
Computer Architecture
Lecture 21: GPU Programming

Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Fall 2018

5 December 2018

Agenda for Today
n GPU as an accelerator

q Program structure
n Bulk synchronous programming model

q Memory hierarchy and memory management

q Performance considerations
n Memory access
n SIMD utilization
n Atomic operations
n Data transfers

n Collaborative computing

2

Recommended Readings

n CUDA Programming Guide
q https://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html

n Hwu and Kirk, �Programming Massively Parallel Processors,�
Third Edition, 2017

3

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

An Example GPU

0

2000

4000

6000

8000

10000

12000

14000

16000

0

1000

2000

3000

4000

5000

6000

GTX	285	
(2009)

GTX	480	
(2010)

GTX	780	
(2013)

GTX	980	
(2014)

P100	(2016) V100	(2017)

GF
LO

PS

#S
tr
ea
m
	P
ro
ce
ss
or
s

Stream	Processors GFLOPS

Recall: Evolution of NVIDIA GPUs

5

Recall: NVIDIA GeForce GTX 285
n NVIDIA-speak:

q 240 stream processors
q �SIMT execution�

n Generic speak:
q 30 cores
q 8 SIMD functional units per core

Slide credit: Kayvon Fatahalian 6

Recall: NVIDIA V100
n NVIDIA-speak:

q 5120 stream processors
q �SIMT execution�

n Generic speak:
q 80 cores
q 64 SIMD functional units per core

q Specialized Functional Units for Machine Learning (tensor
”cores” in NVIDIA-speak)

7

Recall: NVIDIA V100 Block Diagram

80 cores on the V100
https://devblogs.nvidia.com/inside-volta/

8

Recall: NVIDIA V100 Core

15.7 TFLOPS Single Precision
7.8 TFLOPS Double Precision
125 TFLOPS for Deep Learning (Tensor ”cores”)

9
https://devblogs.nvidia.com/inside-volta/

Recall: Latency Hiding via Warp-Level FGMT

n Warp: A set of threads that
execute the same instruction
(on different data elements)

n Fine-grained multithreading
q One instruction per thread in

pipeline at a time (No
interlocking)

q Interleave warp execution to
hide latencies

n Register values of all threads stay
in register file

n FGMT enables long latency
tolerance
q Millions of pixels

10

Decode

RF RFRF

ALU

ALU

ALU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt

Recall: Warp Execution

11

32-thread warp executing ADD A[tid],B[tid] à C[tid]

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]
A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]
A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]
A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]
A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]
A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

Time

Space

Time

12

Lane

Functional Unit

Registers
for each
Thread

Memory Subsystem

Registers for
thread IDs
0, 4, 8, …

Registers for
thread IDs
1, 5, 9, …

Registers for
thread IDs
2, 6, 10, …

Registers for
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

Recall: SIMD Execution Unit Structure

Recall: Warp Instruction Level Parallelism
Can overlap execution of multiple instructions

q Example machine has 32 threads per warp and 8 lanes
q Completes 24 operations/cycle while issuing 1 warp/cycle

13

W3

W0
W1

W4

W2

W5

Load Unit Multiply Unit Add Unit

time

Warp issue

Slide credit: Krste Asanovic

GPU Programming

Recall: Vector Processor Disadvantages
-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations
-- Very inefficient if parallelism is irregular

-- How about searching for a key in a linked list?

15Fisher, �Very Long Instruction Word architectures and the ELI-512,� ISCA 1983.

General Purpose Processing on GPU
n Easier programming of SIMD processors with SPMD

q GPUs have democratized High Performance Computing (HPC)
q Great FLOPS/$, massively parallel chip on a commodity PC

n Many workloads exhibit inherent parallelism
q Matrices
q Image processing

n However, this is not for free
q New programming model
q Algorithms need to be re-implemented and rethought

n Still some bottlenecks
q CPU-GPU data transfers (PCIe, NVLINK)
q DRAM memory bandwidth (GDDR5, GDDR6, HBM2)

n Data layout

16

CPU vs. GPU
n Different design philosophies

q CPU: A few out-of-order cores
q GPU: Many in-order FGMT cores

ALU ALU

ALU ALU
Control

Cache

DRAM DRAM

CPU GPU

17
Slide credit: Hwu & Kirk

GPU Computing
n Computation is offloaded to the GPU
n Three steps

q CPU-GPU data transfer (1)
q GPU kernel execution (2)
q GPU-CPU data transfer (3)

CPU
memory

CPU
cores Matrix

GPU
memory

GPU
coresMatrix

1

3

2

18

n CPU threads and GPU kernels
q Sequential or modestly parallel sections on CPU
q Massively parallel sections on GPU

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nThr >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nThr >>>(args);

Traditional Program Structure

19
Slide credit: Hwu & Kirk

Recall: SPMD
n Single procedure/program, multiple data

q This is a programming model rather than computer organization

n Each processing element executes the same procedure, except on
different data elements
q Procedures can synchronize at certain points in program, e.g. barriers

n Essentially, multiple instruction streams execute the same
program
q Each program/procedure 1) works on different data, 2) can execute a

different control-flow path, at run-time
q Many scientific applications are programmed this way and run on MIMD

hardware (multiprocessors)
q Modern GPUs programmed in a similar way on a SIMD hardware

20

CUDA/OpenCL Programming Model
n SIMT or SPMD

n Bulk synchronous programming
q Global (coarse-grain) synchronization between kernels

n The host (typically CPU) allocates memory, copies data,
and launches kernels

n The device (typically GPU) executes kernels
q Grid (NDRange)
q Block (work-group)

n Within a block, shared memory, and synchronization
q Thread (work-item)

21

Transparent Scalability
n Hardware is free to schedule thread blocks

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative to other blocks.

tim
e

22
Slide credit: Hwu & Kirk

tim
e

Memory Hierarchy

Grid (Device)

Block (0, 0)

Thread (0, 0) Thread (1, 0)

Registers

Shared memory

Registers

Block (1, 0)

Thread (0, 0) Thread (1, 0)

Registers

Shared memory

Registers

Global / Texture & Surface memory

Constant memory
Host

23

n Function prototypes
float serialFunction(…);
__global__ void kernel(…);

n main()
q 1) Allocate memory space on the device – cudaMalloc(&d_in, bytes);
q 2) Transfer data from host to device – cudaMemCpy(d_in, h_in, …);
q 3) Execution configuration setup: #blocks and #threads

q 4) Kernel call – kernel<<<execution configuration>>>(args…);
q 5) Transfer results from device to host – cudaMemCpy(h_out, d_out, …);

n Kernel – __global__ void kernel(type args,…)
q Automatic variables transparently assigned to registers

q Shared memory: __shared__
q Intra-block synchronization: __syncthreads();

re
pe

at
as

 n
ee

de
d

Traditional Program Structure in CUDA

24
Slide credit: Hwu & Kirk

CUDA Programming Language
n Memory allocation

cudaMalloc((void**)&d_in, #bytes);

n Memory copy
cudaMemcpy(d_in, h_in, #bytes, cudaMemcpyHostToDevice);

n Kernel launch
kernel<<< #blocks, #threads >>>(args);

n Memory deallocation
cudaFree(d_in);

n Explicit synchronization
cudaDeviceSynchronize();

25

Indexing and Memory Access
n Images are 2D data structures

q height x width
q Image[j][i], where 0 ≤ j < height, and 0 ≤ i < width

Image[0][1]

Image[1][2]

26

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Image Layout in Memory
n Row-major layout
n Image[j][i] = Image[j x width + i]

Image[0][1] = Image[0 x 8 + 1]

Image[1][2] = Image[1 x 8 + 2]

27

Stride = width

Indexing and Memory Access: 1D Grid
n One GPU thread per pixel
n Grid of Blocks of Threads

q gridDim.x, blockDim.x
q blockIdx.x, threadIdx.x

Block 0

Block 0

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

blockIdx.x

threadIdx.x

blockIdx.x * blockDim.x +
threadIdx.x

6 * 4 + 1 = 25

28

Indexing and Memory Access: 2D Grid
n 2D blocks

q gridDim.x, gridDim.y

Block (0, 0)

blockIdx.x = 2
blockIdx.y = 1

Row = blockIdx.y *
blockDim.y + threadIdx.y

Row = 1 * 2 + 1 = 3

threadIdx.x = 1
threadIdx.y = 0

Col = blockIdx.x *
blockDim.x + threadIdx.x

Col = 0 * 2 + 1 = 1

Image[3][1] = Image[3 * 8 + 1]

29

Brief Review of GPU Architecture (I)
n Streaming Processor Array

q Tesla architecture (G80/GT200)

SM

SP SP

SP SP

SP SP

SP SP

SFU

SFU

Register File

Instruction Fetch/Dispatch

Instruction Cache

Streaming Processor Array

TPC

SM SM

Texture L1 Cache

Texture Unit

TPCTPCTPCTPC

Shared Memory

Constant Cache

…..

30

Brief Review of GPU Architecture (II)
n Streaming Multiprocessors (SM)

q Streaming Processors (SP)

n Blocks are divided into warps
q SIMD unit (32 threads)

Streaming Multiprocessor

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

LD/ST

SFU

SFU

SFU

SFU

Register File

Shared Memory / L1 Cache

Constant Cache

Dispatch Unit Dispatch Unit

Warp Scheduler Warp Scheduler

Instruction Cache

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…
Block 0’s warps Block 1’s warps

…
t0 t1 t2 … t31

…
Block 2’s warps

31
NVIDIA Fermi architecture

Brief Review of GPU Architecture (III)
n Streaming Multiprocessors (SM) or Compute Units (CU)

q SIMD pipelines

n Streaming Processors (SP) or CUDA ”cores”
q Vector lanes

n Number of SMs x SPs across generations
q Tesla (2007): 30 x 8
q Fermi (2010): 16 x 32
q Kepler (2012): 15 x 192
q Maxwell (2014): 24 x 128
q Pascal (2016): 56 x 64
q Volta (2017): 80 x 64

32

Performance Considerations

Performance Considerations
n Main bottlenecks

q Global memory access
q CPU-GPU data transfers

n Memory access
q Latency hiding

n Occupancy
q Memory coalescing
q Data reuse

n Shared memory usage

n SIMD (Warp) Utilization: Divergence
n Atomic operations: Serialization
n Data transfers between CPU and GPU

q Overlap of communication and computation

34

Memory Access

Latency Hiding
n FGMT can hide long latency operations (e.g., memory accesses)
n Occupancy: ratio of active warps

Warp 0

ti
m

e

Instruction 3

4 active warps
Warp 0

ti
m

e

Instruction 3

2 active warps

Warp 1

Instruction 2

Warp 0

Instruction 4

(Long latency)

Warp 2

Instruction 1

Warp 3

Instruction 1

Warp 1

Instruction 3

Warp 0

Instruction 5

Warp 1

Instruction 2

Warp 0

Instruction 4

(Long latency)

Warp 1

Instruction 3

Warp 0

Instruction 5

36

Occupancy

n SM resources (typical values)
q Maximum number of warps per SM (64)
q Maximum number of blocks per SM (32)
q Register usage (256KB)
q Shared memory usage (64KB)

n Occupancy calculation
q Number of threads per block (defined by the programmer)
q Registers per thread (known at compile time)
q Shared memory per block (defined by the programmer)

37

n When accessing global memory, we want to make sure
that concurrent threads access nearby memory locations

n Peak bandwidth utilization occurs when all threads in a
warp access one cache line

Md Nd

W
ID
T
H

WIDTH

Thread 1
Thread 2

Not coalesced Coalesced

Memory Coalescing

38
Slide credit: Hwu & Kirk

Uncoalesced Memory Accesses

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1M3,1

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1M3,1 M1,2M0,2 M2,2M3,2

M1,2M0,2 M2,2M3,2

M1,3M0,3 M2,3M3,3

M1,3M0,3 M2,3M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction
in Kernel
code

…

39
Slide credit: Hwu & Kirk

Coalesced Memory Accesses

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1
T1 T2 T3 T4

Time Period 2

Access
direction
in Kernel
code

…

40
Slide credit: Hwu & Kirk

AoS vs. SoA
n Array of Structures vs. Structure of ArraysTenemos 2 data layouts principales (AoS y SoA) y uno nuevo propuesto (ASTA).

ASTA permite transformar uno en otro más rápidamente y facilita hacerlo in-place, para
ahorrar memoria. En la siguiente figura se ven los tres:

La granularidad en ASTA, es decir, el ancho del tile, estará relacionado con la
granularidad de acceso a la memoria (warp_size = 32, por ejemplo).

Convertir entre los distintos layouts, en realidad es transponer. Por ejemplo, AoS a
ASTA:

Y transponer es permutar (los números representan posiciones en la memoria y los
colores, tipo de dato):

Data Layout Alternatives

Array of
Structures

(AoS)

Array of
Structure of
Tiled Array

(ASTA)

struct foo{
 float a;
 float b;
 float c;
 int d;
} A[8];

struct foo{
 float a[4];
 float b[4];
 float c[4];
 int d[4];
} A[2];

Structure of
Arrays
(SoA)

struct foo{
 float a[8];
 float b[8];
 float c[8];
 int d[8];
} A;

19

Layout Conversion and Transposition

` Converting AoS to ASTA is not too different from
transposing a bunch of small tiles
` The first attempt, barrier-sync, would more likely to work

same as same as

transpose

AoS ASTA

divide into tiles

transpose

26

Layout Conversion and Transposition

` Transposition is a permutation
` A permutation can be decomposed to independent cycles of

shifting

0 1 2 3 4

5 6 7 8 9

0 1

2 3

4 5

6 7

8 9

transpose

28

41

CPUs Prefer AoS, GPUs Prefer SoA
n Linear and strided accesses

0.0#
1.0#
2.0#
3.0#
4.0#
5.0#
6.0#
7.0#
8.0#
9.0#
10.0#
11.0#
12.0#

1# 2# 4# 8# 16# 32# 64# 128# 256# 512# 1024#

Th
ro
ug
hp

ut
#(G

B/
s)
#

Stride#(Structure#size)#

GPU#

0.0#

0.5#

1.0#

1.5#

2.0#

2.5#

3.0#

3.5#

4.0#

4.5#

5.0#

1# 2# 4# 8# 16# 32# 64# 128# 256# 512# 1024#

Th
ro
ug
hp

ut
#(G

B/
s)
#

Stride#(Structure#size)#

1CPU# 2CPU# 4CPU#

AMD Kaveri A10-7850K

GPU CPU

42

Sung+, �DL: A data layout transformation system for heterogeneous computing,� INPAR 2012

Data Reuse
n Same memory locations accessed by neighboring threads

for (int i = 0; i < 3; i++){
for (int j = 0; j < 3; j++){

sum += gauss[i][j] * Image[(i+row-1)*width + (j+col-1)];
}

}

43

Data Reuse: Tiling
n To take advantage of data reuse, we divide the input into tiles

that can be loaded into shared memory

__shared__ int l_data[(L_SIZE+2)*(L_SIZE+2)];
…
Load tile into shared memory
__syncthreads();
for (int i = 0; i < 3; i++){
for (int j = 0; j < 3; j++){
sum += gauss[i][j] * l_data[(i+l_row-1)*(L_SIZE+2)+j+l_col-1];

}
}

44

Shared Memory

n Shared memory is an interleaved (banked) memory
q Each bank can service one address per cycle

n Typically, 32 banks in NVIDIA GPUs
q Successive 32-bit words are assigned to successive banks

n Bank = Address % 32

n Bank conflicts are only possible within a warp
q No bank conflicts between different warps

45

Shared Memory Bank Conflicts (I)
n Bank conflict free

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Linear addressing: stride = 1 Random addressing 1:1

46
Slide credit: Hwu & Kirk

Shared Memory Bank Conflicts (II)
n N-way bank conflicts

2-way bank conflict: stride = 2 8-way bank conflict: stride = 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0x8

x8

47
Slide credit: Hwu & Kirk

Reducing Shared Memory Bank Conflicts
n Bank conflicts are only possible within a warp

q No bank conflicts between different warps

n If strided accesses are needed, some optimization
techniques can help
q Padding
q Randomized mapping

n Rau, “Pseudo-randomly interleaved memory,” ISCA 1991
q Hash functions

n V.d.Braak+, �Configurable XOR Hash Functions for Banked
Scratchpad Memories in GPUs,� IEEE TC, 2016

48

SIMD Utilization

Control Flow Problem in GPUs/SIMT
n A GPU uses a SIMD

pipeline to save area
on control logic
q Groups scalar threads

into warps

n Branch divergence
occurs when threads
inside warps branch to
different execution
paths

50

Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

This is the same as conditional/predicated/masked execution.
Recall the Vector Mask and Masked Vector Operations?

SIMD Utilization
n Intra-warp divergence

Compute(threadIdx.x);
if (threadIdx.x % 2 == 0){
Do_this(threadIdx.x);

}
else{
Do_that(threadIdx.x);

}

Compute

If

Else

51

Increasing SIMD Utilization
n Divergence-free execution

Compute(threadIdx.x);
if (threadIdx.x < 32){
Do_this(threadIdx.x * 2);

}
else{
Do_that((threadIdx.x%32)*2+1);

}

Compute

If

Else

52

Vector Reduction: Naïve Mapping (I)

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3ite
ra

tio
ns

Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10

53
Slide credit: Hwu & Kirk

Vector Reduction: Naïve Mapping (II)
n Program with low SIMD utilization

__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (int stride = 1; stride < blockDim.x; stride *= 2) {

__syncthreads();

if (t % (2*stride) == 0)
partialSum[t] += partialSum[t + stride];

}

54

Divergence-Free Mapping (I)
n All active threads belong to the same warp

Thread 0

0 1 2 3 … 13 1514 181716 19

0+16 15+311

2

3

Thread 1 Thread 2 Thread 14 Thread 15

ite
ra

tio
ns

55
Slide credit: Hwu & Kirk

Divergence-Free Mapping (II)
n Program with high SIMD utilization

__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (int stride = blockDim.x; stride > 1; stride >> 1){

__syncthreads();

if (t < stride)
partialSum[t] += partialSum[t + stride];

}

56

Atomic Operations

n Atomic Operations are needed when threads might update the
same memory locations at the same time

n CUDA: int atomicAdd(int*, int);

n PTX: atom.shared.add.u32 %r25, [%rd14], %r24;

n SASS:

/*00a0*/ LDSLK P0, R9, [R8];
/*00a8*/ @P0 IADD R10, R9, R7;

/*00b0*/ @P0 STSCUL P1, [R8], R10;
/*00b8*/ @!P1 BRA 0xa0;

/*01f8*/ ATOMS.ADD RZ, [R7], R11;

Native atomic operations for
32-bit integer, and 32-bit and
64-bit atomicCAS

Tesla, Fermi, Kepler Maxwell, Pascal, Volta

Shared Memory Atomic Operations

58

n We define the intra-warp conflict degree as the number of
threads in a warp that update the same memory position

n The conflict degree can be between 1 and 32

th0

th1

tbase

tconflict
th0 th1

2 2

0 1 2 3 ...

Shared memory

0 1 2 3 ...

Shared memory

th0 th1

0 2

th0 th1

tbase

No atomic conflict =
concurrent updates

Atomic conflict =
serialized updates

Atomic Conflicts

59

Histogram Calculation
n Histograms count the number of data instances in disjoint

categories (bins)

for (each pixel i in image I){
Pixel = I[i] // Read pixel
Pixel’ = Computation(Pixel) // Optional computation
Histogram[Pixel’]++ // Vote in histogram bin

}

Thread 0 Thread 1 Thread 2 Thread n-1

Input data

Histogram

0 1 2

data[1]data[0] data[2] data[n-1]...

... B-1

data[n+1]data[n] data[n+2] data[2n-1]...

...

..
.

..
.

..
.

..
.

Atomic additions

60

Histogram Calculation of Natural Images
n Frequent conflicts in natural images

169 170 171 174 177 182 187 192 194 192

169 173 173 175 177 181 185 189 191 192

169 173 173 175 177 180 184 188 190 193

169 172 173 174 176 180 183 187 189 193

171 173 173 174 176 179 182 185 187 192

174 175 175 175 176 178 180 183 184 1885 5 5 6 8 80 83 8 88

177 177 176 176 177 179 180 181 185 188

178 178 176 178 184 185 189 193 195 194

176 176 173 176 181 183 186 190 192 191

174 172 170 173 177 181 185 189 191 190

173 171 169 172 175 181 185 190 192 192

171 169 169 172 174 179 183 189 192 192

61

Optimizing Histogram Calculation
n Privatization: Per-block sub-histograms in shared memory

Block 0 Block 1

Block 2 Block 3

Block 0 Block 1

Block 2 Block 3

Block 0 Block 1

Block 2 Block 3

Block 0 Block 1

Block 2 Block 3

b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

b0 b1 b2 b3

Block 0’s sub-histo Block 1’s sub-histo Block 2’s sub-histo Block 3’s sub-histo

Global memory

Final histogram

Shared memory

62Gomez-Luna+, �Performance Modeling of Atomic Additions on GPU Scratchpad
Memory,� IEEE TPDS, 2013.

Data Transfers
between CPU and GPU

Data Transfers
n Synchronous and asynchronous transfers
n Streams (Command queues)

q Sequence of operations that are performed in order
n CPU-GPU data transfer
n Kernel execution

q D input data instances, B blocks
n GPU-CPU data transfer

q Default stream

Copy data

Execute

Copy data

Execute

tT

tE

64

Asynchronous Transfers
n Computation divided into nStreams

q D input data instances, B blocks
q nStreams

n D/nStreams data instances
n B/nStreams blocks

q Estimates

Copy data

Execute

Copy data

Execute

tT

tE

€

tT +
tE

nStreams

€

tE +
tT

nStreams
tE >= tT (dominant kernel) tT > tE (dominant transfers)

65

n Applications with independent computation on different data
instances can benefit from asynchronous transfers

n For instance, video processing

6 x b blocks compute on the sequence of frames

A sequence of 6 frames is transferred to device

A chunk of 2 frames is

transferred to device

2 x b blocks compute

on the chunk, while the

second chunk is being

transferred

Non-

streamed

execution

Streamed

execution

Execution time saved

thanks to streams

Overlap of Communication and Computation

66Gomez-Luna+, �Performance models for asynchronous data transfers on consumer
Graphics Processing Units,� JPDC, 2012.

Summary

n GPU as an accelerator
q Program structure

n Bulk synchronous programming model

q Memory hierarchy and memory management

q Performance considerations
n Memory access

q Latency hiding: occupancy (TLP)
q Memory coalescing
q Data reuse: shared memory

n SIMD utilization
n Atomic operations
n Data transfers

67

Collaborative Computing

// Allocate input
malloc(input, ...);
cudaMalloc(d_input, ...);
cudaMemcpy(d_input, input, ..., HostToDevice); // Copy to device memory

// Allocate output
malloc(output, ...);
cudaMalloc(d_output, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (d_output, d_input, ...);

// Synchronize
cudaDeviceSynchronize();

// Copy output to host memory
cudaMemcpy(output, d_output, ..., DeviceToHost);

Review
n Device allocation, CPU-GPU transfer, and GPU-CPU transfer

q cudaMalloc();
q cudaMemcpy();

69

Unified Memory
n Unified Virtual Address
n CUDA 6.0: Unified memory
n CUDA 8.0 + Pascal: GPU page faults

70

// Allocate input
malloc(input, ...);
cudaMallocManaged(d_input, ...);
memcpy(d_input, input, ...); // Copy to managed memory

// Allocate output
cudaMallocManaged(d_output, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (d_output, d_input, ...);

// Synchronize
cudaDeviceSynchronize();

Unified Memory
n Easier programming with Unified Memory

q cudaMallocManaged();

71

n Case studies using CPU and GPU
n Kernel launches are asynchronous

q CPU can work while waits for GPU to finish
q Traditionally, this is the most efficient way to exploit

heterogeneity
// Allocate input
malloc(input, ...);
cudaMalloc(d_input, ...);
cudaMemcpy(d_input, input, ..., HostToDevice); // Copy to device memory

// Allocate output
malloc(output, ...);
cudaMalloc(d_output, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (d_output, d_input, ...);

// CPU can do things here

// Synchronize
cudaDeviceSynchronize();

// Copy output to host memory
cudaMemcpy(output, d_output, ..., DeviceToHost);

Collaborative Computing Algorithms

72

n Fine-grain heterogeneity becomes possible with
Pascal/Volta architecture

n Pascal/Volta Unified Memory
q CPU-GPU memory coherence
q System-wide atomic operations

// Allocate input
cudaMallocManaged(input, ...);

// Allocate output
cudaMallocManaged(output, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (output, input, ...);

// CPU can do things here
output[x] = input[y];

output[x+1].fetch_add(1);

Fine-Grained Heterogeneity

73

CUDA 8.0
n Unified memory

cudaMallocManaged(&h_in, in_size);

n System-wide atomics

old = atomicAdd_system(&h_out[x], inc);

74

OpenCL 2.0
n Shared virtual memory

XYZ * h_in = (XYZ *)clSVMAlloc(

ocl.clContext, CL_MEM_SVM_FINE_GRAIN_BUFFER, in_size, 0);

n More flags:
CL_MEM_READ_WRITE

CL_MEM_SVM_ATOMICS

n C++11 atomic operations
(memory_scope_all_svm_devices)

old = atomic_fetch_add(&h_out[x], inc);

75

C++AMP (HCC)
n Unified memory space (HSA)

XYZ *h_in = (XYZ *)malloc(in_size);

n C++11 atomic operations

(memory_scope_all_svm_devices)

q Platform atomics (HSA)

old = atomic_fetch_add(&h_out[x], inc);

76

…

…

data-parallel tasks

se
qu

en
tia

l s
ub

-ta
sk

s

co
ar

se
-g

ra
in

ed

sy
nc

hr
on

iz
at

io
n

Program Structure Data Partitioning

… …
Device 1 Device 2

… …

Collaborative Patterns

77

…

…

data-parallel tasks

se
qu

en
tia

l s
ub

-ta
sk

s

co
ar

se
-g

ra
in

ed

sy
nc

hr
on

iz
at

io
n

Program Structure

…

…

Device 1 Device 2

Coarse-grained Task Partitioning

Collaborative Patterns

78

…

…

data-parallel tasks

se
qu

en
tia

l s
ub

-ta
sk

s

co
ar

se
-g

ra
in

ed

sy
nc

hr
on

iz
at

io
n

Program Structure Fine-grained Task
Partitioning

Device 1 Device 2

…

…

…
… …

…

Collaborative Patterns

79

SM#0 SM#1CPU
core#0

Block
0

Block
1

Block
2

Block
3

CPU
core#1

CPU
core#2

CPU
core#3

0 0 0 0 0 0... 0 0 0 0 0 0...

0 0 0 0 0 0...

malloc(CPU image);
cudaMalloc(GPU image);
cudaMemcpy(GPU image, CPU image, ...,

Host to Device);
malloc(CPU histogram);
memset(CPU histogram, 0);
cudaMalloc(GPU histogram);
cudaMemset(GPU histogram, 0);

// Launch CPU threads
// Launch GPU kernel

cudaMemcpy(GPU histogram, DeviceToHost);

// Launch CPU threads for merging

Histogram
n Previous generations: separate CPU and GPU histograms

are merged at the end

80

cudaMallocManaged(Histogram);
cudaMemset(Histogram, 0);

// Launch CPU threads
// Launch GPU kernel (atomicAdd_system)SM#0 SM#1CPU

core#0

Block
0

Block
1

Block
2

Block
3

CPU
core#1

CPU
core#2

CPU
core#3

0 0 0 0 0 0...

Histogram
n System-wide atomic operations: one single histogram

81

Y

X

Z

Bézier Surfaces
n Bézier surface: 4x4 net of control points

82

2 Journal Title XX(X)

In the last decade, strategies to parallelize the evaluation⇤

of Bézier surfaces have been developed (Section 3).
These strategies, however, circumscribe mostly to the field
of computer-graphics as part of tessellation applications
(conversion of continuous surfaces to discrete triangle
meshes). Furthermore, these strategies are often limited to
the computing of bi-cubic Bézier patches widely used in
rendering and animation.

Generalized parallel strategies going beyond bi-cubic
schemes, together with techniques to map the paralleliza-
tion efficiently onto different hardware platforms, have
consequently the potential to make an impact in the perfor-
mance of not only computer-graphics, but a broader range
of applications.

1.1 Contribution

The aim of this work is computing real-time Bézier
tensor-product surfaces that can be employed not only
in rendering applications—where bi-cubic Bézier surfaces
are predominant—but also in applications requiring high-
degree surfaces.

The main contribution of this work is twofold. On
one hand, we propose a multi-level evaluation (MLE)
method for the computation of parametric non-rational
Bézier tensor-product surfaces of arbitrary degree. The
use of this method can be further applied to other
formulations (e.g., rational Bézier), as well as tensor-
products of higher order than surfaces. On other hand, we
propose different techniques to map MLE onto different
hardware platforms, including central processing units
(CPU), discrete and integrated graphics processing units
(GPU) as well as mobile integrated GPUs—these latter
ones being poorly explored in the literature. As the latest
trends in computing move towards hybrid systems (more
than one kind of processor present), we also propose CPU-
GPU cooperation mechanisms, including the exploitation
of heterogeneous computing systems (HCS) models with
different properties. In addition, we review and classify
the most important works in the literature concerned with
the optimization and acceleration of computation of Bézier
surfaces. These works are then classified (Table 1) attending
to the underlying Bézier formulation, the maximum degree
evaluated, the optimization strategy, the implementation
technology and whether rendering was the main purpose.

The rest of the paper is organized as follows. Section 2
provides fundamental mathematical background on Bézier
surfaces. Section 3 lists and shortly reviews relevant
works in the literature which accelerate and optimize the
computation of Bézier surfaces. In Section 4 the proposed
method (MLE) is described. Section 5, on other hand,
addresses the parallelization and mapping of MLE onto
different computing platforms, including CPUs, GPUs
and HCSs. In Section 6, our experiments and results are

described. These results and the most relevant findings
are discussed in Section 7. Finally, in Section 8, some
concluding remarks are presented.

2 Background
In this section, a brief description of Bézier surfaces is
provided. A deeper description of this type of surfaces and
its properties can be found in Piegl and Tiller (1997). For
simplicity and clarity reasons, in this work, the focus is on
the use of the parametric non-rational formulation of Bézier
surfaces. However, the methods presented in this paper are
generalizable to other Bézier tensor-product formulations
(e.g., rational formulations or higher order tensors).

Mathematically, non-rational Bézier tensor-product sur-
faces S : R2 ! R3 are defined as:

S(u, v) =
mX

i=0

nX

j=0

Pi,jBi,m(u)Bj,n(v), (1)

where u, v 2 [0, 1] form the parametric space of the
surface and Pi,j are control points. The m and n values
determine the degree of the Bernstein polynomials Bi,m(u)
and Bj,n(v) used as basis functions. These polynomials are
generically defined as:

Bi,m(u) =

✓
m

i

◆
(1� u)(m�i)ui, (2)

with 0 i m. Bj,n(v) is defined similarly.
The most common case of Bézier surface in the scientific

literature is the bi-cubic surface (m = n = 3). An example
of this type of surface together with its control points is
shown in Figure 1. Bézier surfaces can also be expressed
in terms of the matrix product:

S(u, v) = U(u)R(m)PR(n)TV(v)T , (3)

where the P is the matrix representing the net of control
points. This matrix is given by:

P =

2

6664

P0,0 P0,1 . . . P0,n

P1,0 P1,1 . . . P1,n
...

...
. . .

...
Pm,0 Pm,1 . . . Pm,n

3

7775
.

.
The vectors U and VT are polynomial spaces of degree

m and n, associated to the parameterization directions u
and v respectively. Generically, these basis vectors take
the form T(t) = [t↵, t↵�1, ..., t0], where ↵ is the degree of

⇤In the line of other related works, we use the term evaluation to refer to
computation.

Prepared using sagej.cls

2 Journal Title XX(X)

In the last decade, strategies to parallelize the evaluation⇤

of Bézier surfaces have been developed (Section 3).
These strategies, however, circumscribe mostly to the field
of computer-graphics as part of tessellation applications
(conversion of continuous surfaces to discrete triangle
meshes). Furthermore, these strategies are often limited to
the computing of bi-cubic Bézier patches widely used in
rendering and animation.

Generalized parallel strategies going beyond bi-cubic
schemes, together with techniques to map the paralleliza-
tion efficiently onto different hardware platforms, have
consequently the potential to make an impact in the perfor-
mance of not only computer-graphics, but a broader range
of applications.

1.1 Contribution

The aim of this work is computing real-time Bézier
tensor-product surfaces that can be employed not only
in rendering applications—where bi-cubic Bézier surfaces
are predominant—but also in applications requiring high-
degree surfaces.

The main contribution of this work is twofold. On
one hand, we propose a multi-level evaluation (MLE)
method for the computation of parametric non-rational
Bézier tensor-product surfaces of arbitrary degree. The
use of this method can be further applied to other
formulations (e.g., rational Bézier), as well as tensor-
products of higher order than surfaces. On other hand, we
propose different techniques to map MLE onto different
hardware platforms, including central processing units
(CPU), discrete and integrated graphics processing units
(GPU) as well as mobile integrated GPUs—these latter
ones being poorly explored in the literature. As the latest
trends in computing move towards hybrid systems (more
than one kind of processor present), we also propose CPU-
GPU cooperation mechanisms, including the exploitation
of heterogeneous computing systems (HCS) models with
different properties. In addition, we review and classify
the most important works in the literature concerned with
the optimization and acceleration of computation of Bézier
surfaces. These works are then classified (Table 1) attending
to the underlying Bézier formulation, the maximum degree
evaluated, the optimization strategy, the implementation
technology and whether rendering was the main purpose.

The rest of the paper is organized as follows. Section 2
provides fundamental mathematical background on Bézier
surfaces. Section 3 lists and shortly reviews relevant
works in the literature which accelerate and optimize the
computation of Bézier surfaces. In Section 4 the proposed
method (MLE) is described. Section 5, on other hand,
addresses the parallelization and mapping of MLE onto
different computing platforms, including CPUs, GPUs
and HCSs. In Section 6, our experiments and results are

described. These results and the most relevant findings
are discussed in Section 7. Finally, in Section 8, some
concluding remarks are presented.

2 Background
In this section, a brief description of Bézier surfaces is
provided. A deeper description of this type of surfaces and
its properties can be found in Piegl and Tiller (1997). For
simplicity and clarity reasons, in this work, the focus is on
the use of the parametric non-rational formulation of Bézier
surfaces. However, the methods presented in this paper are
generalizable to other Bézier tensor-product formulations
(e.g., rational formulations or higher order tensors).

Mathematically, non-rational Bézier tensor-product sur-
faces S : R2 ! R3 are defined as:

S(u, v) =
mX

i=0

nX

j=0

Pi,jBi,m(u)Bj,n(v), (1)

where u, v 2 [0, 1] form the parametric space of the
surface and Pi,j are control points. The m and n values
determine the degree of the Bernstein polynomials Bi,m(u)
and Bj,n(v) used as basis functions. These polynomials are
generically defined as:

Bi,m(u) =

✓
m

i

◆
(1� u)(m�i)ui, (2)

with 0 i m. Bj,n(v) is defined similarly.
The most common case of Bézier surface in the scientific

literature is the bi-cubic surface (m = n = 3). An example
of this type of surface together with its control points is
shown in Figure 1. Bézier surfaces can also be expressed
in terms of the matrix product:

S(u, v) = U(u)R(m)PR(n)TV(v)T , (3)

where the P is the matrix representing the net of control
points. This matrix is given by:

P =

2

6664

P0,0 P0,1 . . . P0,n

P1,0 P1,1 . . . P1,n
...

...
. . .

...
Pm,0 Pm,1 . . . Pm,n

3

7775
.

.
The vectors U and VT are polynomial spaces of degree

m and n, associated to the parameterization directions u
and v respectively. Generically, these basis vectors take
the form T(t) = [t↵, t↵�1, ..., t0], where ↵ is the degree of

⇤In the line of other related works, we use the term evaluation to refer to
computation.

Prepared using sagej.cls

Bézier Surfaces
n Parametric non-rational formulation

q Bernstein polynomials
q Bi-cubic surface m = n = 3

83

(a) Static Distribution
xyz

...

...

...

...

...

...

...

(b) Dynamic Distribution
xy

...

...

...

...

...

...
...

z

Tile of surface points processed
in CPU

Tile of surface points processed
in GPU

3D Surface point processed
in GPU

3D Surface point processed

in CPU

(a) Static Distribution
xyz

...

...

...

...

...

...

...

(b) Dynamic Distribution
xy

...

...

...

...

...

...

...

z

Tile of surface points processed

in CPU

Tile of surface points processed

in GPU

3D Surface point processed

in GPU

3D Surface point processed

in CPU

Bézier Surfaces
n Collaborative implementation

q Tiles calculated by GPU blocks or CPU threads
q Static distribution

84

// Allocate control points
malloc(control_points, ...);
generate_cp(control_points);
cudaMalloc(d_control_points, ...);
cudaMemcpy(d_control_points, control_points, ..., HostToDevice); // Copy to device memory

// Allocate surface
malloc(surface, ...);
cudaMalloc(d_surface, ...);

// Launch CPU threads
std::thread main_thread (run_cpu_threads, control_points, surface, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (d_surface, d_control_points, ...);

// Synchronize
main_thread.join();
cudaDeviceSynchronize();

// Copy gpu part of surface to host memory
cudaMemcpy(&surface[end_of_cpu_part], d_surface, ..., DeviceToHost);

Bézier Surfaces
n Without Unified Memory

85

n Execution results
q Bezier surface: 300x300, 4x4 control points
q %Tiles to CPU
q NVIDIA Jetson TX1 (4 ARMv8 + 2 SMX): 17% speedup wrt

GPU only

0.0	

10.0	

20.0	

30.0	

40.0	

50.0	

60.0	

70.0	

80.0	

90.0	

0.00	 0.05	 0.10	 0.15	 0.20	 0.25	 0.30	 0.35	 0.40	 0.45	 0.50	

Ex
ec
u2

on
	2
m
e	
(m

s)
	

%Tiles	to	CPU	

Bézier Surfaces

86

// Allocate control points
malloc(control_points, ...);
generate_cp(control_points);
cudaMalloc(d_control_points, ...);
cudaMemcpy(d_control_points, control_points, ..., HostToDevice); // Copy to device memory

// Allocate surface
cudaMallocManaged(surface, ...);

// Launch CPU threads
std::thread main_thread (run_cpu_threads, control_points, surface, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (surface, d_control_points, ...);

// Synchronize
main_thread.join();
cudaDeviceSynchronize();

Bézier Surfaces
n With Unified Memory (Pascal/Volta)

87

n Static vs. dynamic implementation

q Pascal/Volta Unified Memory: system-wide atomic operations

(a) Static Distribution
xyz

...

...

...

...

...

...

...

(b) Dynamic Distribution
xy

...

...

...

...

...

...

...

z

Tile of surface points processed
in CPU

Tile of surface points processed
in GPU

3D Surface point processed
in GPU

3D Surface point processed
in CPU

while(true){
if(threadIdx.x == 0)

my_tile = atomicAdd_system(tile_num, 1); // my_tile in shared memory; tile_num in UM

__syncthreads(); // Synchronization

if(my_tile >= number_of_tiles) break; // Break when all tiles processed
...
}

Bézier Surfaces

88

Benefits of Collaboration
n Data partitioning improves performance

q AMD Kaveri (4 CPU cores + 8 GPU CUs)

4
16
64

256
1024
4096

1C
PU

2C
PU

4C
PU GPU

GPU
 + 1C

PU

GPU
 + 2C

PU

GPU
 + 4C

PU

Ex
ec

ut
io

n
Ti

m
e

(m
s)

12x12 (300x300)
8x8 (300x300)
4x4 (300x300)

Bézier Surfaces
(up to 47% improvement over GPU only)

best

89

n Matrix padding
q Memory alignment
q Transposition of near-square matrices

n Traditionally, it can only be performed out-of-place

0 1 2 3

5 6 7 8

10 11 12 13

15 16 17 18

20 21 22 23

25 26 27 28

30 31 32 33

4

9

14

19

24

29

34

Padding

0 1 2 3

5 6 7 8

10 11 12 13

15 16 17 18

20 21 22 23

25 26 27 28

30 31 32 33

4

9

14

19

24

29

34

Padding

90

n Execution results
q Matrix size: 4000x4000, padding = 1
q NVIDIA Jetson TX1 (4 ARMv8 + 2 SMX): 29% speedup wrt

GPU only

0	

20	

40	

60	

80	

100	

120	

0.00	 0.05	 0.10	 0.15	 0.20	 0.25	 0.30	 0.35	 0.40	 0.45	 0.50	 0.55	 0.60	

Ex
ec
u0

on
	0
m
e	
(m

s)
	

%CPU	workload	

Padding

91

0 1 2 3

5 6 7 8

10 11 12 13

15 16 17 18

20 21 22 23

25 26 27 28

30 31 32 33

4

9

14

19

24

29

34

30 31 32 33

34

25 26 27 28 29

20

21 22 23 24

0 1 2 3

5 6 7 8

10 11 12

13 15 16

17 18

4

9

14

19

20 21 22 23 24

25 26 27 28 29

0 1 2 3

5 6 7 8

10 11 12 13

15 16 17 18

20 21 22 23

25 26 27 28

30 31 32 33

4

9

14

19

24

29

34

30 31 32 33 34

1

GPU temporary
location

30 31 32 33

25 26

20 21

15 16

30 31

1

1

Coherent
memory

25 26

1

1

1

20

21

15 16 17 18 19

20

30 31 32 33

34

25 26 27 28 29

21 22 23 24

15 16

17 18 19

30 31 32 33

34

25 26 27 28 29

20

21 22 23 24

0 1 2 3

5 6 7 8

10 11 12

13 15 16

17 18

4

9

14

19

1

1

1

1

1

1

1

1

1

1

1

Adjacent synchronization:
CPU and GPU

In-place implementation will
be possible

Flags

CPU temporary
location

In-Place Padding
n Pascal/Volta Unified Memory

92

Benefits of Collaboration
n Optimal number of devices is not always max

q AMD Kaveri (4 CPU cores + 8 GPU CUs)

0.0	

2.0	

4.0	

6.0	

8.0	

10.0	

12.0	

14.0	

16.0	

18.0	

+0CPU	 +1CPU	 +2CPU	 +4CPU	 +0CPU	 +1CPU	 +2CPU	 +4CPU	 Copy	 Mul	 Add	 Triad	

8WG(64WI)	 16WG(64WI)	 GPU-STREAM	

Th
ro
ug
hp

ut
	(G

B/
s)
	

ExecuKon	configuraKon	
(GPU	work-groups	+	CPU	threads)	

1000x999	

6000x5999	

12000x11999	

GPU-STREAM	

93

https://chai-benchmarks.github.io

Chai Benchmark Suite
n Collaboration patterns

q 8 data partitioning benchmarks
q 3 coarse-grain task partitioning benchmarks
q 3 fine-grain task partitioning benchmarks

94

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

2 1 3 0 0 1 3 4 0 0 2 1

2 1 3 1 3 4 2 1

Predicate: Element > 0

Input

Output

Stream compaction

Stream Compaction
n Stream compaction

q Saving memory storage in sparse data
q Similar to padding, but local reduction result (non-zero

element count) is propagated

96

0	

2	

4	

6	

8	

10	

12	

14	

0.00	 0.05	 0.10	 0.15	 0.20	 0.25	 0.30	 0.35	 0.40	 0.45	 0.50	 0.55	 0.60	

Ex
ec
u0

on
	0
m
e	
(m

s)
	

%CPU	workload	

Stream Compaction
n Execution results

q Array size: 2 MB, Filtered items = 50%
q NVIDIA Jetson TX1 (4 ARMv8 + 2 SMX): 25% speedup wrt

GPU only

97

Benefits of Collaboration
n Data partitioning improves performance

q AMD Kaveri (4 CPU cores + 8 GPU CUs)

8

32

128

512

1C
PU

2C
PU

4C
PU GPU

GPU
 + 1C

PU

GPU
 + 2C

PU

GPU
 + 4C

PUEx
ec

ut
io

n
Ti

m
e

(m
s)

1
0.5
0

Stream Compaction
(up to 82% improvement over GPU only)

best

98

Breadth-First Search
n Small-sized and big-sized frontiers

q Top-down approach
q Kernel 1 and Kernel 2

n Atomic-based block synchronization
q Avoids kernel re-launch

n Very small frontiers
q Underutilize GPU resources

n Collaborative implementation

99

SM#0 SM#1

Block
0

Block
1

Block
2

Block
3

Block
2nBlock

2nBlock
2nBlock

2nBlock
4

SM#0 SM#1

Block
0

Block
1

Block
2

Block
3

Block
2nBlock

2nBlock
2nBlock

2nBlock
4

0 1 2 3 4 5 m-2 m-1...

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block m-2 Block m-1

0 1 2 3 4 5 m-2 m-1...

Block 0 Block 1 Block 2 Block 3 Block 0 Block 1 Block 2 Block 3

Atomic-Based Block Synchronization
n Combine Kernel 1 and Kernel 2
n We can avoid kernel re-launch
n We need to use persistent thread blocks

q Kernel 2 launches (frontier_size / block_size) blocks
q Persistent blocks: up to (number_SMs x max_blocks_SM)

100

// GPU kernel
const int gtid = blockIdx.x * blockDim.x + threadIdx.x;

while(frontier_size != 0){

for(node = gtid; node < frontier_size; node += blockDim.x*gridDim.x){

// Visit neighbors
// Enqueue in output queue if needed (global or local queue)

}

// Update frontier_size

// Global synchronization
}

Atomic-Based Block Synchronization
n Code (simplified)

101

const int tid = threadIdx.x;
const int gtid = blockIdx.x * blockDim.x + threadIdx.x;
atomicExch(ptr_threads_run, 0);
atomicExch(ptr_threads_end, 0);
int frontier = 0;
...

frontier++;

if(tid == 0){
atomicAdd(ptr_threads_end, 1); // Thread block finishes iteration

}

if(gtid == 0){
while(atomicAdd(ptr_threads_end, 0) != gridDim.x){;} // Wait until all blocks finish

atomicExch(ptr_threads_end, 0); // Reset
atomicAdd(ptr_threads_run, 1); // Count iteration

}

if(tid == 0 && gtid != 0){
while(atomicAdd(ptr_threads_run, 0) < frontier){;} // Wait until ptr_threads_run is updated

}

__syncthreads(); // Rest of threads wait here

...

Atomic-Based Block Synchronization
n Global synchronization (simplified)

q At the end of each iteration

102

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

40000	

45000	

50000	

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

7.0	

8.0	

9.0	

10.0	

1-1
00
	

10
1-2
00
	

20
1-3
00
	

30
1-4
00
	

40
1-5
00
	

50
1-6
00
	

60
1-7
00
	

70
1-8
00
	

80
1-9
00
	

90
1-1
00
0	

10
01
-11
00
	

11
01
-11
96
	

Av
er
ag
e	
no

de
s	p

er
	fr
on

:e
r	

Av
er
ag
e	
ex
ec
u:

on
	:
m
e	
(m

s)
	

Fron:ers	

CPU	(4	threads)	

GPU	(4x256	threads)	

Fron:er	size	

Collaborative Implementation
n Motivation

q Small-sized frontiers underutilize GPU resources
n NVIDIA Jetson TX1 (4 ARMv8 CPUs + 2 SMXs)
n New York City roads

103

Collaborative Implementation
n Choose the most appropriate device

CPU GPU

small frontiers
processed on

CPU

large frontiers
processed on

GPU

104

n Choose CPU or GPU depending on frontier size

n CPU threads or GPU kernel keep running while the
condition is satisfied

// Host code
while(frontier_size != 0){

if(frontier_size < LIMIT){

// Launch CPU threads

}
else{

// Launch GPU kernel

}

}

Collaborative Implementation

105

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

1.2	

NY	 BAY	

N
or
m
al
ize

d	
ex
ec
u9

on
	9
m
e	

Graph	

CPU	

CPU||GPU	

GPU	

15%

Collaborative Implementation
n Execution results

106

// Host code
while(frontier_size != 0){

if(frontier_size < LIMIT){

// Launch CPU threads

}
else{

// Copy from host to device (queues and synchronization variables)

// Launch GPU kernel

// Copy from device to host (queues and synchronization variables)

}

}

Collaborative Implementation
n Without Unified Memory

q Explicit memory copies

107

// Host code
while(frontier_size != 0){

if(frontier_size < LIMIT){

// Launch CPU threads

}
else{

// Launch GPU kernel

cudaDeviceSynchronize();

}

}

Collaborative Implementation
n Unified Memory

q cudaMallocManaged();
q Easier programming
q No explicit memory copies

108

Collaborative Implementation
n Pascal/Volta Unified Memory

q CPU/GPU coherence
q System-wide atomic operations
q No need to re-launch kernel or CPU threads
q Possibility of CPU and GPU working on the same frontier

109

Benefits of Collaboration
n SSSP performs more computation than BFS

16
128

1024
8192

65536
524288

1C
PU

2C
PU

4C
PU GPU

GPU
 + 1C

PU

GPU
 + 2C

PU

GPU
 + 4C

PUEx
ec

ut
io

n
Ti

m
e

(m
s)

NE
NY
UT

Single Source Shortest Path
(up to 22% improvement over GPU only)

110

RANSAC

kernel
(egomotion

estimation)

Flow

vectors

array

F-o-F

model

Compensati

on kernel

2D

Histogram

calculation

Local

maxima

kernel

Clustering

kernel

Region

growing

kernel

Compensation

and differencing

kernel
NPP Erode

Region

growing

kernel

Bounding

boxes

Vector clustering

Frame differencing

Optical flow
Current

frame

Next

frame

legs are free to reach new foot placements or manipulate

a payload, which makes this structure suitable for a rescue

robot. Motion on uneven terrains produce strong egomotion

and various methods have already been proposed for image

stabilization on mobile robots. A method based on morpho-

logical filtering for a pan/tilt camera was proposed in [3]

while [4] proposed a method for motion detection in the

presence of egomotion and to achieve high detection rate

a tracking mechanism using pattern recognition, is utilized.

Similarly [5] proposed an approach which uses tracking of

randomly selected features, assuming that the object occupies

less than half of the frame area. When the target is identified,

algorithm switches to the tracking mode. In [6] a technique

for the detection of moving objects from a mobile robot using

feature tracking and adaptive particle filtering was proposed

but with a poor detection rate in case of uneven terrain or

blurred images. With this new algorithm for walking robots,

we try to overcome these limitations encountered as a result

of strong egomotion and build a motion detection system

performing equally well at different levels of egomotion in

real-time, without prior knowledge about the target. Also a

higher frame rate of 31 fps at VGA resolution is achieved

through hardware-friendly algorithm and appropriate HW/SW

partitioning.

Fig. 1. Six legged robot OSCAR

III. ALGORITHM

A. Structure of the Algorithm
The algorithm can be subdivided into three sections as

shown below:

1) Egomotion estimation

2) Egomotion compensation

3) Moving object detection

The motion detection algorithm is based on optical flow [7],

[8] and Egomotion is first estimated from the optical flow

fields using the first order flow (F-o-F) model presented in

[9] and then compensated using the estimated model. A F-

o-F based frame differencing and 2D histogram based vector

clustering is used for motion detection, as shown in Figure 2.

Each of these techniques is well known individually but we try

to combine and optimize them for a hardware implementation

running in real-time. F-o-F based frame differencing is cur-

rently not implemented in hardware and we plan to complete

this, in the next phase of the project.

Fig. 2. System flow diagram

B. The Motion Model used for Egomotion estimation
Due to six legged OSCAR platform as substructure the

camera motion has six degrees of freedom including yaw,

pitch and roll. To estimate such motion we utilize a motion

model based on F-o-F from [9], as shown in equation 1.

�
vx
vy

⇥
=

�
D �R
R D

⇥ �
x� xc

y � yc

⇥
(1)

Here (vx, vy) represent the x- and y-components of the optical

flow vector, and (x, y) represent the coordinates of the point

of origin of the flow vector and (xc, yc) are coordinates of

the focus of expansion. D represents dilation and R stands for

rotation. Shear is ignored as it is not a significant parameter

for a slow moving robot. The F-o-F motion model described

above, has its limitation in accurately differentiating between

the rotation and translation in x and y axis, which limits

the degrees of freedom to four. But such a reduction helps

to improve the accuracy of the ego-motion estimation as

described in [10].

The F-o-F motion model can be estimated using the

velocity (vx, vy) and position (x, y) of two motion vectors.

Those are denoted as vx1, vy1, x1, y1 and vx2, vy2, x2, y2
respectively. For this purpose the equation 1 is inverted, as

shown in equation 2.

xc =
e1 + e2 + e3

(vx1 ⇥ (vx1 � 2 ⇥ vx2)) + v2
x2 + v2

y1 � (vy2 ⇥ (2 ⇥ vy1 � vy2))

yc =
e4 + e5 + e6

(vx1 ⇥ (vx1 � 2 ⇥ vx2)) + v2
x2 + v2

y1 � (vy2 ⇥ (2 ⇥ vy1 � vy2))

D =
((x1 � x2) ⇥ (vx1 � vx2)) + ((y1 � y2) ⇥ (vy1 � vy2))

(x1 ⇥ (x1 � 2 ⇥ x2)) + x2
2 + (y1 ⇥ (y1 � 2 ⇥ y2)) + y2

2

R =
((x1 � x2) ⇥ (vy1 � vy2)) + ((y2 � y1) ⇥ (vx1 � vx2))

(x1 ⇥ (x1 � 2 ⇥ x2)) + x2
2 + (y1 ⇥ (y1 � 2 ⇥ y2)) + y2

2

(2)

where e1, to e6 are as shown below:

e1 = vx1 ⇥ ((�vx2 ⇥ x1) + vx1 ⇥ x2 � vx2 ⇥ x2 + vy2 ⇥ y1 � vy2 ⇥ y2)

e2 = vy1 ⇥ ((�vy2 ⇥ x1) + vy1 ⇥ x2 � vy2 ⇥ x2 � vx2 ⇥ y1 + vx2 ⇥ y2)

e3 = x1 ⇥ (v2
y2 + v2

x2)

e4 = vx2 ⇥ ((vy1 ⇥ x1) � vy1 ⇥ x2 � vx1 ⇥ y1 + vx2 ⇥ y1 � vx1 ⇥ y2)

e5 = vy2 ⇥ ((�vx1 ⇥ x1) + vx1 ⇥ x2 � vy1 ⇥ y1 + vy2 ⇥ y1 � vy1 ⇥ y2)

e6 = y2 ⇥ (v2
x1 + v2

y1)

(3)

Egomotion Compensation and Moving Objects
Detection
n Hexapod robot OSCAR

q Rescue scenarios
q Strong egomotion on uneven terrains

n Algorithm
q Random Sample Consensus (RANSAC): F-o-F model

111

(b) Fast moving object in strong egomotion scenario detected by vector clustering

Egomotion Compensation and Moving Objects
Detection

112

While (iteration < MAX_ITER){
Fitting stage (Compute F-o-F model) // SISD phase

Evaluation stage (Count outliers) // SIMD phase

Comparison to best model // SISD phase

Check if best model is good enough and iteration >= MIN_ITER // SISD phase
}

SISD and SIMD phases
n RANSAC (Fischler et al. 1981)

q Fitting stage picks two flow
vectors randomly

q Evaluation generates motion
vectors from F-o-F model, and
compares them to real flow
vectors

113

CPU
thread

GPU
block

CPU
thread

GPU
block

CPU
thread

GPU
block

Iteration 0 Iteration 1 Iteration 2

Collaborative Implementation
n Randomly picked vectors: Iterations are independent

q We assign one iteration to one CPU thread and one GPU block

114

https://chai-benchmarks.github.io

Chai Benchmark Suite
n Collaboration patterns

q 8 data partitioning benchmarks
q 3 coarse-grain task partitioning benchmarks
q 3 fine-grain task partitioning benchmarks

115

Chai Benchmark Suite

116

Benefits of Unified Memory

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

D U D U D U D U D U D U D U D U D U D U D U D U D U D U

BS CEDDHSTIHSTOPAD RSCD SC TRNS RSCT TQ TQH BFS CEDTSSSP

Fine-grain Coarse-grain

Data Partitioning Task Partitioning

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
ali

ze
d)

Kernel
Comparable (same kernels,
system-wide atomics make
Unified sometimes slower)

Unified kernels can
exploit more
parallelism

Unified kernels
avoid kernel

launch overhead

117

Benefits of Unified Memory

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

D U D U D U D U D U D U D U D U D U D U D U D U D U D U

BS CEDDHSTIHSTOPAD RSCD SC TRNS RSCT TQ TQH BFS CEDTSSSP

Fine-grain Coarse-grain

Data Partitioning Task Partitioning

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
ali

ze
d)

Kernel Copy Back & Merge Copy To Device

Unified versions avoid copy overhead

118

Benefits of Unified Memory

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

D U D U D U D U D U D U D U D U D U D U D U D U D U D U

BS CEDDHSTIHSTOPAD RSCD SC TRNS RSCT TQ TQH BFS CEDTSSSP

Fine-grain Coarse-grain

Data Partitioning Task Partitioning

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
ali

ze
d)

Kernel Copy Back & Merge Copy To Device Allocation
SVM allocation
seems to take

longer

119

Benefits of Collaboration on FPGA

0.0
0.2
0.4
0.6
0.8
1.0
1.2

C F C F C F C F C F C F C F C F

CPU FPGA Data Task CPU FPGA Data Task

Single device Collaborative Single device Collaborative

Stratix V Arria 10

Ex
ec

ut
io

n
Ti

m
e

(s
) Idle

Copy
Compute

Case Study:
Canny Edge
Detection

Source: Collaborative Computing for Heterogeneous Integrated Systems. ICPE’17
Vision Track.

Similar
improvement
from data and

task partitioning

120

Benefits of Collaboration on FPGA

Case Study:
Random
Sample

Consensus

0
5

10
15
20
25
30
35
40
45

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Data Partitioning (Stratix V)
Task Partitioning (Stratix V)
Data Partitioning (Arria 10)
Task Partitioning (Arria 10)

Source: Collaborative Computing for Heterogeneous Integrated Systems. ICPE’17
Vision Track.

Task partitioning
exploits disparity in

nature of tasks

121

Conclusions
n Possibility of having CPU threads and GPU blocks

collaborating on the same workload
n Or having the most appropriate cores for each workload
n Easier programming with Unified Memory or Shared Virtual

Memory
n System-wide atomic operations in NVIDIA Pascal/Volta and

HSA
q Fine-grain collaboration

122

Computer Architecture
Lecture 21: GPU Programming

Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Fall 2018

5 December 2018

