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ABSTRACT 
Cache hierarchies have been traditionally designed for usage by a 
single application, thread or core. As multi-threaded (MT) and 
multi-core (CMP) platform architectures emerge and their 
workloads range from single-threaded and multithreaded 
applications to complex virtual machines (VMs), a shared cache 
resource will be consumed by these different entities generating 
heterogeneous memory access streams exhibiting different locality 
properties and varying memory sensitivity. As a result, 
conventional cache management approaches that treat all memory 
accesses equally are bound to result in inefficient space utilization 
and poor performance even for applications with good locality 
properties. To address this problem, this paper presents a new 
cache management framework (CQoS) that (1) recognizes the 
heterogeneity in memory access streams, (2) introduces the notion 
of QoS to handle the varying degrees of locality and latency 
sensitivity and (3) assigns and enforces priorities to streams based 
on latency sensitivity, locality degree and application performance 
needs. To achieve this, we propose CQoS options for priority 
classification, priority assignment and priority enforcement. We 
briefly describe CQoS priority classification and assignment 
options -- ranging from user-driven and developer-driven to 
compiler-detected and flow-based approaches. Our focus in this 
paper is on CQoS mechanisms for priority enforcement -- these 
include (1) selective cache allocation, (2) static/dynamic set 
partitioning and (3) heterogeneous cache regions. We discuss the 
architectural design and implementation complexity of these 
CQoS options. To evaluate the performance trade-offs for these 
options, we have modeled these CQoS options in a cache 
simulator and evaluated their performance in CMP platforms 
running network-intensive server workloads. Our simulation 
results show the effectiveness of our proposed options and make 
the case for CQoS in future multi-threaded/multi-core platforms 
since it improves shared cache efficiency and increases overall 
system performance as a result.  

Categories and Subject Descriptors 
B.3.2 [Memory Structures]: Design Styles – Cache Memories.  

General Terms: Algorithms, Performance, Design 
Keywords: Cache, QoS, CMP, sharing, partitioning, performance.  

1. INTRODUCTION 
The efficiency and performance of caches is critical to the 
performance of microprocessors and platforms. This is especially 
true with the increasing gap between CPU speed and memory 
latency (ala memory wall [34]). To improve the efficiency of 
caches, researchers have proposed better cache organizations [3, 
9, 23], better allocation and replacement techniques [2, 8, 17] and 
improved caching protocols [12, 16, 27]. Most of these 
techniques have been proposed in the conventional platform 
context, where in each cache was dedicated to a single CPU 
running a single thread at any given point in time. On the other 
hand, innovations in multithreading (SMT [31], HT [15], etc) and 
system-on-a-chip (SoC) or single-chip multiprocessors (CMP) are 
changing the nature of platform architecture and execution 
behavior. In these rapidly emerging architectures, the use of 
shared caches at some level in the cache hierarchy is desired due 
to its performance characteristics and design effectiveness [19]. In 
this paper, our focus is on improving the performance and 
efficiency of shared caches in multi-core (CMP) architectures. In 
general, the approaches discussed in this paper are applicable to 
caches in any platform that are shared by multiple memory access 
streams or flows from different threads, cores or devices.  

In CMP platforms, shared caches are highly effective if the 
request streams are actually shared the data in the caches or have 
small working sets that collectively fit within the cache. Given the 
various workloads (web services, e-commerce, OLTP, financial 
applications, etc) that run on these platforms, this is difficult to 
guarantee. Furthermore, with the emergence of hosting services, 
utility computing and virtual machines, the CPU cores that are 
sharing the cache in the processor are like to have different 
applications running on them at any given time.  The applications 
are likely to possess very different memory access characteristics 
and locality properties. As a result, conventional cache 
management approaches that treat all memory accesses equally are 
bound to result in inefficient space utilization and poor 
performance even for applications with good locality properties. 
To allow for the cache space to be utilized more effectively, we 
present a case for considering quality of service (QoS) in shared 
caches. Our proposed cache framework (CQoS) aims to improve 
shared cache efficiency by provide prioritized service to multiple 
heterogeneous threads sharing a cache structure.  

To enable prioritization in shared cache structures, CQoS consists 
of mechanisms for priority assignment and priority enforcement. 
The first step however (before assignment and enforcement) is 
priority classification i.e. recognizing the heterogeneity in 
memory access streams and classifying them into the priority 
levels supported by CQoS. In this paper, we briefly touch upon 
the priority classification and assignment mechanisms that range 
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from approaches that are user-driven and developer-driven to 
those that are compiler-detected and flow-based approaches. The 
focus of this paper is primarily on the CQoS priority enforcement 
mechanisms. Our proposed mechanisms for priority enforcement 
are (1) selective cache allocation, (2) static/dynamic set 
partitioning and (3) heterogeneous cache regions. We discuss the 
design trade-offs and implementation details of these CQoS 
techniques. Through extensive cache simulations of important 
usage scenarios in CMP platforms, we present the effectiveness of 
these mechanisms.  

The rest of this paper is organized as follows. Section II presents a 
background on cache performance and motivates the need for 
CQoS. Section III introduces our CQoS framework for shared 
cache management. Section III also describes our proposed CQoS 
mechanisms for priority classification, assignment and 
enforcement. Section IV presents the design and implementation 
aspects of CQoS priority enforcement mechanisms options. 
Section V presents our simulation methodology for CQoS 
evaluation. Section VI analyzes CQoS performance in various 
scenarios and discusses the benefits of prioritization in cache 
space management. Finally, Section VII summarizes and 
concludes the paper with direction for future work in this area. 
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(a) Multi-Threaded Applications: The simplest case is where the 
last-level cache is being used by multiple threads of the same 
application. In this scenario, if the threads are sharing and 
communicating a lot of data between each other, the conventional 
management of shared caches will work reasonably well. 
However, if the threads perform entirely different types of 
transactions concurrently (for instance – HTTP transactions in a 
web server application), then the performance of the concurrent 
transactions is dependent not only on its own locality, but also the 
nature of memory accesses generated by the other transactions. In 
such scenarios, the transactions that are of higher importance (e.g. 
secure payment transactions) should be prioritized higher than 
those of lower importance (e.g. browsing transactions).  

(b) Multiple Heterogeneous Applications: When multi-tasking 
multiple applications in a CMP platform, it is likely that threads 
of one application and another get scheduled on to the same 
microprocessor, thereby sharing the last-level cache. This 
computing model is particularly gaining relevance/importance as 
virtual machines [5, 10, 32, 33] start to proliferate in data centers 
as a mechanism to reduce server sprawl. In such scenarios, 
different applications will definitely exhibit different memory 
access properties and therefore should be handled differently in 
terms of cache space allocated. The notion of cache space 
prioritization between is important here for high efficiency.  

(c) Specialized Cores in CMPs: As application and network 
processing tends to frequently execute some common 
communication layers (TCP/IP, SSL for instance) or computing 
components (data encryption, compression, CRC, XML parsing, 
etc), architects are considering replacing one or two of the CPU d
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cores with specialized cores for such components. In such 
scenarios, the processing and memory access flows generated by 
the cores on the CMP will definitely have different properties and 
can be best handled with that knowledge. 

(d) Sharing Caches between Cores and Devices: With the 
imminent potential of computing appearing in I/O devices (and 
possibly management controllers) in the system and the 
integration of I/O links into the CPU, researchers and architects 
are evaluating the benefits of using cache space to speed up the 
processing on the device. In such scenarios, it becomes important 
to perhaps partition the cache space dynamically between the 
cores and the devices. 

(e) Memory Latency Helpers: In current processors, prefetching 
is employed to overlap computation with memory access. 
Excessive prefetching [22, 30] is known to cause problems such 
as cache pollution and deteriorate application performance. In 
addition to prefetching [25] initiated by the CPU, researchers 
have considered memory-side prefetching, data forwarding [1, 11, 
21] and direct placement of network data into CPU cache [18]. To 
reduce the amount of pollution caused by these memory latency 
helpers, it is important to prioritize cache space usage between 
demand activity and prefetching/forwarding activity. 

Several other considerations need to be kept in mind when 
considering prioritizing cache space utilization. Other than the 
basic priority of the application, it also needs to be kept in mind 
that providing higher cache space to a higher priority application 
does not always guarantee higher cache performance. This 
depends heavily on the application’s memory access 
characteristics (i.e. locality properties). As a result, locality and 
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“user-defined” application priority need to be considered in 
unison to form the cache priority of the memory access stream. 
Other aspects to consider are the dynamic changes to the priority 
of an application or memory access stream. Since processing 
tends to go through several phases, it is important that the priority 
assignment mechanism be designed to allow dynamic changes. 
These issues motivated us to develop a framework that introduced 
the notion of quality of service in caches. In the next section, we 
will discuss the basic ideas behind this and present several 
potential design and implementation options to enable this in 
future systems. 

3. CQOS -- IMPROVING SHARED CACHES  
As motivated in the previous section, it is important to introduce 
prioritization in order to provide the notion of quality of service in 
shared cache space provisioning. In this section, we introduce the 
CQoS framework to enable this. Before we do that, we take a brief 
look at the performance implications of conventional cache 
management.  Using a web server workload (a SPECweb99 trace) 
and a network-intensive workload (a NTttcp trace), we show the 
cache performance when the workloads run independently in the 
cache and when they are run simultaneously through the cache. 
Figure 2 shows the impact of conventional cache management in 
these scenarios. 
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Figure 2. Issues w/ Conventional Cache Management  
Several observations can be made from the results in Figure 2. 
First of all as expected, when the workloads are run 
independently, the improvement (reduction) in miss rate with 
cache size is significantly better for SPECweb99 than for NTttcp 
(due to their locality characteristics). Secondly, there is a 
significant increase in miss rate for both workloads when run 
simultaneously (increase of 35-40% for SPECweb99 and 14-40% 
for NTttcp).  Third, in this case, an efficient shared cache 
management approach would be to improve SPECweb99 (the 
application with more locality and more priority from the user’s 
point of view). The ultimate goal is to provide SPECweb99 with a 
miss rate that is at the same level as when it is run independently, 
while not degrading the performance of NTttcp significantly. 

3.1 CQoS: Basic Framework and Flow 
In order to provide more cache space to higher priority and high 
locality memory access streams, we introduce the CQoS 
framework. The CQoS framework is made up of three aspects to 
managing cache priorities for memory access streams: 

[1] Cache Priority Classification: Here, the emphasis is on 
identifying the heterogeneous memory access streams and 

classifying them into priority levels. These priority levels may be 
different from the number of priority levels available in the 
platform. To start with, we first define the required levels of 
priority by taking an in-depth look at the different memory access 
streams described in Section II earlier.  

[2] Cache Priority Assignment: Once the workload’s priority 
levels have been determined, these will be translated into the 
system cache’s priority levels. As will be discussed in a later 
subsection, the options for cache priority assignment range from 
being ISA-based, memory type-based or flow-based and these 
may be utilized either by the compiler, the developer,  user or the 
O/S scheduler. 

[3] Cache Priority Enforcement: Once the memory accesses are 
classified and assigned into priorities, the focus here is to enforce 
these priorities during cache space allocation and management. 
This can be done by monitoring the space consumption for each 
priority level and modifying either the allocation process or the 
replacement process. Alternatively it can also be accomplished by 
structuring the single shared cache as multiple smaller caches that 
are organized differently and have different policies enforced. The 
specific techniques for cache priority enforcement will be 
discussed in significant detail in a later subsection. 

Due to space limitations, it should be kept in mind that we will 
introduce the priority classification and assignment approaches in 
this paper, but focus more heavily on the design and 
implementation of the options for cache priority enforcement. 

3.2 CQoS Priority Classification Options 
As mentioned above, the first step for CQoS is to recognize the 
heterogeneous memory accesses involved and classify the memory 
access stream or data structure within the stream into priority 
levels.  This can be achieved in the following ways: 
[1] Based on Data Structures or Access: The types of data 
structures touched in typical memory access streams during any 
processing can be classified into three types: (1) frequent or hot-
set and (2) typical or average-set and (3) one-touch or cold-set. If 
the application developer or compiler can profile the application 
and identify these, then they can be taken advantage of in two 
ways: (1) load /store instructions tagged with the above attribute 
or (2) the data can be allocated in different memory regions with 
specific attributes. Once tagged, these can be handled differently 
in the cache based on the priority level. 
[2] Based on Transactions or Phases: Another approach is for 
the developer to define priorities for each phase or transaction 
processed by the application. In this way, whenever the phase is 
entered, the cache controller can be informed about the priority 
level of the subsequent memory access stream and handle the 
memory access appropriately.  Upon exit or entrance into another 
phase, the priority level can be modified. 
[3] Based on Flow Type: This approach requires the hardware to 
differentiate between demand memory accesses and prefetch 
accesses made either by the core or other components in the 
system. Since this information is mostly available in the system, 
this probably does not require additional support. 
[4] Based on Different Applications: If applications as a whole 
are largely homogeneous, they can be classified at a certain 
priority level. In this case, this application priority has to be 
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maintained along with the process or thread context information 
in the system and made available to the cache controller. 
[5] Based on Types of Cores Devices or Threads: Finally, this 
approach requires the cache to differentiate between different 
cores or devices making requests. For instance, requests coming 
from an I/O device may be classified at a lower priority level than 
the requests coming from the processor core. Similarly, a 
specialized core assisting the application may also be classified at 
a different priority level than the main application core. In such 
scenarios, the BIOS or the O/S needs to configure each device 
with a certain priority level which may or may not be modified by 
the system administrator or system management controller. 
While it would be great if support for all of the above options 
were available in the platform, we expect that some trade-off 
analysis is needed to understand the feasibility of the options 
proposed. The above options vary in their granularity and the 
hardware/software support needed for the platform. It should also 
be noted that two or more options can be combined to compute 
the overall priority level of the memory access stream. Once the 
priority level is decided upon, the next step is identify the 
mechanisms for priority assignment and map these memory access 
priority levels to priority levels made available by the platform.  

3.3 CQoS Priority Assignment Options 
In the previous section, we discussed the different methods by 
which memory accesses can be classified into priority levels and 
also alluded to the potential mechanisms in which they can be 
translated into priority assignment for the cache controller. In this 
section, we present these directly and understand how they relate 
to the compiler, developer, user, O/S scheduler, system 
administrator. The mechanisms include: 
[1] Tagged Memory References (Loads/Stores): It may be 
possible to provide different load instructions for each priority 
level supported by the cache controller. It should be noted, 
however, that in order to use the available opcodes minimally, it is 
probably feasible to support only two or three in the instruction 
set architecture (ISA). Similarities to this  can be found by 
looking at the prefetch instructions for Intel’s IA-32 processor 
family. The ISA for the Intel IA-32 supports three different types 
of prefetches: (1) for temporal prefetches that bring data into L1 
& L2, (2) for temporal prefetches that bring data into just the L2 
and (3) non-temporal prefetches that place the data into only 1-
way of the L2 cache. The three prefetch types map directly to data 
types with different locality properties and therefore different 
priorities. 
[2] Priority Specification Instructions: This mechanism 
basically requires ISA support for executing an instruction that 
causes the process / thread / core to be assigned a certain priority 
level. The priority level specified by the instruction is recorded in 
a register or a table (in case of a multi-threaded core) and can be 
provided to the cache controller when subsequent loads and stores 
are generated. 
[3] Priorities in Memory Types: Today, there are four or five 
dominant memory types available in a typical platform (e.g. write-
back, write-combining, un-cacheable and write-protected). These 
memory ranges are available through range registers in order for 
the cache and chipset to identify the type of load/store access that 
was generated. If these memory types can be further segregated 
into low and high priority regions and appropriate memory 

allocation system calls are made available in the O/S, then the 
application developer (or perhaps the compiler) can use the 
priority level of the allocated memory region and translate it to an 
appropriate allocation during runtime. 
[4] Application Priorities: Today, applications can be assigned 
priorities by the user in many O/S’es (Linux, Unix, HP-UX, etc) 
at the process granularity. However, this priority level is used for 
the scheduler to provide more or less time intervals to the 
application. It would be useful to add a component priority level 
(such as cache priority level) to the application in order for it to be 
maintained in the process’s context and be accessible to the 
application and the O/S if it chose to use it for cache priority 
assignment. This essentially adds context overhead to the running 
process which needs to be saved and restored when the process is 
swapped out. 
[5] Device / Core Based: This is essentially the hardware 
designer (through BIOS) or the O/S developer assigning priorities 
to devices in the system and providing the priority level so that all 
accesses made by the entity is treated with the appropriate level of 
priority. 

3.4 CQoS Priority Enforcement Options 
The focus of this paper is largely on the design, implementation 
and performance of CQoS priority enforcement. Given a priority 
level for each memory access, the problem statement is essentially 
that of enforcing it in cache space management. It should be noted 
that we are only discussing quality of service in terms of cache 
space provided and not in terms of cache latency or miss ratio 
since these may be entirely dependent on the inherent 
characteristics of the application. To enforce the priority levels in 
the cache, we propose the following three different types of 
mechanisms: 
[1] Set Partitioning Schemes (Static/Dynamic): Caches are 
organized in sets containing one or more lines. The goal of this 
mechanism is to allow higher priority applications to occupy more 
ways of the set and lower priority applications fewer ways in the 
set. This can be achieved by statically decomposing the set into a 
number of subsets or dynamically placing a limit on the number of 
lines occupied (within the set) by the memory access streams at a 
given priority level.  
[2] Selective Cache Allocation: This mechanism does not disturb 
the organization of the cache but maintains counts to determine 
the number of lines occupied in the cache by memory access 
streams at a given priority level. Based on the count, it 
probabilistically allocates or rejects cache line allocation requests 
made to the cache. 
[3] Heterogeneous Cache Regions: This mechanism proposes 
heterogeneous cache structures (set-associative caches, stream 
buffers, victim caches) that can be mapped to memory access 
streams based on the priority levels. Alternatively, it also 
discusses heterogeneous cache regions with different replacement 
policies (e.g. locked or self-invalidated lines). 
A discussion on the design and implementation options of these 
priority enforcement schemes will be presented in the next 
section. 
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4. DESIGNING PRIORITY ENFORCEMENT OPTIONS 
In order to make the design and implementation feasible, we 
largely focus on enabling two priority levels in each mechanism. 
Many of the mechanisms proposed in the previous subsection, 
however, are easily extendable to supporting multiple priority 
levels. 

4.1 Design of Set Partitioning Techniques 
In order to enable the partitioning of the shared cache into 
different spaces for different priority levels, we further decompose 
the set down into subsets. In this section, we discuss the design of 
a static and dynamic set partitioning approach to manage subsets. 
We start with static set partitioning. 

4.1.1 Static Set Partitioning Techniques 
We start with each set containing N cache lines in the shared 
cache. To statically separate the set into two subsets of different 
sizes, we logically map the first X lines to priority level 2 and the 
next N-X lines to priority level 1. It should be noted that we use 
lower values to indicate higher priority (i.e. priority level 1 being 
the highest). The changes required to support this mapping and 
partitioning are as follows: 

− Cache Lookup: All lookups in the cache will scan through 
all the lines in the set. 

− Cache Allocation: If the line does not exist in the cache, 
then the allocation is done to the subset that the priority level 
is mapped to. 

− Cache Replacement: When a victim has to be chosen, it is 
chosen from the subset that the priority level is mapped to. 

The implementation cost of this scheme is in the changes to the 
bits maintained for replacement purposes and to the replacement 
mechanism itself. The replacement mechanism basically needs to 
be modified to cater to multiple different subsets. An optimization 
to this scheme is to allow the highest priority scheme to allocate 
anywhere in the set, but the lower priority schemes to allocate 
only in the subset that they are mapped to. This way, the highest 
priority scheme can always utilize the entire cache space even 
when there are no applications in other priority levels. 

4.1.2 Dynamic Set Partitioning Techniques 
As before, we start with each set containing N cache lines in the 
shared cache. In static set partitioning, we physically partitioned 
the set into two subsets. In dynamic set partitioning, the approach 
is to achieve the partitioning by imposing a limit on the number of 
cache lines that can be occupied in the set  by a given priority 
level. For instance, priority level 2 can occupy only X lines in the 
cache, whereas priority level 1 can occupy up to N lines in the set. 
The changes required to achieve this partitioning are as follows: 

− Cache Lookup: All lookups in the cache will scan through 
all the lines in the set. 

− Cache Allocation: If the line does not exist in the cache, 
then the allocation is done anywhere in the set as long as the 
set limit has not been reached for the priority level of the 
allocation request. If the limit has been reached, the 
replacement scheme below is used. 

− Cache Replacement: When the set limit is reached for a 
given priority level, then the replacement policy needs to 
locate the lines in the cache that are associated to that 
priority level and choose a victim among those lines. 

The implementation cost of this scheme is the following: (1) 
maintaining a count per set per priority level, (2) maintaining the 
id of the priority level for each line in the set and (3) changes to 
the bits maintained for replacement purposes and to the 
replacement mechanism itself. The replacement mechanism 
basically needs to be modified to cater to multiple different lines 
when the set limit is reached. In addition, it also needs to be able 
to locate the lines associated with the priority level before 
choosing the victim among those. 

The performance comparison between static and dynamic set 
partitioning as well as an analysis of the overall benefits of set 
partitioning will be presented in the next section. Qualitatively, 
we expect dynamic partitioning to provide more efficiency in the 
cache since it allows at least one memory access stream at the 
highest priority level to occupy the entire cache. These schemes 
can also be generalized to support P different priority levels. 
However, this is not within the scope of this paper (due to space 
limitations). 

4.2 Design of Selective Allocation Techniques 
Another approach to providing different amounts of cache space 
to different priority levels is to monitor the allocation amounts in 
the overall cache and allow / disallow allocation based on the 
current space utilization.  In this section, we introduce a simple 
scheme called probabilistic cache allocation. 

4.2.1 Probabilistic Cache Allocation 
In order to limit the cache space utilized by a given priority level, 
we use an allocation probability (AP). The allocation probability 
(AP) implies that the streams at that priority level can only occupy 
up to AP*C bytes in the cache, where is the size of the cache in 
bytes. Once each priority level is assigned an allocation 
probability, the subsequent requests generated by memory access 
streams of that priority level are made to adhere to that allocation 
amount probabilistically. This is more easily understood with an 
example. Let us assume two priority levels with allocation 
probabilities assigned as AP2 = 30% for priority level 2 and AP1 
= 70% for priority level 1. In this scenario, when a request I is 
generated in a memory access stream, a random number of 
generated between 0 and 100. The random number (RI) is 
compared against APx where x is the priority level of the stream. 
If RI <= APx, then the cache line is allocated into the cache. If RI 
> APx, then the cache line is dropped for allocation. Instead of 
dropping the cache line entirely, an extension to this scheme is to 
place the cache line in a victim cache and consider it for 
allocation again if the line is touched by the processor.  

For this scheme, the implementation cost is essentially in 
maintaining the allocation probabilities per priority level and 
generating a random number for each memory access stream. The 
only change in cache management is to the cache allocation 
policy, where the probabilistic allocation is performed as opposed 
to direct allocation. 

4.3 Design of Heterogeneous Cache Regions 
In this class of techniques, we basically propose two approaches 
to maintaining heterogeneous cache regions: (1) heterogeneous 
caches mapped to priority levels and (2) heterogeneous cache line 
policies mapped to priority levels. These schemes are described 
further below. 
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4.3.1 Heterogeneous Caches 
Here, the basic idea is to provide multiple caches with different 
organization structures or policies. For instance, one simple 
heterogeneous cache structure could separate a 4MB, 8-way 
shared cache with 128-byte lines into three different cache 
structures: (1) a 12-way 3MB cache structure with 64-byte lines, 
(2) a direct-mapped 512K cache with 32 byte lines and (3) a 512K 
FIFO stream buffer with 1K cache lines. The basic premise behind 
this separation would be the presence of three different types of 
memory accesses -- (1) Transient data that is streamed through the 
cache has spatial locality but almost no temporal locality (as is the 
case for network processing and graphics applications), (2) 
Temporal data with little spatial locality and (3) Data types with 
average temporal and spatial locality.  

In this scenario, the mapping of priority of memory types to these 
caches needs to be done with multiple aspects in mind – (1) the 
size requirements of the working set and (2) the temporal/spatial 
locality properties of the memory access type. Depending on these 
two aspects, it is easy to determine the right cache to map the 
priority level to. A concern that remains is the fragmentation issue 
– where some cache spaces are rarely used and could have been 
put to better use if they were available. This remains a limitation 
of this scheme and can be perhaps avoided in the approach 
discussed below. 

4.3.2 Heterogeneous Cache Lines 
Here, the idea is to separate the property of the cache line from the 
policies enforced on the cache. For instances, cache lines typically 
fall into one of the following categories: (a) frequently accessed or 
hot-set, (b) typical or average-set, (c) one-touch or cold-set. 
However, due to conflicts in the cache, capacity limitations and 
low visibility into the actions on the lower level caches, these 
properties cannot be held using the typical LRU policy in the last-
level cache. However, if the priorities were mapped according to 
the type of the memory access, then the policy used to manage 
that line in the cache can be changed. 

Essentially, we are proposing the use of the following two types 
of cache line management approaches: 

(1) Cache Line Locking: By allowing cache lines to be excluded 
from the cache replacement policy, the line belonging to a hot-set 
can be locked into the cache. Given the typical workload, most of 
the accesses occur to less than 20% of the lines. In such cases, this 
policy could help improve the application performance 
tremendously. 

(2) Selective Self-Invalidation: By allowing cache lines to be 
invalidated in the cache, the memory access types that fall into the 
cold-set category can be easily self-invalidated after access. 
Support for self-invalidation of cache lines is available in some 
microprocessors today via a instruction. Here, we propose to do 
self-invalidation in hardware based on the priority level of the 
cache line that is accessed. 

5. EVALUATION METHODOLOGY AND TOOLS 
In this section, we describe our trace-driven simulation 
methodology to understand the cache performance benefits of 
CQoS priority enforcement schemes. 

5.1 Workloads and Traces 
We collected traces from two network-intensive workloads 
(SPECweb99 and NTttcp) running on current platforms in our 
lab. The workloads can be described as follows. 

− SPECweb99 [26] is a benchmark that attempts to mimic a 
web server environment.  The benchmark setup uses multiple 
client systems to generate aggregate load on the system under 
test (a web server).  Each client (mimicking browsers) 
initiates TCP connections to the web server and makes HTTP 
requests for static or dynamic web pages.  SPECweb99 
requires 30% of the requests to be dynamic requests and 70% 
to be static requests. SPECweb99 also uses popular file 
access characteristics (Zipf distribution over directories and 
files) and persistent connections to represent current web 
server accesses. 

− NTttcp [29] is Microsoft’s command-line sockets based tool 
based on the ttcp benchmark, which is used for measuring 
TCP and UDP performance between two end-systems. 
NTttcp achieves high performance by filling a memory buffer 
with data, then repeatedly transmitting this data. For our 
analysis of end system performance, the traces were collected 
on the server where the NTttcp receiver resided. 

5.2 Cache Simulation Methodology 
Our evaluation methodology consists of an extensive set of 

cache simulations fed by traces collected on a current platform 
running SPECweb99 and NTttcp, as described in the previous 
section. We then extracted the memory reference streams from 
these traces and fed those through cache simulation models 
developed using our CASPER (Cache Architecture Simulation 
and Performance Exploration using Refstreams) simulation 
environment [6, 7]. CASPER provides a rich set of features for 
detailed cache evaluation studies such as the following: 

− UP Cache Hierarchies -- unified & split I/D caches 

− MP Cache Hierarchies -- MESI & broadcast-based 

− CMP Cache Simulations  -- multiple cores or devices 
with individual caches or shared caches 

To study the performance implications of CQoS priority 
enforcement schemes, we simulated a shared cache between 
processor cores and I/O devices. We modeled three different types 
of CQoS mechanisms in CASPER -- static set partitioning, 
dynamic set partitioning and selective cache allocation. We also 
evaluated heterogeneous cache regions by extending the cache 
simulation model within SimpleScalar [24]. This last study did 
not use CASPER since we already had the necessary support built 
into SimpleScalar for a different investigation [35]. 

6. CQOS PERFORMANCE CASE STUDIES 
In this section, we describe the simulation benefits of CQoS by 
picking three different scenarios – (1) multiple applications 
sharing the cache, (2) multiple devices sharing the cache and (3) a 
single application possessing distinct data structures with differing 
memory access properties. 

6.1 Impact of CQoS on Multiple Applications 
To study the impact of CQoS on two applications sharing the 
cache in a CMP platform, we ran SPECweb99 and NTttcp traces 
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through a shared cache ranging from 512K to 4M in size. We 
chose relatively small cache sizes since the working sets of these 
applications are small due to the fact that they are running at 
today’s performance levels. 

 
 
 
 
 
 
 
 
 
 

Figure 3. CQoS Study on Multiple Applications 
Before we show the impact of CQoS on cache performance, we 
present the impact of conventional cache management on SW99 
performance with and without NTttcp running through the same 
shared cache. Figure 4 shows the results from this study. It should 
be noted that the aim of CQoS is basically to provide better 
performance for higher priority applications which comes at the 
expense of the lower priority application. 
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Figure 4. Conventional Cache Management 

As shown in Figure 4, when using conventional cache 
management, the cache miss rate of SW99 increases by up to 40% 
when a low priority application (NTttcp) is also run through the 
same shared cache. This can be improved substantially if CQoS is 
used in the cache. We have tried both dynamic set partitioning 
and selective allocation to understand their impact. The results are 
shown in Figures 5 and 6. 

Figure 5 shows the impact of imposing a limit of X lines on 
NTttcp in the shared cache. The value for X is varied from 0 to 4. 
The “No Limit” case depicts the scenario where CQoS set 
partitioning is not enforced. From the figure, we find that 
imposing a limit of 2 lines in an 8-way set occupied by NTttcp 
can improve the 2MB cache performance of SW99 greatly (a 
decrease of ~15% in miss rate). This does come at a cost to 
NTttcp (an increase of miss rate from 28% to 35%). However, it 
should also be noted that SPECweb99 is chosen to be the higher 
priority application and its performance is more critical as well as 
more sensitive to miss rate than NTttcp. Projecting overall 

performance for these workloads under CQoS is not within the 
scope of this paper. 
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Figure 5. CQoS Set Partitioning 

Figure 6 shows the impact of selective cache allocation on SW99 
cache performance (with cache size of 2MB). The allocation 
probability for SPECweb99 was held at 100% whereas the 
allocation probability for NTttcp was varied from 0% to 50% (as 
denoted in the x-axis). The “No Alloc” entry shows the case 
where no CQoS priority enforcement was enabled. The results 
show a steady decrease in cache miss rate of SW99 as the 
allocation probability for NTttcp is reduced from 50% to 0%. An 
allocation probability of 25% (for NTttcp) reduces the SW99 
cache miss rate from 29% to 26% (a reduction of 12%). The 
impact of the 25% allocation probability on NTttcp performance 
is that the miss ratio increases from 28% to 31%.  
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Figure 6. CQoS Selective Allocation 

These preliminary studies confirm the benefits of CQoS cache 
priority enforcement in scenarios where there is clearly one high 
priority application and one low priority application.  

6.2 Impact of CQoS on Multiple Devices 
In this section, we study the cache performance of SPECweb99 in 
a dual-core platform with a high priority memory access stream 
running on the processor (P2M) interfered by a lower priority 
stream that is generated by the I/O device (IO2M).  
We first varied the 8-way shared cache size from 2MB to 8MB. 
Each processor was enabled with an private cache of 1M. With 
conventional cache management, the IO2M stream interferes with 
the P2M stream significantly, causing the cache performance of 
the high priority stream to reduce considerably as shown in Figure 
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8. For example, the P2M miss ratio for a 8M cache increases from 
14% to 23% when IO2M is allowed to use the shared cache. 
 
 

 

 

 

 

 

 
 

Figure 7. CQoS Selective Allocation 

 

Figure 8. Conventional Cache Management 
To show the benefits of CQoS, we chose the 8M cache to perform 
set partitioning studies and analyses. We started with the use of 
dynamic set partitioning by imposing a limit on the lines or ways 
occupied by the IO2M memory access stream. Figure 9 shows the 
cache miss ratio (for P2M traffic, for IO2M traffic and overall) as 
the IO2M limit is reduced from 8 (entire set) to 0 (no line in the 
set). To achieve best P2M traffic, it is obvious that limit of 0 on 
IO2M would be the most desirable. However, to allow some 
cache benefits for the IO2M traffic, it appears that allowing 1-way 
for IO2M traffic achieves good IO2M miss ratio as well as greatly 
reduces P2M miss ratio from the conventional cache scenario 
(from 23% to 18%).  
Figure 10 shows the performance comparison of dynamic set 
partitioning to static set partitioning. From the figure, it can be 
noticed that static and dynamic set partitioning works to produce 
similar performance when the subset limits are 3 or below. 
However, when using static set partitioning, as the IO2M limit is 
increased beyond 3, the performance of P2M traffic suffers 
considerably because it is limited to the remaining few lines only. 
The hard partitioning impact of set partitioning should be kept in 
mind when considering static set partitioning beyond a small 
number of ways in the set. 

6.3 Impact of CQoS on Specialized Cores 
In order to understand the potential of CQoS on specialized cores, 
we have studied the potential for a dedicated core running the 
TCP/IP protocol processing [20, 4] for network-intensive servers 

[14]. In Figure 11, we show both the application and network 
cache accessing a shared cache organized as two different cache 
structures – Application cache and Network cache. In a previous 
subsection, we showed how application (SPECweb99) cache 
performance is hurt when running a network intensive workload 
(NTttcp) in a shared cache. Here we study the cache size 
requirements of the dedicated network cache and then split that 
further based on data types touched during TCP/IP processing 
(specifically receive-processing that is known to be memory 
intensive [13]). 
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Figure 9. Impact of Dynamic Set Partitioning 

 

Figure 10. Dynamic versus Static Set Partitioning 
 
 
 
 
 
 
 
 
 

Figure 11. Dedicated Network Processing 
Figure 12 shows the size requirements for a receive-intensive 
(RX) workload. As shown in the figure, a dedicated cache size of 
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less than 32KB is sufficient for network processing. Providing 
additional cache space just pollutes the cache with non-temporal 
data. By investigating the data types touched, we have also 
identified two distinct types of data: 
[1] Data with temporal locality: These include connection 
context information and hash tables that are touched when every 
packet is received. This also includes local variables that the stack 
uses for processing. 
[2] Transient Data: These include incoming network data 
(descriptors, headers and payload) that have to be invalidated 
from the cache and are compulsory misses. 
To further reduce the network cache size, we separated the cache 
into two heterogeneous structures – a set-associative temporal 
locality cache (TLC) and a FIFO stream buffer (SB). The TLC 
caches data that has temporal locality whereas the stream buffer 
holds the transient data. Figure 13 shows the comparison between 
the size requirements of TLC+SB versus that for the simple 
network cache. 
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Figure 12. Network Cache Size Requirements 
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Figure 13. Benefits of Heterogeneous Cache Regions 
As shown in Figure 13, the performance (lines illustrating misses 
per packet) is about the same between the simple network cache 
and the combination of TLC + stream buffer. However, the cache 
size required for TLC+SB is much lower (as represented by the 
vertical bars). The benefits of heterogeneous cache regions in this 
case materializes as cache size reduction especially since the logic 
required to maintain stream buffers is also rather low. 

7. CONCLUSIONS AND FUTURE WORK 
In this paper, we introduced the notion of quality of service (QoS) 
in shared cache management (especially in CMP platforms). Our 
CQoS framework enabled QoS in shared caches by using 
priorities. The steps involved in CQoS were the following: (1) 
priority classification for each memory type or access stream, (2) 
priority assignment mechanisms for translating the stream 
priorities into those supported in hardware and (3) priority 
enforcement mechanisms. While we discussed several options for 
priority classification and assignment, our focus in this paper was 
on the design, implementation and performance evaluation of 
CQoS priority enforcement. 

Specifically on CQoS priority enforcement, we proposed three 
different mechanisms: (1) static/dynamic set partitioning, (2) 
selective cache allocation and (3) heterogeneous cache regions. 
We then discussed the design trade-offs and implementation 
potential of these mechanisms. Finally, by modeling the options in 
a cache simulator, we studied the performance benefits of CQoS. 
Our preliminary evaluation was performed on network-intensive 
workloads where we find three major classes of different traffic: 
(1) CPU application traffic, (2) device I/O traffic and (3) network 
protocol processing traffic. By prioritizing application traffic over 
I/O device traffic and network processing traffic, we showed how 
the performance benefits can be achieved. Then by focusing on 
network processing, we showed that heterogeneous cache regions 
can help reduce the dedicated cache size needed for TCP/IP 
processing engines (specialized cores) and thereby reduce 
pollution for the application processing as well. 

There is abundant work to be done in this area of research.  To 
start with, we would like to perform our CQoS evaluation on 
several different types of applications. We also plan to perform an 
in-depth investigation into CQoS priority classification and 
assignment mechanisms – especially in using compilers for 
automating this process. We would also like to understand the 
tradeoffs in enabling new memory types and allocation primitives 
in the O/S for improved cache performance. We plan to build a 
hardware prototype to better showcase CQoS benefits between 
complex applications like virtual machines. Finally, we believe 
that this notion of prioritization is not only applicable to caches 
but also to other shared resources in the system (like shared 
interconnects, memory subsystem bandwidth etc). We believe that 
enabling QoS in the system as a whole will be an important 
contribution to future server platform architectures running a 
variety of applications. 
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