
IEEE TRANSACTIONS ON COMPUTERS, VOL. c-27, NO. 12, DECEMBER 1978

A New Solution to Coherence Problems
in Multicache Systems
LUCIEN M. CENSIER AND PAUL FEAUTRIER

Abstract-A memory hierarchy has coherence problems as soon- -contents of the main memory--is copied in the -cache. One

as one of its levels is split in several independent units-which are not says that such a datum-is present in the cache. If a processor
p^|ilarl ad-onauMla frnw factor lnwale nr nrd%d%1Qlrc 'MA' dIgQ;lea_ _.equaiiy auivieirU m iUster ieveIs Ur p1csws ine ciRss.141
solution to these problems, as found for instance in multiprocessor,
multicache systems, is to restore a degree of interdependence
between such units through a set of high speed interconnecting buses.
ITis solution is not entirely satisfactory, as it tends to reduce the
throughput of the memory hierarchy -and to increase its -cost.
A new solution is presented and discussed here: the presence flag

solution. It has both a lower cost and a lower overhead than the
classical solution. A very important feature ofthis solution is that it is
possible, in a cache-main memory subsystem, to delay updating the
main memory until a block is needed in the cache (nonstore-through
mode of operation).

Index Terms-Caches, coherence, memory hierarchy, multi-
processor systems, nonstore-through.

I. INTRODUCTION
THE IDEA that a computer should use a memory

hierarchy dates back to the early days ofthe field. There
is for instance, a suggestion to this effect in the classical
paper of von Neumann et al. [11]. A hierarchy is useful
because the access time of main memory increases with its
size. As soon as a certain capacity is required, the memory is
inherently slower than the processor and becomes the
bottleneck in the system. By adding a small memory which
fits the processor speed, one may expect a considerable
increase in performance if this memory is cleverly used.
The first system in which this process was automated was

the ATLAS demand paging supervisor (Fotheringham [5]).
The ATLAS hierarchy had two levels: a core memory and a
drum. As the drum latency time is of the order of several
milliseconds, it was possible to implement the supervisor as
software modules.
The first proposal to apply similar techniques to fast levels

was by Bloom et al. [2]. After a variety of theoretical studies
of which Wilkes [12] and Opler [9] are examples, the first
implementation of the idea was the IBM 360/85 (Gibson [6],
Conti et al. [4], Liptay [7], Conti [4]). The resulting device,
the cache memory, is now a component of most computers
in the medium to high performance range.

In such a system, all data are referenced by their main
-memory address.- At any-given time, a certain subset of-the

Manuscript received April 27, 1976; revised April 11, 1978. This work
was supported in part by the Institut de Recherche en Informatique et
Automatique under Contract 74/185.

L. M. Censier is with CII-Honeywell Bull, Les Clayes-sous-Bois,
France.

P. Feautrier is with Universite Pierre et Marie Curie, Paris, France.

reads a datum in this subset, then the corresponding value is
returned without referencing the main memory, after a delay
which is of the order of one processor cycle time. This event
is called a "hit." A directory records the addresses ofall data
which are present in the cache. To reduce the size of this
directory, the main memory and the cache are divided in
equal sized "blocks," all bits ofa block being simultaneously
all present or all absent from the cache. The block is then the
allocation unit in the cache and also the minimum amount
of data which may be transmitted between the cache and
main memory. A combination of hash-coding and associa-
tive technique is used to implement a very fast search
algorithm in the directory (see for instance the discussion in
Bell et al. [1]).

In addition to the main memory address, the directory
may include several flags per cache block. The VALID flag,
when set, indicates that the corresponding block does hold
the latest information associated to its main memory
address. It is reset when the contents of the cache are
undefined (for instance, at Initial Program Loading Time).
Some designs include a MODIFIED flag. When set, it indicates
that the block has been modified by the attached instruction
processor.
The effective access time of a cache system depends

critically on the hit ratio, i.e., on the probability that a
requested datum is present in the cache. This in turn depends
on the proper selection, by a replacement algorithm, of the
cache content. A block is copied in the cache only when
found absent after an access from the processor (a "miss").
This means that another block must be expelled. The usual
choice is the Least Recently Used block (among a group of
blocks with the same hash-code). Obviously, when the cache
contains blocks with their VALID bit reset, these are used up
before any valid block is expelled.
Two quite different modes of operation -have been

proposed for the processing of STORE accesses. In the store-
through mode, a modified datum is always written in main
memory and is written in the cache only if it is already
present -there. This mode is used in most systems- (IBM
370/168, etc.). In the nonstore-through mode, LOAD and
STORE accesses are treated alike: if the block to be written
into is absent from the cache, then it is copied from main
memory. All subsequent accesses to this block, whether read
or write, are processed by the cache, until such time as it is
selected by the replacement algorithm. At this time, it is

0018-9340/78/1200-1112$00.75 (C 1978 IEEE

111-2

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on April 02,2010 at 21:17:35 EDT from IEEE Xplore. Restrictions apply.

CENSIER AND FEAUTRIER: COHERENCE PROBLEMS IN MULTICACHE SYSTEMS

written back to main memory. This step may be bypassed for
blocks which were not written into while in the cache, if a
MODIFIED bit is implemented. The net result is that a single
memory access by a processor may induce zero, one or two
accesses to main memory, thereby complicating the timing
of the data access algorithm.
The advantage of the nonstore-through mode is that, at

least in theory, the access rate to the main store may be
reduced to any desired value by a sufficient increase of the
size of the cache. In contrast to this, in the store-through
mode, the access rate to main memory cannot be lower than
the write access rate of the processor. Examination of
instruction mixes shows that, depending on the processor
architecture, from one tenth to one third of all accesses are
STORE accesses. This figure is then a lower limit for the
miss ratio of a cache in the store through mode. A simula-
tion analysis which supports these views is reported in
Bell et al. [1].

Both modes of operation run into coherence problems
when applied to multiprocessor systems. A memory scheme
is coherent if the value returned on a LOAD instruction is
always the value given by the latest STORE instruction with
the same address. There is obviously no coherence problems
in a memory hierarchy with only one access path between
each level. This however causes technical problems in high
performance systems. The unique access mechanism would
have to be prohibitively fast. Furthermore, a cache must be
closely integrated to its processor to avoid transmission
delays. I/O processors, on the other hand, have data rates
substantially lower than instruction processors. There is no
element of locality in the data addresses they issue and
therefore no performance advantage in connecting them to a
cache. This induces new coherence problems.
To take a specific example, let us consider the simple case

of a biprocessor system with two caches in the nonstore-
through mode, the main memory being shared by both
processors. Let T1 and T2 be two tasks running on proces-
sors P1 and P2 with caches K1 and K2. Let a be the main
memory address of a block which is read and modified by
both tasks. One may assume that T1 and T2 are correctly
programmed: for instance, that all modifications of the
contents of a are protected -in critical sections. A
modification of the contents of a by T1 is done in K1 but is
not transmitted to main memory; in consequence, a sub-
sequent LOAD by T2 will find an obsolete value of a.
Another difficulty arises when one task Tmay be executed

by P1 or P2 depending, for instance, on the time ofarrival of
external interrupt signals. It may happen that a has a copy in
both caches; in this situation a modification to a executed in
K1 is not reflected to K2. After a processor switch to P2, T
will obtain an obsolete value of a. This example shows that
there may be coherence problems even ifno datum is shared
between tasks.

It is clear that the store-through mode is not sufficient in
itself to insure coherence. In the example above, on a LOAD
instruction, neither processor will access main memory and
modifications to the contents of a by P1 and P2 will be
entirely uncoupled.

Evidently, a solution to the coherence problem implies the
invalidation of blocks when there is a risk that their contents
have been modified elsewhere in the system. One may use
total preventive invalidation on carefully selected events:
task switches, exit from critical sections, etc. -. One may
prove that this suffices to insure coherence in the absence of
programming errors. This solution, however, will greatly
decrease the hit ratio of the cache, and is not suited to high
performance systems.

In another solution, addresses of modified blocks are
broadcast throughout the system for invalidation. This is the
classical solution and will be studied in the next paragraph.
We will then describe a new solution in which the frequency
of invalidation order is reduced by keeping tabs on the
whereabout of block copies.

II. THE CLASSICAL SOLUTION
This solution is found in biprocessor systems or in

monoprocessors with an independent I/O processor. These
systems use the store-through mode.
To insure coherence, every cache is connected to an

auxiliary data path over which all other active units send
the addresses of blocks to be modified. Each cache per-
manently monitors this path and executes the search algo-
rithm on all addresses thus received. In case of a hit, the
VALID bit of the affected block is turned off.
The drawbacks of this solution are the following.
1) The invalidation data path must accommodate a very

high traffic. The mean write rate for most processor architec-
tures is between 10 and 30 percent. For some instructions,
the peak rate is much higher: 50 percent for a longmove and
100 percent for a move immediate. If the number of proces-
sors is higher than two, the productive traffic between a
cache and its associated processor may be lower than the
parasitic traffic between the cache and all other processors.
This explains why the classical solution has been confined to
systems with at most two caches.

2) Unless special precautions are taken, the cache will
spend most of its time monitoring the parasitic traffic. The
usual way out of this problem is to duplicate the cache
directory. There is no need to interlock accesses to the two
copies unless a modification ofthe directory is required: this
is a comparatively rare event.

3) To accommodate the peak invalidation traffic, one
may have to insert a small buffer to queue up addresses of
modified blocks. There is a small probability of noncoher-
ence if a read request by processor P1 is executed between a
modification by the other processor and the actual invalida-
tion in P1 cache. This phenomenon may or may not occur
depending on such parameters as the relative timing of the
cache and main store, priority schemes, etc. The resulting
very low frequency inconsistencies are probably ascribed
to nonreproducible hardware errors.

III. THE PRESENCE FLAG TECHNIQUE
The objective of this method is to reduce the coherence

overhead by filtering out all or almost all uneffective invali-
dation requests.

1113

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on April 02,2010 at 21:17:35 EDT from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-27, NO. 12, DECEMBER 1978

va lid
kiloc blknum da tum

private

Fig. 1. Conceptual design of a multicache system.

A first filter is implemented by associating a PRIVATE flag
to each cache block. When this flag is set in a cache, this
cache is the only one to have a valid copy of the block.
Hence, all invalidation requests on subsequent STORE
accesses may be suppressed (see Fig. 1).
A second filter may be implemented in the main memory

control. In the basic design, one associates as much PRESENT
flags per main memory block as there are caches in the
system; the setting of the PRESENT flag for block a and cache
k indicates that a has a valid copy in k. This copy may or may
not be identical to its main memory counterpart. When a
cache interrogates main memory, invalidation or update
requests need be sent only to those cache for which PRESENT
is set.
A last filter is obtained by associating a MODIFIED flag to

each block in main memory, this flag being reset if the
content of a main memory block is identical to all its cache
copies. This allows suppression of all update requests on
read-only data (e.g., instructions).
The MODIFIED and PRESENT flags are invisible from the

processor point of view. They may be stored in a small
auxiliary memory which is part ofthe main memory control.
This table is addressed by the high order bits (or block
number) of the address, in parallel with the main memory
data stacks.
The bit overhead of this scheme is not prohibitive: for

moderately sized blocks, it is much lower than the overhead
ofmost error detection/correction designs. Ifthis is felt to be
too much, one may divide main memory in fixed size pages
and effectively OR together the PRESENT flags of all blocks in a

page, at the cost of a slight increase in the number of
invalidation requests.
The following properties of the PRIVATE, PRESENT, and

MODIFIED flags are essential to the correctness of the coher-
ence algorithm:

1) If PRESENT iS set in main memory for block a and cache
k, then a has a valid copy in k.

2) If MODIFIED iS set in main memory for block a, then a
has a valid copy in some cache and has been modified in it
since the latest update of main memory.

3) If PRIVATE iS set in cache k for a VALID block a, then
there is no copy of a in other caches. This implies that there is
exactly one PRESENT flag set for a in main memory.

4) If PRIVATE is reset in cache k for a VALID block a, then
the contents of a are identical to its counterpart in main
memory. This implies that MODIFIED is reset for a.
The data access algorithms must be defined in such a way

that these properties are always true, transition times being
excepted.
These algorithms are divided in two processes running

asynchronously in the cache controllers and in the main
memory logic. These two processes exchange commands
and synchronization signals. A list ofthese commands with a
short description is given below. The precise description of
each command is given in the Appendix as an Algol
procedure. Integer arrays are used to represent the main
memory, cache memory, and directory. Boolean arrays
represent the various flags (Fig. 2).

In this mode of representation, there is no possibility to
exhibit the parallelism between the different steps of the

1114

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on April 02,2010 at 21:17:35 EDT from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-27, NO. 12, DECEMBER 1978

cache

Fig. 2. Structural chart of the coherence algorithm.

algorithms. One may say that each Algol procedure call will
be replaced in the real system by the emission ofa command,
followed by a wait for a DONE signal. To avoid deadlocks,
some priority scheme must be devised. Our proposal is to
have the cache controllers always obeying the main memory
commands, even while waiting for a completion signal. The
responsibility for avoiding deadlocks then falls to the main
memory control.

A. Instruction Processor Commands

1) LOAD requests the contents of a specified memory
location.

2) STORE requests a modification to the contents of a
specified memory location.

These commands are executed by the cache controller.
For simplicity it will be supposed that LOAD and STORE
always act on a full cache block. The modifications for
implementing partial LOAD and STORE are self-evident.

B. Cache Commands

1) READ requests the contents ofa specified main memory
location.

2) WRITE requests a modification to the contents of a
specified main memory location.

3) EJECT indicates that a non PRIVATE block has been
invalidated in a cache.

4) WRITE AND EJECT combines the effects of WRITE and
EJECT.

5) EXCLUDE indicates that a VALID block is going to be
modified and that all copies must be PURGED.
READ may be executed in two modes:

a) The standard mode is used following a LOAD.
Caches having a copy of the addressed block will be
requested to send its contents back to main memory.

b) The exclusive mode is used following a STORE.
Caches having a copy of the addressed block will be
requested to invalidate it.

In the Algol procedure given below, these two modes are
distinguished by a Boolean argument.

These commands are emitted by the cache controller and
executed by the main memory controller.

C. Main Memory Comuands
1) UPDATE requests that the contents of the addressed

block should be copied back to main memory.

1115

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on April 02,2010 at 21:17:35 EDT from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-27, NO. 12, DECEMBER 1978

2) PURGE is similar to UPDATE, but the addressed block
must be invalidated.

These commands are emitted by the main memory con-
troller and executed by the cache controller.

D. Variations on the Presence Flag Technique
It may be felt that associating several presence flags to

each block in main memory is too much of an overhead. A
solution is then to divide the main memory in pages (which
may or may not be the same as the pages used for a demand
paging algorithm, if any), and to associate a presence flag to
a page. The setting of such a flag will indicate that at least
one block was copied from the page into the cache. To help
in the setting of these flags, one must implement block
counts, which are conveniently located in each cache in an
auxiliary low speed associative memory. The block count for
a page is incremented at each READ and decremented after a
replacement or a successful EXCLUDE. When it steps down to
zero, WRITE is replaced by WRITE AND EJECT, thus resetting
the corresponding presence flag in main memory.

There are other interesting variations on the basic
technique. For instance, when it is found after a LOAD or
STORE that the latest version of a block is not in main
memory but in a cache, it is possible to transmit directly its
contents from cache to cache. The main memory may be
updated in parallel with this transmission. It is also possible
to postpone this operation until the block is evicted from all
caches.
Other variations aim at a reduction of the miss ratio and

are beyond the scope ofthis paper. Examples ofthose will be
found in Bell et al. [1]. Another example is the "partial store
through" mode in which a STORE is executed in the cache if
the block is present and in main memory if absent. The
reader will easily convince himself that these variations have
no effect on coherence.

E. Performance Estimates
A rough comparison of different coherence schemes may

be given under simplifying hypotheses on the data access
behavior of the system. As a performance index, we will use
the ratio of overhead cycles (execution of PURGE and
UPDATE) to useful cycles (LOAD and STORE).,
The number of caches in the system will be n. Each will

contain k blocks, while the main memory will contain m
blocks. a, 1B, and y will designate, respectively, the proportion
of instruction and constant fetches, of variable fetches, and
of modifications. Obviously,

a+#+y= 1.

We will suppose that the contents of each cache are a
random selection of the contents of main memory. Hence,
the probability for a given block to be in a given cache will be
k/m. The data accesses of a processor will not be equally
distributed in memory. A proportion (1 - e) will be found in
the associated cache, while the remaining accesses will be
randomly distributed in memory. For the sake of simplicity,
we will assume that the hit ratio is the same for LOAD and
STORE accesses. This is not exactly true in reality.
The overhead ratio of the classical solution is simply

Pt = (n - 1)y

(each data modification will induce a PURGE in all other
caches).

In the presence flag solution, a first cause ofoverhead will
be the necessity to execute the EXCLUDE command when
attempting to modify a block for which PRIVATE has been
reset. Let K be a cache which receives a STORE command for
block a which is present. EXCLUDE will be executed in two
cases:

1) When another cache K' has executed a LOAD on a since
the last STORE to a in K;

2) When a is present in K as the result of a LOAD, and no
STORE has been executed on a.
As to the first cause of overhead, it is easy to see that,

under our hypothesis, the mean number of cache cycles
between two accesses to a in K will be of the order of k. The
probability of a LOAD of a by another cache in this time
interval will be (n - 1)(Q/m) and the number of exclude per
STORE will be of the order of (n -1)i(k/m). As k/m is small,
this is negligible with respect to yc which is the number of
exclusive READ induced by STORE in case of a miss.
As to the second cause of additional overhead, an upper

bound may be obtained by assuming that each variable
block which is brought in the cache will subsequently be
modified by a STORE (this is a pessimistic assumption). Let X
be the mean number of presence flags which are set for a
given block, excluding the one for the cache under observa-
tion. The mean number of overhead cycles induced by LOAD
on variables (in case ofa miss) and STORE (in case ofa hit) will
be bounded by 2Ev3. The overhead induced by STORE in case
of miss will be E}'. Finally, a constant or instruction LOAD
will induce no overhead, as the MODIFIED flag will always be
reset in this case.
The probability of a block to be present in p caches out of

(n - 1) will be

(n - I)(k)P(k)fn 'p

(p)m) m)

Hence 7r is given by

7f = E P(p)m 1m (n-1k.

The total overhead is then less than

P2 <.(2# + j)(n- 1)-k
and the ratio P2/Pt is bounded by

P2 2,B + k
Pi 7 m

Typical values are f = 0.3, y = 0.2, £ = 0.1, k/m=
32 103/4 106 = 8 10-3. This gives P2/P1 < 3 10-3, an im-
provement of nearly three orders of magnitude.

IV. CONCLUSION
While the work reported here was done without knowl-

edge of Tang [10] the resulting design is seen to be very
similar. In particular, allowing for differences in vocabulary,
the set of commands exchanged between cache and main

116

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on April 02,2010 at 21:17:35 EDT from IEEE Xplore. Restrictions apply.

CENSIER AND FEAUTRIER: COHERENCE PROBLEMS IN MULTICACHE SYSTEMS

memory are nearly identical. However, Tang clearly believes
that the implementation of his scheme requires duplication
of all cache directories in the main memory controller. Our
main contribution is to show that this is not necessary. One
needs only a few bits per block in main memory (or even less
if the suggestion in Section III-D is followed). It is likely that
the main extra hardware in our design will be needed in the
memory data path which must now be able to accommodate
a bidirectional control flow.
The presence flag technique was described in the familiar

context of a multicache, multiprocessor configuration. It is,
however, applicable in a whole range of different situations.
A first case is that of I/O processors. It is possible to

connect them directly to a main memory as long as they
conform to the rules set in the preceding paragraphs, in
particular as to the use of EXCLUDE and EJECT commands.
The technique is specially well adapted for the exchange of
orders and status information between the 1/0 and instruc-
tion processors.
The LOAD AND SET instruction will be implemented as an

indivisible LOAD-STORE cycle from the processor to the
cache; there will be no need to interlock access to the main
memory. The reader may wish to convince himself that a
processor executing a "busy waiting" loop (LOAD AND SET
followed by a test) will not access the main memory unless
another processor modifies the block addressed by the LOAD
and SET instruction.

Another case is that of extracts from pages and segment
tables which are held in' a fast associative memory to
expedite the conversion between virtual and real addresses.
This memory may be considered as a kind of cache. Use of
presence flags will obviate the need for systematic invalida-
tion of the associative memory at task switching time.

Last but not least, these mechanisms may be used at all
levels of a storage hierarchy, as long as a level is split in
separate units which are not equally accessible from all
processors.

APPENDIX

PROGRAM GLOSSARY
search an unspecified Boolean procedure that inspects

the repertory for a given block address. In case
of a hit, "search" returns the cache location of
the block and has the value "true."

select an unspecified integer procedure that selects
the cache block to be evicted to make room for
a requested block after a miss.

blknum a main memory block address.
knum a cache identifier.
kloc a cache block address.
nk the number of caches in the system.

CACHE REPRESENTATION

cache [i, j] an integer array representing the data
part of cache j.

directory [i, j] an integer array representing the main
memory address of the block whose con-

tents are in cache [i, j].
valid [i, j] Boolean arrays representing the VALID.

private [i, j] and PRIVATE flags.

MAIN MEMORY REPRESENTATION
mainmemory [i] an integer array representing the data

part of main memory.

pr [ij]J Boolean arrays representing the PRE-
modified [i] SENT and MODIFIED flags.

Integer procedure load (blknum, knum);
integer blknum, knum;

comment this procedure is executed by the cache in answer
to a data request by an instruction processor;

begin integer kloc; boolean t;
t:= search (blknum, knum, kloc);
if t then t:= valid [kloc, knum];
if not t then
begin kloc:= evict (blknum, knum);

cache [kloc, knum]:= read (blknum, knum,
false);
valid [kloc, knum]:= true;
private [kloc, knum] =false;
directory [kloc, knum] blknum;

end;
load:= cache [kloc, knum];

end load;
procedure store (blknum, knum, datum);

integer blknum, knum, datum;
comment this procedure is executed by the cache in answer

to a data modification request by an instruction
processor;

begin integer kloc; boolean t;
t:= search (blknum, knum, kloc);
if t then t:= valid [kloc, knum];
if not t then begin kloc:= evict (blknum, knum);

cache [kloc, knum]:= read (blknum,
knum, true);
valid [kloc, knum]:= true;
directory [kloc, knum]:= blknum;
end;

else if not private [kloc, knum]
then exclude (blknum, knum);

private [kloc, knum]:= true;
cache [kloc, knum]:= datum;

end store;
integer procedure read (blknum, knum, excl);

integer blknum, knum; boolean excl;
comment this command is executed by main memory in

answer to a data request by a cache;
begin integer i;

for i:= 1 step 1 until nk do
if i # knum and present [blknum, i]
then begin if excl then purge (blknum, i);

else if modified [blknum] then
update (blknum, i);

end;
present [blknum, knum] =true;
read mainmemory [blknum];
modified [blknum] excl;

end read;
procedure exclude (blknum, knum);

integer blknum, knum;

1117

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on April 02,2010 at 21:17:35 EDT from IEEE Xplore. Restrictions apply.

MM IRANSACTIONS ON COMPUTERS, VOL. c-27, NO. 12, rEcEmsER 1978

comnment this procedure is executed by main memory in
answer to a privacy request by a cache;

begin integer i;
for i - 1 step 1 until nk do

if i $ knum and present [blknum, i] then
purge (blknum, i);

modified [blknum] true;
end exclude;
procedure update (blknum, knum);

integer blknum, knum;
conunent this procedure is executed by a cache in order to

return the latest contents of a block to main
memory;

begin integer kloc; boolean t;
t:= search (blknum, knum, kloc);
if t then t:= valid [kloc, knum] and private [kloc, knum];
if t then

begin write (blknum, knum, cache [kloc, knum]);
private [kloc, knum] = false;
end;

end update;
procedure purge (blknum, knum);

integer blknum, knum;
comment this procedure invalidates a bloc in a cache;
begin integer kloc; boolean t;

t:= search (blknum, knum, kloc);
if t then t valid [kloc, knum];
if t then
begin if private [kloc, knum]

then write and eject (blknum, knum, cache [kloc,
knum])
else eject (blknum, knum);
valid [kloc, knum]:= false;

end;
end purge;
integer procedure evict (blknum, knum);

integer blknum, knum;
conunent this procedure is not a command, but a common

part of the LOAD and STORE commands;
begin integer kloc, addr;
kloc:= select (blknum, knum);
if valid [kloc, knum] then begin
addr:= directory [kloc, knum];
if private [kloc, knum]
then write and eject (addr, knum, cache [kloc, knum]);
else eject (addr, knum);

end;
evict:= kloc;

end evict;
procedure write (blknum, knum, datum);

integer blknum, knum, datum;
comment a procedure used to update main memory; main-

memory [blknum]:= datum;
procedure eject (blknum, knum);

integer blknum, knum;
comment a procedure used to reset a presence flag;

present [blknum, knum] = false;
procedure writeandeject (blknum, knum, datum);

integer blknum, knum, datum;

comment a combination of write and eject;
begin mainmemory [blknum] datum;

present [blknum, knum] false;
modified [blknum] false

end write and eject;

ACKNOWLEDGMENT
The authors wish to thank A. Recoque and other col-

leagues at CII-Honeywell Bull for their constructive criti-
cisms. The presence Flag Solution is covered by a French
Patent 75.12014 assigned to CII-Honeywell Bull.

REFERENCES
[1] J. BelL, D. Casasent, and C. G. BelL "An investigation of alternative

cache organization," IEEE Trans. Comput., voL C-23, p. 346, Mar.
1974.

[2] L. Bloom, M. Cohen, and S. Porter, "Consideration in the design ofa
computer with a high logic-to-memory speed ratio," in Proc. Giga-
cycles Computing Systems, AIEE, Winter Meeting, Jan. 1962.

[3] C. J. Conti, D. H. Gibson, and S. H. Pitkowski, "Structural aspects of
the system 360/85-General organization," IBM Syst. J., voL 7, p. 2,
1968.

[4M C. J. Conti, "Concepts for buffer storage," IEEE Computer Group
News, vol. 2, p. 9, 1969.

[5] J. Fotheringhan, "Dynamic storage allocation in the ATLAS
computer, including an automatic use of a backing store," Commn
ACM, vol. 4, p. 435, 1961.

[6] D. HL Gibson, "Considerations in block oriented system design,"
in AFIPS Proc. SJCC, vol. 30, p. 75, 1967.

[7] J. S. Liptay, "Structural Aspects of the System 360/85. II The cache,"
IBM Syst. J., vol. 7, p. 15, 1968.

[8] R. M. Meade, "On memory system design," in AFIPS FJCC, vol. 37,
p. 33, 1970.

[91 A. Opler, 'Dynamic flow of programs and data through hierarchical
storage," in Proc. IFIPS Congress, voL 1, p. 273, 1965.

[10] C. K. Tang, "Cache system design in the tightly coupled multi-
processor system," in AFIPS Proc., vol. 45, p. 749, 1976.

[11] J. Von Neumann, A. W. Burks, and H. Goldstine, "PreLiminary
discussion of the logical design of an electronic computing instru-
ment," in J. Von Neumann, Collected Works, VoL V: Oxford: Perga-
mon Press, 1963.

[12] M. V. Wilkes, "Slave memories and dynamical storage Allocation,"
Project MAC-M-164. Cambridge, MA: MIT, 1964.

LuciAen N Censier was born in Paris, France, in
1932. He received the Diplome d'Ingenieur from
the Ecole Superieure d'Electricite, Paris, France,
in 1956.
adUntil 1970, his activity was oriented in research
and development in the application of advanced
thnologies to different memory levels. Between
1970 and 1974, he participated in the design and
the realization ofa new minicomputer. Since 1974
his activity has been devoted towards computer
architecture, memory hierarchies, and intersystem

communications. He is currently with CII-Honeywell Bull, Les Clayes-
sous-Bois, France.

Paul Feautrier was born in Marseille, France, in
1940. He received the Doctorate degree from
Ecole Normale Superieure, Paris, in 1968.
From 1962 to 1968, he was with the Paris

Observatory, where he did research in theoretical
astrophysics. Since 1968, he has been Professor
at the University Pierre-et Marie Curie, Paris,
where he is Manager of the campus computing
facility. He is currently doing research in theoret-
ical computer science and computer architecture.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on April 02,2010 at 21:17:35 EDT from IEEE Xplore. Restrictions apply.

