
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220884835

Architecture Support for Improving Bulk Memory Copying and Initialization

Performance

Conference Paper  in  Parallel Architectures and Compilation Techniques - Conference Proceedings, PACT · September 2009

DOI: 10.1109/PACT.2009.31 · Source: DBLP

CITATIONS

25
READS

48

4 authors:

Some of the authors of this publication are also working on these related projects:

NVM Research at LANL View project

Low Power Architecture View project

Xiaowei Jiang

Intel

20 PUBLICATIONS   562 CITATIONS   

SEE PROFILE

Yan Solihin

University of Central Florida

124 PUBLICATIONS   3,640 CITATIONS   

SEE PROFILE

Li Zhao

Intel

61 PUBLICATIONS   1,269 CITATIONS   

SEE PROFILE

Ravi R Iyer

Intel

141 PUBLICATIONS   3,577 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Yan Solihin on 31 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220884835_Architecture_Support_for_Improving_Bulk_Memory_Copying_and_Initialization_Performance?enrichId=rgreq-9b2a34185ee76829c554ed6c183491b4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4NDgzNTtBUzoxMDI4MjM1MDA5NzYxMzZAMTQwMTUyNjQ0MTY3MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220884835_Architecture_Support_for_Improving_Bulk_Memory_Copying_and_Initialization_Performance?enrichId=rgreq-9b2a34185ee76829c554ed6c183491b4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4NDgzNTtBUzoxMDI4MjM1MDA5NzYxMzZAMTQwMTUyNjQ0MTY3MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/NVM-Research-at-LANL?enrichId=rgreq-9b2a34185ee76829c554ed6c183491b4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4NDgzNTtBUzoxMDI4MjM1MDA5NzYxMzZAMTQwMTUyNjQ0MTY3MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Low-Power-Architecture?enrichId=rgreq-9b2a34185ee76829c554ed6c183491b4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4NDgzNTtBUzoxMDI4MjM1MDA5NzYxMzZAMTQwMTUyNjQ0MTY3MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-9b2a34185ee76829c554ed6c183491b4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4NDgzNTtBUzoxMDI4MjM1MDA5NzYxMzZAMTQwMTUyNjQ0MTY3MQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaowei_Jiang2?enrichId=rgreq-9b2a34185ee76829c554ed6c183491b4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4NDgzNTtBUzoxMDI4MjM1MDA5NzYxMzZAMTQwMTUyNjQ0MTY3MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaowei_Jiang2?enrichId=rgreq-9b2a34185ee76829c554ed6c183491b4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4NDgzNTtBUzoxMDI4MjM1MDA5NzYxMzZAMTQwMTUyNjQ0MTY3MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Intel?enrichId=rgreq-9b2a34185ee76829c554ed6c183491b4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4NDgzNTtBUzoxMDI4MjM1MDA5NzYxMzZAMTQwMTUyNjQ0MTY3MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaowei_Jiang2?enrichId=rgreq-9b2a34185ee76829c554ed6c183491b4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4NDgzNTtBUzoxMDI4MjM1MDA5NzYxMzZAMTQwMTUyNjQ0MTY3MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yan_Solihin?enrichId=rgreq-9b2a34185ee76829c554ed6c183491b4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4NDgzNTtBUzoxMDI4MjM1MDA5NzYxMzZAMTQwMTUyNjQ0MTY3MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yan_Solihin?enrichId=rgreq-9b2a34185ee76829c554ed6c183491b4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4NDgzNTtBUzoxMDI4MjM1MDA5NzYxMzZAMTQwMTUyNjQ0MTY3MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Central_Florida?enrichId=rgreq-9b2a34185ee76829c554ed6c183491b4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4NDgzNTtBUzoxMDI4MjM1MDA5NzYxMzZAMTQwMTUyNjQ0MTY3MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yan_Solihin?enrichId=rgreq-9b2a34185ee76829c554ed6c183491b4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4NDgzNTtBUzoxMDI4MjM1MDA5NzYxMzZAMTQwMTUyNjQ0MTY3MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Li_Zhao10?enrichId=rgreq-9b2a34185ee76829c554ed6c183491b4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4NDgzNTtBUzoxMDI4MjM1MDA5NzYxMzZAMTQwMTUyNjQ0MTY3MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Li_Zhao10?enrichId=rgreq-9b2a34185ee76829c554ed6c183491b4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4NDgzNTtBUzoxMDI4MjM1MDA5NzYxMzZAMTQwMTUyNjQ0MTY3MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Intel?enrichId=rgreq-9b2a34185ee76829c554ed6c183491b4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4NDgzNTtBUzoxMDI4MjM1MDA5NzYxMzZAMTQwMTUyNjQ0MTY3MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Li_Zhao10?enrichId=rgreq-9b2a34185ee76829c554ed6c183491b4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4NDgzNTtBUzoxMDI4MjM1MDA5NzYxMzZAMTQwMTUyNjQ0MTY3MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ravi_Iyer3?enrichId=rgreq-9b2a34185ee76829c554ed6c183491b4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4NDgzNTtBUzoxMDI4MjM1MDA5NzYxMzZAMTQwMTUyNjQ0MTY3MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ravi_Iyer3?enrichId=rgreq-9b2a34185ee76829c554ed6c183491b4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4NDgzNTtBUzoxMDI4MjM1MDA5NzYxMzZAMTQwMTUyNjQ0MTY3MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Intel?enrichId=rgreq-9b2a34185ee76829c554ed6c183491b4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4NDgzNTtBUzoxMDI4MjM1MDA5NzYxMzZAMTQwMTUyNjQ0MTY3MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ravi_Iyer3?enrichId=rgreq-9b2a34185ee76829c554ed6c183491b4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4NDgzNTtBUzoxMDI4MjM1MDA5NzYxMzZAMTQwMTUyNjQ0MTY3MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yan_Solihin?enrichId=rgreq-9b2a34185ee76829c554ed6c183491b4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4NDgzNTtBUzoxMDI4MjM1MDA5NzYxMzZAMTQwMTUyNjQ0MTY3MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Architecture Support for Improving Bulk Memory Copying and Initialization
Performance

Xiaowei Jiang, Yan Solihin
Dept. of Electrical and Computer Engineering

North Carolina State University
Raleigh, USA

{xjiang,solihin}@ncsu.edu

Li Zhao, Ravishankar Iyer
Intel Labs

Intel Corporation
Hillsboro, USA

{li.zhao, ravishankar.iyer}@intel.com

Abstract—Bulk memory copying and initialization is one of
the most ubiquitous operations performed in current computer
systems by both user applications and Operating Systems.
While many current systems rely on a loop of loads and
stores, there are proposals to introduce a single instruction
to perform bulk memory copying. While such an instruction
can improve performance due to generating fewer TLB and
cache accesses, and requiring fewer pipeline resources, in this
paper we show that the key to significantly improving the
performance is removing pipeline and cache bottlenecks of the
code that follows the instructions. We show that the bottlenecks
arise due to (1) the pipeline clogged by the copying instruction,
(2) lengthened critical path due to dependent instructions
stalling while waiting for the copying to complete, and (3) the
inability to specify (separately) the cacheability of the source
and destination regions. We propose FastBCI, an architecture
support that achieves the granularity efficiency of a bulk copy-
ing/initialization instruction, but without its pipeline and cache
bottlenecks. When applied to OS kernel buffer management,
we show that on average FastBCI achieves anywhere between
23% to 32% speedup ratios, which is roughly 3×–4× of an
alternative scheme, and 1.5×–2× of a highly optimistic DMA
with zero setup and interrupt overheads.

Keywords-memory copying; memory initialization; cache
affinity; cache neutral; early retirement

I. INTRODUCTION

Bulk (large-region) memory copying and initialization is
one of the most ubiquitous operations performed in current
computer systems by both user applications and Operat-
ing Systems (OSes). Critical OS functions such as buffer
management and virtual memory management rely heavily
on memory copying and initialization. For example, kernel
buffer copying (through calling memcpy) and user-kernel
buffer copying (through calling copy_from_user and
copy_to_user [18]) are performed extensively to support
TCP/IP processing and file I/O operations. Many TCP/IP
intensive applications (e.g. Apache web server) indirectly
spend a significant portion of execution time performing
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memory copying. A typical OS also performs bulk initial-
ization and copying to support various virtual memory man-
agement functions such as page allocation, copy-on-write,
and swapping pages in and out of the physical memory.
User applications also perform bulk memory copying and
initialization for buffer management and string handling,
typically through calling memcpy and memset [9].

In current systems, there are at least three ways memory
copying is supported at the instruction level (Figure 1):
explicit loop – using a loop of loads and stores, implicit
loop – using an instruction that is expanded into a series
of loads and stores at instruction decode time (e.g., rep
movsd in x86 [12], [14] and mvcl in IBM S/390 [1]), and
vector extension– using vector load and store instructions.

loop: lwz
addi
stw
addi
bdnz

R1, 0(R2)
R2, R2, 4
R1, 0(R3)
R3, R3, 4
 loop

add

add

jnz loop

loop: movaps

movaps
edi,$16

sub

xmm0,0(esi)
esi, $16

ecx,$16

0(edi),xmm0

la
la
la
la
mvcl 

R2, dst_addr
R3, dst_len
R4, src_addr
R5, src_len
R2, R4

mov
mov
mov
rep

esi, src_addr
edi, dst_addr

movsd
ecx, len

Vector ExtensionExplicit Loop

Implicit Loop

SSE2:PowerPC:

IBM S/390: x86:

Figure 1. memcpy implementation in various instruction sets. For
PowerPC (SSE2), the source address is in R2 (esi), the destination address
is in R3 (edi), and the region length is in the count register (ecx).

Comparing the three schemes, it is clear that the ex-
plicit loop and implicit loop implementations suffer from
a granularity inefficiency problem, in that an excessive
number of TLB accesses and cache accesses occur during
copying. Instead of checking the TLB once for each page
involved, each load and store instruction incurs a TLB
access. Similarly, rather than accessing the cache once for
each cache block involved, each load and store instruction
incurs a cache access. In this regard, vector instructions



achieve a better (but not perfect) granularity efficiency since
each load or store can work on data as wide as the width
of the vector registers, e.g. 128 bits in SSE2. Future vector
instructions may increase the width even more (e.g. Intel
Larrabee will likely support 512-bit loads/stores [22]).

However, an efficient memory copying and initialization
requires more than just granularity efficiency. In fact, sur-
prisingly, we found that granularity efficiency alone does not
improve the performance of memory copying by much. The
overall performance of memory copying is impacted by how
the code that follows the copying performs, more than by
the efficiency of the memory copying operation itself. This
is illustrated in Figure 2, which shows limit speedups of
various copying-intensive benchmarks such as Apache web
server (sender and receiver side), iperf network benchmark-
ing tool (sender and receiver side), and iozone I/O perfor-
mance tool, and their average. The “perfect granularity” bars
show speedups when each kernel buffer copying function is
replaced with a single copying instruction, assuming such
an instruction can handle buffers with an arbitrary width
and alignment. Furthermore, in the perfect granularity, we
assume that the TLB and caches are only accessed as few
times as possible, i.e. the TLB is checked once for each
page involved while the cache is accessed once for each
cache block involved. The “perfect pipeline” bars show
limit speedups when the memory copying instructions do
not restrict younger instructions from executing and retiring,
except when they are data-dependent on the copying instruc-
tion. Finally, the “perfect cache” bars show limit speedups
when the code that follows memory copying operations does
not suffer from cache misses when it accesses the copying
regions, and does not suffer from extra cache misses when
it accesses non-copying regions. “Perfect cache” represents
the case in which memory copying produces all the useful
prefetching effect for the code that follows the copying but
none of the harmful cache pollution effects.
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Figure 2. Limit speedups of applications with bulk copying engine,
assuming perfect instruction granularity, perfect pipeline, and perfect cache.
Details of applications and machine parameters can be found in Section V.

Interestingly, the figure shows that perfect granularity
alone contributes to only 8% speedup on average. However,
when the copying instructions do not restrict the execution
of younger, non-dependent instructions, the average speedup
jumps threefold to 24%. When the copying instructions do
not incur cache pollution and introduce a beneficial prefetch-
ing effect to younger instructions, the average speedup jumps
almost fivefold to 37%. The figure illustrates that while

granularity efficiency is important, the real key to signifi-
cantly improving the performance of copying/initialization
is removing pipeline and cache bottlenecks of the code that
follows copying operations.

Contributions. This paper seeks to provide an instruction
and architecture support for Fast Bulk Memory Copying
and Initialization (FastBCI). FastBCI consists of a scalar
instruction that can perform copying/initialization involv-
ing a large memory region. Unlike an implicit loop ap-
proach, the instruction is not expanded into loads and
stores. Rather, it is executed on an engine that performs the
copying/initialization and keeps track of its progress.

Furthermore, we found two pipeline bottlenecks that
severely restrict the potential performance of a copying
instruction. The first is that copying/initializing a large
memory region takes a long time, and as a result, the copying
instruction stalls at the head of the reorder buffer (ROB),
eventually stalling the entire pipeline. To get around this,
we design a mechanism that allows the copying instruction
to retire early prior to completion, but safely. Moreover, we
also discuss correctness criteria needed for retiring copying
instructions early, and present one efficient implementation.

The second pipeline bottleneck we discovered arises from
a situation in which dependent instructions often stall wait-
ing for the completion of a copying instruction, and they
increase the critical path of instruction execution. Clearly,
the larger the copying region is, the longer it takes for the
copying instruction to complete, and the more likely some
dependent instructions stall in the pipeline. To avoid such
stalls, we propose a mechanism to track which blocks have
completed their copying, and allow dependent instructions to
wake up. As a result, as copying progresses, more younger
instructions avoid stalls and wake up, execute, and retire.

Figure 2 also illustrates the importance of the cache effect
of memory copying on the code following the copying
operations. To address this issue, we allow cache affinity
options to be specified as a part of the copying instruction
parameters. We allow three option values that can be applied
individually to the source and destination copying regions:
cacheable (the region is brought into the cache as it is
accessed), non-cacheable (the region is not brought into the
cache and is evicted if all or parts of it are cached), and
cache neutral (no new blocks from that region are brought
into the cache but existing blocks are retained in the cache).

Overall, this paper makes the following contributions:
• It shows that the key to improve the performance of

copying/initialization is solving the pipeline and cache
bottlenecks of the code that follows copying operations.

• It analyzes the microarchitecture and multiprocessor
correctness requirements for mechanisms that avoid
the pipeline bottlenecks through allowing a copying
instruction to retire early.

• It proposes an architecture support for efficient bulk
copying and initialization, achieving granularity effi-



ciency while avoiding the pipeline and cache bottle-
necks. To evaluate its performance, we use a cycle-
accurate full system simulator with an out-of-order
processor and two-level caches, running Linux OS.
For the benchmarks we evaluated, on average FastBCI
achieves a 23.2% speedup with pipeline improvement,
very close to the perfect pipeline case.

• It proposes and evaluates cache affinity options includ-
ing cacheable, non-cacheable, and cache neutral, as
parameters of copying instructions. It shows that cache
affinity options affect performance tremendously, with
different regions favoring different affinity options. On
average, the best affinity option outperforms the worst
affinity option by 10%. Interestingly, we found that the
cache neutral option gives the most robust performance
for the benchmarks that we evaluate.

The rest of the paper is organized as follows: Section II
discusses related work, Section III describes architecture
support for FastBCI, Section IV describes its microarchi-
tecture design, Section V describes the evaluation environ-
ment, while Section VI discusses evaluation results. Finally,
Section VII summarizes our findings.

II. RELATED WORK

DMA and memory-side copy engine. An alternative way
to accelerate memory copying is to use DMA. Traditional
DMA engines (e.g. PCI DMA [17]) allow copying between
device and memory but not from and to memory. More
recent DMA engines support bulk data movement between
two memory regions (e.g. Intel I/OAT [3]). However, such
a DMA engine still requires (1) a long setup latency, (2)
an interrupt-based completion, which requires an expensive
pipeline flush and interrupt handling, and (3) OS involve-
ment. Thus, from performance stand point, such overheads
cannot be easily amortized if the copying region is relatively
small, e.g. a few kilobytes or less. Moreover, there are other
practical limitations such as requiring physical addresses.

Some recent DMAs support bulk data movement between
the main memory and on-chip scratchpad memory (e.g. Cell
processor [23] and others [19]). Cell DMA can operate at the
user level and does not require a long setup latency. How-
ever, it requires scratchpad memory, which is not available
in many general purpose processors. In addition, it still relies
on interrupt notification on transfer completion, has no fine-
grain dependence checking (incurring pipeline bottleneck),
and is asynchronous. We compare FastBCI’s performance
with zero setup-latency DMA in Section VI.

Zhao et al. [21], [20] proposed an instruction support
and hardware engine for performing memory copying. The
engine includes an off-chip memory-side component called
Copy Engine (CE) which performs copying, and an on-
chip component called Copy Control Unit (CCU). When
a copying instruction is encountered, CCU accepts virtual
addresses, translates them into physical addresses, and sends

them off to the CE. The CE acquires ownership of the
copying regions by sending invalidations to caches, and then
performs the copying by directly reading from and writing
to the main memory. While copying is in progress, any
loads or stores made by the processor to such addresses are
stalled until the copying is fully completed. In contrast to
FastBCI, CE does not address pipeline and cache bottlenecks
for code that follows copying operations, which Figure 2
points out as the key for improving copying performance.
For example, CE stalls all dependent loads/stores until the
copying is fully completed. Being memory-side, CE also
always requires caches to flush blocks in the copying region
prior to the start of copying. Such a policy negates the
potential beneficial effect of bringing blocks in the copying
region into the cache, and cause extra cache misses when the
following code accesses the copying regions in the future.
In contrast, FastBCI deals with both pipeline and cache
bottlenecks by keeping track of which cache blocks have
completed their copying, allowing dependent loads/stores
to proceed even when copying for other blocks has not
completed (non-blocking policy), as well as supporting three
cache affinity options. As a result of these differences, our
evaluation (Section VI) shows that FastBCI achieves roughly
three times the speedups achieved by CE (23.2% vs. 7.9%
on average) across benchmarks we tested.
Cache Affinity Flexibility. In current systems, while copy-
ing instructions lack such flexibility, instructions that control
cache affinity are already provided. For example, Power and
Intel architectures [2], [14] have instructions to flush or
prefetch specific cache blocks. IA64 [7] load/store instruc-
tions can be augmented with cache hints that specify the
cache level into which data should be fetched. Load/store
instructions in SSE4 [4] (e.g. movntdq and movntdqa)
allow non-cacheable loads and stores using a streaming
load and a write-combining buffer. The fact that various
instruction-level supports are provided in several processors
highlights the feasibility and importance of such flexibility
on performance. In FastBCI, cache affinity flexibility is
provided for both the source and destination regions, and
each region can be specified individually as cacheable, non-
cacheable, or cache neutral.

Cache affinity flexibility may also be provided beyond the
instruction level. For example, direct cache access (DCA)
is an architecture that allows the Network Interface Card
(NIC) to directly place inbound packets in the processor’s
cache [26]. Finally, there are also techniques to accelerate
TCP/IP processing (such as on-chip network interface [24]
and Remote DMA [11]). Such architectures and techniques
have been shown to accelerate TCP/IP processing. Com-
pared to them, FastBCI is a more general support in that it
deals more with accelerating memory copying and initializa-
tion rather than TCP/IP processing only. However, FastBCI
can also be used to accelerate TCP/IP processing.
Instruction-Support for Bulk Memory Copying. As men-



tioned briefly in Section I, in current architectures, in-
structions that can operate on wide data are typically vec-
tor or vector-extension instructions [4], [10], [16]. Vector
loads/stores can work on data as wide as the width of the
vector registers. However, vector loads/stores require data
to be aligned at the respective width [15], making them
unsuitable for use in scalar data which may not be aligned
at vector width.

It is likely that instructions that can perform a large-region
copying have been implemented in some CISC (Complex
Instruction Set) architectures. Our FastBCI instructions can
be thought of as an example of such CISC-flavored instruc-
tions. However, we showed in Figure 2 that such instructions
do not improve performance much unless pipeline and
cache bottlenecks of code that follows are removed. To our
knowledge, FastBCI is the first to propose mechanisms to
remove such bottlenecks for bulk copying instructions.

III. ARCHITECTURE SUPPORT FOR BULK COPYING/
INITIALIZATION

A. Overview of Bulk Copying and Initialization Instructions

To achieve maximum granularity efficiency, ideally there
should be a single instruction to copy or initialize a large
memory region. Such instructions can be one of instructions
already used in current architectures (e.g., mvcl or rep
movsd in Figure 1), or be new ones. For ease of discussion,
but orthogonal to the design of FastBCI, we assume the
following three-register operand instructions are available:

BLKCPY Reg_SRC, Reg_DEST, Reg_LEN
BLKINIT Reg_INITVAL, Reg_DEST, Reg_LEN

where BLKCPY copies Reg_LEN number of bytes from a
region that starts at address Reg_SRC to a region that starts
at address Reg_DEST, and BLKINIT initializes Reg_LEN
number of bytes in a region that starts at address Reg_DEST
using an initialization string value stored in Reg_INITVAL.

In actual implementations, the instruction format may
differ depending on the constraints of a particular ISA. The
source and destination regions in copying may or may not
overlap, but for our discussion we assume they are not
overlapped. Furthermore, BLKINIT can be thought of as
a special case of BLKCPY where the source region is a
register value rather than a memory address. Architecture
support for a bulk copying instruction can also be used to
support a bulk initialization instruction. Hence, from this
point on, our discussion will center around memory copying.

In traditional implicit loop implementations, the copying
instruction is fetched and decoded into a loop of loads and
stores. Each load and store then incurs a TLB access to check
the validity of the page and obtains its physical address,
and incurs a cache access to read value into a register or
write from a register. Such an approach has poor granularity
efficiency. For example, if a load/store granularity is 8
byte, for each 4KB-sized page copied, we would incur

2 × 4096
8 = 1024 TLB and cache accesses. If instead, the

copying instruction is executed in a special functional unit
(an “engine”), we can improve the granularity efficiency by
checking the TLB only once for each page involved, and
performing the copying at the granularity of cache blocks.
With the latter approach, copying a 4KB region only incurs
2 TLB accesses for the source and destination pages (a
reduction of 99.8%) and 128 cache accesses assuming 64-
byte cache block size (a reduction of 87.5%) 1. Hence,
FastBCI adopts the latter approach.

B. Cache Bottlenecks

As shown in Figure 2, one of the keys to improving
memory copying performance is solving the cache per-
formance bottlenecks of the code that follows memory
copying operations. The huge performance improvement in
the “perfect cache” is by assuming that copying produces
beneficial prefetching effect (i.e. later accesses to the source
and destination regions result in cache hits), but none of the
cache pollution effect (i.e. later accesses to blocks that were
in the cache prior to copying result in cache hits). While
“perfect cache” is optimistic, it highlights the upperbound
performance improvement of maximizing the prefetching
effect while minimizing the cache pollution effect.

Whether the prefetching or pollution effect is stronger
depends on the temporal reuse patterns of the application
that uses copying. Caching new blocks from the copying re-
gions will cause cache pollution if the processor needs them
less urgently than the blocks they replace, but will cause a
helpful prefetching effect if the processor needs them more
urgently than blocks they replace. For example, in a network
application in which an outgoing packet is copied from a
buffer to the network interface memory-mapped buffer, the
destination region will not be accessed by the processor,
hence it is likely beneficial to keep the region uncached. But
if an incoming packet is copied from the memory-mapped
buffer to a destination buffer, the destination region will soon
be accessed by the processor, and hence it is likely beneficial
to fetch it into the cache during copying.

Considering this, we propose to augment the bulk copying
instruction with parameters that can specify separately the
cache affinity policy for the source and destination regions.
In FastBCI, the affinity policy specifies whether a region
should be cacheable (the region is brought into the cache
as it is accessed), non-cacheable (the region is not brought
into the cache and is evicted if all or parts of it are cached),
or cache neutral (no new blocks from that region are
brought into the cache but existing blocks are retained in the
cache). A cacheable affinity intends to allow an application
to maximize the prefetching effect of copying, whereas a
non-cacheable affinity intends to allow an application to
minimize the cache pollution effect of copying. A cache

1The cache data path width of a processor determines the actual reduction in the
number of cache accesses.



neutral affinity achieves a balance in the sense that it does
not produce any prefetching or pollution effect. The affinity
options can be embedded as parameters into the copying
instruction using unused operands or opcode bits.

There are several factors that determine which affinity
option will perform best for a particular pair of source
or destination regions. One factor is the likelihood of the
region to be needed by the processor right after copying
is completed. The higher the likelihood, the more attractive
the cacheable option becomes. Another factor is the temporal
locality of data that was already cached prior to copying. The
higher the temporal locality, the more cache pollution it has
if a copying region is fetched into the cache. Another im-
portant factor is the cache capacity compared to the working
set of the application. A larger capacity can tolerate cache
pollution better, and increase the likelihood that a cache-
allocated region remains in the cache when the processor
accesses it. Due to the combination and interaction of these
factors, we find that typically, the source and destination
regions require different affinity options to achieve the best
performance, which argues for the need to provide flexible
and separate affinity options for source and destination
regions. In contrast, current approaches do not offer cache
affinity options. The loop approach always allocates both
regions in the cache. DMA or Copy Engine [21], on the
other hand, always makes both regions non-cacheable since
DMA and Copy Engine are memory side devices. Our
evaluation results (Section VI) demonstrate that using the
same cacheable or non-cacheable affinity option for both the
source and destination regions usually result in suboptimal
performance (they yield 7% and 10% lower application
speedups compared to the optimal options, respectively).

Note that the affinity flexibility also eases the interaction
with the I/O system. If copying involves a memory-mapped
I/O region, specifying a non-cacheable affinity helps in
ensuring that the region is not cached at the end of copying,
and avoids cache coherence problems with I/O devices.

To support the non-cacheable and cache neutral options
for the copying region, the cache controller needs to be
modified slightly. For a non-cacheable source region, if a
block is already cached, it is read and then evicted from the
cache. If it is not found in the cache, it is read from memory
but not allocated in the cache. For a cache neutral source
region, if a block is already cached, it is left where it is. If it
is not found in the cache, it is fetched and read but not placed
in the cache. For a non-cacheable destination region, if a
block is already cached, it is overwritten and immediately
evicted and written back. If it is not already cached, an
entry in the write combining buffer can be created with the
copied value, so bandwidth is not wasted for fetching the
block. For a cache neutral destination region, if a block is
already cached, it is overwritten. If it is not already cached,
an entry in the write-combining buffer is created containing
the copied value. It is possible to let the affinity policy be

applied differently to different cache levels, but in this paper
we assume it is applied to all cache levels.

C. Pipeline Bottlenecks

Let us now investigate the pipeline performance of bulk
copying instructions. When the instruction is encountered
in the pipeline, let us assume it is sent off to a spe-
cial‘functional unit” (or engine) that performs the actual
copying. The granularity efficiency of the instruction al-
lows the copying to be performed without occupying much
pipeline resources. Unfortunately, while the copying in-
struction itself is executed efficiently, the code that follows
copying may not benefit much from it. Figure 3(a) and (b)
illustrate this problem using a bulk initialization instruction.
In Figure 3(a), the bulk initialization instruction validates a
page it wants to write to, then performs writes to each block.
Some writes may take longer than others due to cache misses
(shown as longer lines). Unfortunately, the instruction may
take a long time to complete due to writing to a large number
of blocks, and hence it stays in the ROB of the processor for
a long time. Since instruction retirement is in order, younger
instructions cannot retire either, and eventually the pipeline
is full, at which point no new instructions can be fetched.
We refer to this bottleneck as the ROB-clog bottleneck.
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Figure 3. The effect of ROB-clog (a) and dependence (b) bottlenecks on
pipeline performance. Execution without bottlenecks (c).

The pipeline bottleneck described above can be avoided
if we allow the bulk copying instruction to retire early,
e.g. right after page validation is completed (Figure 3(b)).
Assuming such an early retirement is safe to do (a big if
for now), another pipeline bottleneck may occur. A younger
instruction (instruction B in the figure) stalls in the pipeline
waiting for the initialization completion. The stall can again
propagate and increases the critical path of execution, or



even clog the pipeline. We refer to this bottleneck as the
dependence bottleneck.

If the above two bottlenecks are avoided, then instructions
can flow through the pipeline without being blocked by the
copying instruction or by instructions that depend on the
copying instruction. In Figure 3(c), instruction B, which
depends on the completion of initialization of block 2,
can wake up and execute once block 2 is initialized. This
improves performance as instruction B will no longer stall
for a long time in the pipeline.

To get an idea of the importance of the two pipeline
bottlenecks, Figure 4 shows the breakdown of cycle per in-
structions (CPI) due to processor execution and regular stalls
such as structural, data dependence, branch misprediction
(bottom section), and due to copying-specific stalls: ROB
clog bottleneck (middle section), and dependence bottleneck
(top section). The figure shows that on average, 12.2% of the
CPI stall is due to copying-specific stalls (7.8% from ROB
clog bottleneck and 4.4% from dependence bottleneck). To
understand why copying-specific CPI stalls are high, we find
that for the tested applications, a copying on average takes
9,086 cycles to complete. A high-performance processor
pipeline can support a few hundred in-flight instructions,
which is only enough to keep the processor busy for a few
hundred cycles, before stalling for the remaining thousands
of cycles. In addition, the average distance between a copy-
ing instruction to the first dependent instruction is only 16
instructions. Thus, even if we solve the ROB clog bottleneck,
stalls due to dependence delay occurs soon after.
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Figure 4. Cycle Per Instruction (CPI) breakdown due to regular processor
execution&stalls, and stalls due to ROB clog and dependence bottlenecks.
Details of applications and machine parameters can be found in Section V.

1) Dealing with Pipeline Bottlenecks: Comparing the
ROB-clog bottleneck and the dependence bottleneck, the
dependence bottleneck can be dealt with more easily be-
cause it involves dependence checking mechanisms rather
than instruction retirement mechanisms. However, solving
the dependence bottleneck without solving the ROB-clog
bottleneck unlikely improves performance much because the
ROB is more likely to be clogged by the copying instruction
before it is clogged by (younger) dependent instructions.
Hence, first we must solve the ROB clog bottleneck before
we can solve the dependence bottleneck.

There are several ways to remove the ROB-clog bot-
tleneck. The first option is to remove the guarantee that
instruction retirement implies the completion of the instruc-

tion execution, i.e. by making the bulk copying instruction
asynchronous. This allows the instruction to be retired
ahead of its completion, freeing the ROB. However, using
asynchronous copying instruction complicates programming
because programmers must explicitly test the completion
of the copying instruction (e.g., by polling). Moreover,
polling for completion introduces overheads, and these over-
heads preclude a cost-effective solution for avoiding the
dependence bottleneck problem since it requires fine-grain
dependence tracking.

Another possible solution to allow the copying instruction
to be retired prior to its completion is by treating the retire-
ment as speculative, and using a checkpoint and rollback
mechanism to rollback and re-execute it when a dependent
instruction uses data that has not been produced by the
copying instruction. Unfortunately, a checkpoint and roll-
back mechanism is quite expensive to support. In addition,
if the distance between a copying instruction and dependent
instructions is short (on average, only 16 instructions apart),
this will cause frequent and persistent rollbacks.

With FastBCI, we adopt a new, non-speculative approach.
The key to our approach is while we allow the copying
instruction to retire ahead of its completion, we provide an
illusion of completion to other instructions. There are several
requirements to providing an illusion of completion:

1) Exception completeness requirement: any exception
that a copying instruction may raise must have been
handled prior to retiring the instruction, and no condi-
tions that may raise a new exception can be permitted.

2) Consistency model requirement: a retired copying in-
struction must be consistent with load/store ordering
supported by the architecture.

In addition to the two requirements needed for providing
an illusion of completion, we also employ an additional non-
speculative requirement that simplifies the implementation
of copying: the effect of copying should not reach the
memory system before the copying instruction is verified
to be non-speculative, i.e. after exceptions and branch mis-
predictions in older instructions have been handled.

2) Non-Speculative Requirement: The non-speculative
requirement deals with when the copying instruction should
be allowed to start its execution. One alternative is to let it
start right away as soon as its operands are ready. However,
this means that we must provide an ability to roll it back if
it turns out to be speculative, e.g. it lies in the wrong branch
path. Supporting such a rollback capability is difficult since
the instruction may write to a large number of cache blocks
and these writes must be either buffered or canceled.

Hence, FastBCI adopts a simpler alternative that avoids
the reliance on roll back altogether: it allows the Bulk Copy-
ing and Initialization Engine (BCIE) to be programmed, but
it holds off the BCIE from performing the actual copying
until the copying instruction has been verified to be non-
speculative. This means all older instructions must have been



verified exception free and have their branch mispredictions
handled. To achieve that, we conservatively wait until the
copying instruction reaches the ROB head before firing off
the BCIE. While this may introduce some delay in starting
the copying, a delay of up to tens of cycles is insignificant
compared to the performance gain obtained by FastBCI.

3) Exception Completeness: It is straightforward to ob-
serve that without exception completeness and ordering, the
illusion of completion for a copying instruction is broken.
For example, an exception raised by a copying instruction
after it retires leaves the system in an inconsistent state, i.e.
it appears as if the copying instruction has not completed or
has failed, but some of its younger instructions have retired.

To provide the illusion of completion, FastBCI allows a
copying instruction to be retired only after it is verified to
be exception-free or all its exceptions have been handled.
When a copying instruction is executed, the Bulk Copy and
Initialization Engine (BCIE) is simply programmed with the
required parameters, but is not fired off. After the instruction
is verified to be exception free, or its exceptions have been
completely handled, then the instruction can be retired and
the actual copying can start (the BCIE is fired off). Hence,
the effect of copying does not reach the memory system
until after the instruction can no longer raise an exception.

Whether a copying instruction will raise an exception or
not can be verified by checking the TLB. If the translation
exists and page permission allows the respective operations
(read permission for the source region and write permission
for the destination region), then the copying instruction will
not generate an exception. Note, however, that both the page
permission and the physical address of pages in the source
and destination regions must remain valid for the entire
copying operation. This requires the pages to be locked to
prevent the OS from swapping the pages out to disk, or
perform an operation that changes the permission of the
pages, until the completion of copying.

Due to the requirements to handle all exceptions prior
to retiring a copying instruction, and locking pages until
the completion of copying, the implementation can be made
easier if the maximum region size is limited. In FastBCI, we
limit the maximum copying region size to be the smallest
page size, i.e. 4KB. Hence, page validation incurs at most
four TLB misses (two pages for each of the source and
destination regions if they are not page-aligned). In addition,
the granularity efficiency loss compared to an unbounded
copying is negligible since most of the granularity effi-
ciency gain is obtained going from word/double-word-sized
load/store to a page-sized copying granularity.

Finally, there are events that can potentially break the
illusion of completion, such as interrupts, context switches,
thread spawning, etc. This requires the processor to arrive
at a consistent state because the interrupt handling or the
new thread may read or modify data in the copying regions.
If any of these events occurs when a copying instruction

is already retired but not completed, the event handling is
delayed until copying is fully completed.

4) Illusion of Completion in Consistency Models: The
illusion of completion for a copying instruction that is retired
early also applies in the context of a multiprocessor system.
Let us consider both the cache coherence issue as well as
the memory consistency model.

The engine that performs copying (BCIE) communicates
with cache controllers to send read/write requests for each
block involved. Coherence requests are generated by cache
controllers in response to the requests, as in a regular mul-
tiprocessor system. Therefore, cache coherence is handled
properly by existing coherence protocols without changes.

FastBCI allows copying to different blocks to proceed out
of order and allows younger loads/stores to issue before
an older copying instruction fully completes. Therefore,
FastBCI fits naturally with relaxed consistency models such
as weak ordering and release consistency. In these models,
it is assumed that programs are properly synchronized,
and ordering among loads and stores are not enforced
except at synchronizations or memory fences. A copying
instruction can be thought of loads and stores surrounded by
synchronizations/fences. Therefore, the copying instruction
is prevented from being issued when an older synchro-
nization/fence has not performed. In addition, a younger
synchronization/fence is prevented from being issued until
all older copying instructions have fully performed. Such a
restriction conforms to these consistency models.

More restrictive consistency models rely on strict ordering
of ordinary loads and stores, such as sequential consistency
(SC) or processor consistency (PC), hence another approach
needs to be employed. We start from an observation that
the main problem with the copying instruction execution is
that it is not atomic, i.e. when a younger load/store issues,
the reads/writes of an older copying instruction have not
fully completed. To conform to SC or PC, the illusion
of completion of a copying instruction also needs to be
maintained with respect to older and younger loads/stores.

To achieve the illusion of completion, after page valida-
tion, the processor issues read (read-exclusive) requests for
source (destination) in order to obtain read (write) permis-
sion for the source (destination) region. Since there may be
many block addresses in one region, one way to achieve this
efficiently is to send the address ranges to other processors.
Other processors react by downgrading the affected cache
blocks to a clean-shared state (if modified or exclusive) in
response to a read request, or invalidating them (if valid) in
response to a read-exclusive request. After all appropriate
ownerships are obtained by the processor which will execute
the copying instruction, the copying/initialization is started.

If later other processors access an address in the copying
regions that requires coherence state upgrade, an intervention
or invalidation request is sent to the processor that executes
the copying instruction. Upon receiving the request, if the



copying instruction is already retired but not fully completed,
the processor must provide the illusion of completion. If
copying for the requested block is completed (a block-
granularity copying progress tracking is assumed), the re-
quest is processed. Otherwise, the request is either buffered
until when the block’s copying is completed, or negatively
acknowledged so that the request can be retried. Which
solution is more appropriate depends on various factors,
for example the negative acknowledgment approach is more
applicable to a distributed shared memory multiprocessor.

IV. MICROARCHITECTURE OF BCIE

In this section, we discuss the architecture design of the
engine that executes the copying instruction. The architec-
ture of the engine, which we refer to Bulk Copying and
Initialization Engine (BCIE) is illustrated in Figure 5. It has
a main control unit (MCU). MCU controls other components
in the BCIE, interfaces with TLB for page validation and
interface with caches to perform copying.

BCIE needs to track the progress of page validation (to
determine when the instruction can be retired) and copying
(to determine the completion of copying and to support
fine-grain dependence checking). Page validation progress is
tracked by using Page Validation Status Registers (PVSRs),
while copying progress is tracked using Copy Status Reg-
isters (CSR) at the page level and using Copy Status Table
(CST) at the block level for outstanding pages.

PVSRs keep the range of addresses that have not yet
been validated separately for the source and destination
regions. Read permission is checked for the source region
while write permission is checked for the destination region.
Since copying region may not be page-aligned, a source and
destination region may span up to two pages each.

Experimentally, we have not observed the need for sup-
porting concurrent execution of multiple copying instruc-
tions. 82% of back-to-back copying instructions are sepa-
rated by over 5000 instructions, and only 9% of them are
separated by less than 2000 instructions. Hence, a copying
instruction is likely already completed before the next one
arrives at the pipeline. Therefore, we keep the hardware
simple by keeping only one set of PVSRs, CSR, and CST.
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Figure 5. Bulk Copying and Initialization Engine (BCIE).

A copying instruction flows through the pipeline in three
sequential steps: in the start-up step, the instruction is issued
and BCIE is programmed; in the validation step, page
validation is carried out; and in the finishing step, copying is

performed. FastBCI does not require copying regions to be
aligned. For now, we assume that they are aligned at cache
block boundaries, and defer the discussion for non-cache
block aligned regions to Section IV-A.
The Start-up Step. The goal of the start-up step is to
determine when the copying instruction can be issued. Like
regular instructions, a copying instruction waits until all its
register operands are ready before issuing. It also waits if
the BCIE is occupied by an older copying instruction. After
register dependences and structural hazard are resolved, the
copying instruction is issued to the BCIE to program it
with the instruction parameters, but BCIE does not fire off
until after the validation step is completed (Section III-C2
and III-C3). For example, the PVSR and CSR are initialized
with the initial address ranges of the source and destination
regions specified in the instruction.
The Validation Step. In the validation step, the permission
of pages in the range of addresses in the PVSRs are checked
in the TLB to validate whether reads (writes) are allowed for
the source (destination) regions. The physical addresses are
obtained as well. PVSRs keeps the range of addresses that
have not been validated, and they are continually updated
each time a page is validated. If an exception occurs, the
exception bit of the instruction in the ROB entry is raised.
After the exception is handled, the copying instruction is
re-executed. The completion of page validation is detected
when PVSRs contain an empty address range.

Recall that validated pages must remain valid until the
copying is completed (Section III-C3). One way to avoid the
risk that the page is swapped out or its permission changed
is to lock the page in the physical memory. Normally, to
lock a page, the OS must be invoked to manipulate its page
lock data structure [18]. When an OS wants to swap out a
page, it checks whether the page is locked. Meanwhile, an
invalidation is sent to the TLB. To avoid the OS involvement
in page locking, we augment each TLB entry with a lock
bit and set the bit for the duration of the copying operation.
If the OS wants to swap out a page, the TLB will receive
invalidation, and at this time TLB checks the lock bit of
the entry. If set, the invalidation fails, and the OS reacts by
setting the lock bit of the page in its data structure. Similarly,
when a TLB entry with a lock bit set is evicted, the OS must
also be invoked so it can lock the page. With this technique,
most copying operations only involve the TLB but not the
OS. To support this technique, the OS is modified slightly to
react to a failed invalidation and TLB replacement of entries
with lock bit set by performing the page locking.
The Finishing Step. After page validation, the actual copy-
ing can be started. The instruction also becomes retireable.
BCIE uses CSR and CST to keep track of the copying
progress at page and cache block level, respectively. If
the copying regions cross page boundary, the copying is
broken into smaller subcopying operations, each of which
only involves one source page and one destination page (a



page pair). Since we limit the maximum region size to be
the size of a page, a copying operation is broken down
into at most three subcopying operations, as illustrated in
Figure 6. Whenever a subcopying operation completes, the
CSR is updated by bumping the source and destination base
addresses up to the next page pair.
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Figure 6. Handling regions that are not page aligned.

The page pairs in the subcopying operation are tracked
independently from one another in the CST. Each page pair
is allocated an entry in the CST, hence the CST has three
entries to keep track of up to three page pairs. Each entry
in the CST has a valid bit (V), the virtual and physical base
addresses of the source and destination pages, mask bits
indicating blocks that belong to the source or destination
region in the pages (Mask-Src and Mask-Dst), and bit
vectors that track copying progress at the cache block level
for both the source and destination pages (Figure 7(b)). We
refer to the bit vector as Copy Progress Bit Vector (CPBV).
The CPBVs (CPBV-Src and CPBV-Dst) have as many bits
as cache blocks in a page, e.g. 64 bits for a system with
4KB page and 64-byte cache block size. CPBVs are initially
cleared to zero when a page pair is allocated in a CST
entry. When a block in the source has been copied to the
corresponding block in the destination, the corresponding bit
in source and destination’s CPBV is set to ‘1’. When all bits
in the CPBVs that are not masked out have a value of ‘1’,
the copying for the page pair is completed. The page pair is
deallocated from the CST and the CSR is updated to reflect
it. When the region length field in the CSR becomes zero,
the entire copying has completed, and the BCIE is freed.
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Figure 7. Illustration of fine grain dependence checking.

By checking the CPBVs of each CST, the MCU keeps
track of blocks that still need to be copied, and generate
appropriate read and write requests to the cache controller.
The cache controller performs copying according to the
cache affinity options specified. The MCU may simultane-
ously send several read/write requests to the cache controller,
and based on whether the cache blocks are found in the

cache, some blocks may be copied sooner than others. The
CPBV allows blocks in a page to be copied in parallel
and completed out of order. In addition, having multiple
CST entries also allows blocks from different page pairs to
be copied in parallel and complete out of order. However,
completed page pairs are reflected on the CSR sequentially.

The CSR, CST and its CPBVs also serve as a way
to check for memory dependences between a copying in-
struction and younger load/store instructions. For a younger
load, its address must be checked against the destination
region, while for a younger store, its address must be
checked against source and destination regions. The check
is performed when the BCIE has an outstanding copying
instruction, and in parallel with regular load/store queue
accesses. Since BCIE only has a few small registers and a
small table, the dependence checking latency can be hidden
by the overlapping it with load/store queue access. More-
over, in most cases, only the CSR needs to be checked to
resolve dependences (the CST is only checked occasionally).

Figure 7 illustrates an example of how dependences with
younger loads can be checked by the BCIE. Figure 7(a)
shows a copying operation with the source region that is
page aligned and the destination region that is not page
aligned, and with the region size of 4KB. The copying is
broken up into two subcopying operations, and let us assume
that subcopying operation 1 is completed while subcopying
operation 2 is in progress. Consequently, the address range
stored in the CSR (Figure 7(b)) only includes those of “Src
2” and “Dst 2”. An entry for subcopying operation 2 is
allocated in the CST, and it contains bit vectors for the
source (CPBV-Src) and destination (CPBV-Dst) which track
which cache blocks in the source and destination pages have
completed copying/initialization.

Suppose there are four younger load instructions (A, B,
C, and D) illustrated in Figure 7(c). Instruction A loads
from an address that is not in the copying region, so it
is an independent instruction. B loads from the first byte
of “Dst 1” and hence has a dependence with the copying
instruction. However, address 0x3F00 does not intersect
with the address ranges in the CSR because copying for
the address has been completed by subcopying 1 operation.
Instruction C loads from an address that is in the address
range stored in the CSR. So it is checked further against
the entry in CST. Since address 0x4000 is the first byte in
“Dst 2” page, it falls into the first cache block of that page.
The first bit in CPBV-Dst is a ‘1’ which indicates that the
block has completed copying, so its dependence is resolved
and instruction C can issue and execute. Finally, instruction
D loads from address 0x4040 which is the 65th byte of
“Dst 2” page. It corresponds to the second cache block of
that page, and since the second bit in CPBV-Dst is a ‘0’, the
block has not completed copying. Hence, instruction D waits
until the dependence is resolved. Note that the per-block
copying progress tracking and dependence checking removes



the dependence pipeline bottleneck. In contrast, DMA and
Copy Engine do not have such a mechanism, so instructions
B, C, and D would all stall until copying is fully completed.

A. Handling Cache-block Alignment Issues

We have discussed the BCIE design when the regions
involved in copying/initialization are not page aligned. If
they are not aligned at cache block boundaries, an additional
mechanism is needed to handle them in order to still permit
copying/initialization at the cache block granularity. Due to
the space limitation, we only discuss the high-level idea.
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Figure 8. Handling regions that are not block-aligned.

When the source and destination regions are not aligned
at cache block boundaries, it is likely that we need to read
two cache blocks from the source in order to produce one
cache block (or a part of it) for the destination. Thus, to
produce a destination block, the appropriate bytes must
be selected from both source cache blocks and combined
together. Figure 8(a) shows that to select appropriate bytes,
we employ two bitmasks, one for each source cache block
and one for each destination block in the subcopying region,
with each bit indicating whether a corresponding byte should
be selected from the block (‘1’) or not (‘0’). We found that
the bitmasks show a repeated pattern and which bitmasks to
use for a cache block can be determined by the its address.
Hence, at most four distinct 64-bit alignment bitmasks for
the source cache blocks are required. To reduce storage
overheads, rather than storing four 64-bit bitmasks for the
destination cache blocks, we store four 6-bit shift values that
indicate how much data from the source block needs to be
shifted to generate the needed part of a destination block.
The four source alignment bitmasks and the four destination
shift value are generated at the beginning of finishing step,
stored in the CST entry and used repeatedly.

The logic that performs the byte selection from source
blocks and generates the destination block is shown in
Figure 8(b). After bitmask generation (Circle 1), the four
bitmasks are input into a mux, and one of them is selected
based on the address of the source blocks (Circle 2a and 2b).
The output is the selected source alignment bitmask (64 bits)
plus a 6-bit destination shift value. Then, source blocks are
input into the Select&Shift logic, which uses the bitmask
to select the appropriate bytes from the source block, and
the 6-bit shift value to shift the result (Circle 3a and 3b).

Finally, the two blocks are ORed together to produce the
destination block (Circle 4).

V. EVALUATION METHODOLOGY

Benchmarks. To measure the overall performance im-
provement of FastBCI, we apply it for buffer management
functions in Linux kernel (version 2.6.11) [13], such as
copy_from_user, copy_to_user and memcpy. We
use three buffer-intensive benchmarks: Apache HTTP Server
v2.0 [8] with ab workload [8], a network benchmarking tool
Iperf [6] with 264KB TCP window, and I/O performance
tool iozone3 [5] with tests performed on a 4 MB file
residing on an ext3 filesystem. We run the benchmarks
from beginning to the end except for iperf in which we
skip the first 2 billion instructions and simulate the next
1 billion instructions. For apache and iperf, we separate the
performance measurement of the sender side and the receiver
side because they exhibit different performance behaviors.
Machine Parameters. We build FastBCI model on top of a
full system simulator Simics [25] with sample-micro-arch-
x86 processor module and g-cache-ooo cache module. We
simulate a desktop-like machine with an 4-wide out-of-order
superscalar processor with 4GHz frequency and x86 ISA.
The processor has a 32-entry load/store queue, 128-entry
reorder buffer, bimodal branch predictor, 16-entry MSHR,
and non-blocking caches. The I-TLB and D-TLB have 64
fully associative entries. The L1-instruction and L1-data
caches are 32KB write-back caches with 64-byte block size,
and an access latency of 2 cycles. The L2 cache is unified,
1MB size, 8-way associativity, 64-byte block size, and has
an 8-cycle access latency. The memory access latency is 300
cycles, and the system bus has a 6.4 GB/s peak bandwidth.
The BCIE has a 3-entry CST, and the total size overheads for
PVSRs, CSR, and CST are less than 1KB. PVSRs, CSRs and
CST, are accessible in 1 cycle, and each modulus calculation
in BCIE takes 1 cycle latency as well.

VI. EVALUATION

To evaluate FastBCI performance in real applications, we
apply the bulk copying instruction for Linux kernel (v2.6.11)
buffer management. Figure 9 shows various speedup ratios
of various benchmarks under different schemes: traditional
loop-based implementation (Traditional), copy engine with
synchronous bulk copying instructions [21] (CopyEng), an
optimistic DMA with 0-cycle setup overhead and 0-cycle
interrupt handling cost (0-DMA), our FastBCI scheme with
cacheable affinity for all regions (FastBCI), and our FastBCI
scheme with the best cache affinity options (FastBCI+CAF),
obtained by exhaustively trying all cache affinity options
and choosing the best performing one for each benchmark.
To make the comparison more fair, CopyEng and 0-DMA
assume cacheable copying regions 2.

2As memory side devices, Copy Engine DMA actually require uncached regions.
Using uncached regions, CopyEng and 0-DMA’s average speedups are lower: 5.7%
and 12.8%, respectively.
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Figure 9. Speedup ratios of various schemes.

Figure 9 shows that FastBCI outperforms traditional im-
plementation, copy engine, and an optimistic DMA in all
cases. The copy engine gives 7.9% speedup over conven-
tional loop-based approaches on average due to its granu-
larity efficiency over traditional loop-based implementation.
However, the bulk copying instructions quite frequently clog
the ROB, and hence the speedups of the copy engine are
limited. 0-DMA performs better than copy engine, but even
with highly optimistic assumptions, it does not perform as
well as FastBCI, reaching an average speedup of 17.1%.
Note, however, that the average copying region sizes are
relatively small: ranging from 300 bytes to 1.9KB. Thus,
in reality, a DMA engine will not be able to amortize its
setup and interrupt completion handling overheads well.
Through early retirement and per-block copying progress
tracking and dependence checking, FastBCI significantly
outperforms other alternatives for all benchmarks. The aver-
age speedup is 23.2% (roughly 3× of CopyEng and 1.5× of
0-DMA). With the best cache affinity options applied to each
benchmark, the speedups further improve to an average of
32.1% (roughly 4× of CopyEng and 2× of 0-DMA). Overall,
the results demonstrate that pipeline and cache bottlenecks
are the biggest performance roadblocks to a bulk copying
instruction. Solving them gives a significant performance
improvement over just naively providing better granularity
efficiency through a bulk copying instruction support.
Cache Affinity Flexibility Effectiveness. The speedup pro-
vided by FastBCI is very close to the “perfect pipeline”
case in Figure 2 (23.2% vs. 24%). The speedup provided
by FastBCI+CAF, however, is less close to the “perfect
cache” case in Figure 2 (32.1% vs. 37%). Thus, it is
important to understand better the relationship of cache
affinity performance with the behavior of the application.

Figure 10(a) shows the speedup ratios of apache achieved
by FastBCI for various cache affinity options over a tra-
ditional loop implementation. The notation on the X axes
of A B corresponds to A being the affinity option for the
source (C = cacheable, NEU = cache neutral), and B being
the affinity option of the destination. Note that the non-
cacheable option is not shown because it is consistently
outperformed by the cache neutral option for both source
and destination regions.

Figure 10(a) shows that cache affinity options affect
the receiver and sender sides of apache differently, so we
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Figure 10. Speedup ratios (a) and the number of L2 cache misses (b) of
Apache with various cache affinity options.

will discuss them separately. At the receiver, (NEU NEU)
outperforms other affinity options (21% speedup vs. 18%
speedup in C NEU, 17% in NEU C, and 15% in C C).
Conceptually, with cacheable source and destination regions,
during copying they are brought into the cache. If a region
has good temporal locality, future cache accesses will find
blocks of that region already fetched into the cache, reducing
future number of cache misses. However, the figure shows
that the more we make regions cacheable, the worse the
speedup becomes.

To understand why this is so, we collect the number of L2
cache misses for the code not including misses caused by the
copying instructions themselves (Figure 10(b)). The number
of misses is broken into two components: OrigMiss shows
the number of original misses that remain after a cacheable
option is applied, and HarmMiss shows the number of new
misses that are caused by using the cacheable option, which
represents the harmful cache pollution incurred by bringing
copying region into the cache. The number of L2 cache
misses is normalized to the NEU NEU case.

Figure 10(b) shows that while caching the source or
destination region provides some prefetching effect, as ev-
ident by the reduction in original misses, it also produces
cache pollution. Since the cache pollution effect is stronger,
the new extra misses outnumber the reduction in original
number of misses. To understand why this is the case, in
TCP/IP processing, the receiver side receives packets by
copying them from an OS kernel buffer (which is not reused
after the copying) to a user buffer (which is reused by the
application after the copying). Hence, caching the source
region mostly pollutes the cache. Caching the destination
seems fruitful but unfortunately the system call involved
(recv or read) consists of a long chain of kernel routines
before and after the copying. Such kernel routines accesses
a lot of data within the kernel stack that have better temporal
locality than the copying region. So before the user has
a chance to reuse the destination, many of the destination
region blocks are already replaced. As a result, caching the
destination also leads to cache pollution.
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Figure 11. Speedup ratios over loop-based implementation for 8MB L2
cache with various cache affinity options.

Now let us consider the sender side. At the sender side,
NEU C outperforms all other options (25% speedup vs. 22%
speedup in NEU NEU, 21% in C C, and 14% in C NEU).
The figure shows that the reason NEU C performs the best is
because its number of original L2 cache misses is reduced by
4.4% without adding many new harmful misses (only 1.7%).
The reason is that in TCP/IP processing at the sender side,
data is copied from a user buffer to an OS kernel buffer.
The source region is not reused so caching it causes cache
pollution (as in C NEU). However, the destination region
is immediately reused because the TCP/IP stack performs
further processing on the newly copied packets, so caching
it is beneficial (as in NEU C).

Although space limitation prevents us from showing the
results for iperf and iozone, we observe the same perfor-
mance trends between iperf and apache, in particular because
they rely on the same OS kernel functions for TCP/IP
processing, both at the sender side and at the receiver side.
One difference is that iperf shows much higher speedups and
performance differentials between different cache affinity
options. iozone3 performs file write operations rather than
TCP/IP operations. It copies data from the user heap to a
destination region in kernel slabs that will later be transferred
to the disk through disk DMA. There is little reuse in the
source region and there is also little reuse in the destination
region because it is only accessed for a short time period
before being invalidated from the cache to prepare for
DMA transfers. As a result, iozone3’s cache affinity option
performance is similar to the sender side of apache and iperf.
Sensitivity to a Larger L2 Cache Size. Figure 11 shows the
performance of FastBCI with various cache affinity options
for a larger, 8MB L2 cache size. The figure shows almost
identical relative speedup patterns as in a 1MB L2 cache.
What is markedly different is that the relative difference in
speedups of different cache affinity options has diminished
significantly. The reason for this is that an 8MB cache can
tolerate cache pollution much better than a 1MB L2 cache,
hence cacheable source or destination, or both source and
destination, perform very close to the best affinity option.
Overall, in both 1MB and 8MB L2 caches, the cache neutral
option for both source and destination regions shows a robust
performance that is comparable to the best affinity options.

VII. CONCLUSIONS

We have shown that the key to significantly improving
the performance of bulk copying/initialization instructions
is removing pipeline and cache bottlenecks of the code that

follows copying operations. We have proposed and presented
a novel architecture support that achieves granularity effi-
ciency of a bulk copying/initialization instructions without
their pipeline and cache bottlenecks (FastBCI). To overcome
the pipeline bottlenecks, FastBCI relies on a non-speculative
early retirement of the copying instruction, and fine-grain
tracking of copying progress. To overcome the cache bottle-
necks, FastBCI allows three cache affinity options that can
be applied individually to the source and destination regions:
cacheable, non-cacheable, and cache neutral. When applied
to kernel buffer management, we showed that on average
FastBCI achieves anywhere between 23% to 32% speedup
ratios, which is roughly 3×–4× of an alternative scheme,
and 1.5×–2× a highly optimistic DMA engine with zero
setup and interrupt overheads.
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