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ABSTRACT
DRAM latency continues to be a critical bottleneck for sys-

tem performance. In this work, we develop a low-cost mecha-
nism, called ChargeCache, that enables faster access to recently-
accessed rows in DRAM, with no modi�cations to DRAM chips.
Our mechanism is based on the key observation that a recently-
accessed row has more charge and thus the following access to
the same row can be performed faster. To exploit this obser-
vation, we propose to track the addresses of recently-accessed
rows in a table in the memory controller. If a later DRAM re-
quest hits in that table, the memory controller uses lower timing
parameters, leading to reduced DRAM latency. Row addresses
are removed from the table after a speci�ed duration to ensure
rows that have leaked too much charge are not accessed with
lower latency. We evaluate ChargeCache on a wide variety of
workloads and show that it provides signi�cant performance
and energy bene�ts for both single-core and multi-core systems.

1. Introduction
DRAM technology is commonly used as the main memory

of modern computer systems. This is because DRAM is at
a more favorable point in the trade-o� spectrum of density
(cost-per-bit) and access latency compared to other technolo-
gies like SRAM or �ash. However, commodity DRAM devices
are heavily optimized to maximize cost-per-bit. In fact, the
latency of commodity DRAM has not reduced signi�cantly
in the past decade [49, 66].

To mitigate the negative e�ects of long DRAM access la-
tency, existing systems rely on several major approaches.
First, they employ large on-chip caches to exploit the tempo-
ral and spatial locality of memory accesses. However, cache
capacity is limited by chip area. Even caches as large as tens
of megabytes may not be e�ective for some applications due
to very large working sets and memory access characteristics
that are not amenable to caching [36, 54, 70, 74, 76]. Second,
systems employ aggressive prefetching techniques to preload
data from memory before it is needed [5, 13, 90]. However,
prefetching is ine�cient for many irregular access patterns
and it increases the bandwidth requirements and interference
in the memory system [21, 23, 24, 44]. Third, systems employ
multithreading [86, 95]. However, this approach increases
contention in the memory system [17, 22, 59, 64] and does
not aid single-thread performance [37, 94]. Fourth, systems
exploit memory level parallelism [16, 28, 62, 64, 65]. The

DRAM architecture provides various levels of parallelism
that can be exploited to simultaneously process multiple
memory requests generated by modern processor architec-
tures [46, 65, 71, 96]. While prior works [18, 35, 46, 64, 69]
proposed techniques to better utilize the available parallelism,
the bene�ts of these techniques are limited due to 1) address
dependencies among instructions in the programs [6, 25, 61],
and 2) resource con�icts in the memory subsystem [42, 78].
Unfortunately, none of these four approaches fundamentally
reduce memory latency at its source and the DRAM latency
continues to be a performance bottleneck in many systems.

The latency of DRAM is heavily dependent on the design of
the DRAM chip architecture, speci�cally the length of a wire
called bitline. A DRAM chip consists of millions of DRAM
cells. Each cell is composed of a transistor-capacitor pair. To
access data from a cell, DRAM uses a component called sense
ampli�er. Each cell is connected to a sense ampli�er using a
bitline. To amortize the large cost of the sense ampli�er, hun-
dreds of DRAM cells are connected to the same bitline [49].
Longer bitlines lead to increase in resistance and parasitic
capacitance on the path between the DRAM cell and the sense
ampli�er. As a result, longer bitlines result in higher DRAM
access latency [48, 49, 88].

One simple approach to reduce DRAM latency is to use
shorter bitlines. In fact, some specialized DRAM chips [29,
56, 80] o�er lower latency by using shorter bitlines com-
pared to commodity DRAM chips. Unfortunately, such chips
come at a signi�cantly higher cost as they reduce the overall
density of the device because they require more sense am-
pli�ers, which occupy signi�cant area [49]. Therefore, such
specialized chips are usually not desirable for systems that re-
quire high memory capacity [14]. Prior works have proposed
several heterogeneous DRAM architectures (e.g., segmented
bitlines [49], asymmetric bank organizations [88]) that divide
DRAM into two regions: one with low latency, and another
with slightly higher latency. Such schemes propose to map
frequently accessed data to the low-latency region, thereby
achieving lower average memory access latency. However,
such schemes require 1) non-negligible changes to the cost-
sensitive DRAM design, and 2) mechanisms to identify, map,
and migrate frequently-accessed data to low-latency regions.
As a result, even though they reduce the latency for some
portions of the DRAM chip, they may be di�cult to adopt.
Our goal in this work is to design a mechanism to reduce

the average DRAM access latency without modifying the
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existing DRAM chips. We achieve this goal by exploiting two
major observations we make in this paper.
Observation 1. We �nd that, due to DRAM bank con-

�icts [42, 78], many applications tend to access rows that
were recently closed (i.e., closed within a very short time
interval). We refer to this form of temporal locality where
certain rows are closed and opened again frequently as Row
Level Temporal Locality (RLTL). An important outcome of this
observation is that a DRAM row remains in a highly-charged
state when accessed for the second time within a short inter-
val after the prior access. This is because accessing the DRAM
row inherently replenishes the charge within the DRAM cells
(just like a refresh operation does) [12, 27, 51, 52, 67, 85].

Observation 2. The amount of charge in DRAM cells
determines the required latency for a DRAM access. If the
amount of charge in the cell is low, the sense ampli�er com-
pletes its operation in longer time. Therefore, DRAM access
latency increases. A DRAM cell loses its charge over time
and the charge is replenished by a refresh operation or an
access to the row. The access latency of a cell whose charge
has been replenished recently can thus be signi�cantly lower
than the access latency of a cell that has less charge.

We propose a new mechanism, called ChargeCache, that
reduces average DRAM access latency by exploiting these
two observations. The key idea is to track the addresses
of recently-accessed (i.e., highly-charged) DRAM rows and
serve accesses to such rows with lower latency. Based on
our observation that workloads typically exhibit signi�cant
Row-Level Temporal Locality (see Section 3), our experimen-
tal results on multi-programmed applications show that, on
average, ChargeCache can reduce the latency of 67% of all
DRAM row activations.

The operation of ChargeCache is straightforward. The
memory controller maintains a small table that contains the
addresses of a set of recently-accessed DRAM rows. When a
row is evicted from the row-bu�er, the address of that row,
which contains highly-charged cells due to its recent access,
is inserted into the table. Before accessing a new row, the
memory controller checks the table to determine if the row
address is present in the table. If so, the row is accessed with
low latency. Otherwise, the row is accessed with normal
latency. As cells leak charge over time, ChargeCache requires
a mechanism to periodically invalidate entries from the table
such that only highly-charged rows remain in it. Section 4
describes the implementation of ChargeCache in detail.

Our evaluations show that ChargeCache signi�cantly im-
proves performance over commodity DRAM for a variety of
workloads. For 8-core workloads, ChargeCache improves
average workload performance by 8.6% with a hardware
cost of only 5.4KB and by 10.6% with a hardware cost of
43KB. As ChargeCache can only reduce the latency of cer-
tain accesses, it does not degrade performance compared
to commodity DRAM. Moreover, ChargeCache can be com-
bined with other DRAM architectures that o�er low latency
(e.g., [12, 15, 42, 48, 49, 68, 81, 82, 88]) to provide even higher

performance. Our estimates show that the hardware area
overhead of ChargeCache is only 0.24% of a 4MB cache. Our
mechanism requires no changes to DRAM chips or the DRAM
interface. Section 6 describes our experimental results.

We make the following contributions.
• We observe that, due to bank con�icts, many applications

exhibit a form of locality where recently-closed DRAM
rows are accessed frequently. We refer to this as Row Level
Temporal Locality (RLTL).

• We propose an e�cient mechanism, ChargeCache, which
exploits RLTL to reduce the average DRAM access la-
tency by requiring changes only to the memory controller.
ChargeCache maintains a table of recently-accessed row
addresses and lowers the latency of the subsequent accesses
that hit in this table within a short time interval.

• We comprehensively evaluate the performance, energy
e�ciency, and area overhead of ChargeCache. Our ex-
periments show that ChargeCache signi�cantly improves
performance and energy e�ciency across a wide variety of
systems and workloads with negligible hardware overhead.

2. Background on DRAM
DRAM-based main memory consists of a hierarchy of struc-

tures. At the top level, each processor is connected to one or
more memory channels. Each channel has its own command,
address, and data buses. Multiple memory modules can be
plugged into a single channel. Each module contains many
DRAM chips. To enable high bandwidth, chips are grouped
together to form a rank. Each chip (and rank) consists of
multiple banks that operate mostly independently.

2.1. Accessing Data from a Bank

Logically, each DRAM bank can be viewed as rows of
DRAM cells connected to a structure called row bu�er. Each
row of DRAM cells contains multiple columns. To access data
from a speci�c row and column of a bank, three steps are re-
quired. The �rst step is called row activation. This step copies
the data from a row of DRAM cells to the row bu�er. This
process is triggered by issuing an activate (ACT ) command to
the bank with the corresponding row address. Once the row
is activated, data can be accessed using the READ or WRITE
command with the corresponding column address. While
activated, multiple columns can be accessed from the row.
The last step is to prepare the bank for a subsequent access
to a di�erent row. This step, called precharging, is triggered
by the precharge (PRE) command.

2.2. Physical Organization of a Bank

Although a DRAM bank can be logically viewed as a single
large 2D array of DRAM cells, physically, each DRAM bank
consists of multiple subarrays [42]. Each subarray contains
multiple rows (typically 512 or 1024 rows) with its own local
row bu�er. Figure 1a pictorially shows the organization of
a subarray. As shown in the �gure, the row bu�er contains
an array of components called sense ampli�ers. Each cell is
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connected to the corresponding sense ampli�er using a wire
called bitline. As shown in the �gure, multiple cells share the
same sense ampli�er and bitline. Cells of the same row share
a wordline, which controls the connection between the cells
of that row and the corresponding bitlines. Figure 1b shows
the connection between the DRAM cell, the wordline, and
the bitline. As shown, each cell consists of a capacitor, which
stores data in terms of charge, and an access transistor that
acts as a switch between the capacitor and the bitline. The
transistor itself is controlled by the corresponding wordline.
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Figure 1: DRAM Subarray and Cell

In this work, we exploit the analog nature of data transfer
from the DRAM cell to the sense ampli�er to reduce the
latency of accessing recently-accessed cells. Therefore, in
the following section, we describe the operation of a single
DRAM cell in more detail.
2.3. DRAM Cell Operation

Figure 2 shows the di�erent sub-steps involved in transfer-
ring the data from a DRAM cell to the sense ampli�er and
their mapping to DRAM commands. Each sub-step takes
some time, thereby imposing some constraints on when the
memory controller can issue di�erent commands. These
constraints are referred to as timing parameters. The �gure
also shows the major timing parameters that govern regular
DRAM operation.

In the initial precharged state 1 , the bitline is precharged
to a voltage level of Vdd/2. The wordline is lowered (i.e., at
0V) and hence, the bitline is not connected to the capacitor.
An access to the cell is triggered by the ACT command to
the corresponding row. This command �rst raises the word-
line (to voltage level Vh), thereby connecting the capacitor

to the bitline. Since the capacitor (in this example) is at a
higher voltage level than the bitline, charge �ows from the
capacitor to the bitline, thereby raising the voltage level on
the bitline to Vdd/2+δ 2 . This phase is called charge sharing.
After the charge sharing phase, the sense ampli�er is enabled
and it detects the deviation on the bitline, and ampli�es the
deviation. This process, known as sense ampli�cation, drives
the bitline and the cell to the voltage level corresponding
to the original state of the cell (Vdd in this example). Once
the sense ampli�cation has su�ciently progressed 3 , the
memory controller can issue a READ or WRITE command to
access the data from the cell. The time taken by the cell to
reach this state 3 after the ACT command is speci�ed by the
timing constraint tRCD. Once the sense ampli�cation process
is complete 4 , the bitline and the cell are both at a voltage
level of Vdd. In other words, the original charge level of the
cell is fully-restored. The time taken for the cell to reach this
state 4 after the ACT is speci�ed by the timing constraint
tRAS. In this state, the bitline can be precharged using the
PRE command to prepare it for accessing a di�erent row. This
process �rst lowers the wordline, thereby disconnecting the
cell from the bitline. It then precharges the bitline to a voltage
level of Vdd/2 5 . The time taken for the precharge operation
is speci�ed by the timing constraint tRP.

2.4. DRAM Charge Leakage and Refresh

As DRAM cells are not ideal, they leak charge after the
precharge operation [51, 52]. This is represented in state 6
of Figure 2. As described in the previous section, an access
to a DRAM cell fully restores the charge on the cell (see
states 4 and 5 ). However, if a cell is not accessed for a
su�ciently long time, it may lose too much charge that its
last cell state may be �ipped. To avoid such cases, DRAM cells
are periodically refreshed by the memory controller using
the refresh (REF ) command. The interval at which DRAM
cells should be refreshed by the controller is referred to as
the refresh interval.

2.5. Initial Charge vs. Activation Latency

The amount of charge a DRAM cell contains a�ects the
latency of the cell activation process [48, 85]. If the initial
charge on the cell is low (as shown in state 6 ), then the
perturbation caused by the cell on the bitline voltage is also
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Figure 2: Commands used to read data from DRAM and timing parameters associated with them
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low. As a result, the sense ampli�er takes longer to reach
states 3 and 4 . This is the case if the cell is accessed long
after it is refreshed. In fact, the values for tRCD and tRAS are
determined based on the worst case, when the cell is accessed
just before the end of its refresh interval, to guarantee correct
operation of all cells.

In contrast, if the initial charge on the cell is high (close
to full, as in state 1 ), then the perturbation caused by the
cell on the bitline voltage is also high. This is the case if
the cell is accessed soon after it is refreshed. As a result, the
cell takes shorter time to reach states 3 and 4 , enabling an
opportunity to reduce both tRCD and tRAS.

3. Motivation

The key takeaway from DRAM operation that we exploit
in this work is the fact that cells closer to the fully-charged
state can be accessed with lower activation latency (i.e., lower
tRCD and tRAS) than standard DRAM speci�cation. A recent
work [85] exploits this observation to access rows that were
recently recharged via a refresh operation with lower latency.
Speci�cally, when a row needs to be activated, the memory
controller determines when the row was last refreshed. If the
row was refreshed recently (e.g., within 8ms), the controller
uses a lower tRCD and tRAS for the activation.

However, this refresh-based approach for lowering latency
has two shortcomings. First, with the standard refresh mech-
anism, the refresh schedule used by the memory controller
has no correlation with the memory access characteristics of
the application. Therefore, depending on the point when the
program begins execution, a particular row activation, due to
a memory access initiated by the program, may or may not
be to a recently-refreshed row. Therefore, a mechanism that
reduces latency to recently-refreshed rows cannot provide

consistent performance improvement. Second, if we use only
the time from the last refresh to identify rows that can be
accessed with low latency (i.e., highly-charged rows), we �nd
that only 12% of all memory accesses bene�t from low latency
(see Figure 3). However, as we show next, a much greater
number of rows can actually be accessed with low latency.

As we described in Section 2.3, an access to a row fully
recovers the charge of its cells. Therefore, if a row is activated
twice in a short interval, the second activate can be served
with lower latency as the cells of that row would still be
highly charged. We refer to this notion of row activation
locality as Row-Level Temporal Locality (RLTL). We de�ne
t-RLTL of an application for a given time interval t as the
fraction of row activations in which the activation occurs
within the time interval t after a previous precharge to the
same row. (Recall that, a row starts leaking charge only after
the precharge operation as shown in Section 2.4).

To this end, we would like to understand what fraction
of rows exhibit RLTL, and thus can be accessed with low la-
tency after a precharge operation to the row due to program
behavior versus what fraction of rows are accessed soon af-
ter a refresh to the row and thus can be accessed with low
latency due to a recent preceding refresh. Figure 3a com-
pares the fraction of row activations of that happen within
8ms after the corresponding row is refreshed to the 8ms-
RLTL of various applications. As shown in the �gure, with
the exception of hmmer1, the 8ms-RLTL (86% on average)
is signi�cantly higher than the fraction of row activations
within 8ms after the refresh of the row (12% on average).
Figure 3b plots the corresponding values on an 8-core system
that executes 20 multiprogrammed workloads, with randomly

1hmmer e�ectively uses the on-chip cache hierarchy. Therefore, we do
not observe any requests to the main memory.
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Figure 4: RLTL for various time intervals (after the precharge of a row).

chosen applications for each workload. As shown, the frac-
tion of row activations within 8ms after refresh is almost the
same as that of the single-core workloads. This is because
the refresh schedule has no correlation with the application
access pattern. On the other hand, the 8ms-RLTL for the
8-core workloads is much higher than that of the single-core
workloads. This is because, in multi-core systems, the exac-
erbated bank-level contention [41, 46, 60, 63, 64, 99] results
in row con�icts, which in turn results in rows getting closed
and activated within shorter time intervals, leading to a high
RLTL.

Figure 4 shows the RLTL for di�erent single-core and
8-core workloads with �ve di�erent time intervals (from
0.125ms to 32ms) as a stacked bar and two di�erent DRAM
row management policies, namely, open-row and closed-
row [4, 40]. For each workload, the �rst bar represents the
results for the open-row policy, and the second bar represents
the results for the closed-row policy. The open-row policy
prioritizes row-bu�er hits by keeping the row open until a
request to another row is scheduled (bank con�ict). In con-
trast, the closed-row policy proactively closes the active row
after servicing all row-hit requests in the request bu�er.

For single-core workloads (Figure 4a), regardless of the
row-bu�er policy, even the average 0.125ms-RLTL is 66%.
In other words, 66% of all the row activations occur within
0.125ms after the row was previously precharged. For 8-core
workloads (Figure 4b), due to the additional bank con�icts,
the average 0.125ms-RLTL is 77%, signi�cantly higher than
that for the single-core workloads. Similar to the single-core
workloads, the row-bu�er policy does not have a signi�cant
impact on the RLTL for the 8-core workloads.
Key Observation and Our Goal. We observe that many

applications exhibit high row-level temporal locality. In other
words, for many applications, a signi�cant fraction of the row

activations occur within a small interval after the correspond-
ing rows are precharged. As a result, such row activations
can be served with lower activation latency than speci�ed by
the DRAM standard. Our goal in this work is to exploit this
observation to reduce the e�ective DRAM access latency by
tracking recently-accessed DRAM rows in the memory con-
troller and reducing the latency for their next access(es). To
this end, we propose an e�cient mechanism, ChargeCache,
which we describe in the next section.

4. ChargeCache
ChargeCache is based on three observations: 1) rows that

are highly-charged can be accessed with lower activation
latency, 2) activating a row refreshes the charge on the cells
of that row and the cells start leaking only after the following
precharge command, and 3) many applications exhibit high
row-level temporal locality, i.e., recently-activated rows are
more likely to be activated again. Based on these observations,
ChargeCache tracks rows that are recently activated, and
serves future activates to such rows with lower latency by
lowering the DRAM timing parameters for such activations.

4.1. High-level Overview

At a high level, ChargeCache adds a small table (or cache) to
the memory controller that tracks the addresses of recently-
accessed DRAM rows, i.e., highly-charged rows. Charge-
Cache performs three operations. First, when a precharge
command is issued to a bank, ChargeCache inserts the address
of the row that was activated in the corresponding bank to
the table (Section 4.2.1). Second, when an activate command
is issued, ChargeCache checks if the corresponding row ad-
dress is present in the table. If the address is not present, then
ChargeCache uses the standard DRAM timing parameters
to issue subsequent commands to the bank. However, if the
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address of the activated row is present in the table, Charge-
Cache employs reduced timing parameters for subsequent
commands to that bank (Section 4.2.2). Third, ChargeCache
invalidates entries from the table to ensure that rows corre-
sponding to valid entries can indeed be accessed with lower
access latency (Section 4.2.3).

We named the mechanism ChargeCache as it provides a
cache-like bene�t, i.e., latency reduction based on a locality
property (i.e., RLTL), and does so by taking advantage of the
charge level stored in a recently-activated row. The mecha-
nism could potentially be used with current and emerging
DRAM-based memories where the stored charge level leads
to di�erent access latencies. We explain how ChargeCache
can be applied to other DRAM standards in Section 7.2.

In the following section, we describe the di�erent com-
ponents and operation of ChargeCache in more detail. In
Section 4.3, we present the results of our SPICE simulation
that analyzes the potential latency reduction that can be ob-
tained using ChargeCache.

4.2. Detailed Design

ChargeCache adds two main components to the memory
controller. Figure 5 highlights these components. The �rst
component is a tag-only cache that stores the addresses of a
subset of highly-charged DRAM rows. We call this cache the
Highly-Charged Row Address Cache (HCRAC). We organize
HCRAC as a set-associative structure similar to the proces-
sor caches. The second component is a set of two counters
that ChargeCache uses to invalidate entries from the HCRAC
that can potentially point to rows that are no longer highly-
charged. As described in the previous section, there are three
speci�c operations with respect to ChargeCache: 1) insert,
2) lookup, and 3) invalidate. We now describe these opera-
tions in more detail.

Highly-Charged Row 
Address Cache (HCRAC)

Invalidation 
Interval 

Counter  (IIC)

Entry 
Counter (EC)

Invalidate

3

[ACT] 
Lookup

Per-Bank 
Timing State

2Per-Bank 
Row State

[PRE] 
Insert 1

Figure 5: Components of the ChargeCacheMechanism

4.2.1. Inserting Rows into HCRAC. When a PRE com-
mand is issued to a bank, ChargeCache inserts the address of
the row that was activated in the corresponding bank into the
HCRAC 1 . Although the PRE command itself is associated
only with the bank address, the memory controller has to
maintain the address of the row that is activated in each bank
(if any row is activated) so that it can issue appropriate com-
mands when a bank receives a memory request. ChargeCache

obtains the necessary row address information directly from
the memory controller. Some DRAM interfaces [57] allow
the memory controller to precharge all banks with a single
command. In such cases, ChargeCache inserts the addresses
of the activated rows across all the banks into the HCRAC.

Just like any other cache, HCRAC contains a limited num-
ber of entries. As a result, when a new row address is inserted,
ChargeCache may have to evict an already valid entry from
the HCRAC. While such evictions can potentially result in
wasted opportunity to reduce DRAM latency for some row
activations, our evaluations show that even with a small
HCRAC (e.g., 128-entries), ChargeCache can provide signi�-
cant performance improvement (see Section 6).

4.2.2. Employing Lowered DRAM Timing Constraints.
To employ lower latency for highly-charged rows, the mem-
ory controller maintains two sets of timing constraints, one
for regular DRAM rows, and another for highly-charged
DRAM rows. While we evaluate the potential reduction in
timing constraints that can be enabled by ChargeCache, we
expect the lowered timing constraints for highly-charged
rows to be part of the standard DRAM speci�cation.

On each ACT command, ChargeCache looks up the corre-
sponding row address in the HCRAC 2 . Upon a hit, Charge-
Cache employs lower tRCD and tRAS for the subsequent
READ/WRITE and PRE operations, respectively. Upon a miss,
ChargeCache employs the default timing constraints for the
subsequent commands.

4.2.3. Invalidating Stale Rows fromHCRAC. Unlike con-
ventional caches, where an entry can stay valid as long as it
is not explicitly evicted, entries in HCRAC have to be invali-
dated after a speci�c time interval. This is because as DRAM
cells continuously leak charge, a highly-charged row will no
longer be highly-charged after a speci�c time interval.

One simple way to invalidate stale entries would be to
use a clock to track time and associate each entry with an
expiration time. Upon a hit in the HCRAC, ChargeCache can
check if the entry is past the expiration time to determine
which set of timing parameters to use for the corresponding
row. However, this scheme increases the storage cost and
complexity of implementing ChargeCache.

We propose a simpler, periodic invalidation scheme that
is similar to how the memory controller issues refresh com-
mands [52]. Our mechanism uses two counters, namely, the
Invalidation Interval Counter (IIC) and the Entry Counter (EC).
We assume that the HCRAC contains k entries and the num-
ber of processor cycles for which a DRAM row stays highly-
charged after a precharge is C . IIC cyclically counts up to
C/k, and EC cyclically counts up to k. Initially, both IIC
and EC are initialized to zero. IIC is incremented every cy-
cle. Whenever IIC reaches C/k, 1) the entry in the HCRAC
pointed to by EC is invalidated, 2) EC is incremented, and
3) IIC is cleared. Whenever EC reaches k, it is cleared. This
mechanism invalidates every entry in the HCRAC once every
C processor cycles. Therefore, it ensures that any valid entry
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in the HCRAC indeed corresponds to a highly-charged row.
While our mechanism can prematurely invalidate an entry,
our evaluations show that the loss in performance bene�t
due to such premature evictions is negligible.
4.3. Reduction in DRAM Timing Parameters

We evaluate the potential reduction in tRCD and tRAS
for ChargeCache using circuit-level SPICE simulations. We
implement the DRAM sense ampli�er circuit using 55nm
DDR3 model parameters [77] and PTM low-power transistor
models [72, 100]. Figure 6 plots the variation in bitline voltage
level during cell activation for di�erent initial charge amounts
of the cell.
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Figure 6: E�ect of initial cell charge on bitline voltage.

Depending on the initial charge (i.e., voltage level) of the
cell, the bitline voltage increases at di�erent speeds. When
the cell is fully-charged, the sense ampli�er is able to drive
the bitline voltage to the ready-to-access voltage level in only
10ns. However, a partially-charged cell (i.e., one that has not
been accessed for 64ms) brings the bitline voltage up slower.
Speci�cally, the bitline connected to such a partially-charged
cell reaches the ready-to-access voltage level in 14.5ns. Since
DRAM timing parameters are dictated by this worst-case
partially-charged state right before the refresh interval, we
can achieve 4.5ns reduction in tRCD for a fully-charged cell.
Similarly, the charge of the cell capacitor is restored at di�er-
ent times depending on the initial voltage of the cell. For a
fully-charged cell, this results in 9.6ns reduction in tRAS.

In practice, we expect the DRAM manufacturers to identify
the lowered timing constraints for di�erent caching dura-
tions. Today, DRAM manufacturers test each DRAM chip
to determine if it meets the timing speci�cations. Similarly,
we expect the manufacturers would also test each chip to
determine if it meets the ChargeCache timing constraints.
Caching duration (i.e., how long a row address stays in

ChargeCache) provides a trade-o� between ChargeCache
hit-rate and the DRAM access latency reduction. A longer
caching duration leads to a longer Invalidation Interval. Thus,
a row address stays a longer time in ChargeCache. This cre-
ates an opportunity to increase ChargeCache hit-rate. On the
other hand, with a longer caching duration, the amount of
charge that remains in DRAM cells at the end of the dura-

tion decreases. Consequently, the room for reducing tRCD
and tRAS shrinks. As Figure 3 indicates a very high RLTL
even with a 0.125ms duration, we believe sacri�cing Charge-
Cache hit-rate for DRAM access latency is a reasonable design
choice. Therefore, we assume a 1ms caching duration and a
corresponding 4/8 cycle reduction in tRCD/tRAS (determined
using SPICE simulations) for a DRAM bus clocked at 800 MHz
frequency. To support our design decision, we also analyze
the e�ect of various caching durations in Section 6.4.2.

5. Methodology

To evaluate the performance of ChargeCache, we use a
cycle-accurate DRAM simulator, Ramulator [1, 43], in CPU-
trace-driven mode. CPU traces are collected using a Pin-
tool [55]. Table 1 lists the con�guration of the evaluated
systems. We implement the HCRAC similarly to a 2-way
associative cache that uses the LRU policy.

Table 1: Simulated system con�guration

Processor
1-8 cores, 4GHz clock frequency,
3-wide issue, 8 MSHRs/core, 128-
entry instruction window

Last-level
Cache

64B cache-line, 16-way associative,
4MB cache size

Memory
Controller

64-entry read/write request queues,
FR-FCFS scheduling policy [79,
101], open/closed row policy [40,
41] for single/multi core

DRAM

DDR3-1600 [57], 800MHz bus
frequency, 1/2 channels, 1
rank/channel, 8 banks/rank,
64K rows/bank, 8KB row-bu�er
size, tRCD/tRAS 11/28 cycles

ChargeCache

128-entry (672 bytes)/core, 2-way
associativity, LRU replacement
policy, 1ms caching duration,
tRCD/tRAS reduction 4/8 cycles

For area, power, and energy measurements, we modify
McPAT [50] to implement ChargeCache using 22nm pro-
cess technology. We also use DRAMPower [10] to obtain
power/energy results of the o�-chip main memory subsys-
tem. We feed DRAMPower with DRAM command traces
obtained from our simulations using Ramulator.

We run 22 workloads from SPEC CPU2006 [89], TPC [3]
and STREAM [2] benchmark suites. We use SimPoint [31]
to obtain traces from representative phases of each applica-
tion. For single-core evaluations, unless stated otherwise,
we run each workload for 1 billion instructions. For multi-
core evaluations, we use 20 multi-programmed workloads by
assigning a randomly-chosen application to each core. We
evaluate each con�guration with its best performing row-
bu�er management policy. Speci�cally, we use the open-row
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policy for single-core and closed-row policy for multi-core
con�gurations. We simulate the benchmarks until each core
executes at least 1 billion instructions. For both single and
multi-core con�gurations, we �rst warm up the caches and
ChargeCache by fast-forwarding 200 million cycles.

We measure performance improvement for single-core
workloads using the Intructions per Cycle (IPC) metric.
We measure multi-core performance using the weighted
speedup [87] metric. Prior work has shown that weighted
speedup is a measure of system throughput [26].

6. Evaluation
We experimentally evaluate the following mechanisms:

1) ChargeCache, 2) NUAT [85], which accesses only rows
that are recently-refreshed at lower latency than the DRAM
standard, 3) ChargeCache + NUAT, which is a combination
of ChargeCache and NUAT [85] mechanisms, and 4) Low-
Latency DRAM (LL-DRAM) [29], which is an idealized com-
parison point where we assume all rows in DRAM can be
accessed with low latency, compared to our baseline DDR3-
1600 [57] memory, at any time, regardless of when they are
accessed or refreshed.

We primarily use a 128-entry ChargeCache, which provides
an e�ective trade-o� between performance and hardware
overhead. We analyze sensitivity to ChargeCache capacity in
Section 6.4.1. We evaluate LL-DRAM to show the upper limit
of performance improvement that can be achieved by reduc-
ing tRCD and tRAS. LL-DRAM uses, for all DRAM accesses,
the same reduced values for these timing parameters as we
use for ChargeCache hits. In other words, LL-DRAM is the
same as ChargeCache with a 100% hit rate.

We compare the performance of our mechanism against the
most closely related previous work, NUAT [85], and also show
the bene�t of using both ChargeCache and NUAT together.
The key idea of NUAT is to access recently-refreshed rows at
low latency, because these rows are already highly-charged.
Thus, NUAT does not usually access rows that are recently-
accessed at low latency, and hence it does not exploit existing
RLTL (Row-Level Temporal Locality) present in many appli-
cations. As we show in Section 3, the fraction of activations
that are to rows that are recently-accessed by the application
is much higher than the fraction of activations that are to
rows that are recently-refreshed. In other words, many work-
loads have very high RLTL, which is not exploited by NUAT.
As a result, we expect ChargeCache to signi�cantly outper-
form NUAT since it can reduce DRAM latency for a much
greater fraction of DRAM accesses than NUAT. To quantita-
tively prove our expectation that ChargeCache should widely
outperform NUAT, we implement NUAT in Ramulator using
the default 5PB con�guration used in [85]. Note that NUAT
bins the rows into di�erent latency categories based on how
recently they were refreshed. For instance, NUAT accesses
rows that were refreshed between 0−6ms ago with di�erent
tRCD and tRAS parameters than rows that were refreshed
between 6 − 16ms ago. We determined the di�erent timing

parameters of di�erent NUAT bins using SPICE simulations.
Although ChargeCache can implement a similar approach to
NUAT by using multiple caching durations, our RLTL results
motivate a single caching duration since a row is typically
accessed within 1ms (as shown in Section 3). A row that
hits in ChargeCache is always accessed with reduced timings
(Section 4.3).

6.1. Impact on Performance

Figure 7 shows the performance of single-core and eight-
core workloads. The �gure also includes the number of row
misses per kilo-cycles (RMPKC) to show row activation inten-
sity, which provides insight into the RLTL of the workload.
Single-core. Figure 7a shows the performance improve-

ment over the baseline system for single-core workloads.
These workloads are sorted in ascending order of RMPKC.
ChargeCache achieves up to 9.3% (an average of 2.1%)
speedup. Our mechanism outperforms NUAT and achieves
a speedup close to LL-DRAM with a few exceptions. Ap-
plications that have a wide gap in performance between
ChargeCache and LL-DRAM (such as mcf, omnetpp) access a
large number of DRAM rows and exhibit high row-reuse dis-
tance [38]. A high row-reuse distance indicates that there is
large number of accesses to other rows between two accesses
to the same row. Due to this reason, ChargeCache cannot
retain the addresses of highly-charged rows until the next
access to that row. Increasing the number of ChargeCache
entries or employing cache management policies aware of
reuse distance or thrashing [19, 74, 84] may improve the per-
formance of ChargeCache for such applications. We leave the
evaluation of these methods for future work. We conclude
that ChargeCache signi�cantly reduces execution time for
most high-RMPKC workloads and outperforms NUAT for all
but few workloads.
Eight-core. Figure 7b shows the speedup on eight-core

multiprogrammed workloads. On average, ChargeCache
and NUAT improve performance by 8.6% and 2.5%, respec-
tively. Employing ChargeCache in combination with NUAT
achieves a 9.6% speedup, which is only 3.8% less than the im-
provement obtained using LL-DRAM. Although the multipro-
grammed workloads are composed of the same applications
as in single-core evaluations, we observe much higher per-
formance improvements among eight-core workloads. The
reason is twofold. First, since multiple cores share a limited
capacity LLC, simultaneously running applications compete
for the LLC. Thus, individual applications access main mem-
ory more often, which leads to higher RMPKC. This makes
the workload performance more sensitive to main memory
latency [8, 33, 42]. Second, the memory controllers receive
memory requests from multiple simultaneously-running ap-
plications to a limited number of memory banks. Such re-
quests are likely to target di�erent rows since they use sepa-
rate memory regions and these regions map to separate rows.
Therefore, applications running concurrently exacerbate the
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Figure 7: Speedup with ChargeCache, NUAT and Low-Latency DRAM for single-core and eight-core workloads.

bank-con�ict rate and increase the number of row activations
that hit in ChargeCache.

Overall, ChargeCache improves performance by up to 8.1%
(11.3%) and 2.1% (8.6%) on average for single-core (eight-core)
workloads. It outperforms NUAT for most of the applications
and using NUAT in combination with ChargeCache improves
the performance slightly further.

6.2. Impact on DRAM Energy

ChargeCache incurs negligible area and power overheads
(Section 6.3). Because it reduces execution time with negli-
gible overhead, it leads to signi�cant energy savings. Even
though ChargeCache increases the energy e�ciency of the
entire system, we quantitatively evaluate the energy savings
only for the DRAM subsystem since Ramulator [43] does not
have a detailed CPU model. Figure 8 shows the average and
maximum DRAM energy savings for single-core and eight-
core workloads. ChargeCache reduces energy consumption
by up to 6.9% (14.1%) and on average 1.8% (7.9%) for single-
core (eight-core) workloads. We conclude that ChargeCache
is e�ective at improving the energy e�ciency of the DRAM
subsystem, as well as the entire system.

6.3. Area and Power Consumption Overhead

HCRAC (Highly-Charged Row Address Cache) is the most
area/power demanding component of ChargeCache. The
overhead of EC and IIC is negligible since they are just two
simple counters. As we replicate ChargeCache on a per-core
and per-memory channel basis, the total area and power
overhead ChargeCache introduces depends on the number of
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Figure 8: DRAM energy reduction of ChargeCache.

cores and memory channels.2 The total storage requirement
is given by Equation 1, where C are MC are the number of
cores and memory channels, respectively. LRUbits depends
on ChargeCache associativity. EntrySize is calculated using
Equation 2, where R, B, and Ro are the number of ranks, banks,
and rows in DRAM, respectively.

Storagebits = C ∗MC ∗ Entries ∗ (EntrySizebits + LRUbits) (1)

EntrySizebits = log2(R) + log2(B) + log2(Ro) + 1 (2)

Area. Our eight-core con�guration has two memory chan-
nels. This introduces a total of 5376 bytes in storage require-
ment for a 128-entry ChargeCache, corresponding to an area
of 0.022 mm2. This overhead is only 0.24% of the 4MB LLC.
Power Consumption. ChargeCache is accessed on every

activate and precharge command issued by the memory con-
troller. On an activate command, ChargeCache is searched
for the corresponding row address. On a precharge command,

2Note that sharing ChargeCache across cores can result in even lower
overheads. We leave the exploration of such designs to future work.
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the address of the precharged row is inserted into Charge-
Cache. ChargeCache entries are periodically invalidated to
ensure they do not exceed a speci�ed caching duration. These
three operations increase dynamic power consumption in the
memory controller, and the ChargeCache storage increases
static power consumption. Our analysis indicates that Charge-
Cache consumes 0.149 mW on average. This is only 0.23%
of the average power consumption of the entire 4MB LLC.
Note that we include the e�ect of this additional power con-
sumption in our DRAM energy evaluations in Section 6.2.
We conclude that ChargeCache incurs almost negligible chip
area and power consumption overheads.
6.4. Sensitivity Studies

ChargeCache performance depends mainly on two vari-
ables: HCRAC capacity and caching duration. We observed
that associativity has a negligible e�ect on ChargeCache per-
formance. In our experiments, increasing the associativity of
HCRAC from two to full-associativity improved the hit rate
by only 2%. We analyze the hit rate and performance impact
of capacity and caching duration in more detail.
6.4.1. ChargeCache Capacity. Figure 9 shows the aver-
age hit rate versus capacity of ChargeCache for single-core
and eight-core systems. The horizontal dashed lines indicate
the maximum hit rate achievable with an unlimited-capacity
ChargeCache. We observe that 128 entries is a sweet spot
between hit rate and storage overhead. Such a con�guration
yields 38% and 66% hit rate for single-core and eight-core
systems, respectively. The storage requirement for a 128-
entry ChargeCache is only 672 bytes per core assuming our
two-channel main memory (see Section 6.3).
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Figure 9: ChargeCache hit rate for single-core and
eight-core systems at 1ms caching duration.

Figure 10 shows the speedup with various ChargeCache
capacities. Larger capacities provide higher performance
thanks to the higher ChargeCache hit rate. However, they
also incur higher hardware overhead. For a 128-entry ca-
pacity (672 bytes per-core), ChargeCache provides 8.8% per-
formance improvement, and for a 1024-entry capacity (5376
bytes per-core) it provides 10.6% performance improvement.
We conclude that ChargeCache is e�ective at various sizes,
but its bene�ts start to diminish at higher capacities.
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Figure 10: Speedup versus ChargeCache capacity.

6.4.2. Caching Duration. Increasing the caching duration
may improve the hit rate by decreasing the number of in-
validated entries. We evaluate several caching durations to
determine the duration value that provides favorable perfor-
mance. For each caching duration, Table 2 shows the tRCD
and tRAS values which we obtain from our circuit-level SPICE
simulations. We also provide the default timing parameters
used as a baseline in the �rst row of the table.
Table 2: tRCDand tRAS for di�erent caching durations
(determined via SPICE simulations)

Caching
Duration (ms) tRCD (ns) tRAS (ns)

N/A (Baseline) 13.75 35
1 8 22
4 9 24
16 11 28

Figure 11 shows how ChargeCache speedup and Charge-
Cache hit rate vary with di�erent caching durations. We make
two observations. First, increasing the caching duration nega-
tively a�ects the performance improvement of ChargeCache.
This is because a longer caching duration leads to lower reduc-
tions in tRCD and tRAS (as Table 2 shows), thereby reducing
the bene�t of a ChargeCache hit. Second, ChargeCache hit
rate increases slightly (by about 2%) for the single-core system
but remains almost constant for the eight-core system when
caching duration increases. The latter is due to the large num-
ber of bank con�icts in the 8-core system, as we explained in
Section 3. With many bank con�icts, the aggregate number of
precharge commands is high and ChargeCache evicts entries
very frequently even with a 1ms caching duration. Thus, a
longer caching duration does not have much e�ect on hit rate.
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We conclude that, with a longer caching duration, the im-
provement in ChargeCache hit rate does not make up for the
loss in the reduction of the timing parameters. We conclude
that ChargeCache is e�ective for various caching durations,
yet the empirically best caching duration is 1ms, which leads
to the highest performance improvement.

7. Discussion

7.1. Temperature Independence

Charge leakage rate of DRAM cells approximately doubles
for every 10◦C increase in the temperature [39, 48, 51, 58,
75]. This observation can be exploited to lower the DRAM
latency when operating at low temperatures. A previous
study, Adaptive Latency DRAM (AL-DRAM) [48], proposes
a mechanism to improve system performance by reducing
the DRAM timing parameters at low operating temperature.
It is based on the premise that DRAM typically does not
operate at temperatures close to the worst-case temperature
(85◦ C) even when it is heavily accessed. However, new 3D-
stacked DRAM technologies such as HMC [32], HBM [34],
WideIO [20] may operate at signi�cantly higher temperatures
due to tight integration of multiple stack layers [7, 47, 73].
Therefore, dynamic latency scaling techniques such as AL-
DRAM may be less useful in these scenarios.

ChargeCache is not based on the charge di�erence that
occurs due to temperature dependence. Rather, we exploit
the high level of charge in recently-precharged rows to re-
duce timing parameters during later accesses to such rows.
After conducting tests to determine the reduction in timing
parameters (for ChargeCache hits) at worst-case temperatures,
we �nd that these timing parameters can be reduced inde-
pendently of the operating temperature. Dynamic latency
scaling can still be used in conjunction with ChargeCache at
low temperatures to reduce the access latency even further.

7.2. Applicability to Other DRAM Standards

Although we evaluate only DDR3-based main memory
within the scope of this paper, implementing ChargeCache for
other DRAM standards is straightforward. In theory, Charge-
Cache is applicable to any memory technology where cells are
volatile (leak charge over time). However, the memory inter-
face can prevent the implementation of ChargeCache entirely
in the memory controller. For example, RL-DRAM [56] is a
DRAM type incompatible with ChargeCache. In RL-DRAM,
read and write operations are directly handled by READ and
WRITE commands without explicitly activating and precharg-
ing DRAM rows. Hence, the RL-DRAM memory controller
does not have control over the activation delay of the rows
and the timing parameters tRCD and tRAS do not exist.

However, ChargeCache can be used with to a large set of
speci�cations derived from DDR (DDRx, GDDRx, LPDDRx,
etc.) in a manner similar to the mechanism described in this
work, without modifying the DRAM architecture at all. All of
these memories require ACT and PRE commands to explicitly

open and close DRAM rows. Using ChargeCache with 3D-
stacked memories [47, 53] such as WideIO [20], HBM [34]
and HMC [32] is also straightforward. The di�erence is that
the DRAM controller, and hence ChargeCache, may be im-
plemented in the logic layer of the 3D-stacked memory chip
instead of the processor chip.

8. Related Work

To our knowledge, this paper is the �rst to (i) show that
applications typically exhibit signi�cant Row-level Temporal
Locality (RLTL) and (ii) exploit this locality to improve system
performance by reducing the latency of requests to recently-
accessed rows.

We have already qualitatively and quantitatively (in Sec-
tions 3 and 6) compared ChargeCache to NUAT [85], which re-
duces access latency to only recently-refreshed rows. We have
shown that ChargeCache can provide signi�cantly higher
average latency reduction than NUAT because RLTL is usu-
ally high, whereas the fraction of accesses to rows that are
recently-refreshed is typically low.

Other previous works have proposed techniques to reduce
performance degradation caused by long DRAM latencies.
They focused on 1) enhancing the DRAM, 2) exploiting varia-
tions in manufacturing process and operating conditions, 3)
developing several memory scheduling policies. We brie�y
summarize how ChargeCache di�ers from these works.
Enhancing DRAM Architecture. Lee at al. propose

Tiered-Latency DRAM (TL-DRAM) [49] which divides each
subarray into near and far segments using isolation transis-
tors. With TL-DRAM, the memory controller accesses the
near segment with lower latency since the isolation transistor
reduces bitline capacitance in that segment. Our mechanism
could be implemented on top of TL-DRAM to reduce the ac-
cess latency for both the near and far segment. Kim et al. un-
lock parallelism among subarrays at low cost with SALP [42].
The goal of SALP is to reduce DRAM latency by providing
more parallelism to reduce the impact of bank con�icts. O et
al [68] propose a DRAM architecture where sense ampli�ers
are decoupled from bitlines to mitigate precharge latency.
Choi et al [15] propose to utilize multiple DRAM cells to
store a single bit when su�cient DRAM capacity is available.
By using multiple cells, they reduce activation, precharge and
refresh latencies. Other works [11, 12, 30, 81–83, 88, 98] also
propose new DRAM architectures to lower DRAM latency.

Unlike ChargeCache, all these works require changes to
the DRAM architecture itself. The approaches taken by these
works are largely orthogonal and ChargeCache could be im-
plemented together with any of these mechanisms to further
improve the DRAM latency.
Exploiting Process and Operating Condition Varia-

tions. Recent studies [9, 48] proposed methods to reduce the
safety margins of the DRAM timing parameters when oper-
ating conditions are appropriate (i.e., not worst-case). Unlike
these works, ChargeCache is largely independent of operat-
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ing conditions like temperature, as discussed in Section 7.1,
and is orthogonal to these latency reduction mechanisms.
Memory Request Scheduling Policies. Memory re-

quest scheduling policies (e.g., [40, 41, 45, 63, 64, 79, 91–
93, 97]) reduce the average DRAM access latency by improv-
ing DRAM parallelism, row-bu�er locality and fairness in
especially multi-core systems. ChargeCache can be employed
in conjunction with the scheduling policy that best suits the
application and the underlying architecture.

9. Conclusion

We introduce ChargeCache, a new, low-overhead mecha-
nism that dynamically reduces the DRAM timing parameters
for recently-accessed DRAM rows. ChargeCache exploits
two key observations that we demonstrate in this work: 1) a
recently-accessed DRAM row has cells with high amount of
charge and thus can be accessed faster, 2) many applications
repeatedly access rows that are recently-accessed.

Our extensive evaluations of ChargeCache on both single-
core and multi-core systems show that it provides signi�cant
performance bene�t and DRAM energy reduction at very
modest hardware overhead. ChargeCache requires no mod-
i�cations to the existing DRAM chips and occupies only a
small area on the memory controller.

We conclude that ChargeCache is a simple yet e�cient
mechanism to dynamically reduce DRAM latency, which
signi�cantly improves both the performance and energy e�-
ciency of modern systems.
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