Computer Architecture
Lecture 7: SIMD Processors
and GPUs

Dr. Juan Gomez Luna
Prof. Onur Mutlu
ETH Zirich
Fall 2018
10 October 2018

Last Week

Main Memory and DRAM Fundamentals (Lecture 5)
Wrap-up Main Memory Challenges

Main Memory Fundamentals

DRAM Basics and Operation

Memory Controllers

Simulation

Memory Latency

Research in DRAM

o ChargeCache (Lecture 6a)

o SoftMC (Lecture 6b)

o REAPER: The Reach Profiler (Lecture 6c¢)
o The DRAM Latency PUF (Lecture 6d)

o O 0O 0O 0O O

Agenda for This Lecture

SIMD Processing
o Vector and Array Processors

Graphics Processing Units (GPUs)

Exploiting Data Para

lelism:

SIMD Processors anc

G PUs

SIMD Processing:
Exploiting Regular (Data) Parallelism

Flynn’s Taxonomy ot Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements

o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor

o Multithreaded processor

Data Parallelism

Concurrency arises from performing the same operation on
different pieces of data

o Single instruction multiple data (SIMD)

o E.g., dot product of two vectors

Contrast with data flow

o Concurrency arises from executing different operations in parallel (in
a data driven manner)

Contrast with thread (“control”) parallelism

o Concurrency arises from executing different threads of control in
parallel

SIMD exploits operation-level parallelism on different data
o Same operation concurrently applied to different pieces of data
o A form of ILP where instruction happens to be the same across data

SIMD Processing

Single instruction operates on multiple data elements
o In time or in space

Multiple processing elements

Time-space duality

o Array processor: Instruction operates on multiple data
elements at the same time using different spaces

a Vector processor: Instruction operates on multiple data
elements in consecutive time steps using the same space

Array vs. Vector Processors

Instruction Stream

LD VR < A[3:0]
ADD VR € VR, 1
MUL VR € VR, 2
ST A[3:0] € VR

ARRAY PROCESSOR

Same op @ same time

[LDO

LD1

LD2

LD3|

ADO
MUO

AD1
MU1

STO

Time

<——Space

ST1
—

AD2
MU2
ST2

AD3
MU3
ST3

Different ops @ same space

VECTOR PROCESSOR

Different ops @ time

LDO
Y
LD1 | ADO

LD2 | AD1 |MUO
LD3 | AD2 [MU1 STO|
AD3 [MU2 ST1

MU3 ST2

Same op @ space ST3

<——Space >

SIMD Array Processing vs. VLIW

= VLIW: Multiple independent operations packed together by the compiler

addr1.r2r3 | load r4.r5+4 mul r7.r8.r9

Instruction
Execution

10

SIMD Atrray Processing vs. VLIW

= Array processor: Single operation on multiple (different) data elements

add VR, VR, 1

[VLEN = 4]

add VR[O],VR[0],1 add VR[1],VR[1],1 add VR[2],VR[2],1 add VR[3],VR[3],1

Instruction

Execution
PE PE PE PE

11

Vector Processors (1)

A vector is a one-dimensional array of numbers

Many scientific/commercial programs use vectors
for (i = 0; i<=49; i++)
Cli] = (A[i] + B[i]) / 2

A vector processor is one whose instructions operate on
vectors rather than scalar (single data) values

Basic requirements

o Need to load/store vectors = vector registers (contain vectors)

o Need to operate on vectors of different lengths = vector length
register (VLEN)

o Elements of a vector might be stored apart from each other in
memory > vector stride register (VSTR)

Stride: distance in memory between two elements of a vector

12

Vector Processors (11)

A vector instruction performs an operation on each element
in consecutive cycles

o Vector functional units are pipelined
o Each pipeline stage operates on a different data element

Vector instructions allow deeper pipelines

o No intra-vector dependencies = no hardware interlocking
needed within a vector

o No control flow within a vector

o Known stride allows easy address calculation for all vector
elements

Enables prefetching of vectors into registers/cache/memory

13

Vector Processor Advantages

+ No dependencies within a vector
o Pipelining & parallelization work really well
o Can have very deep pipelines, no dependencies!

+ Each instruction generates a lot of work
o Reduces instruction fetch bandwidth requirements

+ Highly regular memory access pattern

+ No need to explicitly code loops
o Fewer branches in the instruction sequence

14

Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations
-- Very inefficient if parallelism is irregular
-- How about searching for a key in a linked list?

To program a vector machine, the compiler or hand coder
must make the data structures in the code fit nearly exactly the
regular structure built into the hardware. That’s hard to do in
first place, and just as hard to change. One tweak, and the
low-level code has to be rewritten by a very smart and
dedicated programmer who knows the hardware and often the

subtleties of the application area. Often the rewriting is

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 10

Vector Processor Limitations

-- Memory (bandwidth) can easily become a bottleneck,
especially if
1. compute/memory operation balance is not maintained
2. data is not mapped appropriately to memory banks

16

Vector Processing in More Depth

Vector Registers

Each vector data register holds N M-bit values

Vector control registers: VLEN, VSTR, VMASK
Maximum VLEN can be N

o Maximum number of elements stored in a vector register
Vector Mask Register (VMASK)

o Indicates which elements of vector to operate on

o Set by vector test instructions
e.g., VMASK[i] = (V,[i] == 0)
M-bit wide M-bit wide

V0,0 V1,0
V0,1 V1,1

VO,N-1 V1,N-1

18

Vector Functional Units

Use a deep pipeline to execute

element operations
V ||V ||V
—> fast clock cycle Ll 113
Control of deep pipeline is o
simple because elements in '\]
vector are independent T i
I \ I<|—
o e L]
ix stage multiply pipeline ' \ /+
—

Slide credit: Krste Asanovic

V1 *V2 > V3

19

Vector Machine Organization (CRAY-1)

VECTOR REGISTERS

= = CRAY-1

= = Russell, “The CRAY-1
. ; - computer system,”
) . CACM 1978.

!w “
- l;‘l s1|FLOATING
MERORY e 'A_ = Scalar and vector modes
o ™, et = 8 64-element vector
= h registers

G Bl = 64 bits per element

ADDRESS REGISTERS | cospred
—— = 16 memory banks
. m| = 8 64-bit scalar registers

P
= 8 24-bit address registers

__.mj = 1 é{:n.

FUNCTIONAL UNITS

'y
INSTRUCTION BUFFERS 20

CRAY X-MP-28 @ ETH (CAB, E Floor)

s

CRAY X-MP System Organization

CRAY X-MP system organization

CPU 1

Vregisters Vector functional
8registers units

64 64-bit Add/sub
elements per Shift

register Logical (2)

Vector mask
(64-bits)

Vector length
(7 bits)

Population
(84-bit arithmetic)
Vector
section
Floating point T

Scalar
section

Address
section

Instruction
section

Cray Research Inc., “The
CRAY X-MP Series of
Computer Systems,” 1985

R ANY”

22

CRAY X-MP Design Detail

CRAY X-MP design detail

Mainframe

CRAY X-MP single- and
multiprocessor systems are
designed to offer users outstanding
performance on large-scale,
compute-intensive and I/O-bound
jobs.

CRAY X-MP mainframes consist of
six (X-MP/1), eight (X-MP/2) or
twelve (X-MP/4) vertical columns
arranged in an arc. Power supplies
and cooling are clustered around the
base and extend outward.

Hardware features:

0 9.5 nsec clock

1 One, two or four CPUs, each
with its own computation and
control sections

O Large multiport central memory

0 Memory bank cycle time of 38
nsec on X-MP/4 systems, 76
nsec on X-MP/1 and X-MP/2
models

0 Memory bandwidth of 25-100
gigabits, depending on model

O I/O section

0 Proven cooling and packaging
technologies

Memory size

(millions of Number
Model Number of CPUs 64-bit words) of banks
CRAY X-MP/416 4 16 64
CRAY X-MP/48 4 8 32
CRAY X-MP/216 2 16 32
CRAY X-MP/28 2 8 32
CRAY X-MP/24 2 4 16
CRAY X-MP/18 1 8 32
CRAY X-MP/14 1 4 16
CRAY X-MP/12 1 2 16
CRAY X-MP/11 1 1 16

A description of the major system
components and their functions
follows.

CPU computation section

Within the computation section of
each CPU are operating registers,
functional units and an instruction
control network — hardware
elements that cooperate in executing
sequences of instructions. The
instruction control network makes all
decisions related to instruction issue
as well as coordinating the three
types of processing within each
CPU: vector, scalar and address.
Each of the processing modes has
its associated registers and
functional units.

The block diagram of a CRAY
X-MP/4 (opposite page) illustrates
the relationship of the registers to the
functional units, instruction buffers,
1/O channel control registers,
interprocessor communications
section and memory. For
multiple-processor CRAY X-MP
models, the interprocessor

communications section coordinates
processing between CPUs, and
central memory is shared.

Registers
The basic set of programmable
registers is composed of:

Eight 24-bit address (A) registers
Sixty-four 24-bit intermediate address
(B) registers
Eight 64-bit scalar (S) registers
Sixty-four 64-bit scalar-save
(T) registers
Eight 64-element (4096-bit) vector (V)
registers with 64 bits per element

The 24-bit A registers are generally
used for addressing and counting
operations. Associated with them are
64 B registers, also 24 bits wide.
Since the transfer between an A and
a B register takes only one clock
period, the B registers assume the
role of data cache, storing
information for fast access without
tying up the A registers for relatively
long periods.

Cray Research Inc., “The
CRAY X-MP Series of
Computer Systems,” 1985

23

CRAY X-MP CPU Functional Units

CRAY X-MP CPU functional units

Register Timein
usage clock periods
Address functional units
Addition A 2
Multiplication A 4
Scalar functional units
Addition S 3
Shift-single S 2
Shift-double S 3
Logical S 1
Population, parity and leading zero S 3or4
Vector functional units
Addition Vv 3
Shift V 3or4
Full vector logical V 2
Second vector logical Vv 4
Population, parity V 5
Floating-point functional units
Addition SandV 6
Multiplication SandV 7
Reciprocal approximation SandV 14

Cray Research Inc., “The
CRAY X-MP Series of
Computer Systems,” 1985

24

CRAY X-MP System Configuration

System configuration options

X-MP/1 X-MP/2 X-MP/4

Mainframe

CPUs 1 2 4
Bipolar memory (64-bit words) N/A N/A 8 or 16M
MOS memory (64-bit words) 1,2,4 or 8M 4,8 0r 16M N/A
6-Mbyte channels 20r4 4 4
100-Mbyte channels 1or2 2 4
1000-Mbyte channels 1 1 2
1/0 Subsystem

|/O processors 2,30r4 2,3or4 4
Disk storage units 2-32 2-32 2-32
Magnetic tape channels 1-8 1-8 1-8
Front-end interfaces 1-7 1-7 1-7
Buffer memory (Mbytes) 8,32 0or64 8,32 or 64 64

Solid-state Storage Device
Memory size (Mbytes)

N/A signifies option is not available on the model

256, 512 0r 1024

256, 5120r 1024

256, 512 0r 1024

Cray Research Inc., “The
CRAY X-MP Series of
Computer Systems,” 1985

25

Seymour Cray, the Father ot Supercomputers

"If you were plowing a field, which would you
rather use: Two strong oxen or 1024 chickens?"

& ity

© amityrebecca / Pinterest. https://www.pinterest.chlpin/473018757088408061/

Vector Machine Organization (CRAY-1)

VECTOR REGISTERS

_a = CRAY-1
n 1_tesical ‘é
__ = = Russell, “The CRAY-1
= 2 . Iz computer system,”
= I_7/ B h CACM 1978.
st L=
[- = s1|FLOATING
MEHORY —— | = Scalar and vector modes
™ et = 8 64-element vector
= h registers
Lrcrarge SCALAR

5‘ =, = 8 64-bit scalar registers
= | A ET = 8 24-bit address registers

ADDRESS REGISTERS E:‘jci:‘i:: L H] o 64 blts DEer element
)y / ; ,—1 = 16 memory banks
' =" ADDRESS

FUNCTIONAL UNITS

INSTRUCTION BUFFERS 27

Loading/Storing Vectors from/to Memory

Requires loading/storing multiple elements

Elements separated from each other by a constant distance
(stride)
o Assume stride = 1 for now

Elements can be loaded in consecutive cycles if we can
start the load of one element per cycle

o Can sustain a throughput of one element per cycle

Question: How do we achieve this with a memory that
takes more than 1 cycle to access?
Answer: Bank the memory; interleave the elements across

banks
28

Memory Banking

Memory is divided into banks that can be accessed independently;
banks share address and data buses (to minimize pin cost)

Can start and complete one bank access per cycle
Can sustain N parallel accesses if all N go to different banks

Bank Bank Bank
0 1 2
MDR| | MAR || MDR|| MAR || MDR| | MAR

Data bus

...... Bank

15

MDR| [MAR

Picture credit: Derek Chiou

Address bus

CPU

29

Vector Memory System

Next address = Previous address + Stride

If (stride == 1) && (consecutive elements interleaved
across banks) && (number of banks >= bank latency), then

o we can sustain 1 element/cycle throughput

B .
Vector Registers asel Stride
[F =
Address I 1
Generator \ + /
" —

Memoaory Bank

30

Picture credit: Krste Asanovic

Scalar Code Example: Element-Wise Avg.

For I = 0 to 49
o C[i] = (A[i] + B[i]) / 2

Scalar code (instruction and its latency)

MOVI RO = 50
MOVA R1 = A
MOVA R2 = B
MOVA R3 = C

X: LD R4 = MEM[R1++]
LD R5 = MEM[R2++]
ADD R6 = R4 + R5
SHFR R7 = R6 >> 1
ST MEM[R3++] = R7
DECBNZ RO, X

1

1 304 dynamic instructions

1

1

11 ;autoincrement addressing
11

4

1

11

2 :decrement and branch if NZ

31

Scalar Code Execution Time (In Order)

Scalar execution time on an in-order processor with 1 bank
o First two loads in the loop cannot be pipelined: 2*11 cycles
a 4 + 50*%40 = 2004 cycles

Scalar execution time on an in-order processor with 16
banks (word-interleaved: consecutive words are stored in
consecutive banks)

o First two loads in the loop can be pipelined

a 4 + 50*%30 = 1504 cycles

Why 16 banks?

o 11-cycle memory access latency

o Having 16 (>11) banks ensures there are enough banks to

overlap enough memory operations to cover memory latency
32

Vectorizable Loops

A loop is vectorizable if each iteration is independent of any

other

For I = 0 to 49
o C[i] = (A[i] + B[i]) / 2

Vectorized loop (each instruction and its latency):

MOVI VLEN = 50
MOVI VSTR =1

VLD VO = A

VLD V1 =B

VADD V2 = V0 + V1
VSHFR V3 =V2 >> 1
VST C =V3

/ dynamic instructions

1

11 + VLEN -1
11 + VLEN -1
4 + VLEN - 1
1+ VLEN -1
11 + VLEN -1

33

Basic Vector Code Performance

Assume no chaining (no vector data forwarding)

o i.e., output of a vector functional unit cannot be used as the
direct input of another

o The entire vector register needs to be ready before any
element of it can be used as part of another operation

One memory port (one address generator)
16 memory banks (word-interleaved)

1 1 11 49 11 49 4 49 1 49 11 49

VO = A[0..49] V1 =BJ[0..49] ADD SHIFT

STORE

285 cycles

34

Vector Chaining

Vector chaining: Data forwarding from one vector
functional unit to another

V V ||V V V
LV vl\ 1 2 3 4 5
MULV v3,vl, v2
ADDV v5}xv3 , v4 i
Chain Chain
Load | :\\\\1 I 1
Unit
]

Memory

Slide credit: Krste Asanovic 35

Vector Code Performance - Chaining

= Vector chaining: Data forwarding from one vector

functional unit to another
1 1

11 49

11

49

49

Strict assumption:
Each memory bank
has a single port

1 Wz

These two VLDs cannot be
pipelined. WHY?

;
ﬂ

| (memory bandwidth
| bottleneck)

v

= 182 cycles pipelined. WHY?

VLD and VST cannot be «&—

49

36

Vector Code Performance — Multiple Memory Ports

Chaining and 2 load ports, 1 store port in each bank

1 1 11 49

P11 49

/9 cycles

49

19X perf. improvement! o

37

Questions (1)

What if # data elements > # elements in a vector register?

o Idea: Break loops so that each iteration operates on #
elements in a vector register
E.g., 527 data elements, 64-element VREGs
8 iterations where VLEN = 64
1 iteration where VLEN = 15 (need to change value of VLEN)

o Called vector stripmining

38

(Vector) Stripmining

Surface mining, including strip mining,
open-pit mining and mountaintop removal
mining, is a broad category of mining in
which soil and rock overlying the mineral
deposit (the overburden) are removed, in
contrast to underground mining, in which
the overlying rock is left in place, and the
mineral removed through shafts or tunnels.

Surface mining began in the mid-sixteenth
century!'l and is practiced throughout the
world, although the majority of surface coal
mining occurs in North America.[?! It gained

Coal strip mine in Wyoming

Source: https://en.wikipedia.org/wiki/Surface mining 39

https://en.wikipedia.org/wiki/Surface_mining

Recall: Questions (II)

What if vector data is not stored in a strided fashion in
memory? (irregular memory access to a vector)

o Idea: Use indirection to combine/pack elements into vector
registers

o Called scatter/gather operations

40

Gather/Scatter Operations

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)
A[i] = B[1] + C[D[1]]

Indexed load instruction (Gather)

LV vD, D # Load indices in D vector
[LVI vC, rC, vD # Load indirect from rC base]
LV vB, rB # Load B vector

ADDV.D vA,vB,vC # Do add
SV vA, rA # Store result

41

Gather/Scatter Operations

Gather/scatter operations often implemented in hardware
to handle sparse vectors (matrices)

Vector loads and stores use an index vector which is added
to the base register to generate the addresses

Scatter example

Index Vector Data Vector (to Store) Stored Vector (in Memory)
0 3.14 Baset+0 3.14
2 6.5 Base+l X
6 71.2 Baset+2 6.5
7 2.71 Base+t3d X
Base+t4 X
Baset+S X
Baset+t6 71.2

Base+7 2.71
42

Conditional Operations in a L.oop

What if some operations should not be executed on a vector
(based on a dynamically-determined condition)?

loop: for (i=0; i<N; i++)
if (a[i] '= 0) then b[i]=al[i]*bl[i]

Idea: Masked operations

o VMASK register is a bit mask determining which data element
should not be acted upon

VLD VO = A
VLD V1 = B
VMASK = (VO != 0)
VMUL V1 = VO * V1
VST B = V1

o This is predicated execution. Execution is predicated on mask bit.
43

Another Example with Masking

for (i=0; i < 64; ++i)

if (ali] >= b[i]) Steps to execute the loop in SIMD code
clil = all] 1.C A Bt t
. Compare A, B to ge
else PUMASK
c[i] = b[i]
2. Masked store of Ainto C
A B VMASK 3. Complement VMASK
1 2 0
2 2 1 4. Masked store of B into C
3 2 1
4 10 0
-5 -4 0
0 -3 1
6 5 1
-7 -8 1

44

Masked Vector Instructions

Simple Implementation

— execute all N operations, turn off
result writeback according to mask

M[7]=1
M[6]=0
M[5]=1
M[4]=1
M[3]=0

M[2]=0
M[1]=1

A[7] B[7]
A[6] B[6]
A[5] B[5]
A[4] B[4]
A[3] B[3]
! !

—
\ Cf21)

-

: \CIT |

-

M[0]=0 —1

Write Enable

Slide credit: Krste Asanovic

C[O0]
Write data port

Density-Time Implementation

— scan mask vector and only execute
elements with non-zero masks

M[7]=1
Mel=0 A[7] B[7]

M[5]=1

M[4]=1 <|_
M[3]= 0\\ C[5]
M[2]=0 \C[4]
M[1]= 1
M[0]=0

[0]= ‘ CI1]

Write data port

Which one is better?

Tradeoffs?
45

Some Issues

Stride and banking

o As long as they are re/atively prime to each other and there
are enough banks to cover bank access latency, we can
sustain 1 element/cycle throughput

Storage of a matrix

o Row major: Consecutive elements in a row are laid out
consecutively in memory

o Column major: Consecutive elements in a column are laid out
consecutively in memory

o You need to change the stride when accessing a row versus
column

46

Matrix Multiplication

= A and B, both in row-major order

N
>

|
O O O

U

>

Dnoonn

6 7 8 9 |10 | 11

A4x6 B6x1o — C4x1o

Dot products of rows and columns
of Aand B

-«

: Load A, into vector register V,
Each time, increment address by one to access the next column

Accesses have a stride of 1

: Load B, into vector register V,

Each time, increment address by 10
Accesses have a stride of 10

12

13

14 | 15

16

17

18

19

Different strides can lead
to bank conflicts

\

J/

[How do we minimize them?

N\

J

47

Minimizing Bank Conftlicts

= More banks

= Better data layout to match the access pattern
a Is this always possible?

= Better mapping of address to bank
o E.g., randomized mapping
o Rau, “"Pseudo-randomly interleaved memory,” ISCA 1991.

48

Array vs. Vector Processors, Revisited

Array vs. vector processor distinction is a “purist’s”
distinction

Most "modern” SIMD processors are a combination of both
o They exploit data parallelism in both time and space

o GPUs are a prime example we will cover in a bit more detalil

49

Recall: Array vs. Vector Processors

ARRAY PROCESSOR VECTOR PROCESSOR
Instruction Stream Same op @ same time
Diff t ti
LD VR < A3:0] loo| b1 [lD2 b3 Lpo Crerenters@ime
ADD VR < VR, 1
’ ADO| AD1 |[AD2 AD3
MUL VR € VR, 2 LD1] ADO
ST A[3:0] ¢ VR MUO| MU1 [MU2 MU3 LD2 | AD1 |MUO
STO| ST1 [ST2 ST3 LD3 | AD2 [MU1 STO|
——
Different ops @ same space AD3 [MU2 ST1
v MU3 ST2
Time Same op @ space ST3

<—Space > <—Space >

50

Vector Instruction Execution

VADD A,B > C

Execution using
one pipelined
functional unit

Execution using
four pipelined
functional units

A[6] B[6] A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]

A[5] B[5] A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]

A[4] B[4] A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]

A[3] B[3] A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]
o o o o o

] T]]] [

\ C[2] / \ C[8] / \ C[9] / \C[lO] / \C[ll] /

| Taog @] @] @] an]
C[O] C[O] C[1] C[2] C[3]

<€ Space >

Slide credit: Krste Asanovic

Vector Unit Structure

(f, AT\' L] = L]
Lo) L
AN W I AN W A U Y A §
Partitionqg [A\ L /A A [/A
Vector | 4 I R 1
Registers
El ts O, El ts 1, El ts 2, El ts 3,
N~ 48 5,9, .. 6, 10, .. 7, 11,
\ /] \ N/] \ \

Lane

Functional Unit
/

Memory Subsystem

Slide credit: Krste Asanovic

Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
o Example machine has 32 elements per vector register and 8 lanes
o Completes 24 operations/cycle while issuing 1 vector instruction/cycle

Load Unit Multiply Unit Add Unit
oooooqﬂ-ﬂjﬁl

oooooé—”—é‘f'-g'AAAAAp.A.Ja

time olo|o|o|o|o]e|b|alalalalalladd [a[m/E]m[E[E[E]E

ooooooo Alalalalalalall|m|me|n|e(m|E]m

olojo[ofo[¢=Nalalalalalala|alm|m|m|e|n|em|m

oooooé—”—é‘ﬂg'AAAAA4..A. CIOCC0ECE

olo|o]o|o]o]o]b]alalalalalladd [e(mm[E/m]EE]D

olololololololojalalalalalalall|mmm|em|e|m|m

NARARARNACGEEEEEEE

Instruction mEmmmaae

issue

Slide credit: Krste Asanovic

Automatic Code Vectorization

for (i=0; i < N; i++)
C[i] = A[i] + B[i]~;
Scalar Sequential Code Vectorized Code

Vector Instruction

: Vectorization is a compile-time reordering of
: operation sequencing
: = requires extensive loop dependence analysis

Slide credit: Krste Asanovic 54

Vector/SIMD Processing Summary

Vector/SIMD machines are good at exploiting regular data-
level parallelism
o Same operation performed on many data elements

o Improve performance, simplify design (no intra-vector
dependencies)

Performance improvement limited by vectorizability of code
o Scalar operations limit vector machine performance

o Remember Amdahl’s Law

o CRAY-1 was the fastest SCALAR machine at its time!

Many existing ISAs include (vector-like) SIMD operations
a Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

55

SIMD Operations in Modern ISAs

SIMD ISA Extensions

Single Instruction Multiple Data (SIMD) extension

Instructions

o Single instruction acts on multiple pieces of data at once
o Common application: graphics
o Perform short arithmetic operations (also called packed

arithmetic)

For example: add four 8-bit numbers
Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, S$sl

32

24 23

16 15

8 7

0 Bit position

$s0

$s1

$s2

57

Intel Penttum MMX Operations

Idea: One instruction operates on multiple data elements

simultaneously

2 A /a array processing (yet much more limited)
o Designed with multimedia (graphics) operations in mind

63

8

7

0

(a)

63

16 15

(b)

63

32 31

(c)
63

(d)

Figure 1. MMX technology data types: packed byte (a),
packed word (b), packed doubleword (c), and quadword (d).

No VLEN register

Opcode determines data type:
8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride is always equal to 1.

Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”
|[EEE Micro, 1996.

58

MMX Example: Image Overlaying (1)

= Goal: Overlay the human in image 1 on top of the background in image 2

Figure 8. Chroma keying: image overlay using a background color.

PCMPEQB MM1, MM3

for (i=0; i<image_size; i++) {

if (x[i] == Blue) new_imageli] =ylil;

else new_imagelil = xlil;

MM1 Blue Blue Blue Blue Blue Biue Blue Blue
MM3 | X7!=blue | X6!=blue | X5=blue | X4=blue | X3!=blue|X2!=blue | X1=blue | XO=blue
MM1 | 0x0000 | 0x0000 | OxFFFF | OxFFFF | Ox0000 | Ox0000 | OXFFFF | OXFFFF

Bitmask

Figure 9. Generating the selection bit mask.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 59

MMX Example: Image Overlaying (1)

PAND MM4, MM1 ‘ Y = Blossom image PANDN MM1, MM3 X =Woman'’s image
Mval Y, [Ye | Ys | Yol Yo [Yo [Yy [Yy | MM1[0x0000]0x0000[0xFFFF [0xFFFF [0x0000]0x0000|0xFFFF J0xFFFF |
MM1 [0x0000] 00000 [0xFFFF [OxFFFF [0x0000]0x0000 OxFFFF[OXFFFF] MM3[X, [Xg [Xs | X, [X3 [X | X | Xo |
MM4 [0x0000[0x0000] Y5 | Y. [0x0000[0x0000] Yy | Yo [MM1[X; | X; [0x0000[0x0000] X5 [X, |0x0000|0x0000|

\ POR MM4. MM1 / ?
#

MMal X, | Xe | Yo | Yal X | X | Vo] Yo G

Figure 10. Using the mask with logical MMX instructions to perform a conditional select.

Movg- B -mm3, memt. - /"' Load _éight pixels from
e PR woman’s image - -
Movg ~~ mm4, mem2 /" Load eight pixels from the

- . blossom image
Pcmpegb. mm1, mm3- '

Pand mm4, mmi.
Pandn mmi, mm3

Por ~ mmd, mmt -

Figure 11. MMX code sequence for performing a condi-
tional select.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 00

GPUs (Graphics Processing Units)

GPUs are SIMD Engines Underneath

= The instruction pipeline operates like a SIMD pipeline (e.g.,
an array processor)

= However, the programming is done using threads, NOT
SIMD instructions

= To understand this, let's go back to our parallelizable code
example

= But, before that, let’s distinguish between
o Programming Model (Software)
VS.
a Execution Model (Hardware)

62

Programming Model vs. Hardware Execution Model

Programming Model refers to how the programmer expresses
the code

o E.qg., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,
Multi-threaded (MIMD, SPMD), ...

Execution Model refers to how the hardware executes the
code underneath

o E.qg., Out-of-order execution, Vector processor, Array processor,
Dataflow processor, Multiprocessor, Multithreaded processor, ...

Execution Model can be very different from the Programming
Model
o E.g., von Neumann model implemented by an OoO processor

o E.g., SPMD model implemented by a SIMD processor (a GPU)
63

How Can You Exploit Parallelism Here?

for (i=0; i < N; i++)
Scalar Sequential Code €[i] = A[1] + Bl[1];

Let's examine three programming
options to exploit instruction-level
parallelism present in this sequential
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)

64

Prog. Model 1: Sequential (SISD) O el e At e

Scalar Sequential Code

Can be executed on a:

Pipelined processor

Out-of-order execution processor

o Independent instructions executed
when ready

a Different iterations are present in the
instruction window and can execute in
parallel in multiple functional units

o In other words, the loop is dynamically
unrolled by the hardware

Superscalar or VLIW processor

o Can fetch and execute multiple
instructions per cycle

65

or (i=0; i < N; i++)

Prog. Model 2: Data Parallel (SIMD)f Cli] = A[i] 4+ B[i];

Vectorized Code

Scalar Sequential Code

VLD A-> V1

VLD B->V2

VADD V1+V2->V3

VST V3->C

" Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

Best executed by a SIMD processor (vector, array)
66

for (i=0; i < N; i++)

PI‘Og. M()dfil 3: Multithreaded C[i] = A[i] + B[i];

Scalar Sequential Code

" Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

67

for (i=0; i < N; i++)

PI‘Og. M()dfil 3: Multithreaded C[i] = A[i] + B[i];

1 > Realization: Each iteration is independent

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMT machine

Single Instruction Multiple Thread

A GPU 1s a SIMD (SIMT) Machine

Except it is not programmed using SIMD instructions

It is programmed using threads (SPMD programming model)

o Each thread executes the same code but operates a different
piece of data

o Each thread has its own context (i.e., can be
treated/restarted/executed independently)

A set of threads executing the same instruction are
dynamically grouped into a warp (wavefront) by the
hardware

o A warp is essentially a SIMD operation formed by hardware!

69

. for (i=0; i1 < N; i++)
SPMD on SIMT Machme C[i] = A[i] + B[i];

-

~
.

J

Vs

~

-

~

(i.e., at the same PC)

This particular model is also called:

SPMD: Single Program Multiple Data

A GPU executes it using the SIMT model:

Single Instruction Multiple Thread

Graphics Processing Units
SIMD not Exposed to Programmer (SIM'T)

SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions - each instruction specifies multiple data inputs

o [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions =
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately = i.e., can execute each thread
independently (on any type of scalar pipeline) > MIMD processing

o Can group threads into warps flexibly - I.e., can group threads
that are supposed to fruly execute the same instruction =2

dynamically obtain and maximize benefits of SIMD processing
72

. . for (i=0; i1 < N; i++)
Multlthreadmg Of Warps C[i] = A[i] + B[i];

= Assume a warp consists of 32 threads
= If you have 32K iterations, and 1 iteration/thread - 1K warps

= Warps can be interleaved on the same pipeline - Fine grained
multithreading of warps

Warp 20 at PC X+2

Iter. Iter:.
23*32 + 1 20*%32 + 2

73

Warps and Warp-Level FGMT

Warp: A set of threads that execute the same instruction
(on different data elements) > SIMT (Nvidia-speak)

All threads run the same code
Warp: The threads that run lengthwise in a woven fabric ...

_.=7| | Thread Warp 3
c 5C - yL_Thread Warp 8
Thread Warp hulirieln 7 :
Scalar| Scalar| Scalar Scalar, ,-/ Thread Warp 7
ThreadThreaqThread® ¢« ¢ [Thread | , v
W X Y Z / i .
/ SIMD Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.

High-Level View of a GPU

(PC, Mask) H

I-Cache

Shader| Shader| Shader| ,,, | Shader *

Core Core Core Core
Decode

b1 SN o e e
M \ '
Interconnection Network \ :& & & & '
t ¢ t \ | nﬂ) E’l 2 E .
\ |
Memory = | Memory Memory | | :--aq :aq -aq %’- l
Controller' |Controller Controller] '\ | 1| |&| & |2
$ $ 4 31333
1 SIMD Execution !
GDDR3 GDDR3 GDDR3| | -7 ====— - !

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro Z2008.

Latency Hiding via Warp-Level FGMT

Warp: A set of threads that
execute the same instruction
(on different data elements)

Fine-grained multithreading

o One instruction per thread in
pipeline at a time (No
interlocking)

o Interleave warp execution to
hide latencies

Register values of all threads stay
in register file

FGMT enables long latency
tolerance

o Millions of pixels

Slide credit: Tor Aamodt

L 2
Thread Warp 3

Thread Warp 8

ThreadI Warp 7

A 4

|-Fetch

A 2

Decode

NV ¢ 2 [«
NV 1€ B [«
NV ¢] [«

D-Cache

Warps available
for scheduling

SIMD Pipeline

Warps accessing

memory hierarchy
Miss?

{[_Thread Warp 1

Al Hit?l | Dats

\T/

Writeback

]\ Thread Warp 2

Thread Warp 6

76

Warp Execution (Recall the Slide)

Execution using
one pipelined
functional unit

A[6] B[6]
A[5] BI[5]
A[4] B[4]
A[3] BI[3]
Vo
v
L cT]
| el

Time

=

C[0]

Slide credit: Krste Asanovic

Execution using
four pipelined
functional units

A[24] B[24] A[25] B[25] A[26]
A[20] B[20] A[21] B[21] A[22]
A[16] B[16] A[17] B[17] A[18]
A[12] B[12] A[13] B[13] A[14]

32-thread warp executing ADD A[tid],B[tid] = C[tid]

B[26] A[27]
B[22] A[23]
B[18] A[19]
B[14] A[15]

'S S SN T
Y/ R VA [S V/

B[27]
B[23]
B[19]
B[15]

I
Y,

|
7

'\ Cr8] f '\ coT |

\ Cr10] f

\C[ll] /

] A

acond

<1

T - 1 T

C[O0] C[1] C[2]

C[3]

<€ Space

SIMD Execution Unit Structure

Registers
for each
Thread

Functional Unit
/

==

7 N

=
T
-

L /\

Lane

Registers for Registers for Registers for Registers for
thread IDs thread IDs thread IDs thread IDs
0,4,8, .. 1,5,9, .. 2,6, 10, ... 3,7, 11, ...
Vs § -/ Vo § Y/
A, A A, L]
A A A A
T Yy T T T

Memory Subsystem

Slide credit: Krste Asanovic

Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
o Example machine has 32 threads per warp and 8 lanes
o Completes 24 operations/cycle while issuing 1 warp/cycle

Load Unit Multiply Unit Add Unit
oooooq“v-v-;N
OOOOO(L-V-KAAAAAH-A-
time ololo|lolo|e]e AAAAALVV_ZﬂIIIIIIII
ololo|lo|o|o|o|plalalalalalalaAlAlmmimm|m|m|m|m
OlO|O[O[O[q=""NA|A|A|A|A[A A AlEE EEE D @@
OOOOO(L—-G-KAAAAAQ--A- CIEIEIEIEIEIEIE
o|o|o|o]o|olo|blalalalalaldV> AnE(E|E|E|E|m|m
ololololololololalalalalalalalAlmmim|m|m|m|m|m
AlalalalalalalalmE|m|m|imim|E|m
CIFIEIEIEIEIEIE

| Warp issue >

Slide credit: Krste Asanovic 79

SIMT Memory Access

= Same instruction in different threads uses thread id to
index and access different data elements

Let’s assume N=16, 4 threads per warp > 4 warps

10 11 12 13 14 15 EELIGCELRE

10 11 12 13 14 15 Data elements

Slide credit: Hyesoon Kim 80

Sample GPU SIMT Code (Simplified)

CPU code
[for (i = 0; ii < 100000; +-+ii) {

Clii] = A[ii] + B[ii];
¥

CUDA code ;

// there are 100000 threads
__global__ void KernelFunction(...) {
int tid = blockDim.x * blockIdx.x + threadldx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;
by

—/

Slide credit: Hyesoon Kim

81

Sample GPU Program (Less Simplitied)

CPU Program GPU Program

__global _ add_matrix

(float *a, float *b, float *c, int N) {
Int 1 = blockldx.x * blockDim.x + threadldx.x;
Intj = blockldx.y * blockDim.y + threadldx.y;
intindex =1+ J*N;
if(i<N&&j<N)

c[index] = a[index]+b[index];

}

Int main() {
dim3 dimBlock(blocksize, blocksize) ;
dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock>>>(a, b, ¢, N);

}

Slide credit: Hyesoon Kim 82

Warp-based SIMD vs. Traditional SIMD

Traditional SIMD contains a single thread

o Sequential instruction execution; lock-step operations in a SIMD instruction

o Programming model is SIMD (no extra threads) - SW needs to know
vector length

o ISA contains vector/SIMD instructions

Warp-based SIMD consists of multiple scalar threads executing in a
SIMD manner (i.e., same instruction executed by all threads)
o Does not have to be lock step

o Each thread can be treated individually (i.e., placed in a different warp)
- programming model not SIMD

SW does not need to know vector length
Enables multithreading and flexible dynamic grouping of threads
o ISA is scalar > SIMD operations can be formed dynamically

o Essentially, it is SPMD programming model implemented on SIMD

hardware
83

SPMD

Single procedure/program, multiple data
a This is a programming model rather than computer organization

Each processing element executes the same procedure, except on
different data elements

o Procedures can synchronize at certain points in program, e.g. barriers

Essentially, multiple instruction streams execute the same

program

o Each program/procedure 1) works on different data, 2) can execute a
different control-flow path, at run-time

o Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

o Modern GPUs programmed in a similar way on a SIMD hardware

84

SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions - each instruction specifies multiple data inputs

o [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions =
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately = i.e., can execute each thread
independently on any type of scalar pipeline > MIMD processing

o Can group threads into warps flexibly - i.e., can group threads
that are supposed to fruly execute the same instruction =2

dynamically obtain and maximize benefits of SIMD processing

Threads Can Take Different Paths in Warp-based SI

Each thread can have conditional control flow instructions
Threads can execute different control flow paths

Thread Warp Common PC
Thread|Thread | Thread | Thread
1 2 3 4

Slide credit: Tor Aamodt

86

Control Flow Problem in GPUs/SIMT

A GPU uses a SIMD
pipeline to save area

on control logic 1 1 1 1 1 1 1 1

o Groups scalar threads 1

into warps SlEE 1 1 1 1 1 1 1 1
Path A
Branch divergence ; 1 1 1 1
occurs when threads Path\EJ 1 1 1 1

inside warps branch to
different execution 1 1 1 1 1 1 1 1
paths

This is the same as conditional/predicated/masked execution.
Recall the Vector Mask and Masked Vector Operations?

Slide credit: Tor Aamodt 87

Remember: FEach Thread Is Independent

Two Major SIMT Advantages:

o Can treat each thread separately = i.e., can execute each thread
independently on any type of scalar pipeline > MIMD processing

o Can group threads into warps flexibly - i.e., can group threads
that are supposed to fruly execute the same instruction =2

dynamically obtain and maximize benefits of SIMD processing

If we have many threads
We can find individual threads that are at the same PC

And, group them together into a single warp dynamically
This reduces “divergence” - improves SIMD utilization

o SIMD utilization: fraction of SIMD lanes executing a useful
operation (i.e., executing an active thread)
88

Dynamic Warp Formation/Merging

Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

Form new warps from warps that are waiting

o Enough threads branching to each path enables the creation
of full new warps

Warp X § § ¢ ¥ - vy 4l) wapz
Warp Y ! I

-~ -
- <
- -
- -

89

Dynamic Warp Formation/Merging

= Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

RN REY
EERERRY
RN
IR
v A
e by 7 ' !

Path B

= Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

90

Dynamic Warp Formation Example

X111
A V111

X110
B V0011

y/0010

&
X71000] [x/0710
C D /0001

/0001
y/1100

x/1111
y/1111

Baseline ®°-°

A
|—b-|
> |
| »
2!

D

Legend
A
Execution of Warp x | _‘:I Execution of Warp y
at Basic Block A | -», at Basic Block A
_)

A new warp created from scalar

threads of both Warp x and y
executing at Basic Block D

Dynamic
Warp
Formation

Slide credit: Tor Aamodt

Hardware Constraints Limit Flexibility of Warp Grouping

- ~\ / Functional Unit
G L = |

[[[[

[r< [< L

[| [/\;\j /\;\ﬁ

Registers) - Frafr A ——F ||

for each

Thread Registers for Registers for Registers for Registers for
thread IDs thread IDs thread IDs thread IDs
0,48, .. 1,5,09, .. 2, 6,10, .. 3,7, 11, ...

] a a] A A L A a i
. AV A VAR \ N/] \

%-(Can you move any thread \é
AUl flexibly to any lane?

Memory Subsystem

Slide credit: Krste Asanovic 92

An Example GPU

NVIDIA GeForce GTX 285

NVIDIA-speak:
o 240 stream processors
o “SIMT execution”

Generic speak:
o 30 cores
o 8 SIMD functional units per core

Slide credit: Kayvon Fatahalian

94

NVIDIA GeForce GTX 285 “core’”

64 KB of storage
for thread contexts

ol = SIMD functional unit, control
shared across 8 units

= multiply-add
B = multiply

(registers)

- = instruction stream decode

= execution context storage

Slide credit: Kayvon Fatahalian

95

NVIDIA GeForce GTX 285 “core’”

64 KB of storage
for thread contexts
(registers)

= Groups of 32 threads share instruction stream (each group is

a Warp)

= Up to 32 warps are simultaneously interleaved

= Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

96

NVIDIA GeForce GTX 285

 [m]=] | [=]=]{ [=]=]| [=]=]

| [=[=]|[=]=]{ [=]=]|[=I=]

| [=[=] | [=]=] | [=]=] | [==]|

| [=]=]|[=[=] | [=]=]|[=]=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

| [=]=]{[=]=] | [=]=]|[=[=]|

 [m]=] | [m=] | [w]=] | [=]=]|

| [m]=] | [m=] | [w]=] | [=]=]|

 [m]=] | [w]=]{ [=]=]{ [=]=]|

| [=]=]{[=]=] | [=]=]|[=[=]|

| [=]=]|[=[=] | [=]=]|[=]=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

| [=]=] | [=[=] | [=]=]| [=[=]|

| [=]=]{[=]=] | [=]=]|[=[=]|

| [=[=]|[=]=]{ [=]=]|[=I=]

| [=[=]|[=]=]{ [=]=]{[=I=]

| [=[=] | [=]=] | [=]=] | [==]|

[SI=]] [ST=]| [S[=]| [STS]

[T=] | (<[=]| (<T=]} [ST]

[T] | [wT=] | I<[=] | (=[=])

[ST=]] [ST=]} [S[=]] [STS)

| [=]=]|[=[=] | [=]=]|[=]=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

| [=[=]|[=]=]{ [=]=]|[=I=]

| [=]=] | [=[=] | [=]=]| [=[=]|

| [=]=]{[=]=] | [=]=]|[=[=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

 [m]=] | [w]=] | [=]=]{ [=]=]|

| [m]=] | [m=] | [m]=] | [m]=]|

| [=]=]{[=]=] | [=]=]|[=[=]|

| [=]=]|[=[=] | [=]=]|[=]=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

| [=[=] | [=[=] | [(=]=] | [=]=]|

| [=]=]|[=[=] | [=]=]|[=]=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

 [m]=] | [w]=] | [=]=]{ [=]=]|

| [m]=] | [m=] | [m]=] | [m]=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

| [=]=] | [=[=] | [=]=]| [=[=]|

| [=]=]{[=]=] | [=]=]|[=[=]|

| [=]=]{[=]=] | [=]=]|[=[=]|

| [=]=]|[=[=] | [=]=]|[=]=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

| [=[=] | [=[=] | [(=]=] | [=]=]|

| [=]=]|[=[=] | [=]=]|[=]=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

(=11 [S[=] | T=]] [ST=])

| [=]=]{[=]=] | [=]=]|[=[=]|

[=[=]| [==]{ [wT=]}| [=[=]

| [=[=]|[=]=]{ [=]=]{[=I=]

| [=[=] | [=]=] | [=]=] | [==]|

| [=]=]{[=]=] | [=]=]|[=[=]|

| [=]=]|[=[=] | [=]=]|[=]=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

[=[=]} [=T=]] [wT=]| [<[=]

| [=]=] | [=]=] | [=]=] | [=[=]|

| [=[=]|[=]=]{ [=]=]|[=I=]

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

97

Evolution of NVIDIA GPUs

#Stream Processors

6000

5000

4000

3000

2000

1000

GTX285 GTX480 GTX780 GTX980

(2009)

(2010)

(2013)

(2014)

P100
(2016)

V100
(2017)

16000

14000

12000

10000

8000

6000

4000

2000

GFLOPS

=f=Stream Processors

=@-GFLOPS

98

NVIDIA V100

NVIDIA-speak:

o 5120 stream processors
o “SIMT execution”

Generic speak:
o 80 cores
o 64 SIMD functional units per core

o Tensor cores for Machine Learning

99

NVIDIA V100 Block Diagram

PCI Express 3.0 Host Interface

Memory Controller
J01100u05 Asoluaw

i

Memory Controller
Jonenuol Alowew

Memory Controller
1of10u00 Lowsy

H

Memory Controlier
Jojjonuon Aowow

i
NVLink NVLink t NVLionk NViink

80 cores on the V100

https://devblogs.nvidia.com/inside-volta/

NVIDIA V100 Core

4 157 TFLOPS Single Precision

Dispatch Unit (32 thread/clk) Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) 7-8 TFLOPS DOUble PreCiSion
o v R L | 125 TFLOPS for Deep Learning (Tensor cores)

INT INT FP23 FP32 INT INT FPeQ PP
INT FP32 FPR2 INT INT FPa2 PR
T T FPAFRS rensOR TENSOR T PP yensoR| TensOR
INT Fisa Fpaj | CORE | CORE wr o phj CORE | | CORE
INT FPI2 PR32 INT P32 PPN2
FPO2 FPY INT PR PPN
FP3d PRS2 Sum with
ST Yeart i s : FP16 Full precision FP32 Convert to
$T ST ST ST storage/input product accumulator FP32 result
i;"*-‘ ﬁ-. A>,-. i""’ : -, 0 7 . : more pl’DdI.ICtS
Dispateh Uit (32 threadlclk) Dispatch Unit {32 thread/cik) -_l_.. ‘ -
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) -I I

INT INT FPas Pesd ! INT | INT FPa2 PR -
INT FPA2 FPRR INT T EPa2 Fpad

INT FRaz FrRas T T P PR

e FRIZFER TENSOR TENSOR INT| FS33 FPEE ENSOR TENSOR

P CORE CORE P12 PR CORE CORE

Pl FrRd D:

P2 rpx2

FP16 or FP32 FP16 or FP32

Lor W L
ST ST §

https://devblogs.nvidia.com/inside-volta/

101

Computer Architecture
Lecture 7: SIMD Processors
and GPUs

Dr. Juan Gomez Luna
Prof. Onur Mutlu
ETH Zirich
Fall 2018
10 October 2018

