

CQoS: A Framework for Enabling QoS in Shared Caches
of CMP Platforms

Ravi Iyer
Communications Technology Lab, Intel Corporation

Hillsboro, Oregon
ravishankar.iyer@intel.com

ABSTRACT
Cache hierarchies have been traditionally designed for usage by a
single application, thread or core. As multi-threaded (MT) and
multi-core (CMP) platform architectures emerge and their
workloads range from single-threaded and multithreaded
applications to complex virtual machines (VMs), a shared cache
resource will be consumed by these different entities generating
heterogeneous memory access streams exhibiting different locality
properties and varying memory sensitivity. As a result,
conventional cache management approaches that treat all memory
accesses equally are bound to result in inefficient space utilization
and poor performance even for applications with good locality
properties. To address this problem, this paper presents a new
cache management framework (CQoS) that (1) recognizes the
heterogeneity in memory access streams, (2) introduces the notion
of QoS to handle the varying degrees of locality and latency
sensitivity and (3) assigns and enforces priorities to streams based
on latency sensitivity, locality degree and application performance
needs. To achieve this, we propose CQoS options for priority
classification, priority assignment and priority enforcement. We
briefly describe CQoS priority classification and assignment
options -- ranging from user-driven and developer-driven to
compiler-detected and flow-based approaches. Our focus in this
paper is on CQoS mechanisms for priority enforcement -- these
include (1) selective cache allocation, (2) static/dynamic set
partitioning and (3) heterogeneous cache regions. We discuss the
architectural design and implementation complexity of these
CQoS options. To evaluate the performance trade-offs for these
options, we have modeled these CQoS options in a cache
simulator and evaluated their performance in CMP platforms
running network-intensive server workloads. Our simulation
results show the effectiveness of our proposed options and make
the case for CQoS in future multi-threaded/multi-core platforms
since it improves shared cache efficiency and increases overall
system performance as a result.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles – Cache Memories.

General Terms: Algorithms, Performance, Design
Keywords: Cache, QoS, CMP, sharing, partitioning, performance.

1. INTRODUCTION
The efficiency and performance of caches is critical to the
performance of microprocessors and platforms. This is especially
true with the increasing gap between CPU speed and memory
latency (ala memory wall [34]). To improve the efficiency of
caches, researchers have proposed better cache organizations [3,
9, 23], better allocation and replacement techniques [2, 8, 17] and
improved caching protocols [12, 16, 27]. Most of these
techniques have been proposed in the conventional platform
context, where in each cache was dedicated to a single CPU
running a single thread at any given point in time. On the other
hand, innovations in multithreading (SMT [31], HT [15], etc) and
system-on-a-chip (SoC) or single-chip multiprocessors (CMP) are
changing the nature of platform architecture and execution
behavior. In these rapidly emerging architectures, the use of
shared caches at some level in the cache hierarchy is desired due
to its performance characteristics and design effectiveness [19]. In
this paper, our focus is on improving the performance and
efficiency of shared caches in multi-core (CMP) architectures. In
general, the approaches discussed in this paper are applicable to
caches in any platform that are shared by multiple memory access
streams or flows from different threads, cores or devices.

In CMP platforms, shared caches are highly effective if the
request streams are actually shared the data in the caches or have
small working sets that collectively fit within the cache. Given the
various workloads (web services, e-commerce, OLTP, financial
applications, etc) that run on these platforms, this is difficult to
guarantee. Furthermore, with the emergence of hosting services,
utility computing and virtual machines, the CPU cores that are
sharing the cache in the processor are like to have different
applications running on them at any given time. The applications
are likely to possess very different memory access characteristics
and locality properties. As a result, conventional cache
management approaches that treat all memory accesses equally are
bound to result in inefficient space utilization and poor
performance even for applications with good locality properties.
To allow for the cache space to be utilized more effectively, we
present a case for considering quality of service (QoS) in shared
caches. Our proposed cache framework (CQoS) aims to improve
shared cache efficiency by provide prioritized service to multiple
heterogeneous threads sharing a cache structure.

To enable prioritization in shared cache structures, CQoS consists
of mechanisms for priority assignment and priority enforcement.
The first step however (before assignment and enforcement) is
priority classification i.e. recognizing the heterogeneity in
memory access streams and classifying them into the priority
levels supported by CQoS. In this paper, we briefly touch upon
the priority classification and assignment mechanisms that range

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICS’04, June 26–July 1, 2004, Saint-Malo, France.
Copyright 2004 ACM 1-58113-839-3/04/0006…$5.00.

257

from approaches that are user-driven and developer-driven to
those that are compiler-detected and flow-based approaches. The
focus of this paper is primarily on the CQoS priority enforcement
mechanisms. Our proposed mechanisms for priority enforcement
are (1) selective cache allocation, (2) static/dynamic set
partitioning and (3) heterogeneous cache regions. We discuss the
design trade-offs and implementation details of these CQoS
techniques. Through extensive cache simulations of important
usage scenarios in CMP platforms, we present the effectiveness of
these mechanisms.

The rest of this paper is organized as follows. Section II presents a
background on cache performance and motivates the need for
CQoS. Section III introduces our CQoS framework for shared
cache management. Section III also describes our proposed CQoS
mechanisms for priority classification, assignment and
enforcement. Section IV presents the design and implementation
aspects of CQoS priority enforcement mechanisms options.
Section V presents our simulation methodology for CQoS
evaluation. Section VI analyzes CQoS performance in various
scenarios and discusses the benefits of prioritization in cache
space management. Finally, Section VII summarizes and
concludes the paper with direction for future work in this area.

Figure 1. Shared Cache in CM

2. THE NEED FOR QOS IN CA
The typical architecture of a processor
shown in Figure 1. As shown in the figure
typically consists of a number of compu
L1 (and perhaps L2 caches). While the las
be made up of private caches per proce
shown that shared caching is more desira
and design point of view. Our focus is on
last-level cache as it is critical shared reso
keep the compute cores busy executing an
against the memory wall.

Conventional cache management relies o
by only one memory access stream at a
However, as processors, systems and a
more complex, we need to consider the di
access streams that allocate data into th
consider the potential for different memo
be broadly classified into the following ca

(a) Multi-Threaded Applications: The simplest case is where the
last-level cache is being used by multiple threads of the same
application. In this scenario, if the threads are sharing and
communicating a lot of data between each other, the conventional
management of shared caches will work reasonably well.
However, if the threads perform entirely different types of
transactions concurrently (for instance – HTTP transactions in a
web server application), then the performance of the concurrent
transactions is dependent not only on its own locality, but also the
nature of memory accesses generated by the other transactions. In
such scenarios, the transactions that are of higher importance (e.g.
secure payment transactions) should be prioritized higher than
those of lower importance (e.g. browsing transactions).

(b) Multiple Heterogeneous Applications: When multi-tasking
multiple applications in a CMP platform, it is likely that threads
of one application and another get scheduled on to the same
microprocessor, thereby sharing the last-level cache. This
computing model is particularly gaining relevance/importance as
virtual machines [5, 10, 32, 33] start to proliferate in data centers
as a mechanism to reduce server sprawl. In such scenarios,
different applications will definitely exhibit different memory
access properties and therefore should be handled differently in
terms of cache space allocated. The notion of cache space
prioritization between is important here for high efficiency.

(c) Specialized Cores in CMPs: As application and network
processing tends to frequently execute some common
communication layers (TCP/IP, SSL for instance) or computing
components (data encryption, compression, CRC, XML parsing,
etc), architects are considering replacing one or two of the CPU d
Many Different
Applications, VMs
Threads, Cores,
Specialized Engines,
Devices, Assists,
Data Prefetch/Forwar

P Processors

CHES
in a CMP platform is

, a CMP microprocessor
te cores with individual
t level cache (LLC) can
ssor, studies [19] have
ble from a performance
 the performance of this
urce that is intended to

d the last line of defense

n the cache being used
ny given point in time.
pplications become far
fferent types of memory
e shared LLC. Let us

ry access streams as can
tegories:

cores with specialized cores for such components. In such
scenarios, the processing and memory access flows generated by
the cores on the CMP will definitely have different properties and
can be best handled with that knowledge.

(d) Sharing Caches between Cores and Devices: With the
imminent potential of computing appearing in I/O devices (and
possibly management controllers) in the system and the
integration of I/O links into the CPU, researchers and architects
are evaluating the benefits of using cache space to speed up the
processing on the device. In such scenarios, it becomes important
to perhaps partition the cache space dynamically between the
cores and the devices.

(e) Memory Latency Helpers: In current processors, prefetching
is employed to overlap computation with memory access.
Excessive prefetching [22, 30] is known to cause problems such
as cache pollution and deteriorate application performance. In
addition to prefetching [25] initiated by the CPU, researchers
have considered memory-side prefetching, data forwarding [1, 11,
21] and direct placement of network data into CPU cache [18]. To
reduce the amount of pollution caused by these memory latency
helpers, it is important to prioritize cache space usage between
demand activity and prefetching/forwarding activity.

Several other considerations need to be kept in mind when
considering prioritizing cache space utilization. Other than the
basic priority of the application, it also needs to be kept in mind
that providing higher cache space to a higher priority application
does not always guarantee higher cache performance. This
depends heavily on the application’s memory access
characteristics (i.e. locality properties). As a result, locality and

258

“user-defined” application priority need to be considered in
unison to form the cache priority of the memory access stream.
Other aspects to consider are the dynamic changes to the priority
of an application or memory access stream. Since processing
tends to go through several phases, it is important that the priority
assignment mechanism be designed to allow dynamic changes.
These issues motivated us to develop a framework that introduced
the notion of quality of service in caches. In the next section, we
will discuss the basic ideas behind this and present several
potential design and implementation options to enable this in
future systems.

3. CQOS -- IMPROVING SHARED CACHES
As motivated in the previous section, it is important to introduce
prioritization in order to provide the notion of quality of service in
shared cache space provisioning. In this section, we introduce the
CQoS framework to enable this. Before we do that, we take a brief
look at the performance implications of conventional cache
management. Using a web server workload (a SPECweb99 trace)
and a network-intensive workload (a NTttcp trace), we show the
cache performance when the workloads run independently in the
cache and when they are run simultaneously through the cache.
Figure 2 shows the impact of conventional cache management in
these scenarios.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

512K 1M 2M
Cache Size

M
is

s
R

at
io

SW99 SW99 (+ NTttcp) NTttcp NTttcp (+ SW99)

Figure 2. Issues w/ Conventional Cache Management
Several observations can be made from the results in Figure 2.
First of all as expected, when the workloads are run
independently, the improvement (reduction) in miss rate with
cache size is significantly better for SPECweb99 than for NTttcp
(due to their locality characteristics). Secondly, there is a
significant increase in miss rate for both workloads when run
simultaneously (increase of 35-40% for SPECweb99 and 14-40%
for NTttcp). Third, in this case, an efficient shared cache
management approach would be to improve SPECweb99 (the
application with more locality and more priority from the user’s
point of view). The ultimate goal is to provide SPECweb99 with a
miss rate that is at the same level as when it is run independently,
while not degrading the performance of NTttcp significantly.

3.1 CQoS: Basic Framework and Flow
In order to provide more cache space to higher priority and high
locality memory access streams, we introduce the CQoS
framework. The CQoS framework is made up of three aspects to
managing cache priorities for memory access streams:

[1] Cache Priority Classification: Here, the emphasis is on
identifying the heterogeneous memory access streams and

classifying them into priority levels. These priority levels may be
different from the number of priority levels available in the
platform. To start with, we first define the required levels of
priority by taking an in-depth look at the different memory access
streams described in Section II earlier.

[2] Cache Priority Assignment: Once the workload’s priority
levels have been determined, these will be translated into the
system cache’s priority levels. As will be discussed in a later
subsection, the options for cache priority assignment range from
being ISA-based, memory type-based or flow-based and these
may be utilized either by the compiler, the developer, user or the
O/S scheduler.

[3] Cache Priority Enforcement: Once the memory accesses are
classified and assigned into priorities, the focus here is to enforce
these priorities during cache space allocation and management.
This can be done by monitoring the space consumption for each
priority level and modifying either the allocation process or the
replacement process. Alternatively it can also be accomplished by
structuring the single shared cache as multiple smaller caches that
are organized differently and have different policies enforced. The
specific techniques for cache priority enforcement will be
discussed in significant detail in a later subsection.

Due to space limitations, it should be kept in mind that we will
introduce the priority classification and assignment approaches in
this paper, but focus more heavily on the design and
implementation of the options for cache priority enforcement.

3.2 CQoS Priority Classification Options
As mentioned above, the first step for CQoS is to recognize the
heterogeneous memory accesses involved and classify the memory
access stream or data structure within the stream into priority
levels. This can be achieved in the following ways:
[1] Based on Data Structures or Access: The types of data
structures touched in typical memory access streams during any
processing can be classified into three types: (1) frequent or hot-
set and (2) typical or average-set and (3) one-touch or cold-set. If
the application developer or compiler can profile the application
and identify these, then they can be taken advantage of in two
ways: (1) load /store instructions tagged with the above attribute
or (2) the data can be allocated in different memory regions with
specific attributes. Once tagged, these can be handled differently
in the cache based on the priority level.
[2] Based on Transactions or Phases: Another approach is for
the developer to define priorities for each phase or transaction
processed by the application. In this way, whenever the phase is
entered, the cache controller can be informed about the priority
level of the subsequent memory access stream and handle the
memory access appropriately. Upon exit or entrance into another
phase, the priority level can be modified.
[3] Based on Flow Type: This approach requires the hardware to
differentiate between demand memory accesses and prefetch
accesses made either by the core or other components in the
system. Since this information is mostly available in the system,
this probably does not require additional support.
[4] Based on Different Applications: If applications as a whole
are largely homogeneous, they can be classified at a certain
priority level. In this case, this application priority has to be

259

maintained along with the process or thread context information
in the system and made available to the cache controller.
[5] Based on Types of Cores Devices or Threads: Finally, this
approach requires the cache to differentiate between different
cores or devices making requests. For instance, requests coming
from an I/O device may be classified at a lower priority level than
the requests coming from the processor core. Similarly, a
specialized core assisting the application may also be classified at
a different priority level than the main application core. In such
scenarios, the BIOS or the O/S needs to configure each device
with a certain priority level which may or may not be modified by
the system administrator or system management controller.
While it would be great if support for all of the above options
were available in the platform, we expect that some trade-off
analysis is needed to understand the feasibility of the options
proposed. The above options vary in their granularity and the
hardware/software support needed for the platform. It should also
be noted that two or more options can be combined to compute
the overall priority level of the memory access stream. Once the
priority level is decided upon, the next step is identify the
mechanisms for priority assignment and map these memory access
priority levels to priority levels made available by the platform.

3.3 CQoS Priority Assignment Options
In the previous section, we discussed the different methods by
which memory accesses can be classified into priority levels and
also alluded to the potential mechanisms in which they can be
translated into priority assignment for the cache controller. In this
section, we present these directly and understand how they relate
to the compiler, developer, user, O/S scheduler, system
administrator. The mechanisms include:
[1] Tagged Memory References (Loads/Stores): It may be
possible to provide different load instructions for each priority
level supported by the cache controller. It should be noted,
however, that in order to use the available opcodes minimally, it is
probably feasible to support only two or three in the instruction
set architecture (ISA). Similarities to this can be found by
looking at the prefetch instructions for Intel’s IA-32 processor
family. The ISA for the Intel IA-32 supports three different types
of prefetches: (1) for temporal prefetches that bring data into L1
& L2, (2) for temporal prefetches that bring data into just the L2
and (3) non-temporal prefetches that place the data into only 1-
way of the L2 cache. The three prefetch types map directly to data
types with different locality properties and therefore different
priorities.
[2] Priority Specification Instructions: This mechanism
basically requires ISA support for executing an instruction that
causes the process / thread / core to be assigned a certain priority
level. The priority level specified by the instruction is recorded in
a register or a table (in case of a multi-threaded core) and can be
provided to the cache controller when subsequent loads and stores
are generated.
[3] Priorities in Memory Types: Today, there are four or five
dominant memory types available in a typical platform (e.g. write-
back, write-combining, un-cacheable and write-protected). These
memory ranges are available through range registers in order for
the cache and chipset to identify the type of load/store access that
was generated. If these memory types can be further segregated
into low and high priority regions and appropriate memory

allocation system calls are made available in the O/S, then the
application developer (or perhaps the compiler) can use the
priority level of the allocated memory region and translate it to an
appropriate allocation during runtime.
[4] Application Priorities: Today, applications can be assigned
priorities by the user in many O/S’es (Linux, Unix, HP-UX, etc)
at the process granularity. However, this priority level is used for
the scheduler to provide more or less time intervals to the
application. It would be useful to add a component priority level
(such as cache priority level) to the application in order for it to be
maintained in the process’s context and be accessible to the
application and the O/S if it chose to use it for cache priority
assignment. This essentially adds context overhead to the running
process which needs to be saved and restored when the process is
swapped out.
[5] Device / Core Based: This is essentially the hardware
designer (through BIOS) or the O/S developer assigning priorities
to devices in the system and providing the priority level so that all
accesses made by the entity is treated with the appropriate level of
priority.

3.4 CQoS Priority Enforcement Options
The focus of this paper is largely on the design, implementation
and performance of CQoS priority enforcement. Given a priority
level for each memory access, the problem statement is essentially
that of enforcing it in cache space management. It should be noted
that we are only discussing quality of service in terms of cache
space provided and not in terms of cache latency or miss ratio
since these may be entirely dependent on the inherent
characteristics of the application. To enforce the priority levels in
the cache, we propose the following three different types of
mechanisms:
[1] Set Partitioning Schemes (Static/Dynamic): Caches are
organized in sets containing one or more lines. The goal of this
mechanism is to allow higher priority applications to occupy more
ways of the set and lower priority applications fewer ways in the
set. This can be achieved by statically decomposing the set into a
number of subsets or dynamically placing a limit on the number of
lines occupied (within the set) by the memory access streams at a
given priority level.
[2] Selective Cache Allocation: This mechanism does not disturb
the organization of the cache but maintains counts to determine
the number of lines occupied in the cache by memory access
streams at a given priority level. Based on the count, it
probabilistically allocates or rejects cache line allocation requests
made to the cache.
[3] Heterogeneous Cache Regions: This mechanism proposes
heterogeneous cache structures (set-associative caches, stream
buffers, victim caches) that can be mapped to memory access
streams based on the priority levels. Alternatively, it also
discusses heterogeneous cache regions with different replacement
policies (e.g. locked or self-invalidated lines).
A discussion on the design and implementation options of these
priority enforcement schemes will be presented in the next
section.

260

4. DESIGNING PRIORITY ENFORCEMENT OPTIONS
In order to make the design and implementation feasible, we
largely focus on enabling two priority levels in each mechanism.
Many of the mechanisms proposed in the previous subsection,
however, are easily extendable to supporting multiple priority
levels.

4.1 Design of Set Partitioning Techniques
In order to enable the partitioning of the shared cache into
different spaces for different priority levels, we further decompose
the set down into subsets. In this section, we discuss the design of
a static and dynamic set partitioning approach to manage subsets.
We start with static set partitioning.

4.1.1 Static Set Partitioning Techniques
We start with each set containing N cache lines in the shared
cache. To statically separate the set into two subsets of different
sizes, we logically map the first X lines to priority level 2 and the
next N-X lines to priority level 1. It should be noted that we use
lower values to indicate higher priority (i.e. priority level 1 being
the highest). The changes required to support this mapping and
partitioning are as follows:

− Cache Lookup: All lookups in the cache will scan through
all the lines in the set.

− Cache Allocation: If the line does not exist in the cache,
then the allocation is done to the subset that the priority level
is mapped to.

− Cache Replacement: When a victim has to be chosen, it is
chosen from the subset that the priority level is mapped to.

The implementation cost of this scheme is in the changes to the
bits maintained for replacement purposes and to the replacement
mechanism itself. The replacement mechanism basically needs to
be modified to cater to multiple different subsets. An optimization
to this scheme is to allow the highest priority scheme to allocate
anywhere in the set, but the lower priority schemes to allocate
only in the subset that they are mapped to. This way, the highest
priority scheme can always utilize the entire cache space even
when there are no applications in other priority levels.

4.1.2 Dynamic Set Partitioning Techniques
As before, we start with each set containing N cache lines in the
shared cache. In static set partitioning, we physically partitioned
the set into two subsets. In dynamic set partitioning, the approach
is to achieve the partitioning by imposing a limit on the number of
cache lines that can be occupied in the set by a given priority
level. For instance, priority level 2 can occupy only X lines in the
cache, whereas priority level 1 can occupy up to N lines in the set.
The changes required to achieve this partitioning are as follows:

− Cache Lookup: All lookups in the cache will scan through
all the lines in the set.

− Cache Allocation: If the line does not exist in the cache,
then the allocation is done anywhere in the set as long as the
set limit has not been reached for the priority level of the
allocation request. If the limit has been reached, the
replacement scheme below is used.

− Cache Replacement: When the set limit is reached for a
given priority level, then the replacement policy needs to
locate the lines in the cache that are associated to that
priority level and choose a victim among those lines.

The implementation cost of this scheme is the following: (1)
maintaining a count per set per priority level, (2) maintaining the
id of the priority level for each line in the set and (3) changes to
the bits maintained for replacement purposes and to the
replacement mechanism itself. The replacement mechanism
basically needs to be modified to cater to multiple different lines
when the set limit is reached. In addition, it also needs to be able
to locate the lines associated with the priority level before
choosing the victim among those.

The performance comparison between static and dynamic set
partitioning as well as an analysis of the overall benefits of set
partitioning will be presented in the next section. Qualitatively,
we expect dynamic partitioning to provide more efficiency in the
cache since it allows at least one memory access stream at the
highest priority level to occupy the entire cache. These schemes
can also be generalized to support P different priority levels.
However, this is not within the scope of this paper (due to space
limitations).

4.2 Design of Selective Allocation Techniques
Another approach to providing different amounts of cache space
to different priority levels is to monitor the allocation amounts in
the overall cache and allow / disallow allocation based on the
current space utilization. In this section, we introduce a simple
scheme called probabilistic cache allocation.

4.2.1 Probabilistic Cache Allocation
In order to limit the cache space utilized by a given priority level,
we use an allocation probability (AP). The allocation probability
(AP) implies that the streams at that priority level can only occupy
up to AP*C bytes in the cache, where is the size of the cache in
bytes. Once each priority level is assigned an allocation
probability, the subsequent requests generated by memory access
streams of that priority level are made to adhere to that allocation
amount probabilistically. This is more easily understood with an
example. Let us assume two priority levels with allocation
probabilities assigned as AP2 = 30% for priority level 2 and AP1
= 70% for priority level 1. In this scenario, when a request I is
generated in a memory access stream, a random number of
generated between 0 and 100. The random number (RI) is
compared against APx where x is the priority level of the stream.
If RI <= APx, then the cache line is allocated into the cache. If RI
> APx, then the cache line is dropped for allocation. Instead of
dropping the cache line entirely, an extension to this scheme is to
place the cache line in a victim cache and consider it for
allocation again if the line is touched by the processor.

For this scheme, the implementation cost is essentially in
maintaining the allocation probabilities per priority level and
generating a random number for each memory access stream. The
only change in cache management is to the cache allocation
policy, where the probabilistic allocation is performed as opposed
to direct allocation.

4.3 Design of Heterogeneous Cache Regions
In this class of techniques, we basically propose two approaches
to maintaining heterogeneous cache regions: (1) heterogeneous
caches mapped to priority levels and (2) heterogeneous cache line
policies mapped to priority levels. These schemes are described
further below.

261

4.3.1 Heterogeneous Caches
Here, the basic idea is to provide multiple caches with different
organization structures or policies. For instance, one simple
heterogeneous cache structure could separate a 4MB, 8-way
shared cache with 128-byte lines into three different cache
structures: (1) a 12-way 3MB cache structure with 64-byte lines,
(2) a direct-mapped 512K cache with 32 byte lines and (3) a 512K
FIFO stream buffer with 1K cache lines. The basic premise behind
this separation would be the presence of three different types of
memory accesses -- (1) Transient data that is streamed through the
cache has spatial locality but almost no temporal locality (as is the
case for network processing and graphics applications), (2)
Temporal data with little spatial locality and (3) Data types with
average temporal and spatial locality.

In this scenario, the mapping of priority of memory types to these
caches needs to be done with multiple aspects in mind – (1) the
size requirements of the working set and (2) the temporal/spatial
locality properties of the memory access type. Depending on these
two aspects, it is easy to determine the right cache to map the
priority level to. A concern that remains is the fragmentation issue
– where some cache spaces are rarely used and could have been
put to better use if they were available. This remains a limitation
of this scheme and can be perhaps avoided in the approach
discussed below.

4.3.2 Heterogeneous Cache Lines
Here, the idea is to separate the property of the cache line from the
policies enforced on the cache. For instances, cache lines typically
fall into one of the following categories: (a) frequently accessed or
hot-set, (b) typical or average-set, (c) one-touch or cold-set.
However, due to conflicts in the cache, capacity limitations and
low visibility into the actions on the lower level caches, these
properties cannot be held using the typical LRU policy in the last-
level cache. However, if the priorities were mapped according to
the type of the memory access, then the policy used to manage
that line in the cache can be changed.

Essentially, we are proposing the use of the following two types
of cache line management approaches:

(1) Cache Line Locking: By allowing cache lines to be excluded
from the cache replacement policy, the line belonging to a hot-set
can be locked into the cache. Given the typical workload, most of
the accesses occur to less than 20% of the lines. In such cases, this
policy could help improve the application performance
tremendously.

(2) Selective Self-Invalidation: By allowing cache lines to be
invalidated in the cache, the memory access types that fall into the
cold-set category can be easily self-invalidated after access.
Support for self-invalidation of cache lines is available in some
microprocessors today via a instruction. Here, we propose to do
self-invalidation in hardware based on the priority level of the
cache line that is accessed.

5. EVALUATION METHODOLOGY AND TOOLS
In this section, we describe our trace-driven simulation
methodology to understand the cache performance benefits of
CQoS priority enforcement schemes.

5.1 Workloads and Traces
We collected traces from two network-intensive workloads
(SPECweb99 and NTttcp) running on current platforms in our
lab. The workloads can be described as follows.

− SPECweb99 [26] is a benchmark that attempts to mimic a
web server environment. The benchmark setup uses multiple
client systems to generate aggregate load on the system under
test (a web server). Each client (mimicking browsers)
initiates TCP connections to the web server and makes HTTP
requests for static or dynamic web pages. SPECweb99
requires 30% of the requests to be dynamic requests and 70%
to be static requests. SPECweb99 also uses popular file
access characteristics (Zipf distribution over directories and
files) and persistent connections to represent current web
server accesses.

− NTttcp [29] is Microsoft’s command-line sockets based tool
based on the ttcp benchmark, which is used for measuring
TCP and UDP performance between two end-systems.
NTttcp achieves high performance by filling a memory buffer
with data, then repeatedly transmitting this data. For our
analysis of end system performance, the traces were collected
on the server where the NTttcp receiver resided.

5.2 Cache Simulation Methodology
Our evaluation methodology consists of an extensive set of

cache simulations fed by traces collected on a current platform
running SPECweb99 and NTttcp, as described in the previous
section. We then extracted the memory reference streams from
these traces and fed those through cache simulation models
developed using our CASPER (Cache Architecture Simulation
and Performance Exploration using Refstreams) simulation
environment [6, 7]. CASPER provides a rich set of features for
detailed cache evaluation studies such as the following:

− UP Cache Hierarchies -- unified & split I/D caches

− MP Cache Hierarchies -- MESI & broadcast-based

− CMP Cache Simulations -- multiple cores or devices
with individual caches or shared caches

To study the performance implications of CQoS priority
enforcement schemes, we simulated a shared cache between
processor cores and I/O devices. We modeled three different types
of CQoS mechanisms in CASPER -- static set partitioning,
dynamic set partitioning and selective cache allocation. We also
evaluated heterogeneous cache regions by extending the cache
simulation model within SimpleScalar [24]. This last study did
not use CASPER since we already had the necessary support built
into SimpleScalar for a different investigation [35].

6. CQOS PERFORMANCE CASE STUDIES
In this section, we describe the simulation benefits of CQoS by
picking three different scenarios – (1) multiple applications
sharing the cache, (2) multiple devices sharing the cache and (3) a
single application possessing distinct data structures with differing
memory access properties.

6.1 Impact of CQoS on Multiple Applications
To study the impact of CQoS on two applications sharing the
cache in a CMP platform, we ran SPECweb99 and NTttcp traces

262

through a shared cache ranging from 512K to 4M in size. We
chose relatively small cache sizes since the working sets of these
applications are small due to the fact that they are running at
today’s performance levels.

Figure 3. CQoS Study on Multiple Applications
Before we show the impact of CQoS on cache performance, we
present the impact of conventional cache management on SW99
performance with and without NTttcp running through the same
shared cache. Figure 4 shows the results from this study. It should
be noted that the aim of CQoS is basically to provide better
performance for higher priority applications which comes at the
expense of the lower priority application.

0%

10%

20%

30%

40%

50%

60%

70%

512K 1M 2M 4M
Cache Size

M
is

s
R

at
io

SW99
SW99 (+ NTttcp)

Figure 4. Conventional Cache Management

As shown in Figure 4, when using conventional cache
management, the cache miss rate of SW99 increases by up to 40%
when a low priority application (NTttcp) is also run through the
same shared cache. This can be improved substantially if CQoS is
used in the cache. We have tried both dynamic set partitioning
and selective allocation to understand their impact. The results are
shown in Figures 5 and 6.

Figure 5 shows the impact of imposing a limit of X lines on
NTttcp in the shared cache. The value for X is varied from 0 to 4.
The “No Limit” case depicts the scenario where CQoS set
partitioning is not enforced. From the figure, we find that
imposing a limit of 2 lines in an 8-way set occupied by NTttcp
can improve the 2MB cache performance of SW99 greatly (a
decrease of ~15% in miss rate). This does come at a cost to
NTttcp (an increase of miss rate from 28% to 35%). However, it
should also be noted that SPECweb99 is chosen to be the higher
priority application and its performance is more critical as well as
more sensitive to miss rate than NTttcp. Projecting overall

performance for these workloads under CQoS is not within the
scope of this paper.

Impact of Set Partitioning (sw99, 2M)

0%
5%

10%
15%
20%
25%
30%
35%

No Limit Limit=4 Limit=2 Limit=1 Limit=0

Policy Used

M
is

s
ra

te DataWrite
DataRead
Code

Figure 5. CQoS Set Partitioning

Figure 6 shows the impact of selective cache allocation on SW99
cache performance (with cache size of 2MB). The allocation
probability for SPECweb99 was held at 100% whereas the
allocation probability for NTttcp was varied from 0% to 50% (as
denoted in the x-axis). The “No Alloc” entry shows the case
where no CQoS priority enforcement was enabled. The results
show a steady decrease in cache miss rate of SW99 as the
allocation probability for NTttcp is reduced from 50% to 0%. An
allocation probability of 25% (for NTttcp) reduces the SW99
cache miss rate from 29% to 26% (a reduction of 12%). The
impact of the 25% allocation probability on NTttcp performance
is that the miss ratio increases from 28% to 31%.

Impact of Selective Allocation (sw99, 2M)

0%
5%

10%
15%
20%
25%
30%
35%

No Alloc A50_100 A25_100 A12_100 A0_100

Policy Used

M
is

s
ra

te DataWrite
DataRead
Code

Figure 6. CQoS Selective Allocation

These preliminary studies confirm the benefits of CQoS cache
priority enforcement in scenarios where there is clearly one high
priority application and one low priority application.

6.2 Impact of CQoS on Multiple Devices
In this section, we study the cache performance of SPECweb99 in
a dual-core platform with a high priority memory access stream
running on the processor (P2M) interfered by a lower priority
stream that is generated by the I/O device (IO2M).
We first varied the 8-way shared cache size from 2MB to 8MB.
Each processor was enabled with an private cache of 1M. With
conventional cache management, the IO2M stream interferes with
the P2M stream significantly, causing the cache performance of
the high priority stream to reduce considerably as shown in Figure

SW99, Hi Priority NTttcp, Lo Priority

C0 C1

Shared Cache

SW99
misses

NTttcp
misses

CQoS
Set Partitioning &
Selective Allocation

On
NTttcp

263

8. For example, the P2M miss ratio for a 8M cache increases from
14% to 23% when IO2M is allowed to use the shared cache.

Figure 7. CQoS Selective Allocation

Figure 8. Conventional Cache Management
To show the benefits of CQoS, we chose the 8M cache to perform
set partitioning studies and analyses. We started with the use of
dynamic set partitioning by imposing a limit on the lines or ways
occupied by the IO2M memory access stream. Figure 9 shows the
cache miss ratio (for P2M traffic, for IO2M traffic and overall) as
the IO2M limit is reduced from 8 (entire set) to 0 (no line in the
set). To achieve best P2M traffic, it is obvious that limit of 0 on
IO2M would be the most desirable. However, to allow some
cache benefits for the IO2M traffic, it appears that allowing 1-way
for IO2M traffic achieves good IO2M miss ratio as well as greatly
reduces P2M miss ratio from the conventional cache scenario
(from 23% to 18%).
Figure 10 shows the performance comparison of dynamic set
partitioning to static set partitioning. From the figure, it can be
noticed that static and dynamic set partitioning works to produce
similar performance when the subset limits are 3 or below.
However, when using static set partitioning, as the IO2M limit is
increased beyond 3, the performance of P2M traffic suffers
considerably because it is limited to the remaining few lines only.
The hard partitioning impact of set partitioning should be kept in
mind when considering static set partitioning beyond a small
number of ways in the set.

6.3 Impact of CQoS on Specialized Cores
In order to understand the potential of CQoS on specialized cores,
we have studied the potential for a dedicated core running the
TCP/IP protocol processing [20, 4] for network-intensive servers

[14]. In Figure 11, we show both the application and network
cache accessing a shared cache organized as two different cache
structures – Application cache and Network cache. In a previous
subsection, we showed how application (SPECweb99) cache
performance is hurt when running a network intensive workload
(NTttcp) in a shared cache. Here we study the cache size
requirements of the dedicated network cache and then split that
further based on data types touched during TCP/IP processing
(specifically receive-processing that is known to be memory
intensive [13]).

Im pact o f L im it on IO2M W ays (8M ch ipse t cache)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0123456789

IO2M W ay L im it Pe r Se t

R
ea

d
M

is
s

R
at

io

P2M
IO 2M
O verall

B es t V alue = 0 or 1

Figure 9. Impact of Dynamic Set Partitioning

Figure 10. Dynamic versus Static Set Partitioning

Figure 11. Dedicated Network Processing
Figure 12 shows the size requirements for a receive-intensive
(RX) workload. As shown in the figure, a dedicated cache size of

P2M Miss Ratio in Shared Cache

0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

2M 4M 8M

Shared Cache Size

in P2M traffic only

in P2M+IO2M traffic

Dynamic versus Static Cache Miss Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

012345 6789

IO2M Way Limit Per Set

P2M (Dynamic)
IO2M (Dynamic)
Overall (Dynamic)
P2M (Static)
IO2M (Static)
Overall (Static)

Best Value = 0 or 1

IO2M

Overall

P2M

Lo Priority

SW99, Hi Priority SW99, Hi Priority

P0 P1

Shared Cache

P2M
misses

IO2M
misses

CQoS
Static Set Partitioning
Dynamic PartitioningIO

1M 1M

 Application Specialized NW Core

C0 C1

App $

App
misses

NW
misses

CQoS
Heterogenous Caches NW $

264

less than 32KB is sufficient for network processing. Providing
additional cache space just pollutes the cache with non-temporal
data. By investigating the data types touched, we have also
identified two distinct types of data:
[1] Data with temporal locality: These include connection
context information and hash tables that are touched when every
packet is received. This also includes local variables that the stack
uses for processing.
[2] Transient Data: These include incoming network data
(descriptors, headers and payload) that have to be invalidated
from the cache and are compulsory misses.
To further reduce the network cache size, we separated the cache
into two heterogeneous structures – a set-associative temporal
locality cache (TLC) and a FIFO stream buffer (SB). The TLC
caches data that has temporal locality whereas the stream buffer
holds the transient data. Figure 13 shows the comparison between
the size requirements of TLC+SB versus that for the simple
network cache.

Network Cache Size Requirements

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

1 2 4 8 16 32 64 128 256
Cache Size in KB

M
is

se
s

pe
r p

ac
ke

t RX Intense w orkload

Figure 12. Network Cache Size Requirements

Simple Network Cache versus TLC+SB

0

10

20

30

40

50

60

70

1 2 3 4 5

Bars represent cache size, lines represent misses per packet

M
is

se
s

Pe
r P

ac
ke

t

0

20

40

60

80

100

120

140

C
ac

he
 S

iz
e

(K
B

yt
es

)

Figure 13. Benefits of Heterogeneous Cache Regions
As shown in Figure 13, the performance (lines illustrating misses
per packet) is about the same between the simple network cache
and the combination of TLC + stream buffer. However, the cache
size required for TLC+SB is much lower (as represented by the
vertical bars). The benefits of heterogeneous cache regions in this
case materializes as cache size reduction especially since the logic
required to maintain stream buffers is also rather low.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced the notion of quality of service (QoS)
in shared cache management (especially in CMP platforms). Our
CQoS framework enabled QoS in shared caches by using
priorities. The steps involved in CQoS were the following: (1)
priority classification for each memory type or access stream, (2)
priority assignment mechanisms for translating the stream
priorities into those supported in hardware and (3) priority
enforcement mechanisms. While we discussed several options for
priority classification and assignment, our focus in this paper was
on the design, implementation and performance evaluation of
CQoS priority enforcement.

Specifically on CQoS priority enforcement, we proposed three
different mechanisms: (1) static/dynamic set partitioning, (2)
selective cache allocation and (3) heterogeneous cache regions.
We then discussed the design trade-offs and implementation
potential of these mechanisms. Finally, by modeling the options in
a cache simulator, we studied the performance benefits of CQoS.
Our preliminary evaluation was performed on network-intensive
workloads where we find three major classes of different traffic:
(1) CPU application traffic, (2) device I/O traffic and (3) network
protocol processing traffic. By prioritizing application traffic over
I/O device traffic and network processing traffic, we showed how
the performance benefits can be achieved. Then by focusing on
network processing, we showed that heterogeneous cache regions
can help reduce the dedicated cache size needed for TCP/IP
processing engines (specialized cores) and thereby reduce
pollution for the application processing as well.

There is abundant work to be done in this area of research. To
start with, we would like to perform our CQoS evaluation on
several different types of applications. We also plan to perform an
in-depth investigation into CQoS priority classification and
assignment mechanisms – especially in using compilers for
automating this process. We would also like to understand the
tradeoffs in enabling new memory types and allocation primitives
in the O/S for improved cache performance. We plan to build a
hardware prototype to better showcase CQoS benefits between
complex applications like virtual machines. Finally, we believe
that this notion of prioritization is not only applicable to caches
but also to other shared resources in the system (like shared
interconnects, memory subsystem bandwidth etc). We believe that
enabling QoS in the system as a whole will be an important
contribution to future server platform architectures running a
variety of applications.

8. REFERENCES
[1] H. Abdel-Shafi, et al., “An Evaluation of Fine-Grain

Producer-Initiated Communication in Cache-Coherent
Multiprocessors,” Proceedings of the 3rd International
Symposium on High-Performance Computer Architecture,
February 1997, 204-215.

[2] K. Beyls, “Faster Computing through Software-Controlled
Cache Replacement,”
http://escher.elis.ugent.be/publ/Edocs/DOC/P102_118.pdf

[3] F. Bodin, A. Seznec, ``Skewed Associativity improves
performance and enhances predictability'', IEEE Transactions
on Computers, May 1997

265

[4] D. Clark et. al., “An analysis of TCP Processing overhead”,
IEEE Communications, June 1989.

[5] T. Garfinkel , Ben Pfaff , Jim Chow , Mendel Rosenblum ,
Dan Boneh, “Terra: a virtual machine-based platform for
trusted computing,” Proceedings of the 9th ACM symposium
on Operating Systems Principles, Oct 2003, NY, USA

[6] R. Iyer, “CASPER: Cache Architecture, Simulation and
Performance Exploration using Re-streams,” Intel’s Design
and Test Technology Conference (DTTC), 2001.

[7] R. Iyer, “On Modeling and Analyzing Cache Hierarchies
using CASPER,” MASCOTS-11, 2003.

[8] P. Jain, et al., “Software Assisted Cache Replacement and
Prefetching Pollution Control,”
http://www.csail.mit.edu/research/abstracts/abstracts03/archit
ecture/24jain.pdf

[9] N.P. Jouppi, “Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully-Associative Cache and
Prefetch Buffers,” Proceedings of 17th International
Symposium on Computer Architecture, pages 364--373.
IEEE, June 1990.

[10] S.T. King, George W. Dunlap, Peter M. Chen, "Operating
System Support for Virtual Machines", Proceedings of the
2003 Annual USENIX Technical Conference, June 2003.

[11] D. Koufaty, et.al, “Data Forwarding in Scalable Shared
Memory Multiprocessors, IEEE TPDS, 1997.

[12] D. Lilja and P-C. Yew, “Combining hardware and software
cache coherence strategies,” International Conference on
Supercomputing, 1991.

[13] S. Makineni and R. Iyer, “Architectural Characterization of
TCP/IP Packet Processing on the Pentium® M
microprocessor,” HPCA-10, 2004.

[14] S. Makineni and R. Iyer, “Performance Characterization of
TCP/IP Packet Processing in Commercial Workloads,” IEEE
WWC-6, 2003.

[15] D. Marr et al., “Hyper-Threading Technology Architecture
and Microarchitecture” Intel Technology Journal, 2002.
http://www.intel.com/technology/itj/2002/volume06issue01/

[16] M. Martin, et al., “Token Coherence: A New Framework for
Shared-Memory Multiprocessors,” IEEE Micro Special
Issue, Nov-Dec 2003.

[17] N. Megido, “Adaptive Replacement Cache,” IBM T.J.
Watson Research Center,
http://www.almaden.ibm.com/cs/people/dmodha/arc-fast.pdf

[18] D. Minturn, et al., “Exploiting Architectural Techniques for
Improving TCP/IP Processing Performance,” submitted to a
conference.

[19] B. Nayfeh, K. Olukotun and J.P. Singh, “The Impact of
Shared Cache Clustering in Small-Scale Shared Memory
Multiprocessors,” Int’l Conference on High Performance
Computer Architecture (HPCA-1), Feb 1996.

[20] J. B. Postel, “Transmission Control Protocol”, RFC 793,
Information Sciences Institute, Sept. 1981.

[21] D.K. Poulsen and P.C. Yew, “Integrating Fine Grained
Message Passing in Cache Coherent Shared Memory
Multiprocessors,” Journal of Parallel and Distributed
Computing, 1996.

[22] P. Ranganathan, et al., “The Interaction of Software
Prefetching with ILP Processors in Shared-Memory
Systems,” 24th International Symposium on Computer
Architecture, June 1997, 144-156.

[23] A. Seznec, ``Decoupled Sectored Caches'', IEEE
Transactions on Computers, Feb. 1997

[24] SimpleScalar LLC, http://www.simplescalar.com
[25] Y. Solihin, J. Lee, and Josep Torrellas. "Using a User-Level

Memory Thread for Correlation Prefetching", The 29th
Annual International Symposium on Computer Architecture
(ISCA 2002), Anchorage, Alaska, May 2002.

[26] “SPECweb99 Design Document,” available at
http://www.specbench.org/osg/web99/docs/whitepaper.html

[27] P. Stenstrom, “A Survey of Cache Coherence Protocols,”
IEEE Computer, 1990.

[28] E. Suh, L. Rudolph and S. Devadas, “Dynamic Partitioning
of Shared Cache Memory,” Journal of Supercomputing, July
2002.

[29] “The TTCP Benchmark”, http://ftp.arl.mil/~mike/ttcp.html
[30] D. M. Tullsen and S. J. Eggers. “Limitations of Cache

Prefetching on a Bus-Based Multiprocessor,” Proc. 20th
Annual Int. Symposium on Computer Architecture, pp.278-
288, 1993.

[31] D.M. Tullsen, S.J. Eggers, and H.M. Levy, “Simultaneous
Multithreading: Maximizing On-Chip Parallelism,” 22nd
International Symposium on Computer Architecture, 1995.

[32] VMware Inc., “VMware is Virtual Infrastructure”,
http://www.vmware.com/vinfrastructure/

[33] C. A. Waldspurger, “Memory Resource Management in
VMware ESX Server,” 5th Symposium on OSDI, 2002.

[34] W. A. Wulf and S. A. McKee. “Hitting the Memory Wall:
Implications of the Obvious,” Computer Architecture News,
23(1):20--24, Mar 1995.

[35] L. Zhao, et al., “Efficient Cache Structures and Policies for
Server Network Acceleration,” submitted to a conference.

266

