
Critical Issues Regarding the Trace Cache Fetch MechanismSanjay Jeram Patel, Daniel Holmes Friendly, and Yale N. PattTechnical ReportAdvanced Computer Architecture LaboratoryDepartment of Electrical Engineering and Computer ScienceThe University of MichiganAnn Arbor, MI 48109-2122fsanjayp, ites, pattg@eecs.umich.eduTel: (313) 936-0404Fax: (313) 763-4617ABSTRACTIn order to meet the demands of wider issue processors, fetch mechanisms will need to fetch multiple basicblocks per cycle. The trace cache supplies several basic blocks each cycle by storing logically contiguousinstructions in physically contiguous storage. When a particular basic block is requested, the trace cachecan potentially respond with the requested block along with several blocks that followed it when the blockwas last encountered.In this technical report, we examine some critical features of a trace cache mechanism designed fora 16-wide issue processor and evaluate their e�ects on performance. We examine features such as cacheassociativity, storage partitioning, branch predictor design, instruction cache design, and �ll unit design.We compare the performance of our trace cache mechanism with that of the design presented by Rotenberget al [19] and show a 23% improvement in performance. In our �nal analysis, we compare our trace cachemechanism with an aggressive single basic block fetch mechanism and show that the trace cache mechanismattains a 24% improvement in performance.Keywords: high bandwidth fetch mechanisms, instruction cache, wide issue machines, speculative execu-tion1 IntroductionA wide issue processor can be divided into two architectural entities: a fetch engine that supplies in-struction bandwidth and an execution engine that consumes it. In a dynamically scheduled processor, thefetch engine issues instructions into an instruction window from which ready instructions are executed bythe execution engine. The division is similar in a statically scheduled machine with the exception that thehardware instruction window is not required.The width of the fetch engine places an upper bound on the fetch bandwidth and thus the executionbandwidth of the processor, an observation commonly known as the Flynn Bottleneck. Maximizing thee�ective fetch bandwidth is not a straightforward task. Control mispredictions, cache misses, and partialfetches all reduce the e�ective fetch bandwidth.When a control instruction is mispredicted, the fetch engine spends cycles fetching instructions which willlater be discarded. Many sophisticated techniques have been developed to improve the prediction rates for



conditional branches and new techniques such as predicated execution and multi-path execution have beenexplored to hedge against a complete loss of fetch cycles when a branch is mispredicted. Instruction cachemisses cause the fetch engine to stall until the missing request is serviced. Techniques such as instructionprefetching, two-level caching, victim bu�ers, and set prediction all help to reduce the loss in fetch bandwidthdue to cache misses.Partial fetches, however, prevent the fetch engine from producing a full issue even when an access onthe correct execution path hits in the instruction cache. Due to the physical layout of instruction caches,branches, jumps, subroutine calls and returns cause the remainder of fetched cache lines to be discarded.With an instruction cache, it is di�cult to fetch both a branch and it's target in the same cycle if the branchis taken. Many previous studies have determined that the average basic block size for integer programs isaround �ve instructions, indicating that fetch engines that cannot fetch beyond a control instruction in asingle cycle can provide at around �ve instructions per cycle. Fetching beyond conditional branches thatare not taken provides a boost of approximately two instruction per cycle [19]. While branch mispredictionsand cache misses result in many cycles during which no useful instructions are fetched, they occur relativelyinfrequently. The loss due to partial fetches will be incurred almost every cycle instructions are fetchedfrom the cache. The partial fetch problem is more signi�cant for machines capable of issuing more than 6instructions each cycle; they require a fetch engine that fetches multiple basic blocks per cycle. The focus ofthis technical report is the evaluation of a technique that improves the overall fetch bandwidth by fetchingmultiple basic blocks each cycle | the trace cache.The trace cache is a new paradigm for caching instructions and directly deals with lost bandwidth dueto partial fetches. The trace cache stores logically contiguous instruction sequences in physically contiguousstorage, a concept �rst proposed by Melvin [15]. Like the instruction cache, the trace cache is accessed usingthe starting address of the next block of instructions. (The fetch engine divides very large basic blocks intofetch-width sized chunks, which we refer to as blocks and loosely treat as equivalent to basic blocks.) Unlikethe instruction cache, a line of the trace cache contains blocks as they appear in execution order, as opposedto the static order determined by the compiler. Two adjacent instructions in a trace cache line need not beat adjacent addresses in the executable image. A trace cache line stores a segment of the dynamic instructionstream or trace, up to n instructions containing up to m conditional branches.Trace cache lines are constructed by the �ll unit (see �gure 1). As a sequence of instructions is issued tothe instruction window, it is latched into the �ll unit. The �ll unit will attempt to maximize the size of thesegment by combining newly arriving instructions with instructions latched from previous cycles. The �llunit �nalizes a segment when it can be expanded no further, for example when the mth branch is latched.Finalized segments are enqueued, and subsequently written into the trace cache.The trace cache works in concert with a multiple branch predictor. The predictor must be able to predictas many branches each cycle as the trace cache is capable of supplying. Furthermore, the accuracy of themultiple branch predictor must not be signi�cantly lower than a corresponding single branch predictor;otherwise gains in fetch bandwidth made by increasing the fetch size will be o�set by more discarded fetches.The primary objective of the trace cache is to increase fetch bandwidth by increasing the e�ective fetchrate | the average number of correct instructions fetched on fetch cycles which hit in the cache. This metricgives a direct indication of the losses due to partial fetches. By overcoming the basic block limitation, thetrace cache can supply more instructions per cycle than a conventional fetch engine. A secondary objectiveis to make the reprocessing of instructions easier. Since instructions are written into the trace cache afterbeing decoded, information can be stored along with the instructions minimizing the amount of work thatneeds to be done when the instructions are executed again.In this technical report, we examine some of the key characteristics of the trace cache fetch mechanismsuch as size, associativity, �ll strategies, and interactions with a multiple branch predictor. We presentperformance data on a wide set of fetch mechanism organizations and attempt to isolate those parameters2



that strongly a�ect performance. We also extend and test some of the ideas mentioned by Rotenberg etal [19] in their study of trace caches.2 Related WorkThe loss in fetch bandwidth due to partial fetches a�ects all superscalar processors. Since control in-structions occur every �fth instruction, for processors that have a maximum execution bandwidth of �ve orfewer instructions per cycle, the problem is primarily one of encountering a cache line boundary before thefull number of instructions are retrieved. While troublesome, this problem is overcome with straightforwardtechniques such as fetching two adjacent cache lines and realigning the instructions [11].For processors capable of executing six or more instructions per cycle, the need to fetch beyond controlinstructions arises. As the focus of our current research in uniprocessor design has concentrated on wideissue machines (eg. 16 wide), the design of high-bandwidth fetch engines is extremely important.Cache organizations for simultaneously fetching multiple basic blocks have been studied by Yeh et al [27],Conte et al [4] and Seznec et al [20]. By multiporting the instruction cache and/or the branch targetbu�er (BTB) and generating multiple fetch addresses and branch predictions per cycle, these schemes aretheoretically able to overcome the single basic block fetch bottleneck.A compile-time approach to solving the fetch bottleneck problem is the Block-Structured ISA [14, 9].The static form of the program is organized into enlarged atomic units composed of multiple basic blocksby the compiler, which, in that case, plays a central role in attaining higher fetch bandwidth. Similar fetchrate increasing techniques are employed for statically scheduled machines through compiler techniques suchas superblock scheduling [10] and trace scheduling [6, 3].A precursor to the trace cache was �rst introduced by Melvin, Shebanow and Patt [16]. They proposedthe �ll unit to compact a basic block's worth of instructions into an entry in a decoded instruction cache.A hit in the decoded instruction cache results in a larger atomic unit of work than would be possible ifthe individual instructions were fetched and decoded one per cycle. In [15] the performance implications ofthe �ll unit are discussed and the idea of dynamically combining basic blocks into larger \execution atomicunits" (EAUs) to further increase the fetch bandwidth is �rst proposed. Two other extensions of the originalschemes were presented by Smotherman and Franklin. In [7], they applied the original �ll unit ideas todynamically create VLIW instructions out of RISC-type operations. They reworked the �ll unit �nalizationstrategy by restricting the type of instruction dependencies allowed in a �ll unit line and by �lling both pathsbeyond a conditional branch. In [22], they demonstrated how a �ll unit could help overcome the decoderbottleneck of a Pentium Pro type processor.In addition to work on instruction caching techniques, there has also been serious investigation intopredicting multiple branches per cycle. Fetching multiple blocks and predicting multiple branches go hand-in-hand. Dutta and Franklin [5] proposed subgraph oriented branch prediction mechanisms which use localsubgraph history (akin to per-address history) to form a prediction. In addition to proposing a cachingstructure, Seznec et al [20] also presented a multiple branch predictor capable of predicting two branchesper cycle. Recently, Wallace and Bagherzadeh extended Seznec's scheme [25].The trace cache concept was investigated by Rotenberg et al [19]. They presented a thorough comparisonbetween the trace cache scheme to the current hardware-based high-bandwidth fetch schemes, clearly showingthe advantage of using a trace cache, both in performance and latency. They also present a multiple branchpredictor capable of making three predictions per cycle. They, however, relegated the trace cache to asupporting role in the fetch engine, showing that in a machine a with a 128KB instruction cache and a 4KBtrace cache, performance is boosted by 28% on the Instruction Benchmark Suite (IBS) and the SPECint92benchmarks over a single block fetch mechanism with a GAg single branch predictor.3



3 The Trace Cache Fetch MechanismWe divide the trace cache fetch mechanism into four major components: the trace cache, the �ll unit,the multiple branch predictor, and a conventional instruction cache. The trace cache is the main source ofinstruction supply and is �lled with trace segments by the �ll unit. The speculative sequencing of segmentsis performed by the multiple branch predictor. The instruction cache plays an important but supportingrole, handling cases when the required instructions are not found in the trace cache. A diagram of the entiremechanism is shown in �gure 1.
next fetch addr

trace cache miss
(prev cycle)

trace cache miss
(prev cycle)

Decoder/Routing

path info

Multiple Branch Predictor

next fetch addr

number of
branches fetched

Fetch Address

logic

Instruction Cache

3

instructions target addrs

Trace Cache

Fill Unit

trace cache hit

selection logic

416

instructions

Execution Engine

trace cache access

trace cache accessFigure 1: The trace cache fetch mechanism.In this section, we provide the details of a fetch engine for a 16-wide issue, dynamically-scheduled,machine. To meet its instruction bandwidth demands, 16 instructions and up to three branches are fetchedper cycle. 4



3.1 The Trace CacheThe trace cache stores segments of the dynamic instruction stream, exploiting the fact that many branchesare strongly biased in one direction. If basic block A is followed by basic block B which in turn is followedby basic block C at a particular point in the execution of a program, there is a strong likelihood that theywill be executed in the same order again. After the �rst time they are executed in this order, they are storedin the trace cache as a single entry. Subsequent fetches of block A from the trace cache provide basic blocksB and C as well.Figure 2 shows an example of a trace cache fetch cycle. The address of block A is presented to the tracecache. The trace cache responds with a hit and drives out the selected segment composed of the blocksA, B, and C. The prediction structures are accessed concurrently with the trace cache. At the end of thecycle, the segment is matched with the prediction. Since the predictor selects B to follow A but D to followB, only A and B are supplied for execution. This is called partial matching and was briey discussed byRotenberg [19]. Its performance implications will be examined in section 5.4.
A

B
T

T

NT

D CTrace Cache

Multiple Branch Predictor

address of A

3

T/NT/Tselection logic

A B C

A B

PredictionsFigure 2: The trace cache and branch predictor are indexed with the address of block A. The inset �gureshows the control ow from block A. The predictor selects path ABD. The trace cache only contains ABC.AB is supplied.The trace cache can store segments of three basic blocks per line. The line is accessed by the address ofthe �rst instruction in the �rst block of the segment. The organization of the trace cache is similar to that ofa conventional instruction cache, as the lines may be arranged in an associative manner. A hit is determinedby a tag match.Each line of the trace cache contains:� 16 slots for instructions. Instructions are stored in decoded form and occupy approximately �ve bytesfor a typical ISA. Up to three branches can be stored per line. Each instruction is marked with atwo-bit tag indicating to which block it belongs.5



� Four target addresses. With three basic blocks per segment and the ability to fetch partial segments,there are four possible targets to a segment. The four addresses are explicitly stored allowing immediategeneration of the next fetch address, even for cases where only a partial segment matches.� Path information. This �eld encodes the number and directions of branches in the segment and includesbits to identify whether a segment ends in a branch and whether that branch is a return from subroutineinstruction. In the case of a return instruction, the return address stack [12] provides the next fetchaddress. For reasons mentioned below, this information is stored in the tag store.The total size of a line is around 97 bytes for a typical architecture: 5x16 bytes of instructions, 4x4 bytesof target addresses, and 1 byte of path information.Instruction dependencies within a segment are pre-analyzed before the segment is stored in the tracecache. The source operand identi�ers of each instruction each include a two-bit tag indicating whether thesource value is produced by an instruction within the segment or is produced by an instruction issued in aprevious cycle. If the value is produced internally, then the tag indicates which block within the segment theproducing instruction belongs to. With this information, the rename logic can quickly determine whetherthe renamed tag for the source operand is supplied by the register alias table (RAT) or can be constructedwithout a RAT access. The destination operand identi�er for each instruction is augmented with a one-bittag indicating whether its value lives beyond its basic block, i.e. is live-out of its basic block. All values thatare live-out are renamed and given a physical register. This allows the checkpoint repair mechanism, whichhas to create up to three checkpoints per cycle, to recover from a branch misprediction that occurs in themiddle of a segment without having to discard the entire segment.With this additional information, each segment that is retrieved from the trace cache requires minimalrenaming before being merged into the instruction window. Only instructions that have a source operandproduced by an instruction outside the segment require a lookup in the RAT and only instructions thatproduce a value that is live-out require a physical register. A complex dependency analysis of 16 instructionsdoes not need to be performed on the fetched segment. Sprangle and Patt [23] demonstrated that pre-analyzed fetch packets require fewer read and write ports to the register renaming structures and the register�le.Finally, instructions can be stored in an order that permits quick issue. Because the segment is pre-analyzed and the dependencies are explicitly marked, the ordering of instructions within the trace cacheline carries no signi�cance. Instructions within the cache line can be ordered to mitigate the routing re-quired to send instructions into functional unit reservation stations. Future microarchitectures may arrangethe instructions within a segment to reduce the communications delays associated with incomplete bypassnetworks.A segment is written into the trace cache only if the trace cache does not contain a larger, subsumingsegment. For instance, if segment ABC were resident in the cache, the new segment AB would not be added.However, if ABC were resident in the cache, the segment ABD would overwrite it. To facilitate this, thepath information is included in the tag entry of each line. If the tag indicates that a line exists with thesame starting block and the path information indicates that the line contains a larger segment along thesame path, then the incoming write is not committed to the trace cache. To implement this with nominalperformance impact, a second read port is required in the trace cache tag store. The data store requires noadditional read ports.An important design option of the trace cache is that only one segment starting at a particular basic blockcan be resident in the cache at any given time. The implications of relaxing this constraint are discussed insection 5.3. 6



3.2 The Fill UnitThe job of the �ll unit is to collect instructions as they are issued by the processor and combine theminto segments to be written into the trace cache. Conceptually, the instructions are presented to the �llunit as blocks, in the order they were fetched. The �ll unit merges the arriving blocks with awaiting blockslatched in a previous cycle. The merge process involves maintaining dependency information and reorderinginstructions. The process continues until the segment becomes �nalized, at which point it is enqueued to bewritten into the trace cache.Dependency information is maintained by simply recalculating the two-bit source operand dependencytag on each arriving instruction. This tag is changed to reect whether an awaiting block provides the value.A segment becomes �nalized when1. it contains 16 instructions, or2. it contains three conditional branches, or3. it contains a single indirect jump, return, or trap instruction, or4. merging the incoming block would result in a segment larger than 16 instructions.Rule 1 is implied by the size of the trace cache line and rule 2 by the number of predictions suppliedby the predictor. Increasing these two limits could lead to higher fetch bandwidths. Because their targetsvary, return instructions and indirect jumps cause �nalization (rule 3). Unconditional branches, however,are replaced by NOPs. Furthermore, subroutine calls do not cause �nalization.Because blocks are being combined in a greedy fashion, there are cases where the �ll unit can createmultiple copies of basic blocks in the trace cache. Figure 3 shows a simple loop composed of �ve basicblocks. The �ll unit can potentially create �ve combinations, all of which can be simultaneously resident inthe trace cache. This block redundancy may degrade performance of the trace cache mechanism by displacinguseful lines with redundant information. The tradeo� here is between higher bandwidth from fetching fullersegments versus bandwidth losses due to increased misses in the trace cache. Similar situations are possiblewith all blocks where several execution paths merge, such as block B in �gure 3.
Possible segments

ABC

DEB

CDE

BCD

EBC

A

B

C

D

EFigure 3: If the �ll unit is able to create three-block segments for this path through a loop, then all �vepossible segments will be created and stored in the trace cache.The �ll unit strategy treats basic blocks as atomic entities. A basic block is not split across two segmentsunless the block is larger than 16 instructions. In addition to exacerbating the block redundancy problem,splitting a basic block creates an additional block that may tax other structures such as the branch predictor.7



Three outcomes are possible with the arrival of each new block of instructions: (1) the arriving block ismerged with the un�nalized segment and the new, larger segment is not �nalized. (2) the entire arrivingblock cannot be merged with the awaiting segment. The awaiting segment is �nalized and the arriving blocknow occupies the �ll unit. (3) the arriving block is completely merged with the awaiting segment and thenew, larger segment is �nalized.The �ll unit can collect blocks as they are issued into the instruction window or as they are retired.If blocks are collected at retire time, segments due to speculative execution are not added to the cache,potentially reducing misses. On the other hand, creating segments on the wrong path may generate segmentsthat may be useful later. The additional lag time in generating segments after retirement might also havenegative e�ect on performance: the �rst few iterations of a tight loop will miss until the �rst iteration isretired and written into the trace cache. The e�ects of this design issue are examined in section 5.5.3.3 The Branch PredictorThe branch predictor is a very critical component in a high bandwidth fetch mechanism. To maintain ahigh rate of instruction supply, the predictor needs to make multiple accurate branch predictions per cycle.In the case of our trace cache mechanism, three predictions per cycle are required.Two level adaptive branch prediction has been demonstrated to achieve high prediction accuracy over awide set of applications [28]. In a two level scheme, the �rst level of history records the outcomes of the mostrecently executed branches. The second level of history records the most likely outcome when a particularpattern in the �rst level history is encountered.The �rst level history can be maintained per address by storing the most recent outcomes separatelyfor each branch or globally by storing the most recent outcomes together for all branches. This history ismaintained in a single history register for the global scheme or in multiple history registers for the per addressscheme. The second level history is maintained as a table, called the pattern history table (PHT).

8



To make three predictions per cycle, we expand each PHT entry from a single two-bit counter into seventwo-bit counters. Figure 4 shows how the seven counters are used to supply three predictions per cycle. The�rst two-bit counter supplies the prediction for the �rst branch and is used to select which of two two-bitcounters supplies the prediction for the second branch. Both predictions are used to select one of four two-bitcounters to supply the prediction for the third branch. All three predictions are made with a single accessto the pattern history table. To circumvent critical path problems in accessing the PHT, the selection oftwo-bit counters can be done when the branches corresponding to a prediction have resolved and the nextset of predictions can be stored directly within the entry. This adds two bits to the cost of each entry.
B0 B1 B2

2-bit counterFrom 64KB pattern history table

Figure 4: Pattern history table entry. Seven two-bit counters are used to provide three predictions. B0 isthe prediction for the �rst branch, B1 is the prediction of the second and B2 is for the third.Although other methods for indexing the PHT are examined in section 5.8, the baseline con�gurationfor the trace cache predictor uses the gshare scheme outlined by McFarling [13]. The global branch historyis XORed with the current fetch address, forming an index into the PHT. Gshare has been shown to bee�ective in reducing negative interference in commonly accessed PHT entries, such as entries accessed bystrongly biased branches. McFarling has demonstrated the increased accuracy of gshare over other globalhistory based prediction schemes.The extra selection done after the PHT is indexed adds two extra bits of branch history. Thus sucha predictor indexed with 15 bits of history actually utilizes 17 bits of history. However, this extra historyis utilized only if the trace cache line being fetched contains three conditional branches. In the worstpathological case, if the trace cache only contains segments composed of single blocks, only the �rst two bitcounter in each PHT entry is utilized. In the best case, if each trace cache line that is accessed containsthree conditional branches, the PHT entries will be fully utilized.The branch predictor also contains a return address stack to help predict the target addresses of returninstructions.3.4 The Instruction CacheA conventional instruction cache supports the trace cache by supplying instructions when the trace cachedoes not contain the requested segment. If hitting in the trace cache is the frequently occurring case, thenthe supporting fetch mechanism need not be enhanced for higher bandwidth. The instruction cache can getaway with supplying up to one basic block each cycle.9



Both the trace cache and instruction cache are accessed concurrently with the same address. If the accessmisses in the trace cache, instructions are supplied by the instruction cache after a delay of one cycle. Thisdelay allows for a shorter latency of trace cache access. Essentially, we optimize for the case that the fetchwill hit in the trace cache. In the event of a miss in the trace cache and a hit in the instruction cache, anextra cycle of latency is added to the fetch.The latency through the instruction cache is likely to be less than or similar to the latency of the tracecache. The delay cycle may be used to decode the instructions fetched from the instruction cache andcalculate the next fetch address, as shown in �gure 1. For this reason, no branch target bu�er is requiredfor the trace cache fetch mechanism.The instruction cache has two read ports to allow adjacent cache lines to be retrieved each cycle. Byfetching two cache lines and realigning instructions, the fetch mechanism overcomes fetch breaks due to cacheline boundaries. The need for this optimization will be examined in section 5.9.3.5 The Fetch CycleAt the beginning of the cycle the fetch address, determined in the previous cycle, is presented to boththe trace cache and the instruction cache. The fetch address is also used by the branch predictor, along withglobal branch history, to index into the pattern history table. Some time into the cycle, the trace cache willrespond with a hit and a segment of instructions or a miss. The branch predictor will respond with threepredictions. The instruction cache will produce two cache lines, along with a hit/miss signal.In the case of a trace cache hit, the branch predictions are used to select which part of the segment tosupply to the machine. Logic at the output of the trace cache attempts to match the path information storedin the selected trace cache line with the current prediction. The predictions also select which of the fourpossible fetch addresses to use for the following cycle. If the fetched segment ends in a return, the next fetchaddress is supplied by the return address stack. The branch predictor's history register is updated, shiftingin the appropriate predictions for the fetched branches.Selecting the proper next fetch address and updating the global history register are the critical operationsto complete in the fetch cycle. If a partial segment matches, unwanted instructions can be invalidated in thenext stage of processing.In the case of a trace cache miss and an instruction cache hit, up to a single basic block is supplied atthe end of the next cycle. Because the fetch path is optimized for a trace cache hit, detecting and adjustingfor a trace cache miss requires an extra cycle. Since the instruction cache access is complete at the end ofthe �rst cycle, the second cycle is spent decoding the fetched instructions.If both the trace cache and instruction cache respond with a miss, then a request for the missing in-struction cache line is made to the second level cache. The fetch mechanism stalls until the missing linearrives.
10



4 Experimental SetupThe trace cache was added as the fetch mechanism of a 16-wide issue processor implementing the HPSmodel of execution [17]. To isolate the e�ects of the fetch engine, many of the bottlenecks in the executioncore have been removed. The data cache is ideal (all load requests require one cycle of address calculationand one cycle to access the data) and the 16 functional units are uniform and capable of all operations. Thelatencies for di�erent operations are listed in Table 1. The instruction window is 16x32 instructions. TheHPS model uses checkpointing to recover from branch mispredictions and exceptions. The execution engineis capable of creating three checkpoints each cycle. All instructions undergo four stages of processing: fetch,issue, schedule, execute. Instructions fetched from the instruction cache undergo at least one extra stage ofdecoding. Figure 5 shows a block diagram of our pipeline model. All stages take at least one cycle.Operation LatencyINT ops 1LOAD 2STORE 2FMUL 3FADD 3FDIV 8Table 1: Functional unit latencies.
FETCH

EXECUTE

Trace Cache

Instruction Cache

Decoder

Renamer

Node Tables

FU FU FU FU FU FU

ISSUE

SCHEDULEFigure 5: Trace Cache/HPS pipeline diagram.11



The Trace Cache/HPS machine was simulated on an executable driven simulator which models wrongpath e�ects. The simulator operates on executables of the HPS baseline ISA. The instruction set is anenhanced subset of the MC88100 ISA. All experiments were performed on the SPECint95 benchmarks.Table 2 lists the benchmarks and the input sets 1. All simulations were run until completion.Benchmark Input setcompress test.ingcc jump.igo 2stone9.inijpeg specmun.ppmli train.lspm88ksim dcrand.trainperl scrabbl.plvortex vortex.inTable 2: Benchmarks and datasets used. All benchmarks simulated to completetion.The benchmarks go and gcc are relevant for fetch mechanism issues. Both contain a large number ofdynamic basic blocks and have many conditional branches that are di�cult to predict.For all simulations performed, the return address stack was assumed to be ideal.The latency for accessing the ideal second level cache is 10 cycles.

1Vortex and go were simulated with abbreviated versions of the test input. Compress was simulated on a modi�ed versionof the test input with an initial list of 30000 elements. 12



5 Critical IssuesTo evaluate the various trace cache design options available, we started with the following baselinecon�guration: a 128KB trace cache which can be accessed in a single cycle, and a 4KB dual-ported instructioncache with a 64B line size. Fetches from the instruction cache undergo one delay cycle, during which thenext fetch address is generated. Both caches are 4-way set associative. The �ll unit collects blocks as theyare issued into the execution core. The branch predictor keeps 15 bits of history and uses gshare to indexthe pattern history table. Using this con�guration as the baseline model, we performed experiments todetermine the impact of varying key fetch engine parameters. In addition, to demonstrate the e�ectivenessof the trace cache fetch mechanism, we compare its performance to the performance of a similarly sizedsingle block fetch mechanism with an aggressive hybrid branch predictor.5.1 Trace Cache associativityThe �rst set of experiments deals with determining the e�ects of set associativity on trace cache perfor-mance. Figure 6 shows the performance of our baseline trace cache fetch mechanism composed of a 128KBtrace cache and a 4KB instruction cache as the trace cache associativity is varied from 1 to 32.
com gcc go ijpeg li m88ksim perl vortex go w/256KB TC

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

In
st

ru
ct

io
ns

 p
er

 C
yc

le

Direct Mapped
2 Way
4 Way
8 Way
16 Way
32 Way

Figure 6: Associativity. The performance in instructions completed per cycle is shown graphically for tracecaches of associativities ranging from 1 to 32. For all con�gurations, the trace cache size is 128KB. A 4KBinstruction cache is the supporting structure. An additional plot shows the performance of go with a 256KBtrace cache.Many of the SPECint95 benchmarks, such as compress, li, and m88ksim have small instruction workingsets, that �t entirely within a 128KB trace cache, thus varying associativity has very little impact. Forbenchmarks such as gcc, perl, vortex, going from a direct-mapped con�guration to a set-associative oneshows a dramatic improvement. The improvement in performance of a 4-way set-associative trace cache overa direct-mapped trace cache is 15% for gcc, 12% for perl, and 15% for vortex.The benchmark go displays erratic behavior. Although it is not apparent from the diagram, its per-formance rises and falls slightly as the trace cache associativity is increased. This benchmark has a largeinstruction working set and su�ers from a signi�cant number of capacity misses with a 128KB trace cache.If the size of the cache is doubled and the same experiment is performed on go, then the performance trendsare more in line with expectations, as shown by the relevant data plotted in �gure 6.13



Adding associativity to a trace cache improves performance signi�cantly as seen on gcc, perl, and vortex.With a direct-mapped 128KB trace cache, blocks which are 2048 instructions apart will map to the sameline. Since branch targets tend to exhibit spatial locality [24], direct-mapped trace caches su�er a signi�cantpenalty due to conict misses.Implementing associativity will increase the cache access latency. However, several recent techniques suchas set prediction [29, 8] and remap caches [18] allow caches to exhibit both lower conict misses and loweraccess times. Such techniques can be applied to the trace cache mechanism to improve performance withoutincurring an increase in cycle time.5.2 Relative sizesAs stated in section 3.5, the trace cache and instruction cache are accessed in parallel with the nextfetch address. At the end of the access cycle, the trace cache will respond with either a hit and a segment ofinstructions will be latched into the instruction latch or it will respond with a miss. If it responds with a missand the instruction cache responds with a hit, then a block of instructions fetched from the instruction cachewill be latched into the instruction latch at the end of the subsequent cycle. The extra cycle of delay allowsfor two things: �rst, the fetch path can be optimized for a trace cache hit and, at the end of the access cycle,only instructions from the trace cache are latched into the instruction latch, which helps reduce the fetchlatency. Second, the next fetch address for the block fetched from the instruction cache can be generatedduring this extra cycle. No extra storage structure is required to maintain branch target information forblocks fetched from the instruction cache.The purpose of this experiment is to determine the partitioning of storage between trace cache andinstruction cache for the trace cache fetch mechanism. Since we established (as we will show in section 5.9)that the extra cycle of latency in accessing the instruction cache minimally a�ects performance of our baselinecon�guration and since we suspect that this extra cycle will more signi�cantly impact other con�gurationswith a relatively larger instruction cache, we do not model the additional latency for this experiment. Bothstructures are capable of supplying instructions at the end of an access cycle.For these experiments, the instruction cache is dual ported and capable of fetching up to one block ofinstructions each cycle. Since it is accessed in a single cycle, a branch target bu�er is required to generatethe next fetch address for accesses serviced by the instruction cache. For these experiments, we modeled anideal BTB.
14



Figure 7 shows the performance of several fetch mechanisms with various cache sizes. The results are notsurprising: it is better to hit frequently in the cache that will supply more instructions per cycle. A fetchmechanism consisting of 128KB of trace cache provides a 5% performance increase on gcc, a 43% increaseon m88ksim, a 15% increase on perl, and a 12% increase on vortex over a fetch mechanism consisting of a4KB trace cache. If the trace cache and instruction cache are both the same size, the performance is slightlybetter overall than that of the 128KB trace cache mechanism. However, one should note that the instructioncache is dual read-ported in both tag and data stores and a larger branch target bu�er would be required toenable single cycle access.
com gcc go ijpeg li m88ksim perl vortex

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

In
st

ru
ct

io
ns

 p
er

 C
yc

le

128KB TCache/4KB ICache
64KB TCache/64KB ICache
4KB TCache/128KB ICache

Figure 7: The performance of 128KB fetch mechanisms. The size of the trace cache plays a dominant rolein the trace cache fetch mechanism.

15



Figures 8 and 9 show the results for 64KB and 256KB fetch mechanisms. The results are similar acrossall three sizes.
com gcc go ijpeg li m88ksim perl vortex

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

In
st

ru
ct

io
ns

 p
er

 C
yc

le
64KB TCache/4KB ICache
32KB TCache/32KB ICache
4KB TCache/64KB ICache

Figure 8: The performance of 64KB fetch mechanisms.
com gcc go ijpeg li m88ksim perl vortex

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

In
st

ru
ct

io
ns

 p
er

 C
yc

le

256KB TCache/4KB ICache
128KB TCache/128KB ICache
4KB TCache/256KB ICache

Figure 9: The performance of 256KB fetch mechanisms.
16



5.3 Path AssociativityPath associativity [19] relaxes the constraint that di�erent segments starting from the same basic blockcannot be stored in the trace cache at the same time. Path associativity allows segments ABC and ABD toreside concurrently in the cache whereas a non-path associative trace cache allows only one segment startingat A to be resident in the trace cache at any instance in time. A path associative trace cache datapath isshown in Figure 10.
A B C

A

B
T

T

NT

D CTrace Cache

Multiple Branch Predictor

3

T/NT/T
path selection logic

address of A

DA B

trace cache set

A B D

PredictionsFigure 10: The trace cache drives out all segments in the set. The prediction is used to select the longestmatching segment.All segments starting at the same address are stored in the same set of the cache. In the same manneras the non-path-associative case, the fetch address is used to index into the trace cache and a tag match isperformed to �nd the matching line. The tag matching processes of a path associative cache and a non-pathassociative cache have a slight but crucial di�erence. Both require a tag match of the upper bits of addressand both require a path match with the branch prediction to select the proper next fetch address. However,the path associative cache requires that the longest matching path be determined before the matching lineis selected. Finding the longest matching path requires completing the address match �rst. Only after theaddress match is complete, can the longest matching path and thus the next fetch address and instructionsto supply, be selected. It is likely that the line selection time for the path associative cache will be longer,possibly impacting fetch latency. 17



The data plotted in Figure 11 indicate that path associativity enhances performance by 4% on go, 2% oncompress, and 2% on m88ksim compared to the baseline con�guration. Adding path associativity increasesthe number of segments that map into a particular set; thus additional misses may occur due to increasedset conicts. This is the reason gcc and vortex su�er a small loss of performance in the path associativecase. Increasing the degree of associativity of the trace cache from 4-way to 8-way further increases theperformance of gcc by 3%. Of course, a portion of this performance increase is due to the increase inassociativity. The data indicates that the gains from path associativity are marginal and will be o�set if theadditional selection complexity results in a multi-cycle cache access or a longer cycle time.
com gcc go ijpeg li m88ksim perl vortex

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

In
st

ru
ct

io
ns

 p
er

 C
yc

le

No Path Associativity, 4-way
Path Associativity, 4-way
Path Associativity, 8-way

Figure 11: Performance of Path Associativity. Performance presented in instructions per cycle as measuredon the SPECint95 benchmarks.Path associativity tends to be overshadowed by the ability to partially match a segment in the tracecache. If the predictor speculates that the next path is ABD and a non-path associative trace cache containsABC, only the segment AB will be fetched. In the path associative case, the cache will be able to supplythe full three block segment ABC or ABD, depending on the prediction, if both segments are resident in thecache. Because partial matching allows for some instructions to be returned in the case where the segmentdoes not match the full predicted path, path associativity could be an important factor on performance fortrace caches that do not partially match segments.
18



5.4 Partial matchingEach fetch cycle, the predictions made by the branch predictor are used to select which blocks within theaccessed segment will be issued to the core. This process is referred to as partial matching [19]. Alternatively,the trace cache can be designed to signal a hit only if all the blocks within the selected segment match.Figure 12 shows the performance di�erence between a trace cache that implements partial matching and onethat does not. The average performance improvement is 25%.
com gcc go ijpeg li m88ksim perl vortex

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

In
st

ru
ct

io
ns

 p
er

 C
yc

le

Partial Matching
No Partial Matching

Figure 12: Partial Matching. The performance di�erence between a trace cache that partially matchessegments and one that does not is around 25%

19



5.5 Block collectionThe �ll unit collects blocks of instructions as they are processed and produces segments to store into thetrace cache. The �ll unit can collect these blocks at any point in the processor pipeline. In this experiment,we determine whether the blocks should be collected as instructions are issued into the instruction windowor when they are retired.Figure 13 shows that the di�erences in performance between the two schemes are slight. The �ll unitcollecting instructions at issue time provides increased tra�c to the trace cache because segments are collectedwhile executing on a wrong execution path. In some cases this prefetches useful segments, but in other casesit evicts useful segments from the trace cache.
com gcc go ijpeg li m88ksim perl vortex

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

In
st

ru
ct

io
ns

 p
er

 C
yc

le

Issue
Retire

Figure 13: Issue vs. Retire. This plot shows that collecting instructions at issue time is not very di�erentfrom collecting instructions at retire time.A �ll unit that collects at retirement time only writes segments from the correct execution path to thetrace cache. However, it su�ers from an increased latency between the initial fetch of a block and its collectioninto a segment and subsequent storage into the trace cache. While this can potentially impact the �rst fewiterations of a tight loop, which will be fetched from the instruction cache until the �rst iteration retires, wewill show in section 5.6 that this is not an important performance factor.Although �ll units that collect at retirement time have a slight advantage over those that collect atissue time, collecting segments at retirement time requires a greater hardware investment. Implementingan issue time �ll unit is straight-forward, requiring blocks to be latched into the node tables and �ll unitconcurrently. For retirement time collection either the �ll unit must contain enough storage to maintain acopy of the instructions in the execution window or blocks of instructions must be driven from the nodetable into the �ll unit as they retire. In the former case checkpoints are added to the �ll unit as they areissued but are only eligible for merging into larger segments after they retire. In the latter case wiring mustbe added from the node table to the �ll unit so that the checkpoints may be entered as they retire.5.6 Fill Unit LatencyAs blocks of instructions are latched into the �ll unit, some processing is required before the compositesegment can be enqueued to be written to the trace cache. The dependencies within the arriving blockmust be recorded to reect the values produced by the awaiting blocks. Possibly, the instructions within20



the segment may need to be reordered so that they can be quickly routed to functional unit node tableswhen the segment is refetched. Future �ll unit designs may perform run-time optimizations on segments.To perform these operations, the �ll unit may require several cycles.The purpose of this experiment is to determine the sensitivity of the trace cache fetch mechanism to �llunit latency. Figure 14 shows the results of varying the number of cycles from the arrival of the terminalblock to the point it is written into the trace cache. The results show that a �ll unit with a 10-cycle latencyhas a negligible loss in performance over a single-cycle �ll unit.
com gcc go ijpeg li m88ksim perl vortex

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

In
st

ru
ct

io
ns

 p
er

 C
yc

le

1 Cycle Delay
2 Cycle Delay
3 Cycle Delay
10 Cycle Delay

Figure 14: Fill Unit Latency is not a major inuence on performance.5.7 Non-atomic blocksOne obvious �ll unit optimization is the possibility of �lling out the trace cache lines by allowing the�ll unit to �nalize segments on instruction boundaries rather than basic block boundaries. Relaxing thisrestriction allows the �ll unit to store the �rst portion of a basic block as the last set of instructions in asegment. The remaining instructions are then used as the �rst portion of the next segment created by the �llunit. Although this lets the �ll unit create longer segments | the �nalization rules are now 16 instructions,three conditional branches, or an indirect jump, return, or serializing instruction | it may also have negativee�ects on other factors which inuence fetch engine performance.
21



Figure 15 compares the performance of a trace cache in which blocks are not treated atomically by the�ll unit and the baseline case where blocks are are treated atomically. Although breaking blocks providesa slight performance advantage for compress, li, m88ksim, and perl, performance is worse on gcc, go, ijpeg,and vortex. The IPC of go drops more than 6.5%.
com gcc go ijpeg li m88ksim perl vortex

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

In
st

ru
ct

io
ns

 p
er

 C
yc

le

Atomic blocks
Non-Atomic Block

Figure 15: Perfomance impact of not treating basic blocks atomically in the �ll unit. Allowing the �ll unitto split a block across two segments results in a loss of performance.To understand these results we �rst must look at how this change a�ects the e�ective fetch rate. Table 3shows the average number of valid instructions provided by the fetch engine every cycle it supplies correctpath instructions to the execution core. This metric provides a direct measure of how partial fetches area�ecting performance. With the exceptions of go and li, allowing the �ll unit to break blocks slightlyincreases the number of instructions fetched on average. This increase is not as signi�cant as one wouldexpect because partial matching allows the branch predictor to select a portion of a fetched line and becausea misprediction on a branch in the middle of a segment causes the subsequent instructions in the segmentto be later discarded (thus they do not contribute to the e�ective fetch rate). However, this slight increasedoes not indicate a corresponding increase in performance.Benchmark Atomic Non-atomiccompress 10.565 10.605gcc 8.395 8.465go 8.656 8.471ijpeg 11.839 12.236li 9.337 9.315m88ksim 10.259 10.501perl 9.373 9.570vortex 10.734 11.253Table 3: The e�ective fetch rates for atomic (baseline) and non-atomic treatment of basic blocks by the �llunit.If we look at the other factors which reduce fetch bandwidth, we see that by not treating blocks atomically,we aggravate them. Allowing the �ll unit to break blocks creates more dynamic basic blocks (ie. unique22



addresses from which instructions are fetched during execution). An increased number of blocks exacerbatesthe redundancy problem described in section 3.2 and increases demand for space in the trace cache. Breakinga block also aggravates the branch predictor by adding another address from which the same branch must bepredicted. Table 4 shows the trace cache miss rates for fetches along the correct path. The added pressureon the trace cache drives the miss rate up dramatically. Table 5 shows the impact that these additional fetchaddresses have upon the branch predictor. Also, the additional bandwidth gets into the core only one cycleearly and may not have a signi�cant impact on the overall performance of a dynamically scheduled machine.Benchmark Atomic Non-atomiccompress 0.014% 0.030%gcc 7.608% 9.761%go 13.187% 19.359%ijpeg 0.408% 1.394%li 0.087% 0.222%m88ksim 0.872% 0.479%perl 0.615% 1.185%vortex 2.677% 3.711%Table 4: The trace cache miss rates for atomic (baseline) and non-atomic treatment of basic blocks by the�ll unit. Benchmark Atomic Non-atomiccompress 8.002% 8.060%gcc 9.015% 9.636%go 18.218% 19.570%ijpeg 7.479% 7.602%li 4.620% 4.712%m88ksim 1.500% 1.490%perl 2.264% 2.240%vortex 1.019% 1.104%Table 5: The conditional branch misprediction rates for atomic (baseline) and non-atomic treatment of basicblocks by the �ll unit.Thus while allowing the �ll unit to break blocks does increase the average number of instructions thetrace cache stores per line, this gain is o�set by losses due to more mispredictions and cache misses.
23



5.8 Branch Predictor issuesThe multiple branch predictor is a crucial element of the trace cache fetch mechanism. If the trace cacheis not supported by a predictor capable of making accurate predictions, gains in e�ective fetch rate will beo�set by losses from more discarded fetches, likely resulting in a loss in performance.In this section we examine several techniques for indexing the pattern history table, whose entries aredescribed in section 3.3. In our baseline con�guration, we chose to use the gshare indexing scheme, wherethe global history register is hashed (XORed, in our case) with the next fetch address to form the PHTindex. Here, we explore other indexing options.In �gure 16, the conditional branch misprediction rates for the go benchmark are shown for four di�erentPHT index methods. The �rst method is to use only bits of the next fetch address. This technique is similarto the 2-bit counter technique [21] used for single-level branch predictors. The second method is to use onlybits of the global history, or GAg. The third method is to use a combination of the next fetch address and theglobal history, or GAs 2. Finally, we include the gshare indexing scheme used in our baseline con�guration.
12 Bits 13 Bits 14 Bits 15 Bits 16 Bits 17 Bits

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

B
ra

nc
h 

M
is

pr
ed

ic
ti

on
 R

at
e

Fetch address

GAg

GSHARE

GAsFigure 16: Branch misprediction rates on go for various PHT indexing schemes. The x-axis corresponds tothe number of bits used to index the PHTThe results show that for go the GAs scheme outperforms the other three when the size of the predictor is16K entries or larger. The fetch address scheme, which uses no global history, stops gaining accuracy as thenumber of entries starts to exceed the number of di�erent dynamic branches encountered in the benchmark.
2Via a separate set of experiments, we arrived at a GAs scheme which uses three bits of address concatenated with theglobal history. 24



In �gure 17, using a PHT with 32K entries (thus up to 15 bits of global history), we measured theperformance (in instructions per cycle) of the four di�erent indexing methods on the seven benchmarks. Theresults show that gshare and GAs attain the best performance, slightly beating the GAg scheme. The gsharetechnique outperforms the fetch address index by 18% on compress, 22% on li, 42% on m88ksim, and 16%on perl.
com gcc go ijpeg li m88ksim perl vortex

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

In
st

ru
ct

io
ns

 p
er

 C
yc

le

Fetch Address
GAg
GSHARE
GAs

Figure 17: PHT indexing. A performance comparison of the four PHT indexing schemes discussed. In allcases the PHT has 32K entries.5.9 Instruction Cache issuesSince we have relegated the instruction cache to a supporting role in a processor with a trace cache fetchmechanism, the design of the instruction cache should be revisited. All of the previous experiments haveassumed that the instruction cache is dual ported. The addition of a second read port somewhat mitigatesthe partial fetch problem. By fetching two consecutive 64B lines from the instruction cache only a changeof control ow will terminate a fetch before the full fetch width is utilized. However, this optimization is acostly addition to the fetch mechanism.Figure 18 shows the results of removing the second read port from the instruction cache. There is verylittle impact on the performance if the instruction cache is scaled back in this way. Li shows the largestdrop, losing slightly more than 2%. The performance on a number of the benchmarks actually increases aswe go from a dual-ported to a single-ported instruction cache. This is due to the e�ect that fetching smallerlengths of instructions has on the �ll unit. When a block of instructions fetched from the single-portedinstruction cache is terminated because the end of the cache line is reached, the �ll unit treats it atomically.This allows the �ll unit to handle what would otherwise be a larger contiguous block of instructions as twoseparate entities. In this way a limited form of treating basic blocks non-atomically is bene�cial on thesefew benchmarks. 25



com gcc go ijpeg li m88ksim perl vortex
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

In
st

ru
ct

io
ns

 p
er

 C
yc

le

Dual Ported Icache
Single Ported Icache

Figure 18: The e�ects of dual-porting the instruction cache.A second area in which the decreased importance of the instruction cache may allow for a reduction ofresources is in decoding instructions from the instruction cache. Because the instruction cache is accessedless frequently, we can reduce the hardware costs of the decoder and dependency analyzer by allowing themto take multiple cycles. Figure 19 shows the results of varying the number of non-pipelined delay cycles inaccesses to the instruction cache from zero to three. Clearly, for the majority of the benchmarks, addingthis latency has very little impact. The e�ects are signi�cant, however, on gcc, go and to a lesser extentvortex, all of which have a signi�cant number of trace cache misses. Between a zero-cycle and a three-cycledelay there is a 6.5%, an 11% and a 3% performance drop, respectively. A zero-cycle delay represents anideal situation (equivalent to the con�gurations used in section 5.2) and our baseline con�guration has aone-cycle delay. The performance di�erence between the ideal and our baseline is 3% for gcc, 4% for go, 3%for m88ksim, and 2% for vortex.
com gcc go ijpeg li m88ksim perl vortex

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

In
st

ru
ct

io
ns

 p
er

 C
yc

le

0 delay cycles
1 delay cycle
2 delay cycles
3 delay cycles

Figure 19: The e�ects of instruction cache delay on overall performance.26



5.10 Comparison to previous workFigure 20 compares the performance of our baseline con�guration to the trace cache model investigatedby Rotenberg et al. The large di�erences in performance, which amount to 23% on average, can be attributedto three major di�erences between our trace cache model and the Wisconsin con�guration we simulated. Themost obvious of these is the relative sizes of the trace cache and the instruction cache. Their con�gurationused a 4KB trace cache and a 128KB instruction cache. Although having a larger instruction cache allows theoverall storage to be more e�ciently utilized, our experiments have shown that this bene�t is outweighed bythe increased e�ective fetch rate of a large trace cache design. One di�erence between the two con�gurationsthat would have been improper to ignore is the associativity of the caches. As our baseline contains 4-way setassociative caches, we chose to simulate the Wisconsin con�guration using 4-way set associativity also. Thesecond important di�erence between the two design points is our use of partial segment matching. Althoughour previous experiments have shown that this is a crucial aspect for large trace cache designs, it may be ofless importance to fetch mechanisms with smaller trace caches.
com gcc go ijpeg li m88ksim perl vortex

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

In
st

ru
ct

io
ns

 p
er

 C
yc

le

Baseline Configuration
Wisconsin Configuration

Figure 20: Comparison of the con�guration proposed by Rotenberg et al and our baseline model.
27



The �nal di�erence between the two con�gurations is the branch predictor. Table 6 lists the mispredictionrates of the two predictors. Rotenberg et al. implemented a GAg predictor, modi�ed to perform threepredictions per cycle. This predictor requires three read ports and three write ports. The predictor we havepresented requires only a single read and a single write port, while providing a signi�cant improvement inprediction accuracy. Benchmark TraceCache Wisconsincompress 8.002% 8.903%gcc 9.015% 11.890%go 18.218% 21.850%ijpeg 7.479% 12.118%li 4.620% 6.964%m88ksim 1.500% 3.835%perl 2.264% 5.893%vortex 1.019% 4.531%Table 6: The conditional branch misprediction rates for our proposed multiple branch predictor and the oneproposed by Rotenberg et al5.11 Comparison to an aggressive single block mechanismThe experiments thus far have evaluated various design options of the trace cache fetch mechanism.An assessment of the mechanism would not be complete without a comparison to the current dominanttechniques for fetch engine design. Rotenberg et al. [19] presented a thorough comparison of the tracecache's performance on the SPECint92 and IBS benchmarks to a few of the hardware-based multiple blockfetch techniques mentioned in section 2. Here we present a comparison of our baseline con�guration with anaggressive single block fetch mechanism.The components of the single block mechanism we modeled are each approximately the same size andaccess complexity as their trace cache counterparts in our baseline con�guration. The single block mechanismconsists of a single cycle, 128KB, 4-way set associative, dual-ported instruction cache capable of fetching upto 16 instructions or until the �rst control ow instruction each cycle. The next fetch address is generatedwith an ideal branch target bu�er. The single branch predictor is a hybrid predictor, consisting of twocomponents: a 15-bit PAs predictor and a 15-bit gshare predictor. The selection between the components isdone by a 15-bit gshare-style selector. Combining a per-address predictor with a gshare predictor was �rstproposed by McFarling [13]. Using a two-level mechanism to select between the two was proposed by Changet al [2]. A similar version of this predictor is implemented in the DECChip 21264 [8].While the trace cache predictor is roughly twice the size (64KB) of the single branch predictor (32KB),the access times are roughly equivalent. Both predictors have 32K entries in their pattern history tables.The trace cache predictor has 16 bits in each entry, whereas the single branch predictor has three tables,each of two bits. The magnitudes of and di�erences in the widths of these entries make the access times verysimilar [26]. 28



Figure 21 compares the performance of the trace cache and single block fetch mechanisms. The tracecache mechanism outperforms the single block scheme across all but one of the benchmarks simulated. Onthe benchmark compress, the di�erence is 22%, on gcc 5%, on ijpeg 20%, on li 39%, on m88ksim 51%, onperl 32%, and on vortex 30%. On go, there is a 5% degradation in performance. On average, the trace cachedelivers 24% higher performance than an aggressive single block mechanism.
com gcc go ijpeg li m88ksim perl vortex

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

In
st

ru
ct

io
ns

 p
er

 C
yc

le

Trace Cache
Single Block

Figure 21: The performance of the baseline trace cache fetch mechanism, against an agressive single blockfetch mechanism.The large boost in performance of the trace cache mechanism comes from a signi�cant increase in averagee�ective fetch rate. Table 7 shows the e�ective fetch rates for both mechanisms; the average increase is 92%,indicating that the trace cache delivers almost two blocks per cycle.Benchmark TraceCache SingleBlockcompress 10.565 5.792gcc 8.395 4.453go 8.656 5.544ijpeg 11.839 7.010m88ksim 10.259 4.933li 9.337 4.157perl 9.373 4.583vortex 10.734 5.185Table 7: The e�ective fetch rates for the trace cache mechanism and the single block mechanism.
29



While the increased fetch rate improves the performance of the trace cache mechanism, the losses due tobranch mispredictions and, to a lesser extent, cache misses degrade performance. This explains the loss inperformance on the go benchmark. Table 8 lists the conditional branch misprediction rates for the multipleand single branch predictors. The technology for predicting a single branch in one cycle is more maturethan the technology for predicting multiple branches in one cycle. As the techniques and lessons learnedwith single branch predictors, techniques such as reducing negative interference [1] and combining branchpredictors [13], are integrated into multiple branch predictors, the performance of the trace cache mechanismwill continue to increase. Benchmark TraceCache SingleBlockcompress 8.002% 5.273%gcc 9.015% 5.361%go 18.218% 12.965%ijpeg 7.479% 6.076%li 4.620% 3.131%m88ksim 1.500% 1.166%perl 2.264% 1.001%vortex 1.019% 0.559%Table 8: The conditional branch misprediction rates for the multiple branch predictor and the single blockhybrid branch predictor6 ConclusionsIn this paper we have examined some of the critical design parameters of the trace cache fetch mechanism.The trace cache supplies multiple basic blocks of instructions each cycle by storing logically contiguousinstruction sequences in physically contiguous storage | a concept �rst proposed by Melvin et al [15].We have shown that a large trace cache assisted by a small instruction cache outperforms a small tracecache acting as an assist to a large instruction cache. With an instruction storage capacity of 132KB, a tracecache of 128KB with a an instruction cache of 4KB, outperforms the reverse con�guration by 5% on gcc,43% on m88ksim, 15% on perl, and 12% on vortex. Furthermore, since accesses to the instruction cache areinfrequent with a trace cache of this size, the instruction cache can be designed less aggressively. The fetchmechanism can tolerate some latency along the access path to the instruction cache.Since the heart of the trace cache is its ability to fetch multiple basic blocks each cycle, an e�ectivemultiple block branch predictor is critical to its performance. The branch predictor we have presentedaccurately predicts up to three conditional branches each cycle while requiring only a single read and asingle write port. Although this predictor performs respectably, there is still much room for improvement.Multiple branch predictors are still in their infancy compared to techniques for single branch predictors. Weexpect that many of the techniques used for single branch predictors, such as reducing negative interferenceand combining predictors, will be successfully applied to multiple branch predictors. As these techniquesdevelop, the performance of the trace cache will certainly increase.We have also demonstrated the sensitivity of the trace cache to conict misses, and that the associativityof the trace cache has a large impact upon the performance of several of the SPECint95 benchmarks. Theimprovement in performance of a 4-way set associative trace cache over a direct mapped trace cache is 15%for gcc and vortex, and 12% for perl. Our path associativity experiments have shown modest improvements30



of 4% on go and 2% on compress and m88ksim if the trace cache can store multiple segments that start withthe same block.One very important trace cache design option is the ability to partiallymatch a segment. Our experimentshave shown that without this feature the average performance across the benchmarks drops 25%.Other experiments have shown that there is a slight advantage to having the �ll unit collect blocks asthey are retired rather than at issue time. Furthermore, we have shown that the trace cache is extremelytolerant to latency within the �ll unit. This could prove exceptionally useful as the �ll unit may be able todo complex runtime analysis and optimizations, allowing the trace cache to store segments of instructionsthat have been optimized or translated for the speci�c execution core it is feeding.In �gure 22 we show the performance gained from taking the most important of these aspects andcombining them into a single con�guration. This con�guration di�ers from our baseline in three respects:the trace cache is path associative, the latency of the instruction cache has been reduced to a single cycle,and the branch predictor uses a GAs indexing scheme. Although they have a limited impact on most of thebenchmarks, these changes combine to increase the performance of gcc by 9% and go by 11%.
com gcc go ijpeg li perl vortex

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

In
st

ru
ct

io
ns

 p
er

 C
yc

le

Baseline configuration
1 cycle IC, path associative TC, GAs

Figure 22: A comparison of our baseline con�guration and one in which the trace cache is path associative,the instruction cache has a single-cycle latency, and the branch predictor indexes the PHT with a GAsmethod.Finally, when compared with an aggressive single block fetch mechanism, the trace cache attains anaverage performance increase of 24%. Much of this performance increase comes from the increase in e�ectivefetch rate, which is 92% greater than that of the single block engine.7 AcknowledgementsThis work has bene�tted greatly from the previous research on the HPS execution model | in particularthe contributions of Steve Melvin and Mike Shebanow. Also, we gratefully acknowledge the �nancial supportof our industrial sponsors | in particular, Intel, NCR, and Motorola.31



References[1] P.-Y. Chang, M. Evers, and Y. N. Patt, \Improving branch prediction accuracy by reducing patternhistory table interference," in Proceedings of the 1996 ACM/IEEE Conference on Parallel Architecturesand Compilation Techniques, 1996.[2] P.-Y. Chang, E. Hao, T.-Y. Yeh, and Y. N. Patt, \Branch classi�cation: A new mechanism for improvingbranch predictor performance," in Proceedings of the 27th Annual ACM/IEEE International Symposiumon Microarchitecture, pp. 22{31, 1994.[3] R. P. Colwell, R. P. Nix, J. J. O'Donnell, D. B. Papworth, and P. K. Rodman, \A VLIW architecturefor a trace scheduling compiler," IEEE Transactions on Computers, vol. 37, no. 8, pp. 967{979, August1988.[4] T. M. Conte, K. N. Menezes, P. M. Mills, and B. A. Patel, \Optimization of instruction fetch mecha-nisms for high issue rates," in Proceedings of the 22st Annual International Symposium on ComputerArchitecture, 1995.[5] S. Dutta and M. Franklin, \Control ow prediction with tree-like subgraphs for superscalar processors,"in Proceedings of the 28th Annual ACM/IEEE International Symposium on Microarchitecture, pp. 258{263, 1995.[6] J. A. Fisher, \Trace scheduling: A technique for global microcode compaction," IEEE Transactions onComputers, vol. C-30, no. 7, pp. 478{490, July 1981.[7] M. Franklin and M. Smotherman, \A �ll-unit approach to multiple instruction issue," in Proceedings ofthe 27th Annual ACM/IEEE International Symposium on Microarchitecture, pp. 162{171, 1994.[8] L. Gwennap, \Digital 21264 sets new standard," Microprocessor Report, pp. 11 { 16, October 1996.[9] E. Hao, P.-Y. Chang, M. Evers, and Y. N. Patt, \Increasing the instruction fetch rate via block-structured instruction set architectures," in Proceedings of the 29th Annual ACM/IEEE InternationalSymposium on Microarchitecture, 1996.[10] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann, R. G. Ouellette,R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery, \The superblock: An e�ectivetechnique for VLIW and superscalar compilation," Journal of Supercomputing, vol. 7, no. 9-50, , 1993.[11] Pentium Processor User's Manual Volume 1: Pentium Processor Data Book, Intel Corporation, 1993.[12] D. Kaeli and P. Emma, \Branch history table predictions of moving target branches due to subroutinereturns," in Proceedings of the 18th Annual International Symposium on Computer Architecture, 1991.[13] S. McFarling, \Combining branch predictors," Technical Report TN-36, Digital Western Research Lab-oratory, June 1993.[14] S. Melvin and Y. Patt, \Enhancing instruction scheduling with a block-structured ISA," InternationalJournal on Parallel Processing, 1994.[15] S. W. Melvin and Y. N. Patt, \Performance bene�ts of large execution atomic units in dynamicallyscheduled machines," in Proceedings of Supercomputing '89, pp. 427{432, 1989.[16] S. W. Melvin, M. C. Shebanow, and Y. N. Patt, \Hardware support for large atomic units in dynami-cally scheduled machines," in Proceedings of the 21st Annual ACM/IEEE International Symposium onMicroarchitecture, pp. 60{63, 1988. 32



[17] Y. Patt, W. Hwu, and M. Shebanow, \HPS, a new microarchitecture: Rationale and introduction," inProceedings of the 18th Annual ACM/IEEE International Symposium on Microarchitecture, pp. 103{107,1985.[18] P. B. Racunas and Y. N. Patt, \Achieving full associativity with direct-mapped access times using aremap cache," Unpublised manuscript, 1997.[19] E. Rotenberg, S. Bennett, and J. E. Smith, \Trace cache: a low latency approach to high bandwidthinstruction fetching," in Proceedings of the 29th Annual ACM/IEEE International Symposium on Mi-croarchitecture, 1996.[20] A. Seznec, S. Jourdan, P. Sainrat, and P. Michaud, \Multiple-block ahead branch predictors," in Pro-ceedings of the 7th International Conference on Architectural Support for Programming Languages andOperating Systems, 1996.[21] J. E. Smith, \A study of branch prediction strategies," in Proceedings of the 8th Annual InternationalSymposium on Computer Architecture, pp. 135{148, 1981.[22] M. Smotherman and M. Franklin, \Improving cisc instruction decoding performance using a �ll unit,"in Proceedings of the 28th Annual ACM/IEEE International Symposium on Microarchitecture, pp. 219{229, 1995.[23] E. Sprangle and Y. Patt, \Facilitating superscalar processing via a combined static/dynamic registerrenaming scheme," in Proceedings of the 27th Annual ACM/IEEE International Symposium on Mi-croarchitecture, pp. 143{147, 1994.[24] G. S. Tyson, \The e�ects of predication on branch prediction," in Proceedings of the 27th AnnualACM/IEEE International Symposium on Microarchitecture, pp. 196{206, 1994.[25] S. Wallace and N. Bagherzadeh, \Multiple branch and block prediction," in Proceedings of the 1997ACM/IEEE Conference on High Performance Computer Architecture, 1997.[26] S. Wilton and N. Jouppi, \An enhanced access and cycle time model for on-chip caches," in DECWestern Research Lab. Technical Report 93/5, 1994.[27] T.-Y. Yeh, D. Marr, and Y. N. Patt, \Increasing the instruction fetch rate via multiple branch predictionand branch address cache," in Proceedings of the International Conference on Supercomputing, pp. 67{76, 1993.[28] T.-Y. Yeh and Y. N. Patt, \Two-level adaptive branch prediction," in Proceedings of the 24th AnnualACM/IEEE International Symposium on Microarchitecture, pp. 51{61, 1991.[29] R. Yung, \Design decisions inuencing the ultrasparc's instruction fetch architecture," in Proceedingsof the 29th Annual ACM/IEEE International Symposium on Microarchitecture, 1996.
33


