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Abstract

Branch misprediction penalties continue to increase as
microprocessor cores become wider and deeper. Thus,
improving branch prediction accuracy remains an impor-
tant challenge. Simultaneous Subordinate Microthreading
(SSMT) provides a means to improve branch prediction
accuracy. SSMT machines run multiple, concurrent mi-
crothreads in support of the primary thread. We propose
to dynamically construct microthreads that can specula-
tively and accurately pre-compute branch outcomes along
frequently mispredicted paths. The mechanism is intended
to be implemented entirely in hardware. We present the de-
tails for doing so. We show how to select the right paths,
how to generate accurate predictions, and how to get this
information in a timely way. We achieve an average gain
of 8.4% (42% maximum) over a very aggressive baseline
machine on the SPECint95 and SPECint2000 benchmark
suites.

1. Introduction

Branch mispredictions continue to be a major limitation
on microprocessor performance, and will be for the foresee-
able future [9]. Though modern prediction mechanisms can
achieve impressive accuracies, the penalty incurred by mis-
predictions continues to increase with wider and deeper ma-
chines. For example, a futuristic 16-wide, deeply-pipelined
machine with 95% branch prediction accuracy can achieve
a twofold improvement in performance solely by eliminat-
ing the remaining mispredictions1.

Simultaneous Subordinate Microthreading [2] has the
potential to improve branch prediction accuracy. In this ap-
proach, the machine “spawns” subordinate microthreads to

1Averages over SPECint95 and SPECint2000. See Section 5 for exper-
imental setup.

generate some of the predictions, which are used in place
of the hardware predictions. Because microthreads are not
limited by hardware implementation and can target very
specific behavior, they can generate very accurate predic-
tions. Examples have been shown in previous research [2,
18].

However, effective use of microthreads for branch pre-
diction is challenging. Microthreads compete with the pri-
mary thread for resources, potentially decreasing perfor-
mance. Because of this drawback, subordinate microthread-
ing is not a good general solution—it must be targeted such
that mispredictions are removed without incurring so much
overhead that the performance gains are overshadowed. To
maximize gains, it is important to have the following goals:

� Spawn only useful threads. A microthread incurs
useless overhead if it generates a prediction for a cor-
rectly predicted branch, or if a microthread is spawned
but the prediction is never used. Additionally, if the
branch is correctly predicted, there is a risk of intro-
ducing additional mispredictions with microthreads.

� Generate accurate microthread predictions. A mi-
crothread is useless if it does not generate a correct
prediction. In fact, it can be harmful if the hardware
prediction is correct and the microthread prediction is
not.

� Complete microthreads in time to be useful. A
microthread is useless if it does not complete before
the target branch is resolved—at that point, the ma-
chine has already computed the actual outcome of the
branch. Microthreads should complete as early as pos-
sible to eliminate or reduce misprediction penalties.

We propose using a set of difficult-paths to guide mi-
crothread branch prediction with the above goals in mind.
Path-based confidence mechanisms [10] have demonstrated
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that the predictability of a branch is correlated to the
control-flow path leading up to it. We extend this notion
by classifying the predictability of branches by control-flow
path, rather than as an aggregate of all paths to a branch. In
this manner, we identify difficult paths that frequently lead
to mispredictions. These are the mispredictions we attack
with specially-constructed microthreads.

The remainder of this paper describes our difficult-path
classification method and how to construct microthreads
that will remove a significant number of hardware mis-
predictions, while keeping microthread overhead in check.
In addition, our mechanism can be implemented entirely
in hardware, unlike previous schemes that rely on profile-
based, compile-time analysis. We present the details of this
hardware implementation in Section 4.

This paper is organized as follows. Section 2 discusses
prior research relevant to this paper. Section 3 describes
our new approach of using difficult paths to guide mi-
crothreaded branch prediction. Section 4 describes the algo-
rithms and hardware necessary to implement our difficult-
path branch prediction scheme. Section 5 provides experi-
mental results and analysis. Section 6 provides conclusions.

2. Related Work

Branch prediction using subordinate microthreads was
first proposed by Chappell et al. as an application of the Si-
multaneous Subordinate Microthreading (SSMT) paradigm
[2]. SSMT was proposed as a general method for leveraging
spare execution capacity to benefit the primary thread. Sub-
sequent authors have referred to subordinate microthreads
as “helper threads.” The original microthread branch pre-
diction mechanism used a hand-generated microthread to
exploit local correlation of difficult branches identified
through profiling. Many concepts from this previous work
carry over to this paper, such as the basic microthreading
hardware and the means by which to communicate branch
predictions to the primary thread. In this paper, we at-
tack a larger set of branch mispredictions with an auto-
mated, run-time mechanism that constructs more accurate
microthreads.

Zilles and Sohi [18] proposed using speculative slices to
pre-compute branch conditions and prefetching addresses.
Their method used profiling data to hand-construct back-
ward slices of computation for instructions responsible for
many branch mispredictions or cache misses. The pro-
cessor executed these speculative slices as helper threads
to generate branch predictions and prefetches. Backward
slices could contain control-flow, and several speculative
optimizations were suggested to improve slice performance.
Hardware mechanisms were proposed to coordinate dy-
namic branch prediction instances with the front-end and to
squash useless threads on incorrect control-flow paths. Our

work differs in the following ways: we target mispredic-
tions using difficult paths, our hardware-based mechanism
does not rely on profiling and hand analysis to generate mi-
crothreads, we leverage run-time information to create more
timely microthreads, and we present simpler mechanisms
for aborting useless microthreads and communicating mi-
crothread predictions to the front-end.

Roth and Sohi [16] proposed a processor capable
of using data-driven threads (DDT) to perform critical
computations—chains of instructions that lead to a mispre-
dicted branch or cache miss. The DDT threads were non-
speculative and the values produced were capable of being
integrated into the primary thread via register integration
[15]. The construction of the threads was performed auto-
matically at compile-time using profiling data to estimate
when DDT construction would be useful. This scheme did
not convey branch predictions to the front-end, but instead
pre-computed the results of branches so that they could be
integrated back into the primary thread at rename time, thus
shrinking misprediction penalties but not removing them.
Our mechanism targets mispredictions with difficult paths,
does not rely on the compiler, and is not constrained by the
non-speculative nature of the threads.

Farcy et al. proposed a mechanism to target highly mis-
predicted branches within local loops [6]. The computa-
tions leading up to applicable branches were duplicated at
decode time and used to pre-compute the conditions of the
branches several loop iterations ahead of the current itera-
tion. In order to get ahead, their scheme used stride value
prediction for live-input values. This paper also proposed a
mechanism by which to communicate predictions to the ap-
propriate later iterations of the local loop. Though clever,
the applicability of their overall mechanism was limited
only to local loop branches based on predictable live-input
values.

Roth et al. also proposed hardware pre-computation
mechanisms to predict virtual function call targets [13] and
to prefetch linked data structures [14]. In these mecha-
nisms, the machine detected specific instruction sequences
leading to virtual function call targets or linked-list jump
pointers. These mechanisms did not use separate threads to
perform the computations, but instead mimicked them on a
separate execution engine.

Several papers have recently investigated the use of
pre-computation threads for prefetching. Collins, et al.
proposed speculative pre-computation [4] and then dy-
namic speculative pre-computation [3]. The former used
a profiling-based, compile-time mechanism to build sim-
ple address computations for load instructions that caused
many cache misses. The follow-on paper proposed a hard-
ware mechanism for dynamically capturing the computa-
tions. Luk proposed a mechanism for doing compiler-
controlled prefetching using separate threads [12]. In this
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mechanism, the machine would fork multiple speculative
copies of the primary thread in order to prefetch irregular
address patterns. Annavaram et al. proposed using a sep-
arate pre-computation engine to execute threads generated
on-the-fly at fetch time [1]. This mechanism essentially pri-
oritized computations for loads accounting for many cache
misses.

Assisted Execution [5], proposed by Dubois and Song,
is a multithreading paradigm that uses compiler-generated
nanothreads in support of the primary thread. This previous
work proposed a nanothread prefetching scheme and sug-
gested other general ways which nanothreads could be used
to improve single-threaded performance. This paper did not
address branch prediction and suggested nanothreads as a
means for the compiler to interact with a running program.

3. Difficult-Path Classification and Branch
Prediction

In this paper, we refer to a path as a particular sequence
of control-flow changes that lead to either a conditional or
indirect terminating branch. We use the addresses of the n
taken branches prior to the terminating branch to specify the
path. These n addresses are combined in a shift-XOR hash
to yield a path identifier, or Path Id.

Figure 1 shows all paths with n � 2 to terminating
branchA (paths leading away fromA are not shown). When
n = 1, there are 2 paths: BA and EA. For n = 2, there
are 5 paths: CBA, DBA, FEA, GEA, and HEA. The
Path Id for each would be computed using a shift-XOR
hash of the n branch address. For example, the Path Id of
path GEA would use the addresses of branches G and E.

A difficult path has a terminating branch that is poorly
predictedwhen on that path. More formally, given a thresh-
old T , a path is difficult if its terminating branch has a mis-
prediction rate greater than T when on that path. Note that
it is entirely possible (and desirable) that many other paths
to the same terminating branch are not difficult.

An important concept related to control-flow paths is
scope. We define the scope of a path to be the sequence
of instructions that comprise the n control-flow blocks of
that path2. Figure 1 shows the scope of path GEA in the
shaded blocks. This set of instructions is guaranteed to ex-
ecute each time path GEA is taken to branch A. Note that
the block containing branchG is not part of the scope, since
it could have multiple entry points that alter the sequence of
instructions executed before the branch instruction G.

2This is similar to the idea of an instruction’s “neighborhood” as de-
fined in [6]. A branch’s neighborhood was used as the set of instructions
to be analyzed for detecting local loops.

A

E

B

C

D

F

H

G

Figure 1. Paths are identified by a terminat-
ing branch (A) and the last n control-flow
changes. Ovals indicate blocks adjacent
along fall-through paths. Letters indicate
taken branches. The scope of path GEA is
the set of instructions in the shaded blocks.

3.1. Measuring Path Characteristics

We characterized the behavior of our chosen benchmarks
in terms of paths and average scope as described in the pre-
vious section. The results are shown in Table 1 for several
values of n.

As one would expect, the number of unique paths es-
calates quickly as n increases. A larger value of n results
in the differentiation of several unique paths that would be
considered a single path with a smaller value of n. Adjust-
ing the value of n adjusts the resolution at which paths are
differentiated.

The average scope among unique paths also tends to in-
crease with n. Paths get longer as more control-flow blocks
are added. It is interesting to note that, with relatively small
values of n, it is possible to produce paths with scopes in
excess of 100 instructions.

The number of difficult paths does not change markedly
as T is varied between .05 and .15, especially with higher
values of n. This is interesting, since it implies there is a
fairly stable set of difficult paths that really are difficult.

3.2. Using Difficult Paths

Our goal is to improve machine performance via higher
branch prediction accuracy. Previous research has demon-
strated that more accurate branch predictions can be pro-
duced using subordinate microthreads. For these mecha-
nisms to be successful, microthreads must target hardware
mispredictions, compute accurate predictions, and complete
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Table 1. Unique paths, average scope size (in # of instructions), and number of difficult paths for
different values of n and T .

n = 4 n = 10 n = 16

Bench path scope T=.05 T=.10 T=.15 path scope T=.05 T=.10 T=.15 path scope T=.05 T=.10 T=.15

comp 1332 49.38 349 329 315 3320 123.77 723 682 646 8205 195.64 1307 1228 1145
gcc 131967 37.14 51259 41776 34942 428613 89.18 148513 129331 113982 886147 137.82 254463 229376 208212
go 113825 51.16 61526 54830 48127 681239 113.49 295722 273068 250213 1697537 171.80 589034 555140 519209

ijpeg 7679 62.98 1567 1263 1083 30624 153.64 7837 6873 6146 94023 228.17 21174 19401 17716
li 4095 36.16 576 491 457 8933 88.13 1401 1204 1093 16602 142.26 2615 2304 2084

m88ksim 5342 41.20 1266 1072 928 12397 99.60 2819 2486 2198 23460 164.51 4851 4445 4043
perl 11003 39.75 3109 3027 2926 26572 91.98 8116 7948 7717 47152 137.67 12311 12130 11929

vortex 36951 48.12 6231 4973 4415 76350 114.28 11929 9766 8672 119339 178.32 15672 13193 11779
bzip2 2k 23585 216.94 8861 6884 5685 836082 551.77 195652 180377 162349 4455846 541.59 935579 913986 882787
crafty 2k 59559 83.76 23225 18980 15806 361879 214.84 96830 86047 76964 942334 351.84 175022 159997 146174
eon 2k 15986 44.77 2584 2340 2147 32789 102.88 5021 4565 4182 48633 160.16 6540 5980 5493
gap 2k 28760 52.17 6883 5799 4966 84630 131.52 17855 15506 13455 165838 217.80 28742 25333 22332
gcc 2k 203334 55.63 75697 63754 54165 671250 132.41 185210 167533 151113 1191885 205.37 262718 244412 226077
gzip 2k 21942 100.94 9311 8091 7111 472396 267.46 118583 112095 105213 1973159 412.21 340683 332439 322094
mcf 2k 7707 46.05 2834 2387 2090 65498 118.08 17960 16357 15010 232125 165.48 45391 42793 40289

parser 2k 22174 49.65 8567 7851 7296 105758 119.59 29265 27014 25026 374747 181.99 74828 69928 65378
perlbmk 2k 12608 47.38 5145 5083 4996 22337 112.44 8108 8020 7920 28475 175.75 9207 9109 9011

twolf 2k 24280 62.46 7894 7097 6403 91321 162.95 23630 21395 19457 240853 251.63 48833 44970 41313
vortex 2k 57718 65.13 9285 8103 7384 130800 148.84 18813 16991 15820 208697 229.24 24619 22534 21086

vpr 2k 34589 111.11 10977 9586 8579 1330809 348.34 247932 240666 230405 4895234 550.59 616776 613795 608067
Average 41222 65.09 14857 12686 10991 273680 164.26 72096 66396 60879 882515 239.99 173518 166125 158311

in a timely manner. This section describes how, using dif-
ficult paths, we can construct microthreads to accomplish
these goals.

3.2.1. Targeting Mispredictions. We wish to use mi-
crothreads only for branch instances likely to be mispre-
dicted. As described in Section 1, any microthread spawned
for a correctly predicted branch incurs useless overhead
(note that such overhead is not always useless, if signifi-
cant prefetching occurs). Any microthread spawned for a
correctly predicted branch also risks introduction of a mis-
prediction.

In practice, targeting mispredictions is somewhat com-
plicated. Predictability must be considered at the time mi-
crothreads are constructed. Previous studies have targeted
mispredictions simply by concentrating on static branches
that exhibit poor predictability. We propose to use difficult
paths instead.

A correlation exists between dynamic control-flow in-
formation and branch predictability [10]. Given this, it fol-
lows that a set of difficult paths can achieve greater “mis-
prediction resolution” than a set of difficult branches. This
also makes sense intuitively: difficult branches often have
many easy paths, and easy branches often have a few diffi-
cult paths. By considering only the set of difficult paths, we
eliminate a great number of branch instances.

Table 2 shows the misprediction and execution coverages
for the SPECint95 and SPECint2000 benchmark suites for
different values of n and T . The same definition of “dif-
ficult” (mispr rate > T ) applies to both branches and
paths. The table shows that, generally, classifying by paths
increases coverage of mispredictions, while lowering exe-
cution coverage.

3.2.2. Accurate Microthreads. The importance of ac-
curate microthread predictions should be clear: if a mi-
crothread generates an incorrect prediction, it causes a mis-
prediction recovery and lowers performance.

Previous research has shown that pre-computation
threads can very accurately pre-compute branch conditions
[6, 16, 18] (see Section 2). However, these mechanisms re-
quire hand-analysis or complex profiling to generate mi-
crothreads. Hand-analysis methods clearly have limited ap-
plicability. Previous profiling methods require analysis to
consider and reconcile all possible paths to each difficult
branch. The storage and complexity both scale with the
control-flow depth considered.

We propose to construct a pre-computation microthread
to predict the terminating branch of each difficult path. Be-
cause microthreads pre-compute the outcome of the branch,
the predictions are very accurate. Because each microthread
need predict the terminating branch for a single difficult
path, the construction process is very simple.

To construct a microthread, we consider the scope of the
difficult path (the set of instructions guaranteed to execute
each time the path is encountered). By observing the data-
flow within the scope, we can easily extract a subset of in-
structions that will pre-compute the branch condition and
target address. This subset of instructions becomes the pre-
diction microthread for the given difficult path. The con-
struction process is simple enough to implement in hard-
ware. Details are presented in Section 4.

3.2.3. Timely Microthreads. Microthread predictions
must arrive in time to be useful. Ideally, every microthread
would complete before the fetch of the corresponding
branch. However, late predictions are still useful to ini-
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Table 2. Misprediction and execution coverages for difficult branches (Branch) and difficult paths
(n = f4; 10; 16g). Each percentage represents the fraction of total mispredictions or dynamic branch
executions covered by the set of difficult branches or paths.

T = :05 T = :10 T = :15

Branch n = 4 n = 10 n = 16 Branch n = 4 n = 10 n = 16 Branch n = 4 n = 10 n = 16

Bench mis% exe% mis% exe% mis% exe% mis% exe% mis% exe% mis% exe% mis% exe% mis% exe% mis% exe% mis% exe% mis% exe% mis% exe%

comp 98.2 18.3 98.2 17.5 98.2 15.8 97.9 15.1 94.6 16.5 94.2 15.5 95.3 13.8 94.9 13.2 94.6 16.5 88.5 13.1 91.0 12.1 92.1 12.0
gcc 83.3 31.6 85.3 26.0 88.4 22.8 90.2 20.6 63.6 17.6 72.1 16.4 78.1 15.3 81.4 14.1 47.2 10.6 60.4 11.4 68.5 11.3 73.5 10.8
go 96.3 66.2 94.9 57.8 95.2 47.9 96.1 40.9 85.2 49.0 84.6 41.4 87.5 35.7 90.0 31.3 68.3 34.2 73.8 31.6 79.0 27.9 83.3 25.2

ijpeg 90.6 25.8 90.1 21.0 91.6 17.5 93.1 16.8 85.5 21.8 83.7 14.6 88.7 15.0 91.6 15.4 65.7 10.9 81.8 13.6 86.3 13.8 88.6 13.8
li 89.6 18.3 92.1 15.5 95.8 14.8 94.8 12.2 79.6 13.9 83.1 11.2 91.2 12.1 92.8 11.2 64.6 10.0 80.9 10.5 87.3 11.0 86.3 9.5

m88ksim 58.7 4.0 64.9 3.8 69.3 3.2 87.9 6.3 48.4 2.6 57.7 2.8 62.8 2.3 67.8 2.5 41.2 2.0 47.0 1.8 56.4 1.8 60.7 1.8
perl 68.4 6.1 90.7 7.7 95.7 5.2 97.0 4.3 58.2 4.2 71.6 3.7 91.0 4.1 94.1 3.7 38.5 1.8 63.5 2.8 86.8 3.6 90.7 3.3

vortex 75.8 4.0 81.2 3.0 87.6 2.9 90.8 2.7 61.2 2.7 72.7 2.2 78.5 2.1 83.6 2.1 34.4 1.1 59.3 1.4 68.3 1.5 73.1 1.5
bzip2 2k 96.8 38.5 96.0 33.2 96.0 29.2 97.0 23.5 91.7 32.5 91.7 28.1 90.5 23.1 93.4 19.1 81.4 25.5 84.6 23.3 85.5 19.6 90.2 17.0
crafty 2k 80.6 26.6 86.2 22.4 90.3 18.3 92.4 15.9 56.9 12.8 70.7 13.2 79.4 11.8 84.0 10.9 35.6 5.7 56.2 8.2 69.5 8.4 75.9 8.1
eon 2k 78.6 6.5 81.9 5.7 88.1 5.6 90.6 5.5 65.4 4.0 67.5 3.3 75.1 3.5 78.3 3.5 36.4 1.2 55.2 2.1 62.0 2.3 67.7 2.5
gap 2k 78.6 6.9 86.1 5.6 90.0 5.0 92.4 4.4 56.4 3.5 75.7 4.0 79.7 3.4 86.2 3.5 48.2 2.7 63.3 2.9 69.0 2.4 74.4 2.4
gcc 2k 84.0 31.7 88.9 26.4 91.1 20.7 93.5 19.0 66.7 18.7 76.7 16.7 83.4 14.8 86.5 13.5 49.1 11.0 65.6 11.9 75.1 11.1 79.8 10.5
gzip 2k 91.4 38.0 87.1 24.3 91.8 21.0 93.9 18.0 78.9 27.1 79.0 17.2 85.8 15.9 89.0 13.8 43.5 9.3 72.2 14.0 80.6 13.4 84.6 11.7
mcf 2k 73.5 21.6 84.6 21.2 83.9 15.3 85.1 13.1 47.7 9.8 62.2 10.6 66.1 7.3 73.6 7.2 40.6 7.9 34.5 3.5 59.0 5.5 68.0 5.7

parser 2k 85.7 21.0 94.1 22.2 94.0 17.6 95.4 16.6 78.9 16.9 84.2 15.8 88.9 14.2 90.2 13.1 67.7 12.7 69.4 10.0 79.0 10.6 83.8 10.8
perlbmk 2k 86.6 0.11 90.5 0.08 93.5 0.07 94.5 0.07 83.4 0.09 88.7 0.07 92.3 0.07 93.2 0.06 80.6 0.08 87.0 0.07 89.7 0.06 91.2 0.05

twolf 2k 91.7 22.9 95.8 21.2 96.5 18.0 97.0 16.6 87.8 20.0 91.1 17.5 92.9 15.1 93.8 14.0 79.4 16.3 84.5 14.3 88.8 13.1 90.6 12.5
vortex 2k 82.5 3.9 87.8 2.5 90.7 2.3 91.5 2.1 54.9 1.8 80.1 1.8 83.5 1.7 85.9 1.7 35.5 0.8 69.7 1.3 76.3 1.4 77.6 1.3

vpr 2k 90.9 28.9 96.5 30.7 98.4 23.5 99.2 14.2 87.5 24.4 91.6 25.0 96.3 21.1 98.4 13.3 85.0 22.8 85.4 20.8 92.5 18.6 96.8 12.2
Average 84.1 21.1 88.6 18.4 91.3 15.3 93.5 13.4 71.6 15.0 79.0 13.0 84.3 11.6 87.4 10.4 56.9 10.1 69.1 9.9 77.5 9.5 81.4 8.6

tiate early recoveries (we assume that microthread predic-
tions will always be more accurate).

Timeliness requires two components: early spawns and
quick microthread execution. Unfortunately, these two fac-
tors tend to work against each other—earlier spawns tend
to require longer, and slower, microthread computations to
pre-generate the branch outcome.

We can obtain earlier spawn points by increasing the
scope of the difficult paths (by increasing n). This al-
lows the microthread to be launched further “ahead” of the
branch, while maintaining the important microthread char-
acteristics described in the previous sections. There are
downsides to doing this, such as increasing the number of
unique paths and the number of extraneous spawns. These
problems are adequately handled in our mechanism.

We propose to shorten microthread computations using
a technique called pruning, which is applied at the time mi-
crothreads are constructed. Value and address predictabil-
ity are known to exist in applications [11, 17]. We intend
to prune sub-trees of computation by exploiting this pre-
dictability3. An example of pruning is shown in Figure 2.

Pruning requires two capabilities. First, the machine
must identify predictable values and addresses at the time
microthreads are being constructed. If this is done at
compile-time, profiling information could be used. If this
is done at run-time, this information must be tracked by the
construction hardware.

3González and González proposed to use value speculation for the in-
puts to branch comparisons [8]. It was done at prediction time by a hard-
ware mechanism. This is similar to pruning in that it shortcuts the branch
predicate calculation.

Second, the machine must be able to dynamically gen-
erate value and address predictions for use in pruned mi-
crothread computations. To accomplish this, we add two
new micro-instructions, V p Inst and Ap Inst. Either of
these instructions is used to replace each pruned sub-tree of
computation. The machine executes these new instructions
by querying special-purpose value and address predictors.

Predictable Value

BR

Replaced with
vp_inst

Live−in Live−in Live−in

Figure 2. An example of pruning.

4. Building and Using Difficult-Path
Microthreads

This section presents a hardware implementation of our
mechanism. It includes structures to identify difficult paths,
construct and optimize microthreads, and communicate mi-
crothread predictions to the primary thread. Compile-time
implementations, which we have also investigated, are out-
side the scope of this paper.
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4.1. Identifying Difficult Paths: The Path Cache

Our hardware mechanism for identifying difficult paths
is straightforward. We assume that the front-end can triv-
ially generate our Path Id hash and associate the current
value to each branch instruction as it is fetched. A back-end
structure, called the Path Cache, maintains state to identify
difficult paths.

The Path Cache is updated as follows. As each branch
retires from the machine, its Path Id is used to index the
Path Cache and update the corresponding entry. Each Path
Cache entry contains two counters: one for the number of
occurrences of the path, and another for associated number
of hardware mispredictions of the terminating branch.

We define a number of occurrences, called the training
interval, over which to measure a path’s difficulty. At the
end of a training interval, the hardware misprediction rate
represented by the counters is compared to the difficulty
threshold T . A Difficult bit stored in each Path Cache entry
is set to represent the current difficulty of the path, as de-
termined during the last training interval. After the Difficult
bit is updated, the occurrence and misprediction counters
are reset to zero.

Allocation and replacement in the Path Cache is tuned to
favor difficult paths. We allocate a new entry only if the cur-
rent terminating branch was mispredicted by the hardware
predictor. Because of this, roughly 45% of the possible allo-
cations can be ignored for an 8K-entry Path Cache, leaving
more space to track difficult paths. When a Path Cache en-
try must be replaced, we use a modified LRU scheme that
favors entries without the Difficult bit set.

4.2. Building Microthreads for Difficult Paths

Our mechanism uses microthreads to predict the termi-
nating branches of difficult paths. The Path Cache, de-
scribed above, identifies difficult paths at run-time. Now
we must build microthreads to predict them.

4.2.1. Promotion and Demotion. We refer to the deci-
sion to predict a difficult path with a microthread as path
promotion. The opposite decision is called path demotion.

In the simplest case, promotion and demotion events
should correspond to changes in a Path Cache entry’s Dif-
ficult bit. When the Difficult bit transitions from 0 to 1, we
promote the path. When the Difficult bit transitions from 1
to 0, we wish to demote the path. To keep track of which
paths are promoted, we add a Promoted bit to each Path
Cache entry.

The promotion logic is responsible for generating pro-
motion requests. Each time a Path Cache entry is updated
(ie. when a branch retires), the entry’s Difficult and Pro-
moted bits are examined. In the case that the Difficult bit is

set, but the Promoted bit is not set, a request is sent to the
Microthread Builder to begin construction. If the builder
can satisfy the request, the Promoted bit is then set.

4.2.2. The Basics of Building Microthreads. We refer to
the the hardware associated with generating microthreads
as the Microthread Builder. Figure 3 shows a high-level
diagram of the various components.

Microthread
Construction

Buffer

Retirement
Post−

Buffer

Promotion
LogicInstr. Stream

BR

 From Retired

oldest

youngest

Request
Promotion

St_PCache

Scanner

Optimized routine
sent to MicroRAM

Figure 3. The Microthread Builder

The Post-Retirement Buffer (PRB) is used to store the
last i instructions to retire from the primary thread (we as-
sume i = 512 in our implementation). Instructions enter the
PRB after they retire and are pushed out as younger instruc-
tions are added. Dependency information, computed during
instruction execution, is also stored in each PRB entry.

When a promotion request is received, the Microthread
Builder extracts the data-flow tree needed to compute the
branch outcome. The PRB is frozen and scanned from
youngest to oldest (the branch will always be the youngest
instruction, as it just retired). Instructions making up the
data-flow tree are identified and extracted into the Mi-
crothread Construction Buffer (MCB). The identification
is not difficult, as the dependency information is already
stored in the PRB. The basic extraction of the data-flow tree
in this manner is similar to the mechanism in [3].

Termination of the data-flow tree occurs when any of the
following conditions are satisfied: 1) the MCB fills up, 2)
the next instruction being examined is outside the path’s
scope, or 3) a memory dependency is encountered (the store
is not included). At this point, the MCB can be examined to
turn the extracted data-flow tree into a microthread.

To create a functional microthread, we convert the termi-
nating branch into a special Store PCache microinstruc-
tion. When executed, the Store PCache communicates
the branch outcome generated by the microthread to the
front-end of the machine. The communication takes place
via the Prediction Cache (see Section 4.3.3).

The last step in in microthread construction is to select a
spawn point. This is the point in the primary thread’s exe-
cution that we wish the microthread to be injected into the
machine—logically, a single program instruction. Choos-
ing an effective spawn point is a difficult problem. In the
current mechanism, we assume only that we wish to launch
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the microthread as early as possible. As such, we choose
the earliest instruction possible that is both within the path’s
scope and satisfies all of the microthread’s live-in register
and memory dependencies.

Our current design assumes there is only one Mi-
crothread Builder, and that it can construct only one thread
at a time. Our experiments have shown that the microthread
build latency, unless extreme, does not significantly influ-
ence performance.

4.2.3. Basic Microthread Optimizations. Move elimina-
tion and constant propagation are simple code optimizations
we employ in the MCB to further improve the timeliness
of our microthreads. We find that microthreads frequently
span many control-flow levels in the program. As such, they
tend contain many un-optimized sequences of code, many
resulting from stack pointer manipulations or loop-carried
variables. Hardware implementations of both of these op-
timizations have been previously proposed in fill-unit re-
search [7]. Similar functionality could be installed in a
hardware MCB.

4.2.4. Memory Dependencies. Memory dependencies
also provide an opportunity for optimization. We terminate
data-flow tree construction upon a memory dependency.
The spawn point is chosen such that this memory depen-
dency will be satisfied architecturally when the microthread
is spawned. This assumes, pessimistically, that memory
dependencies seen at construction time will always exist.
The opposite case also occurs—if the memory dependency
did not exist at construction time, it results in an optimistic
speculation that there will never be a dependency in the fu-
ture.

Our hardware mechanism naturally incorporates mem-
ory dependency speculation into the microthreads. The de-
cision to speculate is simply based on the data-flow tree at
construction time. We prevent over-speculation by rebuild-
ing the microthread if a dependence violation occurs during
microthread execution. When the microthread is rebuilt, the
current mis-speculated dependency will be seen and incor-
porated into the new microthread.

A more advanced rebuilding approach might correct only
speculations that cause repeated violations. We find that our
simpler approach approximates this fairly well and requires
almost no additional complexity.

4.2.5. Pruning. Pruning, introduced in Section 3.2.3, is
an advanced optimization applied in the MCB that uses
value and address predictability to eliminate sub-trees of
computation within a microthread. When pruning is suc-
cessful, the resulting microthread is smaller, has shorter de-
pendency chains, and has fewer live-in dependencies.

To implement pruning, the machine must support the
V p Inst and Ap Inst micro-instructions. To provide this

functionality, we add separate value and address predic-
tors to the back-end of the processor. These predictors are
trained on the primary thread’s retirement stream just be-
fore the instructions enter the PRB. Since these predictors
will not be integrated into the core, they can be kept apart
from the critical sections of the chip.

The decision to prune is straightforward. We assume
our value and address predictors have an integrated confi-
dence mechanism. We access the current confidence and
store it with each retired instruction in the PRB. When a mi-
crothread is constructed, instructions marked as confident
represent pruning opportunities.

Pruning actually occurs in the MCB. Value-pruned in-
structions are removed from the MCB, along with the sub-
trees of data-flow leading up to them. In place of the re-
moved data-flow, a V p Inst microinstruction is inserted to
provide the output register value. Address-pruned instruc-
tions are treated similarly, except that the prunable load it-
self is not removed from the routine, and the Ap Inst pro-
vides the address base register value.

When the microthread is spawned, the V p Inst and
Ap Inst microinstructions must contain all the informa-
tion necessary to access the value and address predictors
to receive a prediction. This process seems to be compli-
cated by the fact that predictions must be made in advance
of the progress of the primary thread (recall that the predic-
tors are trained on retiring primary thread instructions). The
distance between the spawn point and the instruction being
predicted must be reconciled. This is actually simple to ac-
complish, since every microthread is tied to the scope of a
particular path. At construction time, we need only com-
pute the number of predictions that the V p Inst/Ap Inst
is ahead. At execution time, this information is passed to
the value or address predictor, which generates a prediction
for the correct instance. Adapting the predictor design to
support this operation is trivial, if we restrict our predictors
to handle only constant and stride-based predictions. We
assume this in our mechanism.

4.3. General SSMT Hardware

This section provides a brief overview of the general
mechanism for spawning and simultaneously executing mi-
crothreads on an SSMT core. A more detailed description
is not possible due to space limitations. We assume the gen-
eral capabilities described in [2]. A high-level diagram of
the core is shown in Figure 4.

4.3.1. General Microthread Operation. A microthread
is invoked when its spawn point is fetched by the primary
thread. If resources are available, the machine allocates a
microcontext4for the newly spawned microthread. A spawn
request is sent to the MicroRAM—the structure that stores
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SSMT routines. The MicroRAM delivers instructions from
the specified routine into a microcontext queue. Each cycle,
active microcontext queues are processed to build a packet
of microthread instructions. These instructions are renamed
and eventually issued to the reservations stations, where
they execute out-of-order simultaneously with the primary
thread. A microcontext is de-allocated when all instructions
have drained from its issue queue.

4.3.2. Abort Mechanism. Our SSMT machine con-
tains a mechanism to detect and abort useless mi-
crothreads. Microthreads are often spawned to predict
branches on control-flow paths that the machine doesn’t
take. Our mechanism uses a concatenated path hash, called
Path History, to detect when the machine deviates from
the path predicted by an active microthread. When this oc-
curs, these microthreads are aborted and the microcontext
is reclaimed. We assume microthread instructions already
in the out-of-order window cannot be aborted.

The abort mechanism is very important. Our machine is
very wide and deep, which means spawns must be launched
very early to stay ahead of the primary thread. Many use-
less spawns occur, but the abort mechanism is able to keep
the overhead in check. On average, 67% of the attempted
spawns are aborted before allocating a microcontext. 66%
of successful spawns are aborted sometime before the mi-
crothread has completed.

4.3.3. The Prediction Cache. The Prediction Cache, orig-
inally proposed by Chappell et al. in [2], is the structure
responsible for communicating branch predictions between
microthreads and the primary thread. We have modified
the Prediction Cache slightly from its original incarnation
to support our path-based prediction scheme. Its operation
within the front-end is summarized in Figure 5.

4A microcontext, proposed in [2], is the set of state associated with an
active microthread.

Predicted PCPath_Id + SeqNum Tag

Path_Id + SeqNum Tag Predicted PC

Current Path_Id

Current PC

Path_ID Generation
Branch PCs
Stream of

Hardware
Branch

Prediction

PCache

Next PCWrite from st_pcache inst

Figure 5. Prediction Cache Operation

A microthread writes the Prediction Cache using
the Path Id hash and the instruction sequence num-
ber, Seq Num5, of the branch instance being predicted.
The microthread computes the target branch Seq Num

by adding the predetermined instruction separation to
the Seq Num of the spawn. Because each (Path Id,
Seq Num) pair specifies a particular instance of a branch
on a particular path, our Prediction Cache naturally matches
up microthread predictions written by Store PCache in-
structions and the branches intended to consume them. Be-
cause both Path Id and Seq Num are used, aliasing is
almost non-existent.

The (Path Id, Seq Num) pair is also used to match late
microthread predictions with branch instances currently in-
flight. If a late microthread prediction does not match the
hardware prediction used for that branch, it is assumed that
the microthread prediction is more accurate, and an early
recovery is initiated. Because of the width and depth of our
baseline machine, late predictions occur rather frequently.

The Prediction Cache does not need to maintain many
concurrently active entries. Stale entries are easily de-
allocated from the Prediction Cache by comparing the
(Path Id, Seq Num) pair to the current position of the
front-end. Because entries can be quickly de-allocated, the
space can be more efficiently used. Our Prediction Cache
can be made quite small (128 entries) with little impact on
performance.

5. Performance Analysis

5.1. Machine Model

Our baseline configuration for these experiments mod-
eled an aggressive wide-issue superscalar machine. The
machine parameters are summarized in Table 3. All
experiments were performed using the SPECint95 and

5An instruction sequence number, or Seq Num, is assigned to each
instruction to represent its order within the dynamic instruction stream.
Many machines already use sequence numbers for normal processing.
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Table 3. Baseline Machine Model
Fetch, Decode,
Rename

64KB, 4-way associative, instruction cache with 3 cycle latency capable of processing 3 accesses per cycle; 16-wide decoder with 1 cycle latency;
16-wide renamer with 4 cycle latency

Branch
Predictors

128K-entry gshare/PAs hybrid with 64K-entry hybrid selector; 4K-entry branch target buffer; 32-entry call/return stack; 64K-entry target cache (for
indirect branches); all predictors capable of generating 3 predictions per cycle; total misprediction penalty is 20 cycles

Execution
Core

512-entry out-of-order window; physical register file has 4 cycle latency; 16 all-purpose functional units, fully-pipelined except for FP divide; full
forwarding network; memory accesses scheduled using a perfect dependency predictor

Data Caches 64KB, 2-way assoc L1 data cache with 3 cycle latency; 4 L1 cache read ports, 1 L2 write port, 8 L1 cache banks; 32-entry store/write-combining buffer;
stores are sent directly to the L2 and invalidated in the L1; 64B-wide, full-speed L1/L2 bus; 1MB, 8-way associative L2 data cache with 6 cycle latency
once access starts, 2 L2 read ports, 1 L2 write port, 8 L2 banks; caches use LRU replacement; all intermediate queues and traffic are modeled

Busses and
Memory

memory controller on chip; 16 outstanding misses to memory; 32B-wide core to memory bus at 2:1 bus ratio; split address/data busses; 1 cycle bus
arbitration; 100 cycle DRAM part access latency once access starts, 32 DRAM banks; all intermediate queues modeled

SPECint2000 benchmark suites compiled for the Alpha
EV6 ISA with -fast optimizations and profiling feedback
enabled.

It is important to note that our experiments focused on
improving an aggressive baseline. When using our ap-
proach, it is more difficult to improve performance when the
primary thread already achieves high performance. Spawns
must occur very early for microthreads to “stay ahead.” This
fact necessitates longer microthreads and causes many more
useless spawns. This results in more overhead contention
with the primary thread, despite the fact that our wide ma-
chine generally has more resources to spare.

Our machine also used an idealized front-end, also to
avoid biasing our results. Microthreads take advantage of
resources unused by the primary thread. A fetch bottleneck
would unfairly under-utilize execution resources and leave
more for the microthreads to consume. Our front-end can
handle three branch predictions and three accesses to the
instruction cache per cycle. In a sense, we are modeling a
very efficient trace cache.

5.2. Potential of Difficult-Path Branch Prediction

Figure 6 shows the potential speed-up (in IPC) gained
by perfectly predicting the terminating branches of diffi-
cult paths. Difficult paths were identified using T = :10

and n = f4; 10; 16g. We tracked difficult paths dynami-
cally using an 8K-entry Path Cache and a training interval
of 32. The MicroRAM size, which determines the number
of concurrent promoted paths, was also set to 8K. We sim-
ulated many other configurations that we cannot report due
to space limitations.

It is interesting that our potential speed-up was not closer
to perfect branch prediction, since Table 2 suggests difficult
paths have large misprediction coverage. However, Table 1
shows that benchmarks often have tens to hundreds of thou-
sands of difficult paths. Our simple, realistic Path Cache
simply could not track the sheer number of difficult paths
well enough at run-time. Improving difficult path identifi-
cation, both with the Path Cache and using the compiler, is
an area of future work.
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Figure 6. Potential speed-up from perfect
prediction (8K-entry Path Cache, T = :10).

5.3. Realistic Performance

Figure 7 shows realistic machine speed-up when using
our full mechanism. Speed-up is shown with and without
the pruning optimization. Also shown is the speed-up when
including microthread overhead, but not the microthread
predictions. Parameters for difficult path identification were
set as in the previous experiment. Microthread build latency
was set to a fixed 100 cycles.
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Figure 7. Realistic speed-up (n = 10, T = :10).

Our mechanism was successful at increasing perfor-
mance in all benchmarks except eon 2k, which saw a slight
loss. eon 2k and some other benchmarks are relatively well-
behaved and do not have much tolerance for microthread
overhead. Microthreads have a difficult time trying to “get
ahead” of the front-end and compete more heavily for ex-
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ecution resources. We are experimenting with feedback
mechanisms to throttle microthread usage to address these
problems.

Figure 7 also demonstrates the effectiveness of pruning.
Pruning succeeded at increasing performance over our base-
line microthread mechanism. We examine the reasons for
this in the next section.

The remaining bar of Figure 7 shows speed-up due to
microthread overhead alone. This measures the impact of
overhead on the primary thread, without the positive effect
of increased prediction accuracy. Pruning was disabled for
this run. The majority of benchmarks saw a slight loss,
which is to be expected. A couple benchmarks, notably
mcf 2k, saw a significant gain. This can be attributed to
prefetching effects from the microthread routines—a very
pleasant side-effect.

5.4. Timeliness of Predictions

The pruning optimization increases performance by en-
abling smaller and faster microthread routines. This not
only results in more timely microthread predictions, but also
a smaller impact on the primary thread.

Figure 8 shows the average routine size and average
longest dependency chain length of all routines generated
with and without pruning. In general, pruning succeeded
both at shortening microthread routines and reducing the
critical dependency chains.
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Figure 8. Average routine size and average
longest dependency chain length (in # insts).

In a few interesting cases, such as compress, pruning in-
creased the average routine length. This is because many
live-in address base registers (typically global) were re-
placed by an Ap Inst instruction, eliminating the live-in
dependency but also lengthening the routine by one instruc-
tion. Even so, pruning was still successful at reducing the
average longest dependency chain.

Microthread predictions can arrive before the branch is
fetched (early), after the branch is fetched but before it is re-
solved (late), or after the branch is resolved (useless). Fig-

ure 9 shows the breakdown of prediction arrival times for
our realistic configurations. Use of pruning resulted in an
increased number of early predictions and useful (early +
late) predictions. Use of pruning also slightly increased the
overall number of predictions generated. This is because
smaller microthreads free microcontexts more quickly, al-
lowing more spawns to be processed.
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It is interesting to note from Figure 9 that, even with
pruning, the majority of predictions still arrive after the
branch is fetched. This is due, to some extent, to our idealis-
tic fetch engine and rapid processing of the primary thread.
However, it also indicates that there is still potential perfor-
mance to be gained by further improving microthread time-
liness.

6. Conclusions

Achieving accurate branch prediction remains a key
challenge in future microprocessor designs. Previous re-
search has proposed the use of subordinate microthreads to
predict branches that are not handled effectively by known
hardware schemes. Though microthread mechanisms have
great potential for improving accuracy, past mechanisms
have been limited by applicability and microthread over-
head.

This paper proposes using difficult paths to improve pre-
diction accuracy. We have shown how to build microthreads
that better target hardware mispredictions, accurately pre-
dict branches, and compute predictions in time to remove
some or all of the misprediction penalty. To demonstrate
our approach, we have presented a hardware-only imple-
mentation of our scheme. We propose to identify diffi-
cult paths using the Path Cache, construct and optimize mi-
crothreads using the Microthread Builder, and communicate
predictions to the primary thread using a modified Predic-
tion Cache.
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Because our mechanism can be implemented in hard-
ware, we are not limited by compile-time assumptions. We
do not depend on profiling data to construct our threads,
and our mechanism can adapt during the run of a program.
We have shown how our implementation can exploit run-
time information to dynamically perform microthread op-
timizations. These optimizations include memory depen-
dency speculation and pruning, a novel method of improv-
ing microthread latency based on value and address predic-
tion.

Although this paper has shown our initial mechanism to
be successful, there are many ways in which it could be im-
proved. In particular, our future work includes ways to bet-
ter track the often vast numbers of paths, further limit use-
less spawns, and further improve microthread timeliness.

7. Acknowledgments

Robert Chappell is a Michigan PhD student on an ex-
tended visit at The University of Texas at Austin. We grate-
fully acknowledge the Cockrell Foundation and Intel Cor-
poration for his support. Francis Tseng’s stipend is pro-
vided by an Intel fellowship. We also thank Intel for their
continuing financial support and for providing most of the
computing resources we enjoy at Texas. Finally, we are con-
stantly mindful of the importance of our regular interaction
with the other members of the HPS group and our associ-
ated research scientists, including Jared Stark and Stephen
Melvin.

References

[1] M. Annavaram, J. Patel, and E. Davidson. Data prefetch-
ing by dependence graph precomputation. In Proceedings
of the 28th Annual International Symposium on Computer
Architecture, pages 52 – 61, 2001.

[2] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt. Si-
multaneous subordinate microthreading (ssmt). In Proceed-
ings of the 26th Annual International Symposium on Com-
puter Architecture, pages 186 – 195, 1999.

[3] J. Collins, D. M. Tullsen, H. Wang, and J. Shen. Dynamic
speculative precomputation. In Proceedings of the 34th An-
nual ACM/IEEE International Symposium on Microarchi-
tecture, 2001.

[4] J. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee,
D. Lavery, and J. Shen. Speculative precomputation: Long-
range prefetching of delinquent loads. In Proceedings of the
28th Annual International Symposium on Computer Archi-
tecture, 2001.

[5] M. Dubois and Y. Song. Assited execution. In CENG Tech-
nical Report 98-25, 1998.

[6] A. Farcy, O. Temam, R. Espasa, and T. Juan. Dataflow anal-
ysis of branch mispredictions and its application to early res-
olution of branch outcomes. In Proceedings of the 31th An-

nual ACM/IEEE International Symposium on Microarchi-
tecture, pages 69–68, 1998.

[7] D. H. Friendly, S. J. Patel, and Y. N. Patt. Putting the fill
unit to work: Dynamic optimizations for trace cache micro-
processors. In Proceedings of the 31th Annual ACM/IEEE
International Symposium on Microarchitecture, 1998.
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