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Abatraet

Program analysis methods, especially those

which support automat ic vector izat ion, are based

on the concept of inte~statement ~, where
a dependence holds between two atatemente when one
of the statements computes vslues needed by the
other. Powerful program transformation systems
that convert sequential programs to a form more
suitable for vector or parallel machines have been

developed using this concept [A1lK 82, KKLW 801.

The dependence analyais in these systems is

based on data dependence. In the presence of com-
plex control flow, data dependence is not suffi-

‘ cient to tranaform programs becauae of the intro-
duction of ~ ~ . A control depen-

dence exista between two statements when the exe-
cution of one statement ean prevent the execution

of the other. Control dependence do not fig con-

veniently into dependence-based program transla-
tors.

One solution ie to cenvert all control depen-
dence to data dependence by eliminating goto

statements and introducing logical variables to

control the execution of statements in the pro-

gram. In this scheme, action statements are con-

verted to IF statements. The variables in the con-
ditional expression of an IF statement can be

viewed as inputs to the statement being con-
trolled. The result is thst control dependence
between statement become explicit data depen-

dence expreesed through the definitions and uses
of the controlling logical variablea.

This paper presents a method for systemati-
cally converting control dependence to data
dependence in this fashion. The algorithms
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presented here have been implemented in PFC, an

experimental vectorizer written at Rice Universi-

ty.

1. Motivation

1.1. Dependence and Vectorization

The developraent of computer architectures

with powerful vector processing units has spawned

an interest in languages that permit the explicit

specification of vector and array operations. In

fact, it seems clear that the next ANSI standard

for Fortran (hereafter referred to as ~ fix)

will contain such explicit vector operations.

This language ,ahould enable programmer to write

high level programs that fully utilize vector

hardware [AWSI 81].

Unfortu~ately, the many millions of lines of

Fortran developed prior to Fortran 8x were written

without the benefit of explicit vector operations.

If this existing code is to use vector hardware

effectively. it must b.e translated to a language

from which vector operations may be invoked --

either vector machine language or a high level

language with vector operations. This translation

must replace the implicit vector operations in the

original Fortran program with explicit veccor

operations. At Rice, we are d.evelop.ing a transla-

tor, known as Mzal.kl I~ @n!w2ez (or PFC).

that converts Fartran 66 and 77 programs into

equivalent vector programs in Fortran 8x

[A1lK 82].

The natural placQ to look for vector opera-

tions is the Fortran DO loop. Ideally, each

assignment in a DO loop wmtld be converted to a

vector assignment by translating the subscripts to

vector iterators. For example, the loop

DO 100 I ❑ 1, 100
A(I) =

100 CONTINUE

could be translated

A(I) + C

to the statement

@ 1983 ACM 0-89791-090-7/83/001/0177 $00.75
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A(I:1OO) =A(I:IOO) + C

However, the translation process is not quite that

simple, because the semantica of vector assignment

in Fortran 8X require ‘fetch before store.” That

is, while a scalar assignment in a loop intermixes

loads acid stores. a vector assignment behaves as

if all components of the right hand side are

fetched before any component of the left hand side

is stored. The following loop illustrates this

difference.

DO 100 I = 1, 100

A(I) =A(I-1] + B(I)
100 CONTINUE

Since the intent is that the component of A com-

puted on one iteration be used as input on the

next,B the statement cannot be simulated by a vec-

tor statement of the form

A(l:IOO) =A(O:99) + B(I:1OO)

with “fetch before storew semantics. By contraa.t,

the statement in our first example loop did not

intermix losds and stores in the same array, so

its effe(ct can be simulated with vector aemantica.

Thufs, a statement that computes a value on

one iteration of the loop that is used directly or

indirectly by the same statement on another itera-

tion. cannot be vect.orized by tranaliterati.on; oth-

erwise, the statement may be ve.ctorized.

Correctly distinguishing between these two casea

requires a study of the flow of values between

uses and definitions.

classical~~~ models the rela-

tionship between definitions and uses ~f variables

as a directed graph in which each vertex

represents a statement and each edge a data flow

link from definition to use.; these links are often

called fii-~ W [Keun 78]. However, follow-

ing Kuck [Kuck 77]. the term ~ demotes

the relationship between a statement S2 that uses

the value that S~ might have created. S2 &r.QcLQ

&2f211h WQll S1 if the value computed by S1 might

be an input to SZ at xun. time. S2 ~ uimn S1

if there exists a se.quenco of statements Xl . . ...*Xn

such that XO=S1, Xn=529 and Xi+l depends directly

upon Xi for all i., OS’i~n. In these terms, a

statement can b.e vectorized only if it does not

depend upon itself.

?FC employs a ali.ghtly wore sophisticated

concepts called ~-cazx.id dependence.. which

associates each dependence with the ite.rati.on of a

part iculsr loop. For example, the dependence of

S1 on itself in

DO 100 I = 1, 10
DO 90 J = 1, 10

SI A(I,J) = A(I-l,J) + . . .

90 CONTINUK

100 CONTINUE

ia clearly due to the loop on I. Within any

specific iteration of the I loop. S1 does not use

its own reeults; only when I ia incremented does

S1 fetch from a location of A that it haa also

stored in. Since the dependence (and hence the

cycle) disappears when the I loop is run sequen-

tially, S1 can be correctly vectorized in the J

loop to produce

DO 100 I = 1, 10

51 A(I,l:IO) = A(I-1,1:10) + . . .

100 CONTINUE

Using the concept of loop-carried dependence, Ken-

nedy developed a recursive algorithm to vectorize

statements in the maximum number of dimensions

permitted hy its dependence relations. [Kenn 801.

1.2. Control Depemience

Data dependence alcne is not sufficient to

describe all important considerations in vectori-

zation. Consider the following 100P:

DOIOOI=l. N
S1 IF (A(I).GT.0) GO TO 100
S.2 A(I+l) = B(I) + 10

100 CONTINUE

The theoxy of data dependence would not preclude

vectorization of S2. Certainly S1 directly

depends on s2. But S2 does not depend on itself

ox on S1 for any of its inputs. Nevertheless.

neitiler 51 nor S2 can be correctly vectorized

because of the existence of a ~ @&udeQw

of Sl on S2. That is.. the outcoute of the test in

S1 determines whether S2 will be executed. When

the control depeudcnce ia considered, both SI and

S2 depend on themselves indirectly.

unfortunately, control dependence does not

fit nicely into the dependence machinery of PFC

because .the dependence is not associated with any

variable. When the same loop is rewritten as

DOIOOI=l, N
BR1 = A(I).G’T.O
IF (BR1) A(I+l) = B(I) + 10

100 CONTINUE

(thereby associating the dependence xith the vari-

able 5R1) the problem becomes much simpler. By

viewing. the variables in the conditi.o.n. controlling

S2 a.a inputs to the statement, the re.lationehip. of

these two s.tatementa ia now clear in ..terms of data

flow.. Control dependence has been completely con-

verted to data dependence.
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The beauty of this scheme is that conditional

assignments are straightforward to vectorize if

the scalar condition are expanded into arrays.

For example, consider a slight variation on our

example loop.

DOIOOI=l, N

BR1 ❑ A(I).GT.O
IF (BR1) A(I) = B(I) + 10

100 CONTINUE

This version could be transformed to vector form

by using the Fortran 8x WHERR statement.

BR1(l:N) = A(l:N).GT. O

wHEM (BR1(l:N)) A(I:N) = B(l:N) + 10

Many vector machines have hardware to support con-

ditional vector operations, usually via a logical

mask to select the positions in which the computa-

tion ia to be applied.

By generalizing this idea into a method for

converting cor@rol dependence to data depen-

dence. PFC can vectorize statements in loops

which cent a in conditional transfera. The ~

~ phaae of PFC is responsible for this

transf ormat ion.

2. Fundamentals of IF Conweraion

Central to IF conversion is the notion that

Fortran Statements can be classified into four

groups:

(1)

(2)

(3)

(4)

~ ~ -- statements which cause

some change in the atate of the computation

or produce some important side effect. Exam-

ples: assignment, read, write, call.

~~ -- statements which make an

explicit transfer of control t,o another loca-

Eion in the program. Examples: goto, com-

puted goto, assigned goto. Note that call is

crested ae an action statement because within

a given module it may be viewed aa a macro-

action.

~ ‘- staLement$ which

cause another statement or a block of state-

ments to be iterated. Example: DO statement.

Qa@lQkX@itQwMa -- statements which

take no action but which cao be used as

placeholdere for the computation. Example:

CONTINUE .

Notice that the Fortran IF statement has no place

in our classification. The reason is that we view

the IF clause as a qual,itier that can be attached

to any action or branch statement, In other

words, every action or branch etatement can be

viewed as a conditional statement.

Zhe IF conversion phase of PFC attempts to

eliminate all goto statements in the program. The

execution order of the original program is main-

tained by computing a logical condition for each

action statement. This condition ia called a

WarJi.

. . .
~: The @ for an action or conditional

action statement is a Boolean expression which

represents the conditions under which the

statement is executed. That is, when control

reaches the statement, the original statement

ie executed if and only if ite guard evaluates

to true. c1

The original program is transformed by replacing

simple action statements with conditional action

statements of the form:

IF (guard) statement

IF statements (other than conditional branches)

can be replaced by IF statements in which the

guard is conjoined to the original condition. If

the guard of a statement is identically true, it
can be written without the IF qualifier.

For the purpose of analysis. branches can be

categorized into three types:

(1) ti ~: a branch that

more loops. aa in

DO 100 I = 1, 100
IF (ABS(A(I)-B(I))

. . .
100 CONTINUE

. . .
200 CONTINUE

(2)

terminates one or

.LE. DEL) GOTO 200

~~: a branch whose target occurs

after the branch but at the same loop nesting

level. Note that since branches into the

range of a DO loop are not permitted. a

branch to a label after the branch must be

eit,h.er a forward branch (if the label is at

the same nesting level) or an exit branch (if

the label is outside the loop in which the

branch occurs).

DO 100 I = 1, 10

IF (A(I).EQ.0.0) GOTO 100
B(I) = B(I) /A(I)

100 CONTINUE

(3) b.adwwi ~ an branch to a statement

occurring lexic,ally before the branch but at

the same nesting level. as in

10 1=1+1

A(I) =A(I) + B(I)
IF (1 .LE. 100) GOTO 10

In accordance with this cl.assificat.ion, II? conver-

sion uses two different transformations to elim-

inate branebee within the program.

(1) Br.aluhzduatim moves branchee out of loops

until the branch and its target are nested in
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(2)

The

the same number of DO loops. This procedure

converts each exit branch into either a for-

wsrd branch or a backward branch.

~ ~ eliminates forward branches by

computing guard expressions for action state-

ments under their control and conditioning

execution on these expressions. Backward

branchea are left in place.

following sections present these two tech-

niques in more detail.

3. Exit branches

Exit branches differ from other branches in

that exit branches sffect the execution of state-

ments both before and after the branch. That ia.

since a branch out of a DO loop terminates execu-

tion of the loop, it affects all the statement in

the loop. Consider the following example:

DO 100 I ❑ 1,100

S1
IF (X(I)) GOTO 200

S2
100 CONTINUE

S3

200 S4

Once the jump is taken. the DO loop is terminated

and neither statement S1 nor S2 will be executed

thereafter. If the DO loop were not present, pro-

ducing

S1
IF

S2
S3

200 S4

statement S1

branch. Thus.

than forward

(X(I)) GOTO 200

is completely unaffected by the

exit branches are more complicated

branches. since eliminating them

requires modification of the guarda of all atate-

menta within the loop exited.

If all exit branches can somehow be converted

into forward or backward branches. then the prob-

lem of IF conversion becomes much simpler. In

other words, if PFC can ~ the branches so

that every branch is nested in exactly the same DO

loops as its target. branch remnval will then

eliminate these branchea naturally with forward

branches.

‘Jhe basis proc,eduxe used in branch relocation

and elimination is the computation of a Boolean

!iu3.cd expression for each statement. This guard

evaluates t.o true if and onl,y if the statement

would be executed in the original program. By

converting the guard to a logical expression in

Fortran and using it as a condition in an IF

clause. PFC can then test for vectorization using

only data dependence.

Guards in PFC are based on a system of formal

logic. The atoms of this logical system are

predicates expressing conditions that may hold at

various points in the program. For example, one

possible predicate is p = ‘A(I).LT.O was true on

the most recent execution of statement 300.W If

‘A(I).LT.OW is the condition for a jump past

statement 350. the predicate p should certainly be

part of the guard for that statement. The opera-

tion which may he applied to predicates are con-

junction (A). disjunction (V) and negation (-t).

Hence a guard might be the conjunction of several

predicates, e.g.

P1 A P2 A ~P3

In order to separate the issue of correctness from

the iae.ue of simplification, we will distinguish

between the logic used to represent guards inter-

nally and their actual appearance in the output

language. In our logic, we can compute a provably

correct guard for a particular statement; however,

this doea not imply that we can find, in a reason-

able time. the moat concise Fortran representation

for that guard.

The duality of the logic of conditions and

their external representation is mirrored by our

implemental ion. We represent the guards inter-

nally in a form quite different from the external

representation (ace Section 7). Rotationally, we

will use the function ~ to map the internal

rep,re,een,tation of conditi~~s to a realization in

the language being genexated. An internal condi-

tion may haye many external representations; we

therefore as.swne that ~ will choose one that is

suitably concise. Far example. ~ might employ the

Quine-McCluskey prime implicant simplification

procedure to generate a simple external represen-

tation of a given int erp.a 1 guard [Quin 52,.

McC1 5610 The use of ~ allows us to delay con-

si.d.eration of any simplification issues until Sec-

tion 6.

.Rsturning to branch rehcakicnh movement of

an exit b.r.anch out of a lc@p xeq,uir,ea. that .th,e

execution of each statement in che loop be guarded

by an expression which will be true in the modi-

fied pr,o.gram only while the branch haa not been

taken in the original program. More generally.

each statement will be guarded by an expression

which is the conjunction of sxk..~s denoted

exi., w~ere an ~ f&g is a Eoolean variable

associat.e.d with a particular branch in the origi-

nal program T.h,e, exit fla,g e~i is defined to be

true at a statement if the br.anc.h associated. with

the flag would not have been taken before control

reached the statement in the original program. In

order to compute a realization for exis we will

introduce a corresponding logical variable EXi
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into the program. EXi will be used to capture the

condition controlling the loop exit each time that

condition is evaluated. so that ~(exi) = EXi. We

will uae the convention that lower caae variables

represent conditions and upper case variables

represent their realizations as Fortran logical

variables.

In the case of branchea out of a single loop,

there is one exit flag for each exit branch. Upon

entry to the loop. all exit flaga are true, since

the loop has not yet been exited. Each exit

branch of the form

IF (P) GOTO S1

within the loop is associated replaced by an

assignment of the form

EXi = .NOT. P

which capturea the condition exi = nthe exit

branch would not have been taken at ita moat

recent execution.w A new branch of the form

IF (.NOT. EXi) GOTO S1

is generated immediately following the loop to

simulate the effect of the branch in the loop.

Note that this branch will be taken only if the

exit branch would have been taken in the original

program. Finally, the guards of all statements

within the loop (including the newly generated

assignment) are modified by conjoining each exit

flag for that loop:

exl Aex2A . . . Aexn.

The overall effect is to arrange the modified

program so that an exit flag ia set to false when-

ever the corresponding exit branch in the original

program would have been taken, Thus, once an exit

flag becomes false, no other etatement in the loop

will be executed, even though the DO statement

will cent inue to run iterations.

Here is the previous example after reloca-

tion:

EX1 = .TRUE.

DO 100 I = 1,100
IF (EX1) S1

IF (EX1) EX1 = .NOT. X(I)
IF (EXI) S2

100 CONTINUE
IF (.NOT. EX1) GO TO 200
S3

200 S4

This method is easily extended to multiple

loops by treating a branch out of more than one

loop as a branch out of the outermost loop. Con-

sider the following more complicated example:

DO 200 I =1,100

50 S1
DO 100 J=l,IOO

S2
IF X(I,J) GO TO 300

S3

IF Y(I,J) GO TO 50

S4
100 CONTINUS

S5
200 CONTINUE
300 S6

After the branch relocation, this code becomes

EX1 = .TRUE.

DO 200 I =1,100

50 IF (EXI) S1
IF (EX<) EX2 ❑ .TRUE.
DO 100 J=1,1OO

IF (EX1 .AND. EX2) S2
IF (EX1 AND. EX2) EX1 ❑ .NOT. XI

IF (EX1 .AND. EX2) S3
IF (EXI .AND. EX2) EX2 = .NOT. Y

IF (EXI .AND. EX2) S4
100 CONTINUE

IF (EX1 .AND. .NOT. EX2) GOTO 50
IF (EX1) S5

200 CONTINUE
IF (.NOT. EXI) GOTO 300

300 S6

This transformation is effected by applying

I,J)

I,J)

the

eimple method to the first jump with respect to

the outer loop and the second jump with respect to

the inner loop. Note that the exit flags are

mutually exclusive; that is, once any exit flag is

set to falae (indicating that an exit branch has

been taken), no other exit flag in any loop that

the corresponding jump would have left can be set

to false. Hence, if a loop is implicitly ter-

minated by an exit branch. that branch can be

identified by scanning the exit flags for the one

which is false.

The algorithm for branch relocation is given

in Figure 1. The guard on every statement other

than an IF is initially true. The algorithm

proceeds by couputing the loop guard for this

looPs aPPIYing itself recursively to nested DO

loops (which computes guards for the statements in

those loops) then conjoining the loop guard for

the curxent loop to the guard of every statement

under its control.

After the procedure is called on every DO

statement at the outmost level, no exit branches

will remain in the program. To demonstrate the

corxec.tnesa of branch relocation. we must show two

things:

(1) the algorithm removes all exit branches. and

(2) the modified version performs exactly

same computation as the original.

The first point follows rather trivially

statement S1 of the algorithm. The body of

the

from

loop
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procedure relocate_branches (x);

/* x is the DO statement for the loop *I
/* loop_guard will be the conjunction of */
/* all exit flags for the loop *I

loop_guard = true;

S1:for each exit branch IF (P) GOTO S1

that exits the loop headed by x do
begin

create a new unique exit flag eXi

with realization EXi;
insert the assignment WXi = .TRUE.W

prior to x;
loop_guard = loop_guard A exi;

insert the branch ‘IF (.NOT. EXi) GOTO Sln

after the loop;
S2: replace the exit branch by

the assignment %Xi = .NOT. P*
end

for each DO statement y contained in x do
relocate_branches (y);

S3:for each non-DO statement y contained in x do

guard(y) = guard(y) A loop_guard;

end relocate_branches;

Figure 1: Branch Relocation

S1 converts a particular exit brarwh to an assign-

ment. Since no new exit branches are created by

the procedure. (the generated branchea _ be at

t’ne same level as their targets), and since S.1 is

executed for each exit branch in a loop, the modi-

fied code will contain no exit branches.

The second point follows from two observa-

tions about the transformations being applied.

(1) The only difference between action statements.

in the original program and the .ruodified pro-

gram ia that all exit flags for lo~pa in

which the statement is contained are con-

joined to its guard.

(2) Each exit bra~ch is replaced by an asei~nnent

$tatement that acts the corresponding exit

flag to false if the condition controlling

the branch ia txue ‘in other words, if Lbe

branch would have been taken the exit flag

becomes false.

One imporLant concern about correctrmss is

thaL the tran.s.forma.t.ion might have introduced side

effects that would .nQt. have occurred in the or.igi,-

nal program. A p~ssible source of such side

effects is the comp.u,tation of guard values. The

branch removal algorithm is very careful to ccw-

pute. branch conditions at Lhe point where they

would have taken place in the original program and

save them in logical variables. The computation

of guards then amounts to evaluating logical

expressions in these logical variables, thereby

avoiding the problems of aide effects.

Since all branches out of the loop have been

eliminated, every DO loop in the modified program,

once entered, will run its course - even though

some exit flag ia false and no real computation ia

being done. This is an essential part of the

transformation, but it may have the unfortunate

effect of unexpectedly long running times when the

purpose of the DO loop iteration is to provide a

bound large enough to insure that the loop would

be terminated by a brancb on detection of a spe-

cial condition. Hopefully, the speedup gained

from vectorization will more than offset this

inefficiency.

Branch relocation is an elegant prepaas to

branch removal for many reaaona. First. it makes

no distinction between backward branches and for-

ward branchea. Second, it allowa the identifica-

tion of branches and targets, thus providing

information necessary for branch removal.

4. Forward Branches

The simplest type of control dependence

results from forward branches. Since the execu-

tion of the statement between the branch and its

target clearly depend on the value of the vari-

ables in the branch expression, IF conversion must

determine guard.e that correctly reflect this

dependence Once the guarda are in place, the

jump isunnecessaxy and is umoved. The process

of...eliminating fw#ard branches is known as ~

wa?JihLan.Ch Zem$Z!d.

Fundamental to all phas.e.s of branch rersoval

is the idea of a. a.ueI&~o which is sim-

ply a logical expression (guard.) reflecting the

conditions under which the statement pre$.ently

under consicle.ration wi.1.l .be executed. As branch

removal moves from atateuent to statement in the

pxogram, it cuujoin> or d.isjoiua Eo~Lean variables

with the current co.nditioi’i LO generate the guard

for the nut s.tatcxoent.. These Boo,lean variables

represe,lt facts abo.ub the forward branches of tbe

progzam (euch as whether or not they would be

taken).

A forward bronch. affects control flow a.t two

loc.atious: at the branch, where ccmtrol flow can

diverge from oixliu...ry sequential flow; and at the

target label, where ti~e split rejoins sequential

flow. Thus, tile curren~ coudit.ion (~r cc) must.be

modified at these points to remove forward

branches.

(1) & - ~: In the absence of other ton-

trol flow changes, the statement immediately
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following a forward branch is executed only

when control flow reaches the branch and the

branch is not taken. Thus , if the current

condition at the forward branch is ccl and

the predicate controlling the branch is p.

the guard for the following statements will

be ccl A ap.

(2) AL Lku2 ~: Similarly, control flow can

reach the target of the branch either sequen-

tially from the previous statement or via the

branch itself. Under the previous assump-

tions, if the guard on the statement prior to

the target is CC2. the guard on the target

should be CC2 V (ccl A p). In the absence of

other changes in control flow (so that CC2 =

ccl A -tp), the guard on the target statement

is (CCI A -!p) v (ccl A p) which simplifies to

ccl. In other words, if control flow reaches

the branch, control flow will reach the tar-

get regardless of which execution path is

taken.

An example should make these ideas clearer.

DO 100 I = 1, 100
IF (A(I).GT.10) GO TO 60

S1 A(I) =A(I) + 10
IF (B(I).GT.1O) GO TO 80

S2 B(I) = B(l) + 10
S3 60 A(I) =B(I) +4(1)
S4 80B(I) =A(I) - 5

100 CONTINUE

We introduce two Boolean variables brl and br2 to

capture the two branch conditions in the loop.

Such variables are called ~ ~. The

branch flag brl is defined to be true if and only

if NA(I). GT.1011 evaluates to. .true .in the first IF

statement. We use the Fortran logical variables

BR1 and ,BR2 to capture the values of brl and br2,

so BR1 = ~(brl) and BR2 = ~(bz2),. In the program

text this is accomplished by inserting the assign-

ments:

BR1 = A(I).GT.1O
BR2 = B(I).GT.1O

in place of the two IF statements, By using logi-

cal variables to capture the values of conditions.

at the original point of evaluation. PF.C ensures

that later assignments in the program cannot

accidentally change the conditions controlling

statements.

Following the conventions for forward branch

removal described

ments in the loop

conditions.

above. we find that the s,tate-

are controlled by the following

statement controlling condition

.51 lbrl

S2 -tbrlA-tbr2

S3 brlV(wbr1Awbr2)
S4 brlV(mbrlAbr2)V(-?br1A*br2)

In order to prevent the proliferation of long

expressions involving logical variables like BRl

and BR2, the IF conversion procedure must be able

to recognize identities and simplify logical

expressions. For example, it should surely recog-

nize that the condition controlling S4 is always

true. Thus, simplification is an important aspect

of IF conversion. With simplification, the IF

conversion procedure in PFC would convert the

example loop above into the following.

S1

S2

S3

S4

Note

DO 100 I = 1, 100
BR1 = A(I).GT.10
IF (.NoT. BR1) A(I) =A(I) + 10
IF (.NOT. BR1) BR2 = B(I).GT.1O
IF (.NOT. BR1 .AND. .NOT. BR2)

x B(I) = B(I) + 10

IF (BRI .OR. .NOT. BR2)

x A(I) =B(I) +A(I)

B(I) ❑ A(I) + 5

100 CONTINUS

that the condition controlling S3 is dif-

ferent from what one would initially expect. When

we first ran this example on a pxototype PFC sys-

tem that used the Quine-McCluskey prime implicant

simplif,iex [Quin. 5.2,..McC1 56], we. thought the sim-

plifier was incorrect. After some thought how-

ever. we realized that the simplifier had indeed

produced a correct (and simpler) version of this

condition.

Figure 2 outlines the algorithm used to elim-

inat e forward branches. The procedure

forward-convert is called on each statement in the

original code. cco is initialized to TRUE before

the first call, and is then reset by each succeed-

ing call. The algorithm assumes the.existence of

a set of queues (in the array predicate_list) and

basic queue primitives. Note that only forward

branches are converted; therefore all the expres-

sions to be disjoined at a target must be in ita

predicate list at the time the guard for that tar-

get is created.

5. Backward Branches

While. branch removal can eliminate forward

branches quite handily, it cannot remove the last

type of control dependence - backward branches.

In fact. backward branches cannot be directly

e.liminat.ed from a program, because a backward

branch creates an implicit loop. A looping con-

struct cannot be simulated with guarded state-

PWIWS; thus backward branches cannot be directly

eliminated.
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100 is taken.

procedure forward_convert (x, cc-o)

returns condition;

/* x is the stat~~ent under ~on~id~ration */
/* cco ia the condition prior to x. */
/* ccl will be the condition guarding x */

/* predicate_list(x) is a queue of all */
1* predicate that must be disjoined */
/* at x becauae of branchea to x. *I

ccl + Cco;

while not_empty ( predicate_list(x) ) do

begin

P ‘- get-from-queue ( predicate–list(x) );
ccl + ccl v p

end

case statement_type(x) in

/* IF(P) GOTO y (forward to same level) */

begin
create a new branch flag bri

with realization BRi;
replace x with ‘IF (~(ccl)) BRi = P;”;

add_to_queue (predicate_list(y),

CC1 A bri);
ccl + ccl A -tbrl

end

/* GOT’O y (forward to same level) */
begin

add_ko_queue (predicate_list(y). CC1 );

ccl +- false;
delete statement x

end

/* All other type statements */
begin

guard x by ccl
end

esac;

return (ccl)

end forward_convert;

Figure 2. Forward Branch Removal.

Backward branches create more problems than

just implicit loops. hawever. Forward branch

removal in the presence of backward branches can-

DOL be handled by the a~gorithm in Figure 2.

because of code like the following:

IF (X) GO TO 200

100 ““”S1
. . .

200 S2
. . .
IF (Y) GO TO 100

Forward branch removal aa illustrated in Figure 2

would set the guard for S1 to -tX. This guard is

~ becauae it would prevent S1 from being

executed when X is true and the backward branch to

One possible approach to IF conversion that

avoids the complications of backward branches ia

to isolate these branchea, leaving the code under

their control (known as an ~ ~

a) untouched. Of course, this approach inhi-

bits removal of any forward branches into an

implicitly iterative region.

This limitation seems quite severe, ao we

must consider the problem more carefully. A guard

for S1 must reflect two alternatives:

(1) S1 ia executed on the first pass through the

code only if X is false.

(2) S1 is ahtaya executed any time that backward

branch ia taken.

These alternativea suggest a generalized approach:

one set of conditions ia used to guard the firat

paas through an implicitly iterative region and a

different set is used to guard subsequent passes.

These guard conditions can be established by using

a Boolean variable which ia false on the first

pasa through the region and true whenever the

backward branch has been taken. In other words, a

bx.ax&h k@2.k flag bb (with realization BB) will

denote the fact that the backward jump has been

taken.

Applying this idea to the previous example

would produce:

Statement Guard

BR1 = X true
. . . ?br ~
BB1 = .FALSE. true

100 S1 -tbrl v (brl A bbl)

. . . mbrl v (bz~ A bbl)
200 S2 true

. . .
IF (Y) THEN

BBI = .TRUE.

GOTO 100
ENDIF

One noteworthy point is that BB1 is set to true

only if a branch back occurs.

Corresponding to our two alternatives. there

are two ways that the target y of a backward

branch can be reached from the atart of the pro-

gram.

(1) EdlthKough: control can fall through from

the statement before y. The condition under

which this path is taken is ccunplete.ly

encoded by the Curs.nLmditizn on exit from

the predecessor.

(7-) BackMad krau.11: control can enter the

implicitly iterative region by a branch with

branch flag bIi and branch backward (flag

bbj) to y. The condition under which this
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can happen is bri A bbj. Since bb. is set to
J

true when the branch occurs, it incorporates

the condition that the backward branch was

reached from the target of the forward branch

and the backward branch condition was true.

Hence, the guard at the target of the backward

branch is

CCY V (bri A bbj)

If there ia more than one jump into the iterative

region. the second term should be the disjunction

of the each branch condition conjoined with bbj.

‘l’he condition generated at the target must

alao be slightly modified. Conaider the following

example.

IF (X) GO TO 200
100 S1

GO TO 300
200 S2

IF (Y) GO TO 100
300 53

The correct guard for S2 must be bzl A -tbbI, since

S2 ia executed if and only if the forward branch

to 200 wae taken and the backwards branch baa not

been taken, In order to remove the branch preced-

ing S2, the term mbbl must be in the target condi-

tion. In general, the target condition for a for-

ward branch into multiple implicitly iterative

regions .is the conjunction of the branch flag and

the negation of the branch back flag for each

region. The negationa of the branch back flags in

the target condition aignifiea that coutr.ol may

pasa to the target statement only on the first

iteration of these regions. The previous example

after complete branch removal becomes

BR 1 =x
100 IF (.NOT.BR1 .C)R. BBI.AND.BRI) 51

/* GO TO 300 has been eliminated */
200 IF (.NOT. BBl .AND. BRI) S2

IF (.NOT. BB1 .AND. BR1 .AND. Y) THEN

BB1 = .TRUE.

GO TO 100
ENOIF

300 S3

At S3, the :urrent condition.of -tbbl A brl is dis-

joined with. the target condition -tbrl v bb.1 A bx.1..

The result after .simplif.ication is true which ,mir -

rors the fact that S3 should alwaya be executed.

Figure. 3 contains the genezal branch. ,remo.val

algorithm which incorp.or.ate.s these observations.

The only major modification to the al.gor.ithm in

Figure 2 is the check. encapsulated in

pr.oceas._branc.h (Figure 4), on whether forward

branches jump .into implicitly iterative regions.

Also. note that block IF statements are. not gene-

rated at the backward branch, ,ai.n.c.o these svould

defeat the purpose .of IF ,conv.er.sion. Ina.tead, a

sequence of equivalent assignment is generated.

procedmre remove_branches (x, CCO)

returns condition;

/* x ia the statement under consideration. */

/* cco is the current condition prior to x */
/* ccl is the current condition after x */

ccl + Cco;
while not_empty ( predicate_list(x) ) do

begin

P ‘get-from-queue ( predicate_liat (x) );
ccl + ccl v p

end
c*ee statement_type(x) in

/* IF (P) GOTO y (forward to same level) */
begin

create a new logical guard bri

with realization BRi;
replace x with ‘IF (y(ccl)) BRi = PW;

process_branch (x. y, ccl A bri);
CC1 + CC1 A -tbri

end

/* GOTO y (forward to same level ) *I

beg in
proceaa~bzanch (x. y, ccl);

ccl + falee;

delete statement x

end

+* ~F--(p) GOTOY (~ to same level)*/

begin
let bb. be branch back flag aeaociated

wit~ this branch (realization: BBj );

insert %Bj-= .FALSE-.N before y;
let TPk be a new eemporary variable;

replace x with the atatementa
~Pk = (CC1)W

!‘IF (TP ) TPk = Pw
‘IF (TPk) BBj ❑ ..TRUE.n

‘IF (TPk) GO TO yn

end;

f*--kl4 other statements */

begZn
guard (x) +guard (x) A ccl

ad

esac;
return (ccl)

end remove branches;

Figure 3: Conplete branch removal

.The branch removal ptocedur.e used in E!PChas

several advantages. First. no special. cases are

needed for backward b.ranchea unless there ia .a

branch into the region under the control of that

backward branch. Without the prea,ence of another

branch. .Che branch back flag never enters the

.c.u.rrent conditi~n. Second, the branch back flag

simplifies out of the current condition after the

target of the last forward branch into the impli-

citly iterative

reflects the fact

of all Statements

entry to the

region. This simplification

that the condition for execution

afiter the last p.o.ssible external

backwards branch should be
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independent of any specific iteration of the back-

wards branch. Most important, however. is the

ability of the algorithm to handle any pathologi-

cal combination of backwards branches with minimal

effort.

6. Boolean Simplification

In developing the conceptual basis for IF

conversion. we have purposely attempted to factor

out issues of representation. We have referred to

two representations. one internal and one exter-

nal, for the conditions constructed by IF conver-

s ion. The basic method insures that the guards

attached to the output program will be correct,

but we need some mechanism to insure that the out-

put program will be clean and readable. In other

worda, we need to find external representations

for the conditions which are as simple as possi-

ble.

The simplification function is built into the

operator ~ which maps internal representations to

external representations. Internally, the guards

are maintained in a form suitable for quickly per-

forming the fundamental operations of branch remo-

val -- creating a new branch flag and merging two

conditions at a label. The actual simplification

is performed by applying a version of the Quine-

McCluskey prime implicant simplifier [Quin 52,

McC1 56]c

6.1. Prelimin*r iea

We begin with a bit of notation for the ensu-

ing discussion. Ln a Boolean formula. variables

and negations of variable.e will b.e referred to as

. A conjunction of literala is known as a

~ Quaul.a if no variable appears in i.t

twice. Any alternation of fundamental formulaa is

a (~ “ ).~iimaula and the fundamental

formulaa of which it is an alternation are called

&rlU..

Let Y be a eet of. variables. We denote by

nf(Y) the. aet of. all normal formulaa over Y. A

fundamental formula t. is.a mi,n@nn over Y if each

variable in Y occurs in it, exactly .rmce,, If there

are n,var.i.ab.les in..Y, there are 2? minterms,. .s.ince

each minterm can contain either a variable or ita

negation,

Every Boolean fo.rmula, cam,be, .written, ,aa the

alternation, of miuterms; we refer to this,

rep.r.esentat.ion. as.., the ~ Qr
. . .

~..~ ~.. .The Qu.ine-

McCluakey pzo.cedur.e .simpli.fies .Boolean formulas by

reducing t.hers t.o canonical disjunc.tive.. normal form

and then finding a.miuimal set .of..-,~

for the aet of rointerms, A fundamental formula @

is-~ of a formula Z if @ a 1 and

there exists no shorter conjunction of a subset of

the literals in @ that aleo implies ~.

Hence the Quine-McCluskey procedure contains

three phases:

(1) Reduction to of the formula 1 to canonical

form.

(2) Construction of the set E of all prime impli-

cants for the formula. If V~ is the alterna-

tion of all members of E, then W = ~.

(3) Selection of the shortest set S CE such that

VP e! $.

Phase 3 is of combinatorial complexity in the

number of prime implicants. but since the best

simplification is not strictly necessary, a good

heurietic to select S is acceptable. Phase 2 can

be implemented in time proportional to nl.5~

where n is the number of minterms and m ia the

number of variables used in I [AIKW 82]. However,

the method requires 0(3m) storage, so it is

impractical for m larger than eight or nine. How -

ever, there exist slightly slower methods which

have much smaller storage requirements.

McCluskey~s original technique is one such

[McC1 561. Phase 1 is also potentially exponen-

tial since a few short formulas in m variables can

give rise to 2m minterma.

6.2. Simplification in PFC

In PF.C, we avoid phase 1 of the Quine-

McCluskey procedure by internally maintaining the

guards as a set of minterms over the.set of branch

flags active at the time the guard is created.

This representation allowa us to take advantage of

the observation that c.o.ndit.ions are modified dur-

ing branch removal in only two ways:

(1) At a forward branch a. new, bxanch flag is

created and two new conditions are formed

from it b.y conjoining it and its negation to

the current condition at the. branch. Inter-

nally, this result can be effected by con-

joining the new flag and its negation to

every mintern. in. the current condition col-

lection.. . The, one,e with the negation comprise

the current condition for the next etatement

while. the ones with the unnegated flag

comprise the condition attached to the

branch.

(2) At. a target some collection of conditions

must be disjoined.. This disjunction is. han-

dled by extending the minterms to be over. the

same set of variables- then simply taking the

union of all minterms in the various collec-

tions.
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Conditions in PFC are actually represented by two

parts. The first part (the ~ ~ m) is a

list of branch flags present in the condition,

maintained in the order that the forward branches

they represent were encountered. The second part

is a set of minterma. The disjunction of these

minterms repreaenta the actual condition.

A simple example should clarify the method

used. Consider the following code:

IF (X) GOTO 300

. . .

IF (Y) GOTO 100

. . .
IF (Z) GOTO 200

100 ““”CONTINUE

200 ““”CONTINUE

. . .
300 CONTINUE

As each of the branches are passed, the current

condition is conjoined with the branch, flags to

produce a single minterm nbrl A -sbr2 A =br3 as

the current condition after all branchea. The

expression to be disjoined at statement 100 is

nbrl A br2. Since the current condition includes

br3, which ia not in the target condition, we

expand the target condition by rewriting it as the

disjunction Qf two minterms: (mbr~ A br2 A br3) V

(-tbrl A brz A -tbr3).. When this expression is dis-

joined with the current conditiou, no simplifica-

tion can be performed (other than reversing the

transformation made in the target condition).

Thus the current condition after statement 100 is

procedure process_branch (x, y, br);

/* x is the branch *I
/* y is the target */
/* br is the condition on the branch */

stmt~tta-rd + true;
for each implicitly itera~ive region

that x jumps into do
begin

let bb. be the branch back flag

tcon rolling the region;
let xj be.the target of.

the backward branch;
add_to_queue (predicate_list(xj), brAbbj);
stmt~uard + stmt_guard A mbbj

e md

add_to_queue (predicate_liat(y),

br A atmt_guard);

end process_branch;

Figure 4. Forward Branch ?roeessiag

(-sbr1A-rbr2A=br3)v(*brlAbr2Abr3)v(-tbrlAbr2A-br3)

At statement 200, the expression brl A br2 A br3

is disjoined with the current condition, giving:

(IbrlAmbr2Awbr3)V(wbrlAbr2Abr3)V

(mbrlAbr2A=br3)V(-tbrlAmbr2Abr3)

The first and laat minterma simplify to -tbrl A

abr2. The second and third minterms simplify to

*brl A br2. These minterms combine to produce

=brl. Finally, at statement 300, the flag -tbrl is

simplified out. resetting the current condition to

true.

This example leada to several new obsena-

tions.

(1)

(2)

The
but

Once a branch flag is simplified out of the

current condition, it never reenters the con-

dition. The disappearance of a flag implies

that all possible execution patha since the

branch associated with the flag have merged

together. Whether or not the branch was

taken will have no effect on the execution of

subsequent statements.

The order in which branch flags may be sim-

plified out of the condition is exactly the

reverse. of the order in which the branch

flags are introduced. The previous example

demonstrates this point clearly, since br3

must be removed from the current condition

before br2 can be removed.

proof of these statements is straightforward

not obvious. In the, interest of space, we

will omit it here. The. interested, reader is

referred to a technical report on simplification

in PFC [AIKW S2].

The minterm representation for,guards. can be

exponentially larger than the shortest r.epreaenta-

tic!n, as our. earlier dia.cussions indicate. How-

ever, this growth occurs o.nly,when.the last branch

.jumpa around.a section of code containing the.t.ar-

gets of all p.revious ..branchea. F.o.r local,- struc-

tured, branches. branch flags siu@ify. o,u.t .v.e.ry

shortly after entry. Since the. growth of. minterms

can be, exp.o.nenti.al in the woret case,, regardless

o.f the represen,tatian, we. chose.. this method in

order. to optimize the time required to. simplify

structured code. Note .,that s.imp,l.ification with

this. representation merely involvea teeting the

set. .of. mipterms t.o see if each element . ..Abrn has

a partner . ..Anbrm. If ao. brn may be removed

frmu. the mint,erm, and its p.redeceasor. checked. for

the.. same condition ;..othe,rwis,e,,. the. c.ondi.ti.on. is in

simplest terms. By carefully ordering the min-

texms aa they are added to the condition, .we can

insure that simplification is acceptably effi-

cient.
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Afterwards the simplified condition may be

generated using phases 2 and 3 of the Quine -

McCluskey procedure. These phases are required

only when the actual current condition is altered.

This scheme can also be expanded to handle back-

wards branch flaga by adding the backward branch

flag to the current conditions branch flag list

and expanding when the first branch into the

implicitly iterative region ia encountered.

?. Implementation

IF conversion in PFC is performed in three

separate pasaes over the program. The first pass

analyzes the branches in the code, marking back-

ward branches and exit branchea. Next branch

relocation is performed, followed by branch remo-

val. These passes are basically as described

above, although the algorithms differ slightly in

order to promote efficiency and simpler condi-

t ions, Simplification using the abstract

representation described previously is performed

only during branch removal. Afterwards, the

guards axe converted .to the same intermediate form

as. .al.l other expressions.. A final pass over the

program unlocks backward branches and converts

them to WHILE 100pa. At this point, all branches

have been removed from the program.

Figure 5 briefly outlines the structure of

PF.G.. prior to IF conversion, PFC normalizes DO

loops and analyzes the. program to uncover its

basic block structure [Kenn 811. DO loop

HiE!!34t!2E_l-]
——------.

& IF
Conversion

tire-w

Figure 5: Structure of PFC

normalization modifies all loops to run from one

to some upper bound by increments “of one. In

doing SO, new loop induction variables are gen-

erated which allow easy identification of the loop

controlled. Additionally, the nesting level of

every statement is noted, thereby allowing easy

determination of jumps out of loops.

Basic block analysis is not important to IF

conversion directly, but it is vital to the global

optimization phase following IF conversion. Note

that b~ explicitly guarding every statement in the

program, IF conversion greatly increases the

number of baaic blocks in a program. Specifi-

cally, every guard and every statement has become

a block to itself. If these blocks were used in

global optimization, the analysis would be horren-

dously slow, and in many cases. far less accurate

than possible. However, by making use of the fact

that IF conversion does not change the execution

order of the program, we are able to use the basic

blocks constructed before IF conversion to suc-

cessfully optimize the program as it exists after

IF conversion. In addition, the use of basic

blocks can facilitate the incorporation of unvec-

torized IF statements into block IF constructs.

After IF conversion. PFC applies global

opt, imizatiou transformations to the program.

These transformations include dead code elimina-

tion, constant propagation. and i.dudsm wui.abk

. In addition to replacing implicit

induction variables with functions of the true

induction variables, induction variable substitu-

tion propagates certain expressions forward within

loops (within the limi.t.s set by the basic block

aoalysis). This propagation will replace flags

that are constant within a .1OOP by the actual

expression assigned .to the flag. This transforma-

tion is advantageous for two reasons. First,

scalars inside DO loops either inhibit or greatly

increase the cost of vectorization. Second.,. the

re.zulting code is. much closer in.appearance to the

original. .code, making the transformations easier

to understand.

Another important transformation performed by

Pl?C is. ~ ~, which is part of a

recurrence breaking phase during parallel code

generation, As described earlier, the use. of

scalar flags inaide DO 100PS can cause scalar

dependence,. thereby inhibit. ing vectori,zation.

Scalar expans.icm will replace scalar v.ariabl.es. by

equivalent array variables. thereby breaking. some

of the ,dependences. There are three. dis.t.inct

advantages to using scalar flags in IF conversion,

rather tha~ using logical arrays directly. First.

this approach allo.wa IF conversion to focus

strictly on ‘the problem of converting control
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dependence -- it need not be concerned with tbe

tedious details of converting scalars to arrays.

Second, this approach guarantees that arrays are

not created unless some vectorization is gained by

the approach. Strictly expanding every scalar can

greatly increase the amount of storage required by

a program. without necessarily permitting any vec-

torization at all. Scalar expansion, however,

will not expand a scalar unless some vectorization

results. Third, arrays created in IF conversion

are tested for dependence in the dependence

analysis phase of PFC. Unfortunately. dependence

testing is not exact in PFC; PFC may determine

that two array references are dependent when in

actuality they are independent. In particular.

the expansion of exit flags gives rise to false

recurrences when tested by the.dependence analysis

phase. Scalar expansion is sophisticated enough

to recognize that these dependence are false.

however, and ignores them. thereby permitting more

vector ization.

s. Conclusions

IF conversion has proved to be an extremely

valuable transformation ip PFC because it permits

Vectorization of sections of code that PFC must

Qtherwise leave untouched. The present implemen-

tation of IF conversion is complete as described

here, with two exceptions. First. simplification

is not yet c.omp.leted. As a result. IF conversion

can only be run on short examples. since the

current condition tends to rapidly become

unwieldy, Second, we have only briefly explored

the possibilities of converting guards in unvec-

torized code to block IF constructs.

IF c.onverwion has implications far beyond the

applications to vectoxization. By converting con-

trol depend.ences to data dependence. IF conver-

sion is useful in such application as data flow

languages, code structuring, and goto elimination.

More generally, it deumnstrates in a practical

program transformation system that any branching

construct can be. successfully converted to a

structured construct. This result, though well

known [BohJ 66, Hare 801, ia intellectually pleas-

ing as well as practically useful.

[A1lK 821

[AIKW 821
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