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Last Week 
n Main Memory and DRAM Fundamentals (Lecture 5)

q Wrap-up Main Memory Challenges
q Main Memory Fundamentals 
q DRAM Basics and Operation
q Memory Controllers
q Simulation
q Memory Latency

n Research in DRAM
q ChargeCache (Lecture 6a)
q SoftMC (Lecture 6b)
q REAPER: The Reach Profiler (Lecture 6c)
q The DRAM Latency PUF (Lecture 6d)
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Agenda for This Lecture
n SIMD Processing

q Vector and Array Processors

n Graphics Processing Units (GPUs)
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Exploiting Data Parallelism:
SIMD Processors and GPUs



SIMD Processing:
Exploiting Regular (Data) Parallelism



Flynn’s Taxonomy of Computers

n Mike Flynn, �Very High-Speed Computing Systems,� Proc. 
of IEEE, 1966

n SISD: Single instruction operates on single data element
n SIMD: Single instruction operates on multiple data elements

q Array processor
q Vector processor

n MISD: Multiple instructions operate on single data element
q Closest form: systolic array processor, streaming processor

n MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams)
q Multiprocessor
q Multithreaded processor
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Data Parallelism
n Concurrency arises from performing the same operation on 

different pieces of data
q Single instruction multiple data (SIMD)
q E.g., dot product of two vectors

n Contrast with data flow
q Concurrency arises from executing different operations in parallel (in 

a data driven manner)

n Contrast with thread (�control�) parallelism
q Concurrency arises from executing different threads of control in 

parallel

n SIMD exploits operation-level parallelism on different data
q Same operation concurrently applied to different pieces of data
q A form of ILP where instruction happens to be the same across data
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SIMD Processing
n Single instruction operates on multiple data elements

q In time or in space
n Multiple processing elements 

n Time-space duality

q Array processor: Instruction operates on multiple data 
elements at the same time using different spaces

q Vector processor: Instruction operates on multiple data 
elements in consecutive time steps using the same space
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Array vs. Vector Processors
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ARRAY PROCESSOR VECTOR PROCESSOR

LD     VR ß A[3:0]
ADD  VR ß VR, 1 
MUL  VR ß VR, 2
ST     A[3:0] ß VR

Instruction Stream

Time

LD0 LD1 LD2 LD3
AD0 AD1 AD2 AD3
MU0 MU1 MU2 MU3
ST0 ST1 ST2 ST3

LD0
LD1 AD0
LD2 AD1 MU0
LD3 AD2 MU1 ST0

AD3 MU2 ST1
MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space



SIMD Array Processing vs. VLIW
n VLIW: Multiple independent operations packed together by the compiler
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SIMD Array Processing vs. VLIW
n Array processor: Single operation on multiple (different) data elements
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Vector Processors (I)
n A vector is a one-dimensional array of numbers
n Many scientific/commercial programs use vectors

for (i = 0; i<=49; i++)
C[i] = (A[i] + B[i]) / 2

n A vector processor is one whose instructions operate on 
vectors rather than scalar (single data) values

n Basic requirements
q Need to load/store vectors à vector registers (contain vectors)
q Need to operate on vectors of different lengths à vector length 

register (VLEN)
q Elements of a vector might be stored apart from each other in 

memory à vector stride register (VSTR)
n Stride: distance in memory between two elements of a vector
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Vector Processors (II)
n A vector instruction performs an operation on each element 

in consecutive cycles
q Vector functional units are pipelined
q Each pipeline stage operates on a different data element

n Vector instructions allow deeper pipelines
q No intra-vector dependencies à no hardware interlocking 

needed within a vector
q No control flow within a vector
q Known stride allows easy address calculation for all vector 

elements
n Enables prefetching of vectors into registers/cache/memory
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Vector Processor Advantages
+ No dependencies within a vector 

q Pipelining & parallelization work really well
q Can have very deep pipelines, no dependencies! 

+ Each instruction generates a lot of work 
q Reduces instruction fetch bandwidth requirements

+ Highly regular memory access pattern 

+ No need to explicitly code loops 
q Fewer branches in the instruction sequence

14



Vector Processor Disadvantages
-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations
-- Very inefficient if parallelism is irregular

-- How about searching for a key in a linked list?

15Fisher, �Very Long Instruction Word architectures and the ELI-512,� ISCA 1983.



Vector Processor Limitations
-- Memory (bandwidth) can easily become a bottleneck, 

especially if
1. compute/memory operation balance is not maintained
2. data is not mapped appropriately to memory banks
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Vector Processing in More Depth



Vector Registers
n Each vector data register holds N M-bit values
n Vector control registers: VLEN, VSTR, VMASK
n Maximum VLEN can be N

q Maximum number of elements stored in a vector register
n Vector Mask Register (VMASK)

q Indicates which elements of vector to operate on
q Set by vector test instructions

n e.g., VMASK[i] = (Vk[i] == 0)
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V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

M-bit wide M-bit wide



Vector Functional Units
n Use a deep pipeline to execute 

element operations
à fast clock cycle

n Control of deep pipeline is 
simple because elements in 
vector are independent  

19

V
1

V
2

V
3

V1 * V2 à V3

Six stage multiply pipeline

Slide credit: Krste Asanovic



Vector Machine Organization (CRAY-1)
n CRAY-1
n Russell, �The CRAY-1 

computer system,�
CACM 1978.

n Scalar and vector modes
n 8 64-element vector 

registers
n 64 bits per element
n 16 memory banks
n 8 64-bit scalar registers
n 8 24-bit address registers
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CRAY X-MP-28 @ ETH (CAB, E Floor)
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CRAY X-MP System Organization
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Cray Research Inc., “The 
CRAY X-MP Series of 
Computer Systems,” 1985

E 
CRAY X-MP system organization 



CRAY X-MP Design Detail
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Cray Research Inc., “The 
CRAY X-MP Series of 
Computer Systems,” 1985

CRAY X-MP designdetail  
Mainframe 
CRAY X-MP single- and 
multiprocessor systems are 
designed to offer users outstandmg 
performance on large-scale, 
compute-intensive and 110-bound 
jobs. 

CRAY X-MP mainframes consist of 
SIX (X-MPII), eight (X-MPl2) or 
twelve (X-MPl4) vertical columns 
arranged in an arc. Power supplies 
and cooling are clustered around the 
base and extend outward. 

Model Number of CPUs 

CRAY X-MPl416 
CRAY X-MPl48 
CRAY X-MPl216 
CRAY X-MP128 
CRAY X-MPl24 
CRAY X-MPl18 
CRAY X-MPl14 
CRAY X-MP112 
CRAY X-MPII 1 

A description of the major system 
components and their functions 
follows. 

CPU computation section 

Within the computation section of 
each CPU are operating registers, 
functional units and an instruction 
control network -hardware 
elements that cooperate in executing 
sequences of instructions. The 
instruction control network makes all 
decisions related to instruction issue 
as well as coordinating the three 
types of processing within each 
CPU: vector, scalar and address. 
Each of the processing modes has 
its associated registers and 
functional u n k  

The block diagram of a CRAY 
X-MPl4 (opposite page) illustrates 
the relationship of the registers to the 
functional units, instruction buffers, 
I10 channel control registers, 
interprocessor communications 
section and memory. For 
multiple-processor CRAY X-MP 
models, the interprocessor 

Memory size 
(millions of Number 

64-bit words) of banks 

communications section coordinates 
processing between CPUs, and 
central memory is shared. 

Registers 
The basic set of programmable 
registers is composed of: 

Eight 24-bit address (A) registers 
Sixty-four 24-b~t intermediate address 

(B) registers 
Eight 64-bit scalar (S) registers 
Sixty-four 64-bit scalar-save 

(T) reg~sters 
Eight 64-element (4096-bit) vector (V) 

registers with 64 bits per element 

The 24-bit A registers are generally 
used for addressing and counting 
operations. Associated with them are 
64 B registers, also 24 bits wide. 
Since the transfer between an A and 
a B register takes only one clock 
period, the B registers assume the 
role of data cache, storing 
information for fast access without 
tying up the A registers for relatively 
long periods. 



CRAY X-MP CPU Functional Units
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shared registers for btcrprucessw 
comrnun~cat~onand synchronlzatlon 
Each cluster of shared reglsters 
cons~stsof eight 24-b~t shared 
address (SB) reglsters, e~ght 64-b~t 
shared scalar (ST) reg~stersand 
thirty-two one-b~t synchron~zation 
(SM) reglsters. 

Under operat~ng system control, a 
cluster may be allocated to zero, one, 
two, three or four processors, 
depend~ngon system conflguratlon 
The cluster may be accessed by any 
processor to whlch ~t IS allocated In 
e~theruser or system (monitor) 
mode. Any processor In monltor 

cause ~t to swltch from user to 
monitor mode. Addlt~onally, each 
processor In a cluster can 
asynchronously perform scalar or 
vector operations dctated by user 
programs. The hardware also 
provides bulk-ln detect~on of system 
deadlock w~thln the cluster. 

Real-timeclock 
Programs can be precisely tlmed 
wlth a 64-b~t real-time clock shared 
by the processors that increments 
once each 9.5 nsec. 

CPU control section 
Each CRAY X-MP CPU contains its 
own control section. Within each of 
these are four instruction buffers, 

mehw h  128 7 @-bitinsfruetion 
parcels, twlce the capac~ty of the 
CRAY-1 ~nstruct~on buffer. The 
instruction buffers of each CPU are 
baded from memory at the burst rate 
~f eight words per clock period. 

The contents of the exchange 
package are augmented to lnclude 
cluster and processor numbers. 
Increased data protection IS also 
made possible through a separate 
memory field for user programs and 
data. Exchange sequences occur at 
the rate of two words per clock 
perlod on the CRAY X-MP. 

Cray Research Inc., “The 
CRAY X-MP Series of 
Computer Systems,” 1985



CRAY X-MP System Configuration
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Cray Research Inc., “The 
CRAY X-MP Series of 
Computer Systems,” 1985

The optional SSD consists of four columns arranged 
in a 900 arc occupying 24 square feet (2.3 square 
meters) and is connected to the mainframe through 
one or two short aerial bridgeways, depending on 
model. 

High-speed 16-gate array integrated logic circuits 
are used in the CRAY X-MP CPUs. These logic 
circuits, with typical 300 to 400 picosecond 
propagation delays, are faster and denser than the 
circuitry used in the CRAY-1. CRAY X-MPl4 

A terrain mapping of the San 
FranciscoBay area developed 
for real-time ernemsncvss-
sessrngnt.A 7qlgibyt6
database and a ray-tracing ai- 
gonthrn were used to prepare 

memory is composed of ECL bipolar circuits; CRAY 
X-MP11 and CRAY X-MPl2 memory is composed of 
static MOS components. 

The dense concentration of components requires 
special cooling techniques to overcome the 
accompanying problems of heat dissipation. A 
proven, patented cooling system using liquid 
refrigerant cooling maintains the necessary internal 
system temperature which contributes to high 
system reliability and minimizes the requirement for 
expensive room cooling equipment. 

1 Characters trorn 'The Adven-' tures of Andre and Wally 8" 
generated on a CRAY X-MP. 
(Credit @ r $84, Lucasf~lm 



Seymour Cray, the Father of Supercomputers
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"If you were plowing a field, which would you 
rather use: Two strong oxen or 1024 chickens?"

© amityrebecca / Pinterest. https://www.pinterest.ch/pin/473018767088408061/

© Scott Sinklier / Corbis. http://america.aljazeera.com/articles/2015/2/20/the-short-brutal-life-of-male-chickens.html



Vector Machine Organization (CRAY-1)
n CRAY-1
n Russell, �The CRAY-1 

computer system,�
CACM 1978.

n Scalar and vector modes
n 8 64-element vector 

registers
n 64 bits per element
n 16 memory banks
n 8 64-bit scalar registers
n 8 24-bit address registers
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Loading/Storing Vectors from/to Memory
n Requires loading/storing multiple elements

n Elements separated from each other by a constant distance 
(stride)
q Assume stride = 1 for now

n Elements can be loaded in consecutive cycles if we can 
start the load of one element per cycle
q Can sustain a throughput of one element per cycle

n Question: How do we achieve this with a memory that 
takes more than 1 cycle to access?

n Answer: Bank the memory; interleave the elements across 
banks

28



Memory Banking
n Memory is divided into banks that can be accessed independently; 

banks share address and data buses (to minimize pin cost)
n Can start and complete one bank access per cycle
n Can sustain N parallel accesses if all N go to different banks

29

Bank
0

Bank
1

MDR MAR

Bank
2

Bank
15

MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU
Picture credit: Derek Chiou



Vector Memory System
n Next address = Previous address + Stride
n If (stride == 1) && (consecutive elements interleaved 

across banks) && (number of banks >= bank latency), then
q we can sustain 1 element/cycle throughput

30

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base StrideVector Registers

Memory Banks

Address 
Generator

Picture credit: Krste Asanovic



Scalar Code Example: Element-Wise Avg.
n For I = 0 to 49

q C[i] = (A[i] + B[i]) / 2

n Scalar code (instruction and its latency)
MOVI R0 = 50 1
MOVA R1 = A 1
MOVA R2 = B 1
MOVA R3 = C 1

X:  LD R4 = MEM[R1++] 11  ;autoincrement addressing
LD R5 = MEM[R2++] 11
ADD R6 = R4 + R5 4
SHFR R7 = R6 >> 1 1
ST MEM[R3++] = R7 11
DECBNZ R0, X 2   ;decrement and branch if NZ

31

304 dynamic instructions



Scalar Code Execution Time (In Order)
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n Scalar execution time on an in-order processor with 1 bank
q First two loads in the loop cannot be pipelined: 2*11 cycles
q 4 + 50*40 = 2004 cycles

n Scalar execution time on an in-order processor with 16 
banks (word-interleaved: consecutive words are stored in 
consecutive banks)
q First two loads in the loop can be pipelined
q 4 + 50*30 = 1504 cycles

n Why 16 banks?
q 11-cycle memory access latency
q Having 16 (>11) banks ensures there are enough banks to 

overlap enough memory operations to cover memory latency



Vectorizable Loops
n A loop is vectorizable if each iteration is independent of any 

other

n For I = 0 to 49
q C[i] = (A[i] + B[i]) / 2

n Vectorized loop (each instruction and its latency):
MOVI VLEN = 50 1
MOVI VSTR = 1 1
VLD V0 = A 11 + VLEN – 1
VLD V1 = B 11 + VLEN – 1
VADD V2 = V0 + V1 4 + VLEN – 1
VSHFR V3 = V2 >> 1 1 + VLEN – 1
VST C = V3 11 + VLEN – 1

33

7 dynamic instructions



Basic Vector Code Performance
n Assume no chaining (no vector data forwarding)

q i.e., output of a vector functional unit cannot be used as the 
direct input of another 

q The entire vector register needs to be ready before any 
element of it can be used as part of another operation

n One memory port (one address generator)
n 16 memory banks (word-interleaved)

n 285 cycles
34

1 1 11 49 11 49 4 49 1 49 11 49

V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE



Vector Chaining
n Vector chaining: Data forwarding from one vector 

functional unit to another

35

Memory

V
1

Load 
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV   v1
MULV v3,v1,v2
ADDV v5, v3, v4

Slide credit: Krste Asanovic



Vector Code Performance - Chaining
n Vector chaining: Data forwarding from one vector 

functional unit to another

n 182 cycles

36

1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs cannot be 
pipelined. WHY?

VLD and VST cannot be 
pipelined. WHY?

Strict assumption:
Each memory bank 
has a single port 
(memory bandwidth
bottleneck)



Vector Code Performance – Multiple Memory Ports

n Chaining and 2 load ports, 1 store port in each bank

n 79 cycles
n 19X perf. improvement!

37

1 1 11 49

4 49

1 49

11 49

11 491



Questions (I)
n What if # data elements > # elements in a vector register?

q Idea: Break loops so that each iteration operates on # 
elements in a vector register
n E.g., 527 data elements, 64-element VREGs
n 8 iterations where VLEN = 64
n 1 iteration where VLEN = 15 (need to change value of VLEN)

q Called vector stripmining

38



(Vector) Stripmining

39Source: https://en.wikipedia.org/wiki/Surface_mining

https://en.wikipedia.org/wiki/Surface_mining


Recall: Questions (II)
n What if vector data is not stored in a strided fashion in 

memory? (irregular memory access to a vector)
q Idea: Use indirection to combine/pack elements into vector 

registers
q Called scatter/gather operations

40



Gather/Scatter Operations

41

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)

A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)
LV vD, rD       # Load indices in D vector
LVI vC, rC, vD  # Load indirect from rC base
LV vB, rB       # Load B vector
ADDV.D vA,vB,vC # Do add
SV vA, rA       # Store result



Gather/Scatter Operations
n Gather/scatter operations often implemented in hardware 

to handle sparse vectors (matrices)
n Vector loads and stores use an index vector which is added 

to the base register to generate the addresses

n Scatter example

42

Index Vector                 Data Vector (to Store)            Stored Vector (in Memory)

0 3.14 Base+0      3.14
2 6.5 Base+1      X
6 71.2 Base+2      6.5
7 2.71 Base+3      X

Base+4      X
Base+5      X
Base+6    71.2
Base+7      2.71 



Conditional Operations in a Loop
n What if some operations should not be executed on a vector 

(based on a dynamically-determined condition)?
loop: for (i=0; i<N; i++)

if (a[i] != 0) then b[i]=a[i]*b[i]

n Idea: Masked operations 
q VMASK register is a bit mask determining which data element 

should not be acted upon
VLD V0 = A
VLD V1 = B
VMASK = (V0 != 0)
VMUL V1 = V0 * V1
VST B = V1

q This is predicated execution. Execution is predicated on mask bit.
43



Another Example with Masking
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for (i = 0; i < 64; ++i)
if (a[i] >= b[i]) 

c[i] = a[i]
else 

c[i] = b[i]

A B VMASK    
1 2 0                 
2 2 1
3 2 1
4 10 0
-5 -4 0
0 -3 1
6 5 1
-7 -8 1

Steps to execute the loop in SIMD code

1. Compare A, B to get 
VMASK

2. Masked store of A into C

3. Complement VMASK

4. Masked store of B into C



Masked Vector Instructions
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C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1
M[5]=1

M[6]=0

M[2]=0

M[1]=1
M[0]=0

M[7]=1

Density-Time Implementation
– scan mask vector and only execute 

elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]
A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1
M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable

A[7] B[7]M[7]=1

Simple Implementation
– execute all N operations, turn off 

result writeback according to mask

Slide credit: Krste Asanovic

Which one is better?

Tradeoffs?



Some Issues
n Stride and banking

q As long as they are relatively prime to each other and there 
are enough banks to cover bank access latency, we can 
sustain 1 element/cycle throughput

n Storage of a matrix
q Row major: Consecutive elements in a row are laid out 

consecutively in memory
q Column major: Consecutive elements in a column are laid out 

consecutively in memory
q You need to change the stride when accessing a row versus 

column

46



n A and B, both in row-major order

n A: Load A0 into vector register V1
q Each time, increment address by one to access the next column
q Accesses have a stride of 1

n B: Load B0 into vector register V2
q Each time, increment address by 10
q Accesses have a stride of 10

0 1 2 3 4 5

6 7 8 9 10 11

0 1 2 3 4 5

10 11 12 13 14 15

20

30

6 7 8 9

16 17 18 19

40

50

A0 B0

Matrix Multiplication

47

A4x6 B6x10 → C4x10

Dot products of rows and columns 
of A and B

Different strides can lead 
to bank conflicts

How do we minimize them?



Minimizing Bank Conflicts
n More banks

n Better data layout to match the access pattern
q Is this always possible?

n Better mapping of address to bank
q E.g., randomized mapping
q Rau, “Pseudo-randomly interleaved memory,” ISCA 1991.
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Array vs. Vector Processors, Revisited
n Array vs. vector processor distinction is a “purist’s” 

distinction

n Most “modern” SIMD processors are a combination of both
q They exploit data parallelism in both time and space
q GPUs are a prime example we will cover in a bit more detail

49



Recall: Array vs. Vector Processors
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ARRAY PROCESSOR VECTOR PROCESSOR

LD     VR ß A[3:0]
ADD  VR ß VR, 1 
MUL  VR ß VR, 2
ST     A[3:0] ß VR

Instruction Stream

Time

LD0 LD1 LD2 LD3
AD0 AD1 AD2 AD3
MU0 MU1 MU2 MU3
ST0 ST1 ST2 ST3

LD0
LD1 AD0
LD2 AD1 MU0
LD3 AD2 MU1 ST0

AD3 MU2 ST1
MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space



Vector Instruction Execution
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VADD A,B à C

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]
A[6] B[6]

Execution using 
one pipelined 
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]
A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]
A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]
A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]
A[27] B[27]

Execution using 
four pipelined 
functional units

Slide credit: Krste Asanovic

Time

Space

Time



Vector Unit Structure
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Lane

Functional Unit

Partitioned
Vector
Registers

Memory Subsystem

Elements 0, 
4, 8, …

Elements 1, 
5, 9, …

Elements 2, 
6, 10, …

Elements 3, 
7, 11, …

Slide credit: Krste Asanovic



Vector Instruction Level Parallelism
Can overlap execution of multiple vector instructions

q Example machine has 32 elements per vector register and 8 lanes
q Completes 24 operations/cycle while issuing 1 vector instruction/cycle

53

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction 
issue

Slide credit: Krste Asanovic



Automatic Code Vectorization
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for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a compile-time reordering of 
operation sequencing
Þ requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Vectorized Code

Ti
m

e

Slide credit: Krste Asanovic



Vector/SIMD Processing Summary
n Vector/SIMD machines are good at exploiting regular data-

level parallelism
q Same operation performed on many data elements
q Improve performance, simplify design (no intra-vector 

dependencies)

n Performance improvement limited by vectorizability of code
q Scalar operations limit vector machine performance
q Remember Amdahl’s Law
q CRAY-1 was the fastest SCALAR machine at its time!

n Many existing ISAs include (vector-like) SIMD operations
q Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

55



SIMD Operations in Modern ISAs



SIMD ISA Extensions
n Single Instruction Multiple Data (SIMD) extension 

instructions
q Single instruction acts on multiple pieces of data at once
q Common application: graphics
q Perform short arithmetic operations (also called packed 

arithmetic)
n For example: add four 8-bit numbers
n Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, $s1

a0

0781516232432 Bit position

$s0a1a2a3

b0 $s1b1b2b3

a0 + b0 $s2a1 + b1a2 + b2a3 + b3

+

57



Intel Pentium MMX Operations
n Idea: One instruction operates on multiple data elements 

simultaneously
q À la array processing (yet much more limited)
q Designed with multimedia (graphics) operations in mind

58

Peleg and Weiser, �MMX Technology
Extension to the Intel Architecture,�
IEEE Micro, 1996.

No VLEN register
Opcode determines data type:
8 8-bit bytes
4 16-bit words
2 32-bit doublewords
1 64-bit quadword

Stride is always equal to 1.



MMX Example: Image Overlaying (I)
n Goal: Overlay the human in image 1 on top of the background in image 2

59Peleg and Weiser, �MMX Technology Extension to the Intel Architecture,� IEEE Micro, 1996.

PMADDWD~ vo I VI I vo I V I  I I v 2  I v3 I v 2  1 v 3  1 
X X X X X X X X 

1 MOO 1 MO1 I M10 I M I 1  I I MO2 I MO3 1 M12 I M13 1 
1 VOxMOO+Vl xMOl I VOxMl O+V1 xM11 I 1 V2xM02+V3xM03 I V2xM12+V3xMl3 I 

1 First result I Second result 1 
P A D D D ~  + / 

Figure 7. Flow diagram of matrix-vector mult iply. 

much like the one in Figure 6. This operation and similar ones 
appear in many multimedia algorithms and applications. 

A multiply-accumulate operation (MAC)-the product of 
two operands added to a third operand (the accumulator)- 
requires two loads (operands of the multiplication opera- 
tion), a multiply, and an add (to the accumulator). MMX does 
not support three-operand instructions, therefore it does not 
have a full MAC capability. On the other hand, MMX does 
define the PMADDWD instruction that performs four multi- 
plies and two 32-bit adds. A following PADDD instruction 
performs the additional two adds. 

We start by looking at a vector dot product, the building 
block of the matrix-vector multiplication. For this perfor- 
mance example, we assume both input vectors are 16 ele- 
ments long, with each element in the vectors being signed 
16 bits. Accumulation takes place in 32-bit precision. A 
Pentium processor microarchitecture, for example, would 
have to process the operations one at a time in sequential 
fashion. This amounts to 32 loads, 16 multiplies, and 1 j addi- 
tions, for a total of 63 instructions. Assume we perform four 
MACs (out of the 16) per loop iteration of our code. Then, 
we need to add 12 instructions for loop control (3 instructions 
per iteration, increment, compare, branch) and 1 instruction 
to store the result. Now the total is 76 instructions. 

Assuming all data and instructions are in the on-chip 
caches, and that exiting the loop will incur one branch mis- 
prediction, the integer assembly optimized version of this 
code (using both pipelines) takes just over 200 cycles on a 
Pentium processor microarchitecture. The cycle count is 
dominated by the nonpipelined, 11-cycle integer multiply 
operation. Under the same conditions, but assuming the data 
is in floating-point format, the floating-point optimized 
assembly version executes in 74 cycles. This version is faster 
as the floating-point multiply takes only three cycles to exe- 
cute and executes in a pipelined unit. 

Now, we can look at MMX technology MMX computes 
four elements at a time. This reduces the instruction count to 
eight loads, four PMADDWD instructions, three PADDD 
instructions, one store instruction, and three additional 
instructions (overhead due to packed data types), totaling 19 
instructions. Performing loop unrolling of four PMADDWD 
instructions eliminates the need to insert loop control instruc- 
tions. The four PMADDWDs already perform the 16 required 
MACs. Thus, the MMX instruction count is four times less than 
that for integer or floating-point operations. With the same 
assumptions applied to a Pentium processor microarchitec- 
ture, an MMX-optimized assembly version of the code using 
both pipelines will execute in only 12 cycles. This is a 

speedup of six times over floating- 
point and much more over integer. 

Now, we extend this example to 
a full matrix-vector multiply. We 
assume a 16x16 matrix multiplies a 
16-element vector, an operation built 
of 16 vector dot products. Repeating 
the same exercise as before, and 
assuming a loop unrolling that per- 
forms four vector dot products each 
iteration, the regular Pentium proces- 

sol- floating-point code will total 4(4x76 + 3) or 1,228 instnic- 
tions. Using MMX technology will require 4(4x19 + 3) or 316 
instructions. The MMX instruction count is 3.9 times less than 
when using regular operations. The best regular code imple- 
mentation (floating-point optimized version) takes just under 
1;200 cycles to complete in comparison to 207 cycles for the 
MMX code version. This is a speedup of 5.8 times. 

Chroma k e y ~ ~ g  
Chroma keying is an image overlay technique frequently 

referred to as the weatherman example. In this example, we 
use a dark-blue screen to overlay an image of a woman on 
a picture of a spring blossom (see Figure 8). The required C 
code operation is 

for (i=O: i<image-size; i++) i 
if (x[il == Blue) new-image[i] =y[il; 

else new-image[il = x[il; 
1 

arhere x is the image of the woman on a blue blackground, 
and y is the image of the spring blossom. 

Using MMX technology, we load eight pixels from the pic- 
ture with the woman on a blue background. In Figure 9, the 
compare instruction builds a mask for that data. This mask 
is a sequence of byte elements that are all 1s or all Os, rep- 
resenting the Boolean values of true and false. This reflects 
the h"anted" background and what we want to keep. 
Figure 9 shows this result using a black-and-white picture. 

Figure 10 shows this mask being used on the same eight 
pixels from the picture with the woman and the corre- 
sponding eight pixels from the spring blossom. The PANDN 
and PAND instructions use the mask to identify which pix- 
els to keep from the spring blossom and the woman. They 
also turn the unwanted pixels to Os. The POR instruction 
builds the final picture 

The MMX code sequence in Figure 11 processes eight pix- 
els using only six MMX instructions and doing so without 
branches. Being able to process a conditional move without 
using branch instructions or looking up condition codes is 
becoming an important performance issue with the advanced, 
deep-pipeline microarchitectures that use branch prediction. 
A branch based on the result of a compare operation on the 
incoming data is usually difficult to predict, as incoming data 
in many cases can change randomly and thus degrade the pre- 
diction quality. Eliminating branches used for data selection, 
together nTith the parallelism of the MMX instructions, com- 
bines into an important performance enhancement feature. 
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MMX Example: Image Overlaying (II)

60Peleg and Weiser, �MMX Technology Extension to the Intel Architecture,� IEEE Micro, 1996.

Y = Blossom image X = Woman’s image



GPUs (Graphics Processing Units)



GPUs are SIMD Engines Underneath
n The instruction pipeline operates like a SIMD pipeline (e.g., 

an array processor)

n However, the programming is done using threads, NOT 
SIMD instructions

n To understand this, let’s go back to our parallelizable code 
example

n But, before that, let’s distinguish between 
q Programming Model (Software)

vs.
q Execution Model (Hardware)
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Programming Model vs. Hardware Execution Model

n Programming Model refers to how the programmer expresses 
the code
q E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow, 

Multi-threaded (MIMD, SPMD), …

n Execution Model refers to how the hardware executes the 
code underneath
q E.g., Out-of-order execution, Vector processor, Array processor, 

Dataflow processor, Multiprocessor, Multithreaded processor, …

n Execution Model can be very different from the Programming 
Model
q E.g., von Neumann model implemented by an OoO processor
q E.g., SPMD model implemented by a SIMD processor (a GPU)
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How Can You Exploit Parallelism Here?
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for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Let’s examine three programming 
options to exploit instruction-level 

parallelism present in this sequential 
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)



Prog. Model 1: Sequential (SISD)
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load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code n Can be executed on a:

n Pipelined processor
n Out-of-order execution processor

q Independent instructions executed 
when ready

q Different iterations are present in the 
instruction window and can execute in 
parallel in multiple functional units

q In other words, the loop is dynamically 
unrolled by the hardware

n Superscalar or VLIW processor
q Can fetch and execute multiple 

instructions per cycle

for (i=0; i < N; i++)
C[i] = A[i] + B[i];



load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 2: Data Parallel (SIMD)
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for (i=0; i < N; i++)
C[i] = A[i] + B[i];

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Vectorized Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD 
instruction to execute the same instruction from 
all iterations across different data

Best executed by a SIMD processor (vector, array)

VLD     A à V1

VLD     B à V2

VADD     V1 + V2 à V3

VST     V3 à C



load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 3: Multithreaded
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for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine



Prog. Model 3: Multithreaded
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for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineCan be executed on a SIMT machine
Single Instruction Multiple Thread



A GPU is a SIMD (SIMT) Machine
n Except it is not programmed using SIMD instructions

n It is programmed using threads (SPMD programming model)
q Each thread executes the same code but operates a different 

piece of data
q Each thread has its own context (i.e., can be 

treated/restarted/executed independently)

n A set of threads executing the same instruction are 
dynamically grouped into a warp (wavefront) by the 
hardware
q A warp is essentially a SIMD operation formed by hardware!
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Warp 0 at PC X+3

Warp 0 at PC X+2

Warp 0 at PC X+1

SPMD on SIMT Machine
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for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineA GPU executes it using the SIMT model:
Single Instruction Multiple Thread

Warp 0 at PC X

Warp: A set of threads that execute
the same instruction (i.e., at the same PC)



Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)



SIMD vs. SIMT Execution Model
n SIMD: A single sequential instruction stream of SIMD 

instructions à each instruction specifies multiple data inputs
q [VLD, VLD, VADD, VST], VLEN

n SIMT: Multiple instruction streams of scalar instructions à
threads grouped dynamically into warps
q [LD, LD, ADD, ST], NumThreads

n Two Major SIMT Advantages: 
q Can treat each thread separately à i.e., can execute each thread 

independently (on any type of scalar pipeline) à MIMD processing
q Can group threads into warps flexibly à i.e., can group threads 

that are supposed to truly execute the same instruction à
dynamically obtain and maximize benefits of SIMD processing
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Multithreading of Warps 
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for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Warp 0 at PC X

n Assume a warp consists of 32 threads
n If you have 32K iterations, and 1 iteration/thread à 1K warps
n Warps can be interleaved on the same pipeline à Fine grained 

multithreading of warps

Warp 1 at PC X

Iter. 
33

Iter. 
34

Warp 20 at PC X+2

Iter.
20*32 + 1

Iter.
20*32 + 2



Warps and Warp-Level FGMT
n Warp: A set of threads that execute the same instruction 

(on different data elements) à SIMT (Nvidia-speak)
n All threads run the same code
n Warp: The threads that run lengthwise in a woven fabric …
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Thread Warp 3
Thread Warp 8

Thread Warp 7

Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.



High-Level View of a GPU

75Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.



Latency Hiding via Warp-Level FGMT
n Warp: A set of threads that 

execute the same instruction 
(on different data elements)

n Fine-grained multithreading
q One instruction per thread in 

pipeline at a time (No 
interlocking)

q Interleave warp execution to 
hide latencies

n Register values of all threads stay 
in register file

n FGMT enables long latency 
tolerance
q Millions of pixels 
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Decode

RF RFRF

ALU

ALU

ALU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt



Warp Execution (Recall the Slide)
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32-thread warp executing ADD A[tid],B[tid] à C[tid]

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]
A[6] B[6]

Execution using 
one pipelined 
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]
A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]
A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]
A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]
A[27] B[27]

Execution using 
four pipelined 
functional units

Slide credit: Krste Asanovic

Time

Space

Time
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Lane

Functional Unit

Registers
for each 
Thread

Memory Subsystem

Registers for 
thread IDs
0, 4, 8, …

Registers for 
thread IDs
1, 5, 9, …

Registers for 
thread IDs
2, 6, 10, …

Registers for 
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

SIMD Execution Unit Structure



Warp Instruction Level Parallelism
Can overlap execution of multiple instructions

q Example machine has 32 threads per warp and 8 lanes
q Completes 24 operations/cycle while issuing 1 warp/cycle
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W3

W0
W1

W4

W2

W5

Load Unit Multiply Unit Add Unit

time

Warp issue

Slide credit: Krste Asanovic



n Same instruction in different threads uses thread id to 
index and access different data elements

SIMT Memory Access

Let’s assume N=16, 4 threads per warp à 4 warps 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15+

+ + + +

Slide credit: Hyesoon Kim

Threads

Data elements

Warp 0 Warp 1 Warp 2 Warp 3
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Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100000 threads
__global__ void KernelFunction(…) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

}

CPU code

CUDA code

Slide credit: Hyesoon Kim 81



Sample GPU Program (Less Simplified)

82Slide credit: Hyesoon Kim



Warp-based SIMD vs. Traditional SIMD
n Traditional SIMD contains a single thread 

q Sequential instruction execution; lock-step operations in a SIMD instruction
q Programming model is SIMD (no extra threads) à SW needs to know 

vector length
q ISA contains vector/SIMD instructions

n Warp-based SIMD consists of multiple scalar threads executing in a 
SIMD manner (i.e., same instruction executed by all threads)
q Does not have to be lock step
q Each thread can be treated individually (i.e., placed in a different warp) 

à programming model not SIMD
n SW does not need to know vector length
n Enables multithreading and flexible dynamic grouping of threads

q ISA is scalar à SIMD operations can be formed dynamically
q Essentially, it is SPMD programming model implemented on SIMD 

hardware
83



SPMD
n Single procedure/program, multiple data 

q This is a programming model rather than computer organization

n Each processing element executes the same procedure, except on 
different data elements
q Procedures can synchronize at certain points in program, e.g. barriers

n Essentially, multiple instruction streams execute the same 
program
q Each program/procedure 1) works on different data, 2) can execute a 

different control-flow path, at run-time
q Many scientific applications are programmed this way and run on MIMD 

hardware (multiprocessors)
q Modern GPUs programmed in a similar way on a SIMD hardware
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SIMD vs. SIMT Execution Model
n SIMD: A single sequential instruction stream of SIMD 

instructions à each instruction specifies multiple data inputs
q [VLD, VLD, VADD, VST], VLEN

n SIMT: Multiple instruction streams of scalar instructions à
threads grouped dynamically into warps
q [LD, LD, ADD, ST], NumThreads

n Two Major SIMT Advantages: 
q Can treat each thread separately à i.e., can execute each thread 

independently on any type of scalar pipeline à MIMD processing
q Can group threads into warps flexibly à i.e., can group threads 

that are supposed to truly execute the same instruction à
dynamically obtain and maximize benefits of SIMD processing
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Threads Can Take Different Paths in Warp-based SIMD

n Each thread can have conditional control flow instructions
n Threads can execute different control flow paths
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Thread Warp Common PC

Thread
2

Thread
3

Thread
4

Thread
1

B

C D

E

F

A

G

Slide credit: Tor Aamodt



Control Flow Problem in GPUs/SIMT
n A GPU uses a SIMD 

pipeline to save area 
on control logic
q Groups scalar threads 

into warps

n Branch divergence 
occurs when threads 
inside warps branch to 
different execution 
paths
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Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

This is the same as conditional/predicated/masked execution. 
Recall the Vector Mask and Masked Vector Operations?



Remember: Each Thread Is Independent
n Two Major SIMT Advantages: 

q Can treat each thread separately à i.e., can execute each thread 
independently on any type of scalar pipeline à MIMD processing

q Can group threads into warps flexibly à i.e., can group threads 
that are supposed to truly execute the same instruction à
dynamically obtain and maximize benefits of SIMD processing

n If we have many threads
n We can find individual threads that are at the same PC
n And, group them together into a single warp dynamically
n This reduces “divergence” à improves SIMD utilization

q SIMD utilization: fraction of SIMD lanes executing a useful 
operation (i.e., executing an active thread)
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Dynamic Warp Formation/Merging
n Idea: Dynamically merge threads executing the same 

instruction (after branch divergence)
n Form new warps from warps that are waiting

q Enough threads branching to each path enables the creation 
of full new warps
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Warp X
Warp Y

Warp Z



Dynamic Warp Formation/Merging
n Idea: Dynamically merge threads executing the same 

instruction (after branch divergence)

n Fung et al., �Dynamic Warp Formation and Scheduling for 
Efficient GPU Control Flow,� MICRO 2007.
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Branch

Path A

Path B

Branch

Path A



Dynamic Warp Formation Example
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A A B B G G A AC C D D E E F F

Time

A A B B G G A AC D E E F

Time

A x/1111
y/1111

B x/1110
y/0011

C x/1000
y/0010 D x/0110

y/0001 F x/0001
y/1100

E x/1110
y/0011

G x/1111
y/1111

A new warp created from scalar 
threads of both Warp x and y 
executing at Basic Block D

D

Execution of Warp x
at Basic Block A

Execution of Warp y
at Basic Block A

Legend
AA

Baseline

Dynamic
Warp
Formation

Slide credit: Tor Aamodt



Hardware Constraints Limit Flexibility of Warp Grouping
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Lane

Functional Unit

Registers
for each 
Thread

Memory Subsystem

Registers for 
thread IDs
0, 4, 8, …

Registers for 
thread IDs
1, 5, 9, …

Registers for 
thread IDs
2, 6, 10, …

Registers for 
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

Can you move any thread 
flexibly to any lane?



An Example GPU



NVIDIA GeForce GTX 285
n NVIDIA-speak:

q 240 stream processors
q �SIMT execution�

n Generic speak:
q 30 cores
q 8 SIMD functional units per core

Slide credit: Kayvon Fatahalian 94



NVIDIA GeForce GTX 285 �core�

…

= instruction stream decode= SIMD functional unit, control 
shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage 
for thread contexts 
(registers)

Slide credit: Kayvon Fatahalian 95



NVIDIA GeForce GTX 285 �core�

…
64 KB of storage 
for thread contexts 
(registers)

n Groups of 32 threads share instruction stream (each group is 
a Warp)

n Up to 32 warps are simultaneously interleaved
n Up to 1024 thread contexts can be stored   

Slide credit: Kayvon Fatahalian 96



NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

………

………

………

………

………

………

………

………

………

30 cores on the GTX 285: 30,720 threads
Slide credit: Kayvon Fatahalian 97



Evolution of NVIDIA GPUs
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NVIDIA V100
n NVIDIA-speak:

q 5120 stream processors
q �SIMT execution�

n Generic speak:
q 80 cores
q 64 SIMD functional units per core

q Tensor cores for Machine Learning
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NVIDIA V100 Block Diagram

80 cores on the V100
https://devblogs.nvidia.com/inside-volta/
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NVIDIA V100 Core

15.7 TFLOPS Single Precision
7.8 TFLOPS Double Precision
125 TFLOPS for Deep Learning (Tensor cores)
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https://devblogs.nvidia.com/inside-volta/
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