(cutStartTimer(timer_compute));

float� reference 5 (float�) malloc(mem_size_P);
computeGold(reference, hostM, hostN, Mh, Mw, Nw);
CUT_SAFE_CALL(cutStopTimer(timer_compute));

473APPENDIX A Matrix Multiplication Host-Only Version Source Code

printf(" CPU Processing time : %f (ms)\n",
cutGetTimerValue(timer_compute));

CUT_SAFE_CALL(cutDeleteTimer(timer_compute));

printf(" Matrix data checksum : %g\n", CheckSum(reference,
Mw, Nw));

if (!if_quiet) {
printf(" Matrix data contents :\n");
printf(" ");

}
matrix 5 (unsigned int �) malloc(Pw � Ph � sizeof(unsigned

int));
for (i 5 0; i , Ph; i11) {

for (j 5 0; j , Pw; j11) {
matrix[i�Pw1 j] 5 (unsigned int) reference[i�Pw1 j];

if (!if_quiet) printf("%u ", matrix[i�Pw1 j]);
}
if (!if_quiet) printf("\n ");

}
if (!if_quiet) printf("\n");

WriteMatrixFile(gold_fn, matrix, Pw, Ph, 1);
free(matrix); matrix 5 NULL;
free(reference);

// clean up memory
free(hostM); free(hostN); free(hostP);
free(input_fn); free(gold_fn);
return 0;

}

A.2 matrixmul_gold.cpp

This “gold” version of the matrix multiplication function can be used to

verify the results of your parallel implementation.
/���

File Name [matrixmul_gold.cpp]

Synopsis [This file defines the gold-version matrix-matrix
multiplication.]

Description []
���/
#include ,stdio.h.

#include "matrixmul.h"
/� 5 �/
/� �/

474 APPENDIX A Matrix Multiplication Host-Only Version Source Code

/� Synopsis [Sequential/Gold version of matrix-matrix
multiplication.] �/

/� �/
/� Description [This function computes multiplication of two
matrix M and N,�/

/� and stores the output to P.] �/
/� �/
/� 5 �/

void
computeGold(

float� P, // Resultant matrix data
const float� M, // Matrix M
const float� N, // Matrix N
int Mh, // Matrix M height
int Mw, // Matrix M width
int Nw) // Matrix N width

{
int i, j, k;
float sum, a, b;

for (i 5 0; i , Mh; i11)
for (j 5 0; j , Nw; j11)
{

sum 5 0;
for (k 5 0; k , Mw; k11)
{

a 5 M[i � Mw1 k];
b 5 N[k � Nw1 j];

//printf ("A[%d] � B[%d]\n", i � Mw1 k, k � Nw1 j);
sum 1 5 a � b;

}
P[i � Nw1 j] 5 (float)sum;

}
}

A.3 matrixmul.h

This file contains the function prototype of the gold-version of matrix-

matrix multiplication.
/��������� ��

File Name [matrixmul.h]

Synopsis [This file defines the function prototype of the
gold-versionmatrix-matrix multiplication.]
Description []

���/

475APPENDIX A Matrix Multiplication Host-Only Version Source Code

#ifndef MATRIXMUL_H
#define MATRIXMUL_H
extern "C"
void computeGold(
float� P, const float� M, const float� N, int Mh, int Mw, int Nw);

#endif

A.4 assist.h

This file contains helper functions that assist in reading, writing, and veri-

fying matrix data files to make your implementation easy.
/���

File Name [assist.h]
Synopsis [This file defines the helper functions to assist

In file access and result verification in matrix-matrix
multiplication.]
Description []

���/
FILE �

OpenFile (
const char � const fn_p,
const char � const open_mode_p,
const int if_silent // If not show messages
)

{
FILE � f_p 5 NULL;
if (fn_p 5 5 NULL) {

printf ("Null file name pointer.");
exit (-1);

}
if (!if_silent) {

fprintf(stdout,"Opening the file %s . . . ", fn_p);
}
f_p 5 fopen(fn_p, open_mode_p);
if (f_p 5 5 NULL) {

if (!if_silent) {
fprintf(stdout,"failed.\n");

} else {
fprintf(stdout,"\nOpening the file %s . . . failed.\n\n",
fn_p);

}
exit (-1);
}
if (!if_silent) fprintf(stdout,"succeeded.\n");
return (f_p);

476 APPENDIX A Matrix Multiplication Host-Only Version Source Code

}
int

GenMatrixFile (
const char � const matrix_fn_p,
const unsigned int M_WIDTH, // matrix width
const unsigned int M_HEIGHT, // matrix height
const int if_silent // If not show messages
)

{
FILE � matrix_fp 5 NULL;
const unsigned int M_SIZE 5 M_WIDTH � M_HEIGHT;
unsigned int � matrix 5 NULL;
unsigned int i 5 0, j 5 0;

matrix_fp 5 OpenFile (matrix_fn_p, "wb", 1);
matrix 5 (unsigned int �) malloc (M_SIZE � sizeof
(unsigned int));

//if (!if_silent) fprintf (stdout, "Generated contents of
matrix:\n");
if (!if_silent) fprintf (stdout, " ");
for (i 5 0; i , M_HEIGHT; i11) {
for (j 5 0; j , M_WIDTH; j11) {
matrix[i�M_WIDTH1 j] 5 i1j11;
if (!if_silent) fprintf (stdout, "%u ", matrix
[i�M_WIDTH1 j]);

}
if (!if_silent) fprintf (stdout, "\n ");

}
if (!if_silent) fprintf (stdout, "\n");

fwrite (matrix, 1, M_SIZE � sizeof (unsigned int), matrix_fp);
fclose (matrix_fp);
free (matrix); matrix 5 NULL;
return (1);

}
unsigned int �

ReadMatrixFile (
const char � const matrix_fn_p,
const unsigned int M_WIDTH, // matrix width
const unsigned int M_HEIGHT, // matrix height
const int if_silent // If not show messages
)

{
FILE � matrix_fp 5 NULL;
const unsigned int M_SIZE 5 M_WIDTH � M_HEIGHT;
unsigned int � matrix 5 NULL;
unsigned int i 5 0, j 5 0;

477APPENDIX A Matrix Multiplication Host-Only Version Source Code

matrix_fp 5 OpenFile(matrix_fn_p, "rb", if_silent);
matrix 5 (unsigned int �) malloc(M_SIZE � sizeof (unsigned

int));
fread(matrix, 1, M_SIZE � sizeof (unsigned int), matrix_fp);

if (!if_silent) {
fprintf (stdout, "Read contents of matrix:\n");
fprintf (stdout, " ");
for (i 5 0; i , M_HEIGHT; i11) {

for (j 5 0; j , M_WIDTH; j11) {
fprintf (stdout, "%u ", matrix[i�M_WIDTH1 j]);

}
fprintf (stdout, "\n ");

}
fprintf(stdout, "\n");
}
fclose (matrix_fp);
return (matrix);

}
int

WriteMatrixFile (
const char � const matrix_fn_p,
const unsigned int � const matrix,
const unsigned int M_WIDTH, // matrix width
const unsigned int M_HEIGHT, // matrix height
const int if_silent // If not show messages
)

{
FILE � matrix_fp 5 NULL;
const unsigned int M_SIZE 5 M_WIDTH � M_HEIGHT;
unsigned int i 5 0, j 5 0;
matrix_fp 5 OpenFile (matrix_fn_p, "wb", if_silent);
fwrite (matrix, 1, M_SIZE � sizeof (unsigned int), matrix_fp);

if (!if_silent) {
fprintf (stdout, "Written contents of matrix:\n");
for (i 5 0; i , M_HEIGHT; i11) {

for (j 5 0; j , M_WIDTH; j11) {
fprintf (stdout, "%u ", matrix[i�M_WIDTH1 j]);

}
fprintf (stdout, "\n");

}
}
fclose (matrix_fp);
return (1);

}
// Usage:
// CompareMatrixFile ("your output", "golden output", WC, HC, 1);

478 APPENDIX A Matrix Multiplication Host-Only Version Source Code

void
CompareMatrixFile (

const char � const matrix_fn_p1,
const char � const matrix_fn_p2,
const unsigned int M_WIDTH, // matrix width
const unsigned int M_HEIGHT, // matrix height
const int if_silent // If not show messages
)

{
unsigned int i 5 0, j 5 0, wrong 5 0;
int check_ok 5 1;
unsigned int � m1 5 ReadMatrixFile (matrix_fn_p1, M_WIDTH,
M_HEIGHT, if_silent);
unsigned int � m2 5 ReadMatrixFile (matrix_fn_p2, M_WIDTH,
M_HEIGHT, if_silent);
printf (" Comparing file %s with %s . . .\n", matrix_fn_p1,

matrix_fn_p2);
for (i 5 0; i , M_HEIGHT && wrong , 15; i11) {

for (j 5 0; j , M_WIDTH && wrong , 15; j11) {
//printf ("m1[%d][%d] ?5 m2[%d][%d] : %d ?5 %d\n",
// i,j,i,j, m1[i�M_WIDTH1j], m2[i�M_WIDTH1j]);

if (m1[i�M_WIDTH1j] !5 m2[i�M_WIDTH1j]) {
printf ("m1[%d][%d] !5 m2[%d][%d] : %d !5 %d\n",

i,j,i,j, m1[i�M_WIDTH1j], m2[i�M_WIDTH1j]);
check_ok 5 0; wrong11;

}
}

}
printf (" Check ok? ");
if (check_ok) printf ("Passed.\n");
else printf ("Failed.\n");

}
float

CheckSum(const float �matrix, const int width, const int height)
{

int i, j;
float s1, s2;
for (i 5 0, s1 5 0; i , width; i11) {

for (j 5 0, s2 5 0; j , height; j11) {
s2 1 5 matrix[i � width1 j];

}
s1 1 5 s2;

}
return s1;

}

479APPENDIX A Matrix Multiplication Host-Only Version Source Code

A.5 EXPECTED OUTPUT
This is the expected output when you test your implementation of matrix-

matrix multiplication.
Input matrix size: 8 by 8
Setup host side environment:
Allocate host memory for matrices M and N.
M: 8 3 8
N: 8 3 8

Allocate memory for the result on host side.
Generate input matrix data for matrix M and N.
1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9
3 4 5 6 7 8 9 10
4 5 6 7 8 9 10 11
5 6 7 8 9 10 11 12
6 7 8 9 10 11 12 13
7 8 9 10 11 12 13 14
8 9 10 11 12 13 14 15

Computing matrix multiplication M x N:
CPU Processing time : 0.009000 (ms)
Matrix data checksum : 35456
Matrix data contents :
204 240 276 312 348 384 420 456
240 284 328 372 416 460 504 548
276 328 380 432 484 536 588 640
312 372 432 492 552 612 672 732
348 416 484 552 620 688 756 824
384 460 536 612 688 764 840 916
420 504 588 672 756 840 924 1008
456 548 640 732 824 916 1008 1100

480 APPENDIX A Matrix Multiplication Host-Only Version Source Code

APPENDIX

BGPU Compute Capabilities

APPENDIX OUTLINE

B.1 GPU Compute Capability Tables .. 481

B.2 Memory Coalescing Variations.. 482

B.1 GPU COMPUTE CAPABILITY TABLES
As we discussed in Chapters 6-10, maximizing the kernel performance on

a particular GPU requires knowledge of the resource limitations in the

GPU hardware. Therefore, the main hardware resource provisions in each

GPU are typically exposed to applications in a standardized system called

compute capability. The general specifications and features of a compute

device depend on its compute capability. For CUDA, the compute capabil-

ity starts at Compute 1.0, and at the time of this writing the latest version

is Compute 3.5. Each higher level of compute capability indicates a newer

generation of GPU devices with a higher number of features. Table B.1

highlights the key features support differences between each of the com-

pute capabilities. Features not listed can be considered supported by all

compute capability variations; differences in memory coalescing are dis-

cussed in Section B.2. In general, a higher-level compute capability

defines a superset of features of those of a lower level.

Table B.2 shows the main dimensions of compute capability specifica-

tions and gives the numerical value of each dimension for Compute 3.5.

Each higher level of compute capability enhances one more of these

dimensions.

Depending on the time of its introduction, each CUDA-enabled device

supports up to a particular generation of compute capability. Many

CUDA-enabled devices are introduced each year. Readers should refer to

http://developer.nvidia.com/cuda-gpus for an updated list.

Many device-specific features and sizes can be determined calling

runtime CUDA function cudaGetDeviceProperties(). See the CUDA

Programmer Guide for more details.

481

http://developer.nvidia.com/cuda-gpus

B.2 MEMORY COALESCING VARIATIONS
Each level of compute capability also specifies a different level of hard-

ware memory coalescing capability. Knowing the compute capability, one

can determine the number of global memory transactions that a load

instruction in a warp will incur. Later compute capabilities such as 2.x and

higher substantially reduce the number of memory transactions and occur-

rence of noncoalesced accesses. In Compute 1.0 and Compute 1.1, mem-

ory transactions are done for either memory 64 B or 128 B segments.

Coalescing of accesses in a warp requires that the kth thread in a warp

access the kth word in a 64 B segment when accessing 32-bit words (or

the kth word in two contiguous 128 B segments when accessing 128-bit

words). Not all threads need to participate for coalescing to work. In the

top of Figure B.1, one of the threads in a warp did not participate and the

accesses are still coalesced into one transaction.

Table B.1 Key Functional Support Variations Between CUDA Compute Capabilities

Feature Support Differences Compute Capability

1.0 1.1 1.2 1.3 2.x 3.0 3.5

Atomic functions operating on 32-bit
integer values in global memory

No Yes

atomicExch() operating on 32-bit
floating-point values in global memory
Atomic functions operating on 32-bit
integer values in shared memory

No Yes

Atomic functions operating on 64-bit
integer values in global memory
Warp vote functions
Double-precision floating-point numbers No Yes
Atomic functions operating on 64-bit
integer values in shared memory

No Yes

Atomic additions operating on 32-bit
floating-point values in global and shared
memory
Enhanced warp vote functions
Memory fence functions
Synchronization functions
3D grid support
Funnel shift No Yes

482 APPENDIX B GPU Compute Capabilities

In particular, all accesses must be in sequence. If one or more of the

accesses are out of sequence, the accesses will no longer be coalesced. In

the middle of Figure B.1, two of the accesses are out of sequence. The

accesses are therefore not coalesced; 16 transactions to the global memory

are done for the access.

Table B.2 Main Dimensions of Compute Capability and the Attributes of Compute

3.5

Features Compute 3.5

Number of stream processors per multiprocessor (MP) 192
Max. number of threads per block 1,024
Max. grid dimensions X, Y, Z 2312 1,65535,65535
Max. block dimensions X, Y, Z 1,024, 1,024, 64
Threads in a warp 32
Registers per MP 65,536 (64 K)
Shared memory per MP 49,152 (48 K)
Banks in shared memory 32
Total constant memory 65,536 (64 K)
Cache working set for constants per MP 8,192 (8 K)
Local memory per thread 524,288 (512 K)
Cache working set for texture per MP 6�8 KB
Max. number of active blocks per MP 16
Max. number of active warps per MP 64
Max. number of active threads per MP 2,048
1D texture bound to CUDA array—max. width 65,536
1D texture bound to linear memory—max. width 227

2D texture bound to linear memory or CUDA array; max.
dimensions X, Y

65,000 and 65,536,
respectively

3D texture bound to a CUDA array max. dimensions X, Y, Z 4 K3 4 K3 4 K
Max. width, height, and layers for a cube map�layered
texture reference

16,3843 16,3843 2,046

Max. number of textures that can be bound to a kernel 256
1D surface reference bound to a CUDA array—max. width 65,536
1D layered surface reference—max. width and layers 65,5363 2,048
2D layered surface reference—max. width, height, and layers 65,5363 32,7683 2,048
3D layered surface reference—max. width, height, and depth
bound to a CUDA array

65,5363 32,7683 2,048

Max. width, height, and layers for a cube map�layered
surface reference

32,7683 32,7683 2,046

Max. number of surfaces
Max. number of instructions per kernel 512 million microcode

instructions

483APPENDIX B GPU Compute Capabilities

Coalesces—1 transaction

Out of sequence—16 transactions

Misaligned—16 transactions

FIGURE B.1

Memory coalescing in compute 1.0 and Compute 1.1.

2

1 transaction—64B segment

2 transactions—64B and 32B segments

1 transaction—128B segment

FIGURE B.2

Memory coalescing in compute 1.2 and higher.

484 APPENDIX B GPU Compute Capabilities

Aligned and sequential

Addresses:

Threads:

Compute capability:

Memory transactions:

0

1.0 and 1.1

1 x 64B at 128
1 x 64B at 192

1 x 64B at 128
1 x 64B at 192

1 x 128B at 128

Uncached Cached

1.2 and 1.3 2.x and 3.0

Compute capability:

Memory transactions:

1.0 and 1.1

8 x 32B at 128
8 x 32B at 160
8 x 32B at 192
8 x 32B at 224

1 x 64B at 128
1 x 64B at 192

1 x 128B at 128

Uncached Cached

1.2 and 1.3 2.x and 3.0

31...

Threads: 0 31...

96 128 160 192 224 256 288

Aligned and non-sequential

Addresses: 96 128 160 192 224 256 288

Compute capability:

Memory transactions:

1.0 and 1.1

7 x 32B at 128
8 x 32B at 160
8 x 32B at 192
8 x 32B at 224

8 x 32B at 256

1 x 32B at 256

1 x 64B at 192
1 x 128B at 128 1 x 128B at 128

1 x 128B at 256

Uncached Cached

1.2 and 1.3 2.x and 3.0

Threads: 0 31...

Misaligned and sequential

Addresses: 96 128 160 192 224 256 288

FIGURE B.3

Examples of global memory access and resulting memory transactions for each

compute capability.

485APPENDIX B GPU Compute Capabilities

In Compute 1.2 and higher, the global memory transactions are issued

in 32 B, 64 B, or 128 B segments. Having a smaller segment size allows

the hardware to reduce waste of global memory bandwidth for some less

coherent warp access patterns.

Figure B.2 illustrates improvements in memory coalescing in Compute 1.2.

The top part shows that warp accesses within a segment can be out of

sequence and still be fully coalesced into one transaction.

The middle part shows that the access can be nonaligned across a

128 B boundary. One extra 32 B segment transaction will be issued and

the accesses are still coalesced. The bottom part shows if warp accesses

are nonaligned but stay within a 128 B boundary, a single 128 B segment

transaction will be used to access all the words involved. In these two

cases, the global memory bandwidth consumption is much less than that in

Compute 1.0 or Compute 1.1 where 16 transactions of 64 B segments

would be used.

Figure B.3 illustrates the improvements introduced in Compute 2.0

resulting in all aligned memory accesses to be considered coalesced and

eliminating additional memory transactions.

486 APPENDIX B GPU Compute Capabilities

Index

Note: Page numbers followed by “f ” and “b ” refer to figures and boxes respectively.

A
Accuracy of a floating-point arithmetic operation,

161�162

AddVecKernel() function, 56�57

Amdahl’s law, 286

AMD Opteron family, 1

ANSI C code, 43�44

Anti-aliasing operation, 26, 27f, 28f

Apple’s iPhonet interfaces, 11

Application Programming Interface (API)

libraries, 24�25

Array data layout

column major layout, 70

row major layout, 70

Arithmetic instructions, 99

ATI Radeon 9700, 28�29

Asynchronous data transfer, 424�425

Autotuning, 77

B
Backward substitution, 166, 166f

Barrier synchronization, 81, 431

example execution timing of, 82f

Barrier synchronizations, 125

Barrier __syncthreads() function, 114�115

Basic Linear Algebra Subprograms, 71

Bezier curve

calculation, 450�456

linear, 450

quadratic, 450

BlockDim variable, 53�54

blockDim.x, 56

BlockDim.x�gridDim.x threads, 71�72

BlockIdx values, 54

BlockIdx.x, 56

Boundary tile, 186�187

C
C language

malloc() function, 49

ANSI C code, 43

linearize a 2D array, 70

multidimensional array, 70

pointers, 46

preprocessor directive, 47

runtime library, 49

traditional C compilers, 42�43

traditional C program, 43

C11 Accelerated Massive Parallelism (AMP)

array_view, 391�393

asynchronous operation, 393�395

data-parallel computation, 390

execution model, 391�395

explicit and implicit array operations,

391�393

extensions of languages, 384

features, 384�391

focus of, 383

for_each function template, 386

graphics, 401�404

managing accelerators, 395�397

parallel_for_each construct, 386�388

restrict(amp) modifier, 387

restrict(amp) specification, 387�388

set of restrictions, 388�389

template array_view, 385�386

“tiled” version of data parallelism, 398�401

vector addition, 385f

vehicle for reading and writing large data

collections, 385

Cache, 340

hierarchy, 184

L1 cache, 184

L2 cache, 184

general caching, 192

Cache coherence mechanism, 184�185

Cache memory, 181

Carpooling arrangement, 107�109, 108f

Central processing unit (CPU), 1

C11 functions, 339�340

objects, 349b

Coalescing hardware, 134�135

coalesced access pattern, 136f

memory, 482�486

Collective communication function, 426

Communication-avoiding algorithms, 169

Computational thinking, parallel programming

into, 281, 293�294, 459. see also

Parallel computing

skills needed for a parallel programmer,

293�294

487

Compute to global memory access (CGMA) ratio,

96, 98

Conjugate gradient (CG) algorithm, 240

Convolution, 173�174

audio digital signal processing, 174�175

background, 174�178

boundary conditions, 175�176, 176f, 178f

calculation for P element P[i], 175

constant memory and caching, 181�185

constant memory variables, 185

1D, example, 174f

2D, example, 177f, 178, 178f

1D parallel, 179�181

ghost elements, 176

global memory variables, 182�183

halo elements, 185

in image processing and computer vision,

176�177

kernel, 174

mask arrays, 174

tiled, 1D, simpler, 192�193

tiled, 1D with halo elements, 185�192

variables located in DRAM, 183

Core performance evolution

better control flow efficiency, 467

double-precision speed, 467

CPU�GPU execution of an application, 5

CUDA API function, for data transfer between

host and device, 51f

CUDA barrier synchronization, 83

CUDA C, 41�42

device keyword, 55

global keyword, 55

host keyword, 55

execution configuration, 57

predefined constants, 52

predefined variables, 56

qualifier keywords, 54

differences with CUDA FORTRAN

programming, 360�361

resource and capability queries, 85�87

vs OpenACC Application Programming

Interface (API), 315�318, 323�326

CUDA compilers, future, 467�468

CUDA dynamic parallelism

API errors and launch failures, 439

background, 436�438

constant memory, 442�443

cudaStreamSynchronize() API, 440

ECC errors, 449

events, 439�440, 449

example, 444�446, 449�456

global memory, 442

host-side NULL stream, 440

launch environment configuration, 439

launch pool, 449

local memory, 442�443

memory allocation and lifetime, 448

memory footprint, 446�448

memory visibility, 442�444

named and unnamed (NULL) streams,

440�441

nesting depth, 448

runtime limitations, 446�449

shared memory, 443

streams, 449

synchronization scope, 441

texture memory, 443�444

zero-copy memory, 442

CUDA FORTRAN programming, 359

asynchronous data transfers, 371�377, 375f,

376f

calling Thrust from, 378�382

compilation and profiling, 377�378

differences with CUDA C, 360�361

dynamic shared memory, 370�371

first, 361�363

generic interfaces, 364�367

iso_c_binding module, 367�368

kernel loop directives and reduction

operations, 369�370

multidimensional arrays, 363�364

SAXPY kernel, 362

CudaFree() function, 49�50

CudaGetDeviceProperties() function, 86�87,

116�117

CUDA global memory, API functions for

managing device, 50f

CUDA host memory, 48

CUDA kernel

thread index to data index mapping, 137

divergent warp execution, 127�128

dynamic partitioning of execution resources,

141�143

execution of the revised kernel, 131�132

execution speed of a, 123�124

favorable vs unfavorable, 135�136

global memory bandwidth, 132�141

instruction processing, 143�144

loading d_M element and d_N element, 140

memory access patterns in C 2D arrays for

coalescing, 136f

488 Index

reduction algorithm, 128�129

row-major convention, 134�135

simple sum reduction kernel, 129f, 130f

thread granularity adjustments, 143�144

total amount of work done by, 130�131

warps and thread execution, 124�132

CudaMalloc() function, 49�50

CudaMemcopyDeviceToHost, 52

CudaMemcopyHostToDevice, 52

CudaMemcpyAsync() function, 424�425

CudaMemcpy() function, 50�52, 252�253,

424

CUDA memories

automatic array variables, 103

compile-time constant, 117

constant memory, 181

constant memory caching, 181

effect of memory access efficiency, 96�97

floating-point addition instruction, 100

global memory accesses, 106, 106f

interaction between register usage of a

kernel and the level of parallelism,

115�116

as a limiting factor to parallelism, 115�118

overview, 98f

pointers to objects, 104

processing units and threads, 100b

registers and shared memory, 97�98,

101�102, 101f

scratchpad memory, 101

shared memory usage, 116�117

strategy for reducing global memory traffic,

105�109

tiling strategy, 105

types, 97�104

variable declaration, 103�104

variable type qualifiers, 102t

von Neumann model, 97b

CUDA Occupancy Calculator, 117

CUDA programming model maps, 98

CUDA program structure, 43�45

execution, 44�45, 45f

CUDA runtime systems, 47�53, 82�83

CUDA shared memory, 183�184

CudaStreamCreate() function, 425

CUDA syncthreads(), 426

Cutoff binning, 288�289

D
Data management technique, 12

Data-parallel execution model

assigning resources to blocks, 83�85

blockIdx variable, 64�65

blockIdx.x, blockIdx.y, and blockIdx.z values,

66

built-in variables, 63b

column-major layout, 71

CUDA C compiler, 65�66

CUDA grid organization, 67f

CUDA thread organization, 64�68

dimBlock and dimGrid, 65

expression Col5 blockIdx.x�blockDim.

x1threadIdx.x, 71�72

grid and block dimensions, 65

gridDim.x, gridDim.y, and gridDim.z values, 66

hierarchical organizations, 64b

mapping of threads, 68�74

matrix�matrix multiplication, 74�81

memory space, 70b

querying device properties, 85�87

resource and capability queries, 85b

row-major layout, 70

threadId.x, threadIdx.y, and threadIdx.z,

67�69

threadIdx variable, 64�65

thread scheduling and latency tolerance,

87�91

vecAddkernel() kernel function, 65

Data parallelism, 10�12, 42�43

vector addition example, 42�43

vs task parallelism, 42b

Data transfer, 47�53

__device__ keyword, 55�56

Device memory, 48

Dev_prop. multiProcessorCount, 87

Dev_prop.maxGridSize, 87

Dev_prop.maxThreadsDim, 87

Dev_prop.maxThreadsPerBlock, 87

Dev_prop.regsPerBlock field, 116

3dfx, 35�36

Digital high-definition (HD) TV, 11

Direct3D component of DirectX, 24�25

Direct3D technique, 7

Direct memory access (DMA), 24b, 424

DirectX 10 API generation, 33

1D parallel convolution, 179�181

input parameters, 179

kernel with boundary condition, 180f

mapping of threads to output elements, 179

Mask_Width (the size of the masks), 180

output element index, 179

variable P value, 180

489Index

Dynamic parallelism, programmer’s perspective,

438�439

Dynamic random access memory (DRAM), 3�5,

95, 98, 108�109

of CUDA device, 133

graphic double data rate (GDDR), 8

organization of modern, 134

reason for slow functioning, 133b

E
Electronic gaming, 11, 24

Error handling in CUDA, 51b

Excess encoding of E, 153�154

Exclusive scan operation, 199

Execution configuration parameters of thread

blocks, 57

Execution speed of a CUDA kernel, 123�124

F
Fadd instruction, 100

Fermi virtual memory architecture, 461

Fixed-function graphic pipelines, 24�28

in NVIDIA GeForce GPUs, 25, 25f

“Flat” memory space, 70

Floating-point capabilities

algorithm considerations, 162�164

alignment shifting of operands, 161�162

arithmetic accuracy and rounding, 161�162

bit patterns, IEEE standard format, 160�161

discrepancy between sequential algorithms and

parallel algorithms, 163

excess encoding of E, 153�154, 154f

floating-point number system, 152

format, 152�154

high-performance, 151

IEEE-754 Floating-Point Standard, 152

precision, 151, 157

normalized representation of M, 152�153

numerical stability, 164�169

pivoting step, 168f, 169

reduction computation, 163

representable numbers of a number format,

155�160, 155f, 156f

Fluid dynamics, 42

FORTRAN programs, 71

Frame buffer interface (FBI) stage, 27�28

Function declarations, CUDA, 54�55

C keywords for, 55f

G
G80, 8

Gaussian filters, 173�174

GeForce FX, 28�29

GeForce graphics pipeline, 25�26

GeForce 8800 GTX, 3�4

GeForce 8800 hardware, 33

General-purpose computing on GPUs, 14�16

General-purpose programming interface, 7

GFLOPS, 1

Giga floating-point operations per second

(GFLOPS), 96�97

__global__ function, 54�55

Global memory, 47�53

Global memory of a CUDA device, 132�141

DRAMS, 133

GMAC, 15

GPGPU (general-purpose programming using a

graphics processing unit), 7

GPU. Tune, 261

GPU Computing Gems, 36�37

GPU.Multi, 261

Graphic pipelines

evolution, 23�33

fixed-function, 24�28

frame buffer interface (FBI) stage, 27�28

future trends, 37

programmable real-time graphics, 28�30

recent developments, 36�37

ROP (raster operation) stage, 26

shader stage, 26

three-dimensional (3D), 23�24

triangle setup stage, 26

unified graphics and computing processors,

30�33, 32f

vertex control stage, 25�26

vertex shading, transform, and lighting (VS/

T&L) stage, 26

Graphics API (application programming interface)

functions, 7

Graphics chips, 3�4

Graphics processing unit (GPU)

architecture of modern, 8�9

compute capabilities, 481

computing, 16�17

CUDA-enabled, 5�6, 9f, 13

data parallelism, 10�12

design philosophy, 4

floating-point arithmetic units, 6�7

global memory access and resulting memory

transactions, 485f

490 Index

GP, 14�16

IEEE floating-point standard, 6�7

level of speedup, 13

NVIDIA GTX680, 2�3

PCI-E Gen3, 8

scalable, 17�21

Tesla architecture, 11

Grid, 44�45

Gridding computation, 238

GTX680, 8

H
Halo elements, 187

Heterogeneous parallel computing, 2�7, 407

joint MPI/CUDA programming, 14�15

many-thread trajectory, 2�3

multicore trajectory, 2�3

Hierarchical scan for arbitrary-length inputs, 211f,

212�213

High-performance computing (HPC), 14�15, 407

High-performance parallel programs, 16

High-quality real-time graphics, 23�24

__host__ keyword, 55�56

Hybrid control padding, 226�230

I
If-then-else statement, 82, 127

Inclusive scan operation, 198

Installed base of the processor, 5�6

Institute of Electrical and Electronic Engineers’

(IEEE) floating-point standard, 6�7

Instruction execution, 99

Intel Core i7t microprocessor, 2�3

Intel Pentium family, 1

Internal tiles, 187

K
Kernel execution control evolution

exception handling in kernel functions, 465

function calls within kernel functions,

464�465

interruptable kernels, 466

simultaneous execution of multiple kernels,

466

Kernels, 43�44

configuration parameters, 57

in CUDA runtime system, 53�58

launching of, 45

vector addition, 45�47, 46f

L
LargeBin algorithm, 292

Last-level on-chip caches, 5

Latency-oriented design, 5

Latency tolerance, 87�91, 89b

Linear algebra operations, 74b

Linear Bezier curve, 450

Locality, 111�112

LS (CPU, DP) row, 261�262

LS (CPU, SP) row, 262

LS (GPU, CMem, SPU, Exp) row, 262

M
Magnetic resonance imaging (MRI) construction,

case study

application of MRI, 236

background, 235�239

blockIdx and threadIdx values, 246

Cartesian scan trajectories, 237

chunking k-space data, 251�252, 252f

cmpMu() kernel, 245�246

computing FHD, 241�259, 242f, 243f

conjugate gradient (CG) algorithm, 240

experimental performance tuning, 259

FFT reconstruction of Cartesian scan data,

237�238

final evaluation, 260�262

iterative reconstruction, 239�241

kernel derived from interchanged loops, 248,

248f

kernel parallelism structure, determining,

243�248

k-space elements, 251�252

k-space regions, 236�237

loop fission or loop splitting, 244�245, 245f

loop interchange, 244

matrix�vector multiplication, 240�241

memory bandwidth limitations, analysis,

249�255

M/MU_THREADS_PER_BLOCK blocks,

245�246

non-Cartesian scan trajectories, 237�238,

238f, 239f

physics principles behind MRI, 236

quasi-Bayesian estimation problem

formulation, 239�240

ratio of floating-point arithmetic to floating-

point trigonometry functions, 242�243

hardware trigonometry functions, 255�259

Magnetic resonance imaging (MRI) machines, 6

Many-thread processors, 3

491Index

Matrix�matrix multiplication, 74�81

algorithm selection, 287�288

assist.h, 476�479

BLOCK_WIDTH, compile-time constant,

76�77

calculation of each dot product, 111

computation of d_P element, 96f

d_M and the Col column, 78

and dynamic partitioning of resources,

105�109

example, 105, 105f

expected output, 480

first iteration, 80

mapping threads to d_P elements, 75�76,

76f

matrixmul.cu, 471�474

matrixmul_gold.cpp, 474�475

matrixmul.h, 475�476

multiplication actions of one thread block, 80f

thread-to-data mapping, 76�77

tiled kernel, 109�115, 110f

tiled kernel, using shared memory, 110f, 112f

warp scheduling, 90

MatrixMulKernel() function, 77�78

host code, 78f

Row and Col in, 79�80

small execution example of, 79f

Memory bandwidth, 3�4

Memory coalescing, 482�486, 484f

Memory models, 461�464

configurable caching and scratchpad, 463

for CUDA applications, 463

for 3D simulation models, 463�464

for enhanced atomic operations, 464

enhanced global memory, 464

large virtual and physical address

spaces, 461

peer-to-peer direct data transfer, 462

unified device memory space, 462�463

Memory space, 70b

Message Passing Interface (MPI), 14�15, 407

basics, 410�413

collective communication, 431

communicator, 411

edge_num_points, 418

edge processes, 417

grid points, 417

host memory and device memory, 419�420

internal processes, 417

intracommunicator, 411

MPI_Comm_rank() function, 411

MPI_Comm_size() function, 412�413,

415�416

MPI_Recv() function, 414�415, 415f

MPI_Send() function, 414

overlapping of computation and

communication, 421�430

parameter specifications, 420�421

point-to-point type communication, 414�421

send_address pointer, 417�418

Microprocessors, 1

Microscopes, 10�11

Microsoft DirectX 8, 28�29

Molecular visualization and anlysis, case study

application background, 266�267

2D thread grid, 269

memory coalescing, 274�277

simple kernel implementation, 268�272, 270f

thread granularity adjustment, 272�274

VMD (Visual Molecular Dynamics), 266

MPI/CUDA, 407

MPI/OpenACC, 407

MPI/OpenCL, 407

Multi-GPU SLI concept, 35�36

N
NaNs, 160

National Institutes of Health (NIH), 6

Normalized representation of M, 152�153

Numerical stability of a floating-point format,

164�169

NVCC (NVIDIA C Compiler), 43�44

NVIDIA GeForce GPUs, 25, 25f, 28�29

6800 and 7800 series, 28�29

GeForce 8800 GTX, 35

Riva TNT Ultra, 35�36

Vanta, 35�36

NVIDIA GTX480, global memory, 47�48

NVIDIA GTX680 graphics processing unit (GPU),

2�3

O
OpenACC, 14

advantages, 14

OpenACC Application Programming Interface

(API)

asynchronous computation and data transfer,

335�336

compiler, 329�331

data clauses, 331�332

data construct, 332�335

data management, 331�335

492 Index

execution model, 318�319, 319f

execution units, 320

fcode snippet, 324�325

future directions, 336�337

gang loop, 322�323

GPUs, 319�320

host memory and device memory, 319�320

input data, 320

Jacobi relaxation, 335

kernel execution, 319

kernels construct, 327�331

loop construct, 322�327

moving a statement into a loop, 325�326

nontrivial code, 324f

parallel region, gangs, and workers, 320�322

parallel region or a kernels region, 318�319

porting, 325f, 326f

programmers, 316�317

users, 317

vector clause on a loop construct, 326�327,

327f

vs C11, 316�317

vs CUDA C, 315�318, 323�326

vs FORTRAN, 316�317

worker loop, 323

OpenCLTM

background, 297�299

building kernel, 310f

clCreateBuffer() function, 309�311

clCreateCommandQueue() function, 305�306

clCreateContext() or clCreateContextFromType

(), 304�305

clEnqueueNDRangeKernel() function, 311

clGetContextInfo() function, 306

clReleaseMemObject() function, 311

compute units (CUs), 301

CPU-based parallel programming, 298

creating context and command queue, 305f

data access indexing in, 309f

data parallelism model, 299�301

development, 298

device architecture, 301�303, 302f

device management and kernel launch,

304�307

difference between CUDA, 300

dynamic compilation model, 308�309

electrostatic potential map, 307�311

get_global_id() entry, 300�301

get_global_id(0) function, 303�304, 308

__global declarations, 303

global memory, 302

host code for kernel launch, 310f

host programs and command queue, 306,

309�311

inner loop of kernel, 309f

kernel, 300�301

kernel function, 299�300, 303�304, 308

local memory and private memory, mapping

of, 302�303

memory buffer, 306

OpenCL code, 298�299

parallel execution model, 300f

platform, 298�299

processing elements (PEs), 302

work groups assigned to CUs, 307�308

Open Compute Language (OpenCL), 15�16

OpenGL-based programming interface, 7

OpenGL technique, 7

OpenGL vertex shader extensions, 28�29

OpenMP, 14

P
Parallel computing. see also Convolution

algorithm selection, 287�292

application-level speedup achieved by

parallelization, 286

atom-centric arrangement, 284�285

audio digital signal processing, 174�175

comparison of scalability and performance,

291�292

convolution, 173�174

cutoff algorithm, 289

energy value for a grid point, 290

goal of, 282�283

grid-centric arrangement, 284

grid-centric decomposition, 289

issue with binning, 290

nonbonded force calculation, 285�286

problem decomposition, 283�287

running time of three binned cutoff

algorithms, 292

sequential tasks, 286�287

threading arrangement, 283�284

work efficiency, 290

Parallel programming, 2

teaching, 460

Parallel programming languages and models,

14�16

Parallel reduction algorithm, 128�129

Parallel scan

algorithm with a 16-element input example,

201

493Index

Parallel scan (Continued)

for arbitrary-length inputs, 210�214

background, 198�200

exclusive scan operation, 199, 203f

implementation of the iterative calculations,

202

inclusive scan operation, 198, 203f

kernel launch, 201�202

as a primitive operation, 199

role in massively parallel computing, 197

simple, 200�204, 200f

work efficiency consideration, 204�205, 210f

work-efficient, 205�210

PCI-Express Generation 2 (Gen2) interface, 8

Peak-performance gap, 3

PictureKernel() function, 71�72, 74�75

execution of, 72

source code, 72f

Pixel shader programs, 29

prefix-sum, 198

Program counter (PC), 97

Programmable real-time graphics, 28�30

Programming environment evolution, 467�468

Programming interface for computing clusters,

408

3D stencil computation, example, 408�410,

408f

overlapping of computation and

communication, 421�430

Q
Quadratic Bezier curve, 450

Quadro FX5600, 260

Quiet NaNs (qNaNs), 160�161

R
Raster stage, 26

Reduction algorithm, 128�129

Representable numbers of a floating-point format,

155�160, 155f, 156f

abrupt underflow convention, 158

algorithm considerations, 162�164

alignment shifting of operands, 161�162

arithmetic accuracy and rounding, 161�162

bit patterns, IEEE standard format, 159f,

160�161

denormalization of, 158�159

discrepancy between sequential algorithms and

parallel algorithms, 163

Gaussian elimination procedure, 166f,

167�168, 168f

intervals in neighborhood of 0, 157

major intervals of, 156

mantissa bits, 156�157

NaNs, 160

between negative infinity and positive infinity,

160

precision of, 159�160

quiet NaNs (qNaNs), 160

reduction computation, 163

represent of 0, 157

signaling NaNs (sNaNs), 160

trend of increasing density, 157�158

Rigidbody physics, 42

ROP (raster operation) stage, 26

S
Scalability, 16�17

Scalable GPU, 17�21

Scatter operations, 8

Scratchpad memory, 101

Sequential reduction algorithm, 128

Sequential SpMV/CSR loop, 222�224

shortcomings, 223

SpMV/ELL kernel code, 225

Shader stage, 26

Signaling NaNs (sNaNs), 160�161

SIMD (single instruction, multiple data)

instructions, 8

Single instruction, multiple data (SIMD) model,

88, 124b, 125, 127, 410�411

SmallBin algorithm, 292

SmallBin�Overlap algorithm, 292

Sparse matrix computation

background, 218�222

column index array, 218f

compressed storage, 219

coordinate (COO) format, 226�227

data padding and transposition of matrix

layout, 224�226

dot product loop body, 225

elements of data, col_index, and row_index,

227

FLOPS rating, 232

format for storing, 218

hybrid ELL and COO method for SpMV,

228�230

iterative approach, 220

JDS-ELL representation, 231

in JDS format, 230�231, 231f

loop index iteration, 220�222, 221f

matrix�vector multiplication, 220

494 Index

parallel SpMV/CSR, 222�224

parallel SpMV/ELL, 226, 226f

real, 222

in science and engineering problems, 218

sequential implementation of SpMV, 220

in solving a linear system of N equations of N

variables, 219�220

sorting and partitioning of rows, 230�232, 230f

transpose a JDS-CSR representation, 232

using hybrid control padding, 226�230

Speeding up real applications, 12�13

SPMD (single program, multiple data) parallel

programming style, 53

25-stencil computation, 408�409

Streaming multiprocessors (SMs), 8, 83�84, 95,

184, 250, 301

Streaming processors (SPs), 8, 88

Stub function, 52�53

Supercomputing applications, 10�11

Synchronization functions, 81�83

__syncthreads() statement, 81�82, 129

T
Task parallelism, 42b

TFLOPS, 1

ThreadIdx.x, 54, 56

Threads, 45b

block partition in, 125

in CUDA runtime system, 53�58

2D, in linear order, 126f

for a 3D block, 126�127

executing as warps, 124b

executing CUDA kernel, 124�132

in a grid executing same kernel codes, 54f

linear order of, 125�126

mapping data-parallel execution model, 68�74

multiple dimensions of, 125�126

and SIMD hardware, 127

threadIdx.x and threadIdx.y values, 126

threadIdx.x values with warp, 125

Thread scheduling, 87�91, 89f

Thread-to-data mapping, 76�77

Three-dimensional (3D) graphic pipelines, 23�24

Thrust parallel template library

abstraction layer, 349

array of structures (AoS) data layout,

354�356

background, 339�342

best practices, 352�358

counting iterator, 357�358

device_ pointer_cast() function, 346

dynamic optimizations, 352

fill algorithm, 350�351

generate, sort, and copy algorithms, 344

generic programming, 347�349

interfacing Thrust to CUDA C, 345, 345f, 346f

interoperability, 345�347

iterators and memory space, 344�345

kernel fusion, 353�354

motivation, 342�343

native CUDA C interoperability, 346�347

programmer productivity, 349�352

raw_pointer_cast() function, 345�346

real-world performance, 350�352

robustness aspects, 350

salient features, 343

SAXPY functor, 347�349

saxpy_functor func, 347�349

for solving complementary set of problems,

342

use of implicit ranges, 356�358

value of high-level, 342�343

vector containers, 344

Tiled algorithms, 108�109

Tiling strategy, 105

Transparent scalability, 83

Triangle setup stage, 26

U
Unified processor array, 30

V
VecAdd() function, 46�47, 52�53, 57�58

complete version of, 58f

VecAddkernel() function, 54, 65, 71�72, 74�75

Vector addition kernel function, 55f

launch statement of, 57f

Vertex control stage, 25�26

Vertex shader programs, 29

Vertex shading, transform, and lighting (VS/T&L)

stage, 26

Von Neumann model, 97b

memory vs registers, 99f

Von Neumann report, 2

W
Warp scheduling, 89�90, 89f

Work-efficient parallel scan, 205�210

advantages, 210

basic idea of, 206f

distribution of partial sums to the positions,

206�207

495Index

Work-efficient parallel scan (Continued)

index values, 208

minimal number of operations, 205�206

number of operations in the distribution tree

stage, 209�210

reduction tree phase of, 207

scan kernel, 209, 209f

two-position addition, 207

X
XBox 360, 28�29

X86 instruction set, 2�3

Z
Zero-copy memory, 442

Zero-overhead thread scheduling, 90

496 Index

	Front Cover
	Programming Massively Parallel Processors
	Copyright Page
	Contents
	Preface
	Target Audience
	How to Use the Book
	A Three-Phased Approach
	Tying It All Together: The Final Project
	Project Workshop
	Design Document
	Project Report

	Online Supplements

	Acknowledgements
	Dedication
	1 Introduction
	1.1 Heterogeneous Parallel Computing
	1.2 Architecture of a Modern GPU
	1.3 Why More Speed or Parallelism?
	1.4 Speeding Up Real Applications
	1.5 Parallel Programming Languages and Models
	1.6 Overarching Goals
	1.7 Organization of the Book
	References

	2 History of GPU Computing
	2.1 Evolution of Graphics Pipelines
	The Era of Fixed-Function Graphics Pipelines
	Evolution of Programmable Real-Time Graphics
	Unified Graphics and Computing Processors

	2.2 GPGPU: An Intermediate Step
	2.3 GPU Computing
	Scalable GPUs
	Recent Developments
	Future Trends

	References and Further Reading

	3 Introduction to Data Parallelism and CUDA C
	3.1 Data Parallelism
	3.2 CUDA Program Structure
	3.3 A Vector Addition Kernel
	3.4 Device Global Memory and Data Transfer
	3.5 Kernel Functions and Threading
	3.6 Summary
	Function Declarations
	Kernel Launch
	Predefined Variables
	Runtime API

	3.7 Exercises
	References

	4 Data-Parallel Execution Model
	4.1 Cuda Thread Organization
	4.2 Mapping Threads to Multidimensional Data
	4.3 Matrix-Matrix Multiplication—A More Complex Kernel
	4.4 Synchronization and Transparent Scalability
	4.5 Assigning Resources to Blocks
	4.6 Querying Device Properties
	4.7 Thread Scheduling and Latency Tolerance
	4.8 Summary
	4.9 Exercises

	5 CUDA Memories
	5.1 Importance of Memory Access Efficiency
	5.2 CUDA Device Memory Types
	5.3 A Strategy for Reducing Global Memory Traffic
	5.4 A Tiled Matrix–Matrix Multiplication Kernel
	5.5 Memory as a Limiting Factor to Parallelism
	5.6 Summary
	5.7 Exercises

	6 Performance Considerations
	6.1 Warps and Thread Execution
	6.2 Global Memory Bandwidth
	6.3 Dynamic Partitioning of Execution Resources
	6.4 Instruction Mix and Thread Granularity
	6.5 Summary
	6.6 Exercises
	References

	7 Floating-Point Considerations
	7.1 Floating-Point Format
	Normalized Representation of M
	Excess Encoding of E

	7.2 Representable Numbers
	7.3 Special Bit Patterns and Precision in Ieee Format
	7.4 Arithmetic Accuracy and Rounding
	7.5 Algorithm Considerations
	7.6 Numerical Stability
	7.7 Summary
	7.8 Exercises
	References

	8 Parallel Patterns: Convolution
	8.1 Background
	8.2 1D Parallel Convolution—A Basic Algorithm
	8.3 Constant Memory and Caching
	8.4 Tiled 1D Convolution with Halo Elements
	8.5 A Simpler Tiled 1D Convolution—General Caching
	8.6 Summary
	8.7 Exercises

	9 Parallel Patterns: Prefix Sum
	9.1 Background
	9.2 A Simple Parallel Scan
	9.3 Work Efficiency Considerations
	9.4 A Work-Efficient Parallel Scan
	9.5 Parallel Scan for Arbitrary-Length Inputs
	9.6 Summary
	9.7 Exercises
	Reference

	10 Parallel Patterns: Sparse Matrix–Vector Multiplication
	10.1 Background
	10.2 Parallel SpMV Using CSR
	10.3 Padding and Transposition
	10.4 Using Hybrid to Control Padding
	10.5 Sorting and Partitioning for Regularization
	10.6 Summary
	10.7 Exercises
	References

	11 Application Case Study: Advanced MRI Reconstruction
	11.1 Application Background
	11.2 Iterative Reconstruction
	11.3 Computing FHD
	Step 1: Determine the Kernel Parallelism Structure
	Step 2: Getting Around the Memory Bandwidth Limitation
	Step 3: Using Hardware Trigonometry Functions
	Step 4: Experimental Performance Tuning

	11.4 Final Evaluation
	11.5 Exercises
	References

	12 Application Case Study: Molecular Visualization and Analysis
	12.1 Application Background
	12.2 A Simple Kernel Implementation
	12.3 Thread Granularity Adjustment
	12.4 Memory Coalescing
	12.5 Summary
	12.6 Exercises
	References

	13 Parallel Programming and Computational Thinking
	13.1 Goals of Parallel Computing
	13.2 Problem Decomposition
	13.3 Algorithm Selection
	13.4 Computational Thinking
	13.5 Summary
	13.6 Exercises
	References

	14 An Introduction to OpenCL™
	14.1 Background
	14.2 Data Parallelism Model
	14.3 Device Architecture
	14.4 Kernel Functions
	14.5 Device Management and Kernel Launch
	14.6 Electrostatic Potential Map in Opencl
	14.7 Summary
	14.8 Exercises
	References

	15 Parallel Programming with OpenACC
	15.1 OpenACC Versus CUDA C
	15.2 Execution Model
	15.3 Memory Model
	15.4 Basic OpenACC Programs
	Parallel Construct
	Parallel Region, Gangs, and Workers

	Loop Construct
	Gang Loop
	Worker Loop
	OpenACC Versus CUDA
	Vector Loop

	Kernels Construct
	Prescriptive Versus Descriptive
	Ways to Help an OpenACC Compiler

	Data Management
	Data Clauses
	Data Construct

	Asynchronous Computation and Data Transfer

	15.5 Future Directions of OpenACC
	15.6 Exercises

	16 Thrust: A Productivity-Oriented Library for CUDA
	16.1 Background
	16.2 Motivation
	16.3 Basic Thrust Features
	Iterators and Memory Space
	Interoperability

	16.4 Generic Programming
	16.5 Benefits of Abstraction
	16.6 Programmer Productivity
	Robustness
	Real-World Performance

	16.7 Best Practices
	Fusion
	Structure of Arrays
	Implicit Ranges

	16.8 Exercises
	References

	17 CUDA FORTRAN
	17.1 CUDA FORTRAN and CUDA C Differences
	17.2 A First CUDA FORTRAN Program
	17.3 Multidimensional Array in CUDA FORTRAN
	17.4 Overloading Host/Device Routines With Generic Interfaces
	17.5 Calling CUDA C Via Iso_C_Binding
	17.6 Kernel Loop Directives and Reduction Operations
	17.7 Dynamic Shared Memory
	17.8 Asynchronous Data Transfers
	17.9 Compilation and Profiling
	17.10 Calling Thrust from CUDA FORTRAN
	17.11 Exercises

	18 An Introduction to C++ AMP
	18.1 Core C++ Amp Features
	18.2 Details of the C++ AMP Execution Model
	Explicit and Implicit Data Copies
	Asynchronous Operation
	Section Summary

	18.3 Managing Accelerators
	18.4 Tiled Execution
	18.5 C++ AMP Graphics Features
	18.6 Summary
	18.7 Exercises

	19 Programming a Heterogeneous Computing Cluster
	19.1 Background
	19.2 A Running Example
	19.3 MPI Basics
	19.4 MPI Point-to-Point Communication Types
	19.5 Overlapping Computation and Communication
	19.6 MPI Collective Communication
	19.7 Summary
	19.8 Exercises
	Reference

	20 CUDA Dynamic Parallelism
	20.1 Background
	20.2 Dynamic Parallelism Overview
	20.3 Important Details
	Launch Environment Configuration
	API Errors and Launch Failures
	Events
	Streams
	Synchronization Scope

	20.4 Memory Visibility
	Global Memory
	Zero-Copy Memory
	Constant Memory
	Local Memory
	Shared Memory

	Texture Memory

	20.5 A Simple Example
	20.6 Runtime Limitations
	Memory Footprint
	Nesting Depth
	Memory Allocation and Lifetime
	ECC Errors
	Streams
	Events
	Launch Pool

	20.7 A More Complex Example
	Linear Bezier Curves
	Quadratic Bezier Curves
	Bezier Curve Calculation (Predynamic Parallelism)
	Bezier Curve Calculation (with Dynamic Parallelism)

	20.8 Summary
	Reference

	21 Conclusion and Future Outlook
	21.1 Goals Revisited
	21.2 Memory Model Evolution
	21.3 Kernel Execution Control Evolution
	21.4 Core Performance
	21.5 Programming Environment
	21.6 Future Outlook
	References

	Appendix A: Matrix Multiplication Host-Only Version Source Code
	A.1 matrixmul.cu
	A.2 matrixmul_gold.cpp
	A.3 matrixmul.h
	A.4 assist.h
	A.5 Expected Output

	Appendix B: GPU Compute Capabilities
	B.1 GPU Compute Capability Tables
	B.2 Memory Coalescing Variations

	Index

