
The DRAM Latency PUF:
Quickly Evaluating Physical Unclonable Functions

by Exploiting the Latency-Reliability Tradeo� in Modern Commodity DRAM Devices

Jeremie S. Kim†§ Minesh Patel§ Hasan Hassan§ Onur Mutlu§†
†Carnegie Mellon University §ETH Zürich

Physically Unclonable Functions (PUFs) are commonly used
in cryptography to identify devices based on the uniqueness
of their physical microstructures. DRAM-based PUFs have
numerous advantages over PUF designs that exploit alterna-
tive substrates: DRAM is a major component of many modern
systems, and a DRAM-based PUF can generate many unique
identi�ers. However, none of the prior DRAM PUF proposals
provide implementations suitable for runtime-accessible PUF
evaluation on commodity DRAM devices. Prior DRAM PUFs ex-
hibit unacceptably high latencies, especially at low temperatures
(e.g., >125.8s on average for a 64KiB memory segment below
55◦C), and they cause high system interference by keeping part
of DRAM unavailable during PUF evaluation.

In this paper, we introduce the DRAM latency PUF, a new class
of fast, reliable DRAM PUFs. The key idea is to reduce DRAM
read access latency below the reliable datasheet speci�cations us-
ing software-only system calls. Doing so results in error patterns
that re�ect the compound e�ects of manufacturing variations
in various DRAM structures (e.g., capacitors, wires, sense ampli-
�ers). Based on a rigorous experimental characterization of 223
modern LPDDR4 DRAM chips, we demonstrate that these error
patterns 1) satisfy runtime-accessible PUF requirements, and 2)
are quickly generated (i.e., at 88.2ms) irrespective of operating
temperature using a real system with no additional hardware
modi�cations. We show that, for a constant DRAM capacity
overhead of 64KiB, our implementation of the DRAM latency
PUF enables an average (minimum, maximum) PUF evalua-
tion time speedup of 152x (109x, 181x) at 70◦C and 1426x (868x,
1783x) at 55◦C when compared to a DRAM retention PUF and
achieves greater speedups at even lower temperatures.

1. Introduction
A Physically Unclonable Function (PUF) maps a set of input

parameters to unique, device-speci�c signatures that can be
generated repeatably and reliably. We refer to the process of
generating a signature using a given set of input parameters as
the evaluation of a PUF. The resulting signature re�ects a de-
vice’s inherent, random physical variations introduced during
manufacturing. This property guarantees that the signature is
practically impossible to predict or replicate without access to
the device itself [28,136]. These characteristics enable PUFs to
be frequently used in security applications such as low-cost au-
thentication mechanisms against system security attacks and
prevention of integrated circuit (IC) counterfeiting [120, 135].

PUFs are generally used in a challenge-response (CR) proto-
col [120], in which a trusted server gives a device a challenge
(i.e., a set of input parameters and conditions with which to
evaluate a PUF), and veri�es the device’s PUF response (i.e.,
the signature generated by the PUF). A CR protocol generally
consists of two phases: enrollment and authentication. En-
rollment is a one-time setup phase in which a given device
is analyzed, and all possible PUF responses are stored in the
trusted server. Authentication occurs when an application
running on the enrolled device requests escalated permissions
from the trusted server to perform a secure action. The server
provides a challenge to the application, which then evaluates
the PUF with the requested parameters and returns the PUF re-
sponse. If the response matches with the previously-enrolled
response for the challenge, i.e., the golden key, authentication
is successful. The CR can be done statically, where the PUF

is evaluated only once before runtime (e.g., at bootup) or at
runtime, where an application running on the enrolled device
can evaluate a PUF on-demand [135].

PUFs for silicon devices were �rst introduced as a method
for integrated circuit (IC) identi�cation, exploiting manufac-
turing process variation among devices for disambiguating
di�erent devices [83]. Since then, many prior works have pro-
posed PUF evaluation techniques for di�erent substrates (e.g.,
ASICs, FPGAs, memories), exploiting manufacturing variation
in di�erent components such as emerging memory technolo-
gies [45,64,107,128], �ash memory [132], Application Speci�c
Integrated Circuit (ASIC) logic [28,29,33,36,40,65,72,75,84,88,
98, 99, 108, 116, 119, 125, 127, 139], Static Random Access Mem-
ory (SRAM) [6,9,20,32,41,42,134,145], and Dynamic Random
Access Memory (DRAM) [37, 53, 103, 120, 121, 122, 123, 124].

PUFs must satisfy �ve key characteristics to be e�ective in
security applications [37, 85, 120, 123, 135]. We describe these
characteristics in detail in Section 3.1. PUFs satisfying these
characteristics 1) guarantee a level of robustness for disam-
biguating many devices and 2) are practically impossible for
an attacker to duplicate without access to the physical device
itself. In addition to these properties, a runtime-accessible PUF,
i.e., a PUF that is accessible online to an application running
on an enrolled device, must 1) be easily evaluated with low
latency to prevent unnecessary slowdown of the application
requesting authentication, and 2) provide low system interfer-
ence, i.e., minimize the disturbance PUF evaluation causes to
other applications running on the same system. Section 3.2
describes the characteristics of ideal runtime-accessible PUFs.

DRAM-based PUFs, henceforth called DRAM PUFs, have
recently attracted signi�cant interest for two key reasons: 1)
DRAM is already widely used in a wide variety of modern
systems [90, 94], ranging from embedded to server, and 2)
DRAM’s large address space, which is on the order of Giga- or
Tera-bytes, makes it naturally suitable for CR applications by
providing a greater CR space relative to smaller components
(e.g., SRAMs) [6, 9, 20, 32, 33, 41, 42, 134, 145]. Prior DRAM PUF
proposals exploit variations in DRAM start-up values [123],
DRAM write access latencies [37], and DRAM cell retention
failures [53, 82, 120, 135] to generate reliable PUF responses.

Unfortunately, these prior DRAM PUF proposals have sig-
ni�cant drawbacks that make them unsuitable as runtime-
accessible PUFs. PUFs that use DRAM start-up values [123]
preclude runtime-accessible PUF evaluation by requiring a
DRAM power cycle for every authentication. This requires
either interrupting other applications using DRAM or restart-
ing the entire system, which is likely infeasible at runtime.
On the other hand, PUFs that exploit variation in write access
latencies [37] can be evaluated at runtime. However, [37]’s
proposal requires additional circuitry in a DRAM chip to al-
low �ne-grained manipulation of write latency [37]. This
requires changes to DRAM chips, rendering such proposals
inapplicable to devices used in the �eld today. In this paper,
we would like to design a new runtime-accessible PUF without
modifying commodity DRAM chips.

Using cell charge retention failures and their resulting er-
ror patterns [34, 54, 78, 79, 101, 102] is the best candidate for
runtime-accessible DRAM PUF evaluation in commodity de-
vices today, since it does not require a power cycle or any
modi�cations to DRAM chips. Unfortunately, such DRAM

1

retention PUFs impose two major overheads. First, due to the
1) wide distribution of charge retention times across DRAM
cells [34, 54, 78, 101, 102] and 2) roughly-uniform spatial distri-
bution of retention failures across a chip [7, 115], we �nd that
the evaluation time of a DRAM retention PUF takes on the
order of minutes at 55◦C to identify enough retention failures.
The evaluation time increases exponentially as temperature
decreases. Second, this means that DRAM refresh must be
disabled for long periods of time. Because DRAM refresh can
only be disabled for large regions of DRAM [14], evaluating a
DRAM retention PUF on a small region of memory, i.e., a PUF
memory segment, requires disabling refresh on the entire large
memory region containing the PUF memory segment. How-
ever, to maintain the integrity of data inside the large region
but outside of the PUF memory segment, all such data must
be continuously refreshed with additional DRAM commands,
which results in signi�cant system interference [135]. Based
on extensive experimental analysis using 223 state-of-the-art
LPDDR4 DRAM devices, we �nd that DRAM retention PUFs
are too slow for reasonable runtime operation, e.g., they have
average evaluation times of 125.8s at 55◦C and 13.4s at 70◦C
using a 64KiB memory segment (Section 5).
Our goal in this work is to develop a new runtime-

accessible PUF that 1) uses existing commodity DRAM devices,
2) satis�es all characteristics of an e�ective runtime-accessible
PUF, and 3) provides low-latency evaluation with low system
interference across all operating conditions.
Our key idea is to reduce DRAM read access latency be-

low the reliable datasheet speci�cations using software-only
system calls in order to exploit the resulting error patterns as
unique identi�ers. We refer to our proposal as the DRAM la-
tency PUF. We experimentally demonstrate, using 223 modern
LPDDR4 DRAM chips, that the DRAM latency PUF satis�es
all of the requirements of an e�ective runtime-accessible PUF.
In particular, a DRAM latency PUF can be evaluated in 88.2ms
on average across all devices at all operating temperatures.
We show that, for a constant DRAM capacity overhead of
64KiB, the DRAM latency PUF’s average (minimum, max-
imum) evaluation time speedup over the DRAM retention
PUF is 152x (109x, 181x) at 70◦C and 1426x (868x, 1783x) at
55◦C, with exponentially increasing speedups at even lower
temperatures.
Our key contributions are as follows:

1. We introduce the DRAM latency PUF, a new class of
DRAM PUFs, that is based on the deliberate violation of
manufacturer-speci�ed DRAM latency parameters. DRAM
latency PUFs can be implemented with no additional hard-
ware overhead on any commodity o�-the-shelf (COTS)
system that permits software-controlled manipulation of
DRAM access latencies at the memory controller (e.g.,
[1, 3, 67]).

2. Using experimental data from 223 real LPDDR4 DRAM
chips, we extensively analyze both DRAM latency PUFs
and DRAM retention PUFs. We show that DRAM latency
PUFs 1) satisfy all characteristics of an e�ective PUF, and
2) are suitable for use as runtime-accessible PUFs across a
wide range of temperatures. We also present an extensive
characterization of DRAM retention PUFs under a wide
range of temperatures. We show that while DRAM reten-
tion PUFs can be evaluated faster at higher temperatures,
their evaluation time at temperatures even as high as 70◦C
is prohibitively slow.

3. We experimentally show that the DRAM latency PUF sig-
ni�cantly outperforms DRAM retention PUFs, achieving
an average speedup of 152x/1426x at 70◦C/55◦C when eval-
uating PUFs with a constant DRAM capacity overhead of
64KiB. We also �nd that while DRAM retention PUFs su�er

from temperature-dependent evaluation times, the DRAM
latency PUF provides a consistently low average evaluation
time of 88.2ms at all operating temperatures.

2. Background
In this section, we describe the high-level mechanisms en-

abling DRAM retention and DRAM latency PUFs. We begin
by brie�y describing DRAM organization, but refer the reader
to past works [12, 13, 15, 38, 39, 55, 59, 62, 63, 67, 68, 69, 70, 71,
111, 112, 113, 142] for more detail.
2.1. DRAM Organization

As illustrated in Figure 1a, the lowest level of DRAM organi-
zation consists of 2-dimensional arrays of cells in which each
cell (shown as a dashed circle) stores one bit of information in
a storage capacitor. Data is encoded using logic “high” (Vdd)
as one binary value and logic “low” (Vss) as its inverse. The
cell is written to and read from via an access transistor. Within
the same array, cells in the same row are connected by a wire
called the wordline, and cells of the same column are connected
by a wire called the bitline. The sizes of the arrays and other
hierarchical elements are manufacturer dependent [62, 69].

Many of these 2-dimensional arrays are tiled to create a
larger array referred to as a bank (Figure 1b). Banks are striped
across a set of chips, which together form a single rank that
operates in unison (Figure 1c). At the highest level of the
hierarchy, a channel consists of one or more ranks sharing
a single command, address, and data interface to a memory
controller (Figure 1d).

The memory controller interfaces with a single DRAM rank
at a time and is responsible for sending commands and receiv-
ing data over the buses associated with that channel. To access
a cell (i.e., to read from or to write to it), the row containing
the cell must �rst be activated. To activate a row, the memory
controller sends an ACT command along with a row address
to a target DRAM rank. In response, the target rank asserts
every wordline corresponding to the requested row address in
the corresponding bank across all chips. The activation pro-
cess causes the row’s stored data to be transferred to the row’s
sense ampli�ers. At this point, the row is considered to be
open. Only then can the memory controller read out the data
with a RD command or write to it with a WR command. After
all read or write operations to the open row are complete, the
memory controller can precharge the bank containing the row
using a PRE command, which closes the row.
2.2. DRAM Refresh and DRAM Retention PUFs

Over time, charge leaks from a DRAM cell [58, 78, 79]. To
keep data intact, DRAM cells must be periodically refreshed.
To achieve this, the memory controller sends a REF command
at regular intervals to instruct a DRAM rank to refresh its
cells. Because the refresh operation is handled internally to
the DRAM chip [14, 47, 48, 49] for modern DRAM devices,
there is no e�cient way to selectively refresh DRAM regions
smaller than the granularity provided by the refresh operation.
For current DDR DRAM, the granularity is one rank, but for
LPDDR DRAM [48, 49], a �ner granularity of one bank is
available [14].

Many prior works show that the rate of charge leakage
across di�erent cells 1) varies widely due to manufactur-
ing process variation and 2) changes at runtime depending
on many factors, including the device’s operating tempera-
ture [34, 54, 78, 79, 101], operating voltage [16], and the data
values stored in the device itself [54,55,56,57,59,73,74,78,101].
For modern DDR DRAM devices, JEDEC speci�es a refresh
interval of 64ms to account for the worst case cell at 85◦C [50].

If a cell leaks too much charge before being refreshed, the
stored value can be corrupted and a read to the cell may result

2

DRAM Channel

Wordline

B
itline

Access
Transistor

R
ow

 D
ec

od
er

Sense Amplifiers

C
ap

ac
it

or

(d) DRAM-Based System

Memory
Controller 0

CPU

Memory
Controller N

I/O
BUS

DRAM
Channel 0

I/O
BUS

DRAM
Channel N

Rank N

…

Chip 0 Chip N

Rank 0

Bank 0

Bank N

…

I/O BUS

…

 C
olum

ns

CellR
ow

 D
ec

od
er

Sense Amplifiers

DRAM Cell Array 0

DRAM Cell Array N

(c)(a) DRAM Cell Array (b) DRAM Bank

 Rows

… … … …

…

…

Figure 1: DRAM organization.
in incorrect data. This is referred to as a retention failure, and
the period of time that a cell can retain correct data is referred
to as the cell’s retention time. Prior work shows that 1) process
variation results in a wide distribution of cell retention times
across a single DRAM chip [34, 51, 54, 58, 74, 78, 79, 101], and
2) for any given refresh interval, the spatial distribution of
retention failures is distributed roughly uniform-randomly
across a chip [7, 34, 102, 115].

Several prior works [53, 120, 135] exploit these data reten-
tion properties of DRAM cells to devise PUFs (called DRAM
retention PUFs) that are evaluated by analyzing the distribu-
tion of charge retention times across a chip. Ideally, such a
PUF evaluation would consist of measuring each cell’s rate
of charge leakage within a speci�ed PUF memory segment.
However, because this is a complex and time-consuming pro-
cedure, prior proposals [53,82,109,120,122,135] rely on simply
determining the set of cells that fail at a longer refresh interval.
A longer refresh interval results in a set of cells that is unique
to a chip, and given a large-enough PUF memory segment or a
long-enough refresh interval, the magnitude of the set of fail-
ures becomes large enough to satisfy the characteristics of an
e�ective PUF. Section 5 presents our experimental evaluation
of DRAM retention PUFs on modern LPDDR4 DRAM devices.
Section 8 provides a more comprehensive description of the
di�erent proposals for various DRAM retention PUFs.
2.3. DRAM Operation

The timing of DRAM commands is guided by a set of
manufacturer-speci�ed timing parameters [13, 16, 50, 62, 67, 69,
70], which account for the latency of di�erent circuit-level
DRAM operations. These timing parameters are provided
to guarantee correct DRAM operation, and it is up to the
memory controller to obey them. If the memory controller
violates a timing parameter, correct DRAM operation is no
longer guaranteed, and thus data loss or corruption can oc-
cur [11, 13, 16, 67, 69]. Our proposal, the DRAM latency PUF,
exploits this behavior to deliberately cause DRAM timing-
related failures and uses the resulting error patterns as unique
identi�ers.
2.3.1. DRAM Timing Parameters. We examine the key
timing parameters governing DRAM access. DRAM reads and
writes consist of three major sequential steps: 1) activation,
2) read/write, and 3) precharge, each of which is de�ned as a
DDR command by the JEDEC DDR speci�cation [50].

As detailed in Section 2.1, the ACT command opens a row
and prepares it for accesses. The timing parameter tRCD gov-
erns the amount of time required for the activation process.
This means that after issuing an ACT command to a row, the
memory controller must wait for a delay of tRCD before issu-
ing a subsequent RD or WR command to the row. This delay
allows time for 1) the internal DRAM circuitry to assert the
correct wordline, 2) the cell capacitors to share charge with
their respective bitlines, and 3) the sense ampli�ers to �nish
sensing and capturing the values stored in the cells. Violating

tRCD can result in insu�cient time for any of these internal
processes to complete, and thus result in incorrect operation
or incorrect data to be read [13, 69].

The RD and WR commands are responsible for reading from
and writing to the open DRAM row and are governed by a
number of di�erent timing parameters (e.g., tCL, tCWL, tRAS).
These parameters ensure that enough time passes after the
RD/WR command is issued such that the memory controller
can reliably read data stored in the sense ampli�ers or reliably
write data into the DRAM cells [62, 70].

The PRE command initiates the precharge operation, and
it is governed by the tRP timing parameter. This parameter
allows su�cient time for closing the currently-open row and
re-initializing the bitlines.

Additional timing parameters (e.g., tWR , tWTR , tRTW [62, 66,
70]) govern other DDR commands. In general, each parameter
ensures that enough time has passed after a certain action
such that DRAM operates correctly and provides data reliably.
The memory controller is responsible for scheduling DRAM
commands according to these timing parameters in order to
maintain correct and reliable device operation [4, 44, 66, 93,
106, 117, 118, 126].
2.3.2. Violating Manufacturer-Speci�ed Timing Param-
eters. Di�erent cells in the same DRAM chip have di�erent
reliable operation latencies (for each timing parameter) due to
two major reasons: 1) design (architectural) di�erences [69],
and 2) process variation [67]. For example, a cell located
closer to the sense ampli�ers than an otherwise-equivalent
cell can operate correctly with a lower tRCD constraint [69]
because the inherent latency to access a cell close to the sense
ampli�ers is lower. Similarly, a cell that happens to have a
larger capacitor (due to manufacturing process variation) can
operate reliably with tighter timing constraints than a smaller
cell elsewhere in the same chip [67].

Because manufacturing process variation occurs in random
and unpredictable locations within and across chips [12, 13,
16, 25, 58, 59, 67, 68, 69, 74, 143], the manufacturer-published
timing parameters are chosen to ensure reliable operation of
the worst-case cell in any acceptable device at the worst-case
operating conditions (e.g., highest supported temperature,
lowest supported voltage). This results in a large safety mar-
gin (or, guardband) for each timing parameter, which prior
work shows can often be reliably reduced at typical operating
conditions [11, 13, 67].

Prior work also shows that decreasing the timing parame-
ters too aggressively results in failures, with increasing error
rates observed for larger reductions in timing parameter val-
ues [13, 16, 38, 39, 54, 55, 56, 57, 67, 78, 101, 102]. Errors occur
because, with reduced timing parameters, the internal DRAM
circuitry is not allowed enough time to properly perform its
functions and stabilize outputs before the memory controller
issues the next command (Section 2.3.1). The DRAM latency
PUF exploits the resulting error patterns to uniquely identify

3

a device. In Section 6, we show experimental data demon-
strating how to generate unique signatures with aggressively
reduced DRAM timing parameters.
3. Properties of a Runtime-Accessible PUF

In this section, we examine the desired properties of an
e�ective runtime-accessible PUF. Prior works present various
di�erent metrics for de�ning the e�ectiveness of a PUF [37,
85, 120, 123, 135]. We consolidate these metrics into �ve key
properties below. We then discuss two properties that we
consider necessary for an e�ective runtime-accessible PUF.
We refer to these seven properties when analyzing DRAM
PUFs (Section 5 and 6). In Section 6, we show how DRAM
latency PUFs overcome the weaknesses of DRAM retention
PUFs based on a comparison of these properties between the
two types of PUFs.
3.1. Characteristics of a Desirable PUF

The following �ve key properties must be provided by any
e�ective PUF that can be evaluated across a set of devices:
1. Di�useness: a single device is able to generate many unique

and independent responses to di�erent input parameters [6,
22, 27, 43].

2. Uniqueness: a single device can be uniquely identi�ed
among the set of devices [37, 43, 77, 123, 133, 135].

3. Uniform Randomness: all possible PUF responses must be
equally di�erent from each other [43, 77, 123, 135].

4. Unclonability: it should be practically impossible for an
adversary to construct a device that exhibits the same prop-
erties as another [52, 85, 133].

5. Repeatability: given a set of input parameters, PUF evalua-
tion results in the same PUF regardless of external condi-
tions (e.g., temperature, aging) [37, 43, 77, 123, 133, 135].
These �ve properties ensure that a PUF can be used e�ec-

tively for challenge-response authentication.
3.2. Characteristics of a Runtime-Accessible PUF

There are many important use cases for runtime-accessible
PUFs. Examples include 1) systems that employ remote com-
munication protocols to access devices via remote direct mem-
ory access (RDMA [2]) or to perform functions on remote de-
vices (e.g., remote servers), 2) systems that have interchange-
able/broken system components (e.g., SSD drives, external
sensors, peripheral devices). In each of these systems, a con-
nection/component can be maliciously swapped out during
runtime so that amalicious device can be swapped in. One way
to avoid such an attack is to utilize a low-overhead runtime-
accessible PUF-based challenge-response mechanism that fre-
quently authenticates the communicating devices. This en-
ables re-authentication of the system components during each
step of communication rather than just once at bootup time.
More generally, a fast runtime-accessible PUF enables the pro-
tection of a system from attacks that exploit the fact that the
time of check is di�erent from the time of use [135].

In order to be useful for runtime authentication, a PUF must
be e�ectively usable while the system is running without sig-
ni�cantly interfering with application execution and system
operation. Thus, a runtime-accessible PUF must possess the
following two key properties:
1. Low Latency: PUF evaluation must be fast so that the ap-

plication requesting authentication stalls for the smallest
possible amount of time.

2. Low System Interference: PUF evaluation must not signi�-
cantly slow down concurrently-running applications.

4. Testing Environment
To analyze DRAM behavior with both reduced refresh rates

and reduced timing parameters, we developed an infrastruc-
ture to characterize modern LPDDR4 [50] DRAM chips. Our

testing environment gives us precise control over the DRAM
commands and DRAM timing parameters as veri�ed with a
logic analyzer probing the command bus.

We perfom all tests, unless otherwise speci�ed, using a total
of 223 2y-nm LPDDR4 DRAM chips from three major man-
ufacturers in a thermally-controlled chamber held at 45◦C.
For consistency across results, we stabilize the ambient tem-
perature precisely using heaters and fans controlled via a
microcontroller-based proportional-integral-derivative (PID)
loop to within an accuracy of 0.25◦C and a reliable range of
40◦C to 55◦C. We maintain DRAM temperature at 15◦C above
ambient temperature using a separate local heating source.
We utilize temperature sensors to smooth out temperature
variations caused by self-induced heating.
5. DRAM Retention PUFs: Analysis

Recent works [103, 120, 121, 124, 135] propose DRAM re-
tention PUFs, which require no modi�cations to commodity
DRAM chips (Section 2.2). These works evaluate their propos-
als using DDR3 DRAM modules and �nd that while the use of
charge retention times in DRAM cells can result in repeatable
PUFs, delays on the order of minutes are required to produce
enough failures for uniquely identifying many devices.

In this section, we evaluate prior proposals using our
own infrastructure with 223 modern LPDDR4 DRAM mod-
ules. Our experimental results (Section 5.2) con�rm that
DRAM retention PUFs can be e�ectively implemented with
commodity LPDDR4 DRAM devices. However, similarly
to prior work [120, 135], we �nd that the time required to
evaluate retention PUFs is prohibitively long (e.g., on the
order of minutes) at temperatures that are likely encoun-
tered under common-case operating conditions (e.g., 35◦C-
55◦C) [19, 26, 67].
5.1. Evaluating Retention PUFs

We evaluate DRAM retention PUFs on our modern LPDDR4
devices, as shown in Algorithm 1. The DRAM retention PUF
disables refresh for a period indicated by the wait_time input
parameter on a memory segment indicated by the segment
ID (seg_id) input parameter (line 3). In order to constrain
retention failures to the PUF memory segment, the user must
refresh the rows contained in the DRAM rank, but not in the
PUF memory segment during the wait_time interval (line 5-8).
The resulting data in the memory segment after the wait_time
interval is the PUF response that is returned for authentication
(line 10). This PUF response is uniquely represented by the
pattern of DRAM cells that fail in the memory segment after
not being refreshed during the wait_time interval.

As discussed in Section 2.2, the memory controller can
disable refresh only at the granularity of DRAM ranks or
banks [50]. Therefore, in order to prevent potential data loss,
evaluation of a runtime-accessible DRAM retention PUF using
a given DRAM memory segment requires continuous refresh-
ing of all rows that are within the same rank or bank but
outside of the PUF memory segment. Doing so results in high
system interference (see, e.g., [14, 79]) that is greatly exacer-
bated by the long refresh intervals (e.g., 60s vs. the standard
64ms) required for repeatable retention PUF evaluation at
common-case temperatures (e.g. 35◦C-55◦C).
5.2. Evaluation Times of Retention PUFs

In this section, we explore the e�ects of DRAM tempera-
ture during DRAM retention PUF evaluation on the DRAM
retention PUF evaluation time. Based on extensive experi-
mental data from 223 LPDDR4 DRAM chips, we �nd that the
evaluation time of a DRAM retention PUF exhibits a strong
dependence on DRAM temperature during evaluation. With
even just a 10◦C decrease in DRAM temperature, the evalu-

4

Algorithm 1: Evaluate Retention PUF [103, 120, 121, 124, 135]
1 evaluate_DRAM_retention_PUF(seg_id, wait_time):
2 rank_id← DRAM rank containing seg_id
3 disable refresh for Rank[rank_id]
4 start_time← current_time()
5 while current_time() - start_time < wait_time:
6 foreach row in Rank[rank_id]:
7 if row not in Segment[seg_id]:
8 issue refresh to row // refresh all other rows
9 enable refresh for Rank[rank_id]

10 return data at Segment[seg_id]

ation time for the same PUF memory segment increases by
10x [120, 135]. This is due to the direct correlation between
retention failure rate and temperature. We reproduce the
bit error rate (BER) vs. temperature relationship studied for
DDR3 [78] and LPDDR4 [101] chips using our own LPDDR4
chips. We �nd that below refresh intervals of 30s, there is an
exponential dependence of BER on temperature with an aver-
age exponential growth factor of 0.23 per 10◦C. This results in
approximately a 10x decrease in the retention failure rate with
every 10◦C decrease in temperature and is consistent with
prior work’s �ndings with older DRAM chips [78, 101, 120].
Due to the sensitivity of DRAM retention PUFs to tempera-
ture, a stable temperature is required to generate a repeatable
PUF response.

To �nd the evaluation time of DRAM retention PUFs, we
use a similar methodology to prior works on DRAM reten-
tion PUFs, which disable DRAM refresh and wait for at least
512 retention failures to accumulate across a memory seg-
ment [53, 120]. Figure 2 shows the results of DRAM retention
PUF evaluation times for three di�erent memory segment
sizes (8KiB, 64KiB, 64MiB) across our testable DRAM tempera-
ture range (i.e., 55◦C-70◦C). Results are shown for the average
across all tested chips from each manufacturer in order to iso-
late manufacturer-speci�c variation [54, 78, 79, 101]. Figure 2
also shows, for comparison, the DRAM latency PUF evalua-
tion time, which is experimentally determined to be 88.2ms on
average for any DRAM device at all operating temperatures
(see Section 6.2.1).

o

DRAM Retention PUF
Manufacturer A
Manufacturer B
Manufacturer C

DRAM Latency PUF
All Manufacturers

Temperature (C)
56 58 60 62 64 66 68 70

104

103

102

101

100

10-1

E
v
a
lu

a
ti

o
n
 T

im
e
 (

s)

Figure 2: Average DRAM retention PUF evaluation time vs.
temperature shown for three selected memory segment sizes
for each manufacturer. Average DRAM latency PUF evalua-
tion time (Section 6.2.1) is shown as a comparison point.

We �nd that at our maximum testing temperature of 70◦C,
the average DRAM retention PUF across all manufacturers can
be evaluated on average (minimum, maximum) in 40.6s (28.1s,
58.6s) using an 8KiB segment size. By increasing the memory
segment size from 8KiB to 64KiB, we can evaluate a DRAM
retention PUF in 13.4s (9.6s, 16.0s), and at 64MiB, in 1.05s
(1.01s, 1.09s). However, at our lowest testable temperature
(i.e., 55◦C), DRAM retention PUF evaluation time increases

to 2.9 hours (49.7 minutes, 5.6 hours) using an 8KiB segment,
125.8s (76.6s, 157.3s) using a 64KiB segment, and 3.0s (1.5s,
5.3s) using a 64MiB segment.1

A DRAM retention PUF evaluation time on the order of even
seconds or minutes is prohibitively high for at least three rea-
sons: 1) such high latency leads to very long application stall
times and very high system interference, 2) since DRAM re-
fresh intervals can be modi�ed only at a rank/bank granularity,
the memory controller must continuously issue extra accesses,
during PUF evaluation, to each row inside the rank/bank but
outside of the PUF memory segment, which causes signi�cant
bandwidth performance and energy overhead, and 3) such a
long evaluation time allows ample opportunity for tempera-
ture to �uctuate, which would result in a PUF response with
low similarity to the golden key, and thus, an unreliable PUF.

In general, DRAM retention PUF evaluation time increases
with decreasing temperature. This is due to the temperature
dependence of charge leakage in DRAM cell capacitors, and
is a fundamental limitation of using DRAM retention failures
as a PUF mechanism. Therefore, any devices operating at
common-case operating temperatures (35◦C-55◦C) [26,67,81]
or below will have great di�culty adopting DRAM retention
PUFs for runtime accessibility. In Sections 6.1 and 7.2, we
describe the DRAM latency PUF in detail and show how it
1) provides a much lower evaluation time than the DRAM
retention PUF, and 2) enables a reliably short evaluation time
across all operating temperatures.
5.3. Optimizing Retention PUFs

We explore if it is possible to make DRAM retention PUFs
runtime-accessible (i.e., signi�cantly faster) at common-case
operating temperatures by increasing the rate at which re-
tention failures are induced. Given that ambient (i.e., envi-
ronmental) temperature is �xed, we can increase the rate of
induced retention failures in two ways: 1) using a larger PUF
memory segment in DRAM, or 2) accelerating the rate of
charge leakage using means other than increasing ambient
temperature.
Larger PUF memory segments. Using a larger PUF

memory segment results in additional DRAM capacity over-
head that does not scale favorably with decreasing temper-
atures. As shown in Section 5.2, the number of retention
failures drops exponentially with temperature, so the PUF
memory segment size required to compensate for the decreas-
ing retention failure rate increases exponentially. Our experi-
mental analysis in Figure 2 shows that at 55◦C, even using a
PUF memory segment size on the order of tens of megabytes,
a DRAM retention PUF cannot be evaluated in under 1 second.
Assuming the exponential growth factor of 0.23 for DRAM
BER as a function of temperature (found in Section 5.2), a
corresponding PUF evaluation time of ~1s at 20◦C would re-
quire a PUF memory segment over a thousand times larger
(i.e., hundreds of gigabytes). Thus, it is not cost-e�ective (i.e.,
scalable) to naïvely increase the PUF memory segment size.
Accelerating charge leakage. Accelerating charge leak-

age given a �xed temperature can be done by either 1) making
hardware modi�cations or 2) exploiting factors other than
temperature that a�ect charge leakage. Unfortunately, as we
discuss in this section, there is no easy way to achieve these
using commodity o�-the-shelf (COTS) systems.

In-DRAM hardware modi�cations proposed in prior work
can be leveraged to increase the number of retention failures
observed at a �xed ambient temperature. For example, partial

1These evaluation times are consistent with prior work on DRAM re-
tention PUFs [53, 120, 135], which �nd that evaluation times on the order
of minutes or longer are required to induce enough retention failures in a
128KiB memory segment to generate a PUF response at 20◦C.

5

restoration of DRAM cells [67, 144] can be used to prepare
the PUF memory segment with reduced charge levels in or-
der to exacerbate the number of retention failures observed
with a given refresh interval. Similarly, other mechanisms
in prior work (e.g., [39, 114]) can be used to decrease DRAM
retention PUF evaluation time at common-case temperatures
where DRAM retention PUFs are otherwise infeasible. How-
ever, these approaches require modi�cations in DRAM or the
memory controller, and thus, cannot be used in COTS DRAM.

System-level hardware modi�cations, such as adding a heat-
ing source local to the DRAM chip [30], could be used to ex-
acerbate the occurrence of retention failures at low ambient
temperatures. However, these approaches require custom sys-
tem architectures, which contradicts our goal of designing
a PUF for COTS systems. They may also open up system
security and reliability concerns.

Experimental studies on DRAM have shown that charge
leakage rates are dependent on factors such as supply volt-
age [16], data pattern e�ects [54, 55, 56, 57, 73, 78, 101], and
random charge �uctuations known as variable retention time
(VRT) [54, 78, 101, 102, 104, 137]. Analogously to temperature
control, any of these quantities could be intelligently manipu-
lated to exacerbate the number of retention failures observed.
Unfortunately, these e�ects are either relatively weak to sig-
ni�cantly increase the number of observed retention failures
(e.g., data pattern dependence), require system modi�cations
to implement (e.g., voltage control [16, 24]), or are inherently
di�cult to control (e.g., VRT e�ects).

In order to reduce the number of extra row refresh oper-
ations necessary to prevent data loss throughout retention
PUF evaluation (Section 5.1), DRAM refresh optimizations
proposed in prior work [7,10,21,76,78,79,95,101,102,130,131]
can be used to increase the granularity of the refresh oper-
ation. While this approach could potentially eliminate the
extra refresh operations altogether, these mechanisms come
with their own hardware and runtime overheads that may
diminish the bene�ts of not having to issue the extra refresh
commands during PUF evaluation. Many such mechanisms
also require hardware modi�cations to either DRAM chips or
memory controllers or both.

We conclude that there is no good known way to optimize
DRAM retention PUF evaluation time for COTS DRAM de-
vices today. While many approaches to improve evaluation
time exist, they are all impractical in COTS systems due to
1) lack of applicability and scalability to common-case tem-
peratures, 2) need for DRAM modi�cation, or 3) inherent
di�culties in control. This motivates the need for a runtime-
accessible PUF that is suitable across all temperature condi-
tions and can be implemented on COTS DRAM devices today.
6. DRAM Latency PUFs

Our goal is to develop a DRAM PUF that can be evaluated
1) with low latency and low system interference across all
operating temperatures, and 2) without any modi�cation to
DRAM chips. To this end, we present the DRAM latency PUF,
a new class of DRAM PUFs with these characteristics. In
particular, a DRAM latency PUF provides low evaluation time
at a wide range of operating temperatures (0◦C-70◦C), which
includes common-case temperatures (35◦C-55◦C) [26, 67, 81].
Key Idea. The key idea of the DRAM latency PUF is to

provide unique device signatures using the error pattern re-
sulting from accessing DRAM with reduced timing parameters.
These latency failures are inherently related to chip-speci�c
random process variation introduced during manufacturing
(Section 2.3), which allows us to use the failures as unique
identi�ers for each DRAM chip. To evaluate a DRAM latency
PUF, we write known data into a �xed-size memory segment

(e.g., 4 DRAM rows ≈ 8KiB in our LPDDR4 DRAM chips) and
read it back with reduced timing parameters. The resulting
failures form a pattern of bits unique to the tested device.
Probabilistic Nature. Inducing latency failures is a

stochastic process in which the probability of cell failure is
based on random variations in both the cell itself and any
peripheral circuitry used to access the cell. This is due to the
probabilistic behavior of circuit elements when timing require-
ments are violated. To �nd a repeatable set of latency-failure-
prone DRAM cells, each cell should be accessed multiple times
with reduced timing parameters. In the case of reduced tRCD ,
we require multiple iterations of reading each cell to accumu-
late a reliable set of latency failures. Fortunately, as we show
in Section 6.2.1, �nding a reliable set of latency failures is a
relatively fast process (i.e., it takes 88.2ms on average).
Key Variables. We identify three key variables to optimize

for when designing the DRAM latency PUF. These variables
de�ne the tradeo�s between the DRAM latency PUF’s evalua-
tion time and its e�ectiveness.

1) Memory segment ID. DRAM PUFs can be evaluated us-
ing memory segments from di�erent parts of DRAM. Each
segment results in unique error patterns and can therefore
be used for di�erent challenge-response pairs. In Section 7.3,
we discuss how variation in process manufacturing causes
some chips to have fewer memory segments that are viable
for DRAM latency PUF evaluation than others.

2) Memory segment size. Larger memory segments allow
more devices to be uniquely identi�ed at the cost of higher
PUF evaluation time because more memory accesses are re-
quired to induce latency failures across the memory segment.
With an experimental analysis of memory segment size based
on data from 223 real DRAM chips (Section 6.1), we �nd that
a memory segment size of 8KiB is su�cient to �nd enough
latency failures for an e�ective DRAM latency PUF.

3) DRAM timing parameters. Both using di�erent tim-
ing parameters and changing the amount of reduction in
the chosen timing parameter result in di�erent error pat-
terns (Section 2.3.1). This is because 1) di�erent timing pa-
rameters guard against di�erent underlying error mecha-
nisms [16,67,69], and 2) di�erent amounts of latency reduction
exercise di�erent failure-prone bits [67]. These two dimen-
sions of control add more degrees of freedom to the DRAM
latency PUF, further increasing its di�useness (Section 6.1.1).

Throughout the rest of this section, we �rst demonstrate
that the DRAM latency PUF satis�es all requirements for 1)
a reliable PUF (Section 3.1) and 2) runtime-accessible PUF
evaluation (Section 3.2) across all temperatures. We focus
on tRCD-induced DRAM read errors in this work, but DRAM
latency PUFs also work with any other timing parameter
whose timing violation results in failures (e.g., tRP , tRAS , tWR),
thereby enabling a potentially larger challenge-response space
than obtained by using a single timing parameter alone.
6.1. PUF Characteristics: Experimental Analysis

This section shows, with experimental results from 223
state-of-the-art LPDDR4 DRAM chips, that the DRAM latency
PUF satis�es each of the �ve characteristics of a desirable PUF
discussed in Section 3.1.
6.1.1. Di�useness. Di�erent memory segments within the
same device result in di�erent error patterns [13, 16, 67, 69].
Given the large address space provided by modern DRAM, dif-
ferent memory segments provide di�erent challenge-response
pairs. For example, our selected segment size of 8KiB (Sec-
tion 7.3) in a 2GiB DRAM, o�ers up to 256K (2GiB

8KiB) di�erent
challenge-response pairs, which is on the same order of mag-
nitude as prior DRAM PUFs [120, 135].

6

6.1.2. Uniqueness and Uniform Randomness. To show
the uniqueness and uniform randomness of DRAM latency
PUFs evaluated across di�erent memory segments, we study
a large number of di�erent memory segments from each of
our 223 LPDDR4 DRAM chips (as speci�ed in Table 1).

#Chips #Tested Memory Segments
A 91 17,408
B 65 12,544
C 67 10,580

Table 1: The number of tested PUF memory segments across
the tested chips from each of the three manufacturers.

For each memory segment, we evaluate the PUF 50 times
at 70◦C. To measure the uniqueness of a PUF, we use the
notion of a Jaccard index [46], as suggested by prior work [5,
109, 135]. We use the Jaccard index to measure the similarity
of two PUF responses. The Jaccard index is determined by
taking the two sets of latency failures (s1, s2) from two PUF
responses and computing the ratio of the size of the shared
set of failures over the total number of unique errors in the
two sets |s1∩s2||s1∪s2| . A Jaccard index value closer to 1 indicates a
high similarity between the two PUF responses, and a value
closer to 0 indicates uniqueness of the two. Thus, a unique
PUF should have Jaccard index values close to 0 across all
pairs of distinct memory segments.

We choose to employ the Jaccard index instead of the Ham-
ming distance [35] as our metric for evaluating the similarity
between PUF responses because the Jaccard index places a
heavier emphasis on the di�erences between two large bit-
�elds. This is especially true in the case of devices that ex-
hibit inherently lower failure rates. In the case of Hamming
distance, calculating similarity between two PUF responses
depends heavily on the number of failures found, and we
�nd this to be an unfair comparison due to the large variance
in the number of failures across distinct memory segments.
For example, consider the case where two memory segments
each generate PUF responses consisting of a single failure in
di�erent locations of a bit�eld comprised of 100 cells. The
Hamming distance between these PUF responses would be 1,
which could be mistaken for a match, but the Jaccard index
would be calculated as a 0, which would guarantee a mismatch.
Because we are more interested in the locations with failures
than without, we use the Jaccard index, which discounts loca-
tions without failures. Throughout the rest of this paper, we
use the terms 1) Intra-Jaccard [109,135] to refer to the Jaccard
index of two PUF responses from the same memory segment
and 2) Inter-Jaccard [109, 135] to refer to the Jaccard index of
two PUF responses from di�erent memory segments.

A PUF must exhibit uniqueness and uniform randomness
across any memory segment from any device from any manu-
facturer. To show that these characteristics hold for the DRAM
latency PUF, we ensure that the distribution of Inter-Jaccard
indices are distributed near 0. This demonstrates that 1) the
error patterns are unique such that no two distinct memory
segments would generate PUF responses with high similarity,
and 2) the error patterns are distributed uniform randomly
across the DRAM chip(s) such that the likelihood of two chips
(or two memory segments) generating the same error pattern
is exceedingly low.

Figure 3 plots, in blue, the distribution of Inter-Jaccard in-
dices calculated between all possible pairs of PUF responses
generated at the same operating temperature (70◦C) from all
tested memory segments across all chips from three manufac-
turers. The distribution of the Intra-Jaccard indices are also
shown in red (discussed later in this section). The x-axis shows
the Jaccard indices and the y-axis marks the probability of

any pair of memory segments (either within the same device
or across two di�erent devices) resulting in the Jaccard index
indicated by the x-axis. We observe that the distribution of
the Inter-Jaccard indices is multimodal, but the Inter-Jaccard
index always remains below 0.25 for any pair of distinct mem-
ory segments. This means that PUFs from di�erent memory
segments have low similarity. Thus, we conclude that latency-
related error patterns approximate the behavior of a desirable
PUF with regard to both uniqueness and uniform randomness.

Figure 3: Distributions of Jaccard indices calculated across ev-
ery possible pair of PUF responses across all tested PUFmem-
ory segments from each of 223 LPDDR4 DRAM chips.

To understand manufacturer-related e�ects, Figure 4 sepa-
rately plots the Intra- and Inter-Jaccard distributions of PUF
responses from chips of a single manufacturer in subplots.
Each subplot indicates the manufacturer encoding in the top
left corner (A, B, C). From these per-manufacturer distribu-
tions, we make three major observations: 1) Inter-Jaccard
values are quite low, per-manufacturer, which shows unique-
ness and uniform randomness, 2) there is variation across
manufacturers, as expected, and 3) Figure 3’s multimodal be-
havior for Inter- and Intra-Jaccard index distributions can be
explained by the mixture of per-manufacturer distributions.
We also �nd that the distribution of Inter-Jaccard indices cal-
culated between two PUF responses from chips of distinct
manufacturers are tightly distributed close to 0 (not shown).

Figure 4: Distributions of Jaccard indices calculated between
PUF responses of DRAM chips from a single manufacturer.

6.1.3. Unclonability. We attribute the probabilistic behavior
of latency failures to physical variation inherent to the chip
(discussed in Section 2.3.2). Chips of the same design contain
physical di�erences due to manufacturing process variation
which occurs as a result of imperfections in manufacturing [12,
13,16,59,67,68,69]. The exact physical variations are inherent
to each individual chip, as shown by previous work [12,13,16,
59, 67, 68, 69] and con�rmed by our experiments (not shown),
and the pattern of variations is very di�cult to replicate as it
is created entirely unintentionally.
6.1.4. Repeatability. To demonstrate that the DRAM la-
tency PUF exhibits repeatability, we show how well a PUF
memory segment can result in the same PUF response 1) at

7

di�erent times or 2) under di�erent operating temperatures.
For each of many di�erent memory segments, we evaluate
a PUF multiple times and calculate all possible Intra-Jaccard
indices (i.e., Jaccard indices between two PUF responses gen-
erated from the same exact memory segment). Because a
highly-repeatable PUF generates very similar PUF responses
during each evaluation, we expect the Intra-Jaccard indices be-
tween PUF responses of a highly-repeatable PUF to be tightly
distributed near a value of 1. Figure 3 plots the distribution
of Intra-Jaccard indices across every PUF memory segment
we tested in red. We observe that while the distribution is
multimodal, the Intra-Jaccard indices are clustered very close
to 1.0 and never drop below 0.65.

Similarly to the Inter-Jaccard index distributions (discussed
in Section 6.1.2), we �nd that the di�erent modes of the Intra-
Jaccard index distribution shown in Figure 3 arise from com-
bining the Intra-Jaccard index distributions from all three
manufacturers. We plot the Intra-Jaccard index distributions
for each manufacturer alone in Figure 4 as indicated by (A),(B),
and (C). We observe from the higher distribution mean of Intra-
Jaccard indices in Figure 4 for manufacturer B that DRAM
latency PUFs evaluated on chips from manufacturer B exhibit
higher repeatability than those from manufacturers A or C.
We conclude from the high Intra-Jaccard indices in Figures 3
and 4, that DRAM latency PUFs exhibit high repeatability.
Long-term Repeatability. We next study the repeatabil-

ity of DRAM latency PUFs on a subset of chips over a 30-
day period to show that the repeatability property holds for
longer periods of time (i.e., a memory segment generates a
PUF response similar to its previously-enrolled golden key
irrespective of the time since its enrollment). We examine a
total of more than a million 8KiB memory segments across
many chips from each of the three manufacturers as shown
in Table 2. The right column indicates the number of memory
segments across n devices, where n is indicated in the left
column, and the rows indicate the di�erent manufacturers of
the chips containing the memory segments.

#Chips #Total Memory Segments
A 19 589,824
B 12 442,879
C 14 437,990

Table 2: Number of PUFmemory segments tested for 30 days.

In order to demonstrate the repeatability of evaluating a
DRAM latency PUF over long periods of time, we continu-
ously evaluate our DRAM latency PUF across a 30-day period
using each of our chosen memory segments. For each mem-
ory segment, we calculate the Intra-Jaccard index between
the �rst PUF response and each subsequent PUF response.
We �nd the Intra-Jaccard index range, or the range of values
(max_value – min_value) found across the Jaccard indices
calculated for every pair of PUF responses from a memory
segment. If a memory segment exhibits a low Intra-Jaccard
index range, the memory segment generates highly-similar
PUF responses during each evaluation over our testing period.
Thus, memory segments that exhibit low Intra-Jaccard index
ranges demonstrate high repeatability.

Figure 5 shows the distribution of Intra-Jaccard index ranges
across our memory segments with box-and-whisker plots2

2The box is bounded by the �rst quartile (i.e., the median of the �rst half
of the ordered set of Intra-Jaccard index ranges) and third quartile (i.e., the
median of the second half of the ordered set of Intra-Jaccard index ranges).
The median is marked by a red line within the bounding box. The inter-
quartile range (IQR) is de�ned as the di�erence between the third and �rst
quartiles. The whiskers are drawn out to extend an additional 1.5× IQR above
the third quartile and 1.5× IQR below the �rst quartile. Outliers are shown
as orange crosses indicating data points outside of the range of whiskers.

for each of the three manufacturers. We observe that the
Intra-Jaccard index ranges are quite low, i.e., less than 0.1 on
average for all manufacturers. Thus, we conclude that the
vast majority of memory segments across all manufacturers
exhibit very high repeatability over long periods of time.

Figure 5: Distribution of the Intra-Jaccard index range values
calculated between many PUF responses that a PUF memory
segment generates over a 30-day period.

In order to show that every chip has a signi�cant propor-
tion of memory segments that exhibit high reliability over
time, we analyze per-chip Intra-Jaccard index range proper-
ties. Table 3 shows the median [minimum, maximum] of the
fraction of memory segments per chip that are observed to
have Intra-Jaccard index ranges below 0.1 and 0.2. Over 90%
of all segments in each chip are suitable for PUF evaluation
for Intra-Jaccard index ranges below 0.1, and over 97% for
Intra-Jaccard index ranges below 0.2. This means that each
chip has a signi�cant number of memory segments that are
viable for DRAM latency PUF evaluation. Furthermore, the
distributions are very narrow, which indicates that di�erent
chips show similar behavior. We conclude that every chip has
a signi�cant number of PUF memory segments that exhibit
high repeatability across time. We show in Section 7.5 how
we can use a simple characterization step to identify these
viable memory segments quickly and reliably.

%Memory Segments per Chip
Intra-Jaccard index range <0.1 Intra-Jaccard index range <0.2

A 100.00 [99.08, 100.00] 100.00 [100.00, 100.00]
B 90.39 [82.13, 99.96] 96.34 [95.37, 100.00]
C 95.74 [89.20, 100.00] 96.65 [95.48, 100.00]

Table 3: Percentage of PUF memory segments per chip with
Intra-Jaccard index ranges <0.1 or 0.2 over a 30-day period.
Median [minimum, maximum] values are shown.
Temperature E�ects. To demonstrate how changes in

temperature a�ect PUF evaluation, we evaluate the DRAM
latency PUF 10 times for each of the memory segments in
Table 2 at each 5◦C increment throughout our testable tem-
perature range (55◦C-70◦C). Figure 6 shows the distributions
of Intra-Jaccard indices calculated between every possible pair
of PUF responses generated by the same memory segment.
The deltas between the operating temperatures at the time of
PUF evaluation are denoted in the x-axis (temperature delta).
Since we test at four evenly-spaced temperatures, we have
four distinct temperature deltas. The y-axis marks the Jaccard
indices calculated between the PUF responses. The distribu-
tion of Intra-Jaccard indices found for a given temperature
delta is shown using a box-and-whisker plot.

Figure 6 subdivides the distributions for each of the three
manufacturers as indicated by A, B, and C. Two observations
are in order. 1) Across all three manufacturers, the distribu-
tion of Intra-Jaccard indices strictly shifts towards zero as the
temperature delta increases. 2) The Intra-Jaccard distribution
of PUF responses from chips of manufacturer C are the most
sensitive to changes in temperature as re�ected in the large
distribution shift in Figure 6(C). Both observations show that
evaluating a PUF at a temperature di�erent from the tempera-
ture during enrollment a�ects the quality of the PUF response
and reduces repeatability. However, 1) for small temperature

8

deltas (e.g., 5◦), PUF repeatability is not signi�cantly a�ected,
and 2) we discuss in Section 7.5 how we can ameliorate this
e�ect during device enrollment.

o

o

o

Figure 6: DRAM latency PUF repeatability vs. temperature.

6.2. Runtime-Accessible PUF Metrics Evaluation
Throughout the remainder of this section, we show 1)

how the DRAM latency PUF satis�es the characteristics of
a runtime-accessible PUF (i.e., low latency and low system
interference) discussed in Section 3.2, and 2) that the DRAM
latency PUF signi�cantly outperforms the DRAM retention
PUF in terms of both evaluation time and system interference.
6.2.1. Low Latency. The DRAM latency PUF consists of
two key phases: 1) inducing latency failures, and 2) �ltering
the PUF segment, which improves PUF repeatability (to be
discussed in Section 7.1). During Phase 1, we induce latency
failures multiple times (i.e., for multiple iterations) over the
PUF memory segment and count the failures in a separate
bu�er for additional bookkeeping (we discuss this in further
detail in Section 7.2). The execution time of this phase depends
directly on three factors:
1. The value of the tRCD timing parameter. A smaller tRCD

value causes each read to have a shorter latency.
2. The size of the PUF memory segment. A larger memory

segment requires more DRAM read requests per iteration.
In our devices, we observe that latency failures are induced
at a granularity of 32 bytes with each read request, so
we can �nd the total number of required DRAM reads by
dividing the size of the memory segment by 32 bytes.

3. The number of iterations used to induce latency failures.
More iterations lead to a longer evaluation time.

Increasing any one of these factors independently of the others
directly results in an increase in PUF evaluation time. We
experimentally �nd that a single low-tRCD access to DRAM,
along with its associated bookkeeping and memory barrier,
takes 3.4µs. Because the value of tRCD is on the scale of tens
of nanoseconds [50], changing its value negligibly a�ects
the time for each low-tRCD access. Thus, we use a constant
3.4µs for each read regardless of the tRCD value to �nd a
good estimate of the PUF evaluation time in Equation 1. We
experimentally show that Phase 2 has negligible runtime (<
0.1% of total DRAM latency PUF evaluation time) compared
with Phase 1, so we omit Phase 2 in our PUF evaluation time
estimation.We express PUF evaluation time estimation as:
TPUF_eval = (Niters)× [(sizemem_seg)/(32 bytes)]× 3.4µs (1)

where Niters is the number of times we induce latency failures
on each 32 byte block of the memory segment, and sizemem_seg
is the size of the memory segment used to evaluate the PUF.
For our �nal chosen con�guration (discussed in detail in Sec-
tion 7), we use the parameters sizemem_seg = 8KiB (Section 7.3),

tRCD = 9.8ns (Section 7.4), and Niters = 100 (Section 7.1). Us-
ing Equation 1, we expect this con�guration to result in an
evaluation time of approximately 87ms.

In order to experimentally verify Equation 1, we measure
the evaluation time of the DRAM latency PUF for 10000 eval-
uations across chips from all three manufacturers at 55◦C.
We �nd that evaluation times are normally distributed per-
manufacturer according to NA(µ = 89.1ms, σ = 0.0132ms),
NB(µ = 88.2ms, σ = 0.0135ms), and NC (µ = 87.2ms, σ =
0.0102ms). These distribution parameters show that evalua-
tion times have very similar means and are extremely tightly
distributed (i.e., < 0.0002 relative standard deviation). This
is expected because, for any particular con�guration, DRAM
latency PUF evaluation essentially requires a constant number
of DRAM accesses. Therefore, any variation in PUF evaluation
time comes from variations in code execution (e.g., multitask-
ing, interrupts, DRAM refresh, etc.) rather than any character-
istics of the PUF itself. In order to compare these runtime dis-
tributions with the result of Equation 1, we take take the mean
of the mixture distribution of the three per-manufacturer dis-
tributions (i.e.,NABC (µ = 88.2ms, σ = 0.716ms)) and �nd that
the 87ms estimate from Equation 1 results in only 1.4% error.

Figure 2 provides a comparison of DRAM latency PUF eval-
uation time with retention PUF evaluation time across our
testable temperature range (i.e., 55◦C-70◦C). We �nd that
the DRAM latency PUF signi�cantly outperforms the DRAM
retention PUF for an equivalent DRAM capacity overhead
of 64KiB (i.e., 8KiB latency PUF memory segment + 56KiB
counter bu�er), providing an average (minimum, maximum)
speedup of 152x (109x, 181x) at 70◦C and 1426x (868x, 1783x)
at 55◦C. By increasing the memory segment size from 64KiB
to 64MiB, we can evaluate a DRAM retention PUF in 1.05s
(1.01s, 1.09s) at 70◦C (Section 5.3). However, the DRAM la-
tency PUF still outperforms this con�guration without an
increase in DRAM capacity overhead (i.e., still with an 8KiB
memory segment), providing a speedup of 12.1x (11.6x, 12.5x).

Similarly to prior work on DRAM latency reduction [13,
67], we experimentally �nd that inducing latency failures is
minimally a�ected by changes in temperature. Importantly,
since our method of inducing latency failures does not change
with temperature (Section 7.2), DRAM latency PUF evaluation
time remains reliably short across all operating temperatures.
We conclude that the DRAM latency PUF 1) can be evaluated
at speeds that are orders of magnitude faster than the DRAM
retention PUF, and 2) overcomes the temperature dependence
of the DRAM retention PUF and maintains a low evaluation
time across all temperatures.
6.2.2. Low System Interference. The DRAM latency PUF
exhibits two major sources of system interference: 1) requiring
exclusive DRAM rank/bank access throughout PUF evalua-
tion, and 2) using a region in a separate DRAM rank to count
latency failures (Section 7.2).

First, because DRAM timing parameters can only be ma-
nipulated for the coarse granularity of a DRAM rank, any
other access to the same rank containing the PUF memory
segment must be blocked during PUF evaluation. Such block-
ing prevents other accesses from obeying the same reduced
timing parameters and corrupting the data. For this reason,
DRAM latency PUF evaluation requires exclusive access to
a full DRAM rank for the entire duration of PUF evaluation.
Fortunately, the DRAM latency PUF’s quick evaluation time
(i.e., 88.2ms on average) guarantees that the DRAM rank will
be unavailable only for a short period of time. This is in
stark contrast with the DRAM retention PUF, which 1) blocks
rank/bank access for much longer periods of time (e.g., on
the order of minutes or seconds), and 2) requires the memory
controller to issue a large number of refresh operations to

9

rows in the rank/bank outside of the PUF memory segment
for the same period of time [135].

Second, the DRAM latency PUF algorithm (described in
detail in Section 7.2) requires a small counter bu�er (e.g., a
56KiB bu�er for an 8KiB PUF memory segment) which stores
counters for each bit of the PUF memory segment. This comes
at the cost of both DRAM capacity overhead and additional
memory tra�c penalty. However, given that the DRAM ca-
pacity overhead is small (e.g., <0.003% for a 2GB DRAM using
an 8KiB memory segment) and the additional bandwidth con-
sumed is extremely low (e.g., on the order of 100MB/s using
an 8KiB memory segment) in the context of total DRAM band-
width (e.g., 8GB/s), we conclude that the additional system
interference induced by the counter bu�er is insigni�cant. In
practice, we expect system caches to (fully) hold the counter
bu�er, further reducing the required DRAM bandwidth.
7. Design Considerations

As we experimentally showed in Section 6, utilizing DRAM
latency failures is a viable method for evaluating runtime-
accessible PUFs in commodity, unmodi�ed DRAM chips. How-
ever, due to variation across DRAM cells and chips, there are
various important design considerations that must be made in
the implementation of the DRAM latency PUF. In this section,
we discuss these considerations for implementing the DRAM
latency PUF.
7.1. Repeatability of Cell Latency Failures

Due to many underlying factors (e.g., process variation,
temperature), each DRAM cell fails with a di�erent proba-
bility when read with a timing parameter reduced beyond
the manufacturer speci�cation [12, 13, 67, 68, 69]. We de�ne
a latency-weak cell as a cell that has a signi�cant probabil-
ity of failure when read with a reduced timing parameter.
Our DRAM latency PUFs are comprised of the locations of
latency-weak cells because such cells can be repeatably found.
In order to repeatably �nd the set of latency-weak cells, we
employ many iterations (e.g., on the order of 100) of inducing
latency failures at the PUF memory segment. This improves
the chances of a PUF evaluation to �nd a signi�cant propor-
tion of the latency-weak cells. Because we assume that any
given cell has a static probability (p) to fail when accessed
with reduced latency, we can model the number of times that
a cell must be accessed before observing a latency failure as a
geometric random variable with a success probability of p. The
geometric distribution with parameter p has a mean value of
1
p . By sampling cells over x iterations during DRAM latency
PUF evaluation, we expect to �nd all cells that fail with a
probability greater than or equal to 1

x . There is a chance that a
cell with a failure probability below the threshold fails during
an instance of the PUF evaluation, reducing the similarity of
the PUF responses across evaluations and thus the repeata-
bility of the PUF. To mitigate this issue, we apply a �lter (see
Section 7.2) that removes cells that we observe to fail in only a
small proportion of the x iterations. We empirically �nd that
removing cells that fail in less than 10% of the iterations results
in the highest Intra-Jaccard indices across PUF responses.

In order to determine how many iterations to induce la-
tency failures for during latency PUF evaluation, we generate
PUF responses across our devices using a varying number of
iterations between 1 and 1024. For each set of PUF responses
generated with a given number of iterations, we calculate
the box-and-whisker plots for both Inter- and Intra-Jaccard
distributions (not shown). We �nd that for PUF responses
from chips across all manufacturers, the Inter-Jaccard and
Intra-Jaccard distributions have strictly the same or increas-

ing medians, �rst and third quartiles, and whiskers, for an
increasing number of iterations.

Higher Intra-Jaccard index distribution values represent a
more repeatable PUF since the distribution directly re�ects the
similarities of PUF responses from the same memory segment.
We �nd that the Intra-Jaccard index distribution’s median and
bottom whiskers increase by 0.0025 and 0.0054, respectively,
for every doubling of the number of iterations. On the other
hand, higher Inter-Jaccard index distribution values repre-
sent higher similarity across distinct memory segments. Such
higher values would limit the PUF’s ability to identify many
unique devices. We �nd that the Inter-Jaccard index distribu-
tion’s median and top whiskers increase by 0.0012 and 0.0011,
respectively, for every doubling of the number of iterations.
Based on our experimental analyses of these tradeo�s, we
choose to induce latency failures for 100 iterations during
each DRAM latency PUF evaluation. We next discuss in detail
our algorithm for evaluating DRAM latency PUFs with high
repeatability.
7.2. DRAM Latency PUF Evaluation Algorithm

We provide an implementable algorithm for evaluating a
repeatable DRAM latency PUF at a given memory segment.
While we focus on evaluating DRAM latency PUFs with tRCD-
induced failures, Algorithm 2 works with any other timing
parameter capable of inducing failures. We �rst initialize the
PUF memory segment indicated by Segment[seg_id] by set-
ting every bit in the memory segment to “1” (line 2). We
then attempt to �nd the reliable set of failures as fast as pos-
sible in the memory segment (lines 4-11). Because DRAM
RD commands require a tRCD delay only after the activation
of a previously closed DRAM row, tRCD failures can only be
observed when issuing a read request to a closed DRAM row.
The key idea is to iterate over each row sequentially such that
each read request goes to a di�erent row (i.e., perform column
order accesses through the memory segment of interest) as
shown in lines 7-9. Before inducing failures across the PUF
memory segment, we must �rst obtain exclusive access to the
rank containing the PUF memory segment (line 4), due to the
rank-level granularity of changing DRAM timing parameters
(Section 2.3). We then reduce the value of tRCD for the entire
rank containing the PUF memory segment (line 5). During
the iterations of inducing tRCD failures (lines 6-11), we issue
a memory barrier (line 10) after each read. This ensures that
1) only one memory instruction is in �ight at a given time and,
thus, improves repeatability by simplifying the logic required
by the memory controller when issuing memory accesses, and
2) read requests do not get reordered by the memory controller
to exploit row bu�er locality [60, 61, 92, 93, 105, 106, 118, 126].
Instead, each access activates a new row, while obeying the
tRCD timing parameter. We �nd that the instruction order in-
dicated by lines 6-11 is the fastest method for �nding a reliable
set of latency failures in a memory segment. For every read,
the tRCD failure locations are determined and their failures are
counted in a separate rank for bookkeeping (line 11). After
all iterations of inducing tRCD failures, we must reset the tRCD
value to the default (line 12), �lter the PUF segment (line 13;
see Filtering Mechanism), release exclusive access to the rank
containing the PUF memory segment (line 14), and �nally
return the PUF response, i.e., the resulting error pattern from
the PUF evaluation at the PUF memory segment (line 15).
Filtering Mechanism. In order to improve the repeatabil-

ity of the DRAM latency PUF, we employ a �lteringmechanism
which removes the cells with low failure probability from the
PUF response (as shown on line 13 in Algorithm 2). The
key idea is to count, for each bit location in the PUF mem-
ory segment, the number of iterations in which the location
fails and then use that count to determine whether the bit

10

Algorithm 2: Evaluate DRAM latency PUF
1 evaluate_DRAM_latency_PUF(seg_id):
2 write known data (all 1’s) to Segment[seg_id]
3 rank_id← DRAM rank containing seg_id
4 obtain exclusive access to Rank[rank_id]
5 set low tRCD for Rank[rank_id]
6 for i = 1 to num_iterations :
7 for col in Segment[seg_id]
8 for row in Segment[seg_id]: // column-order reads
9 read() // induce read failures

10 memory_barrier() // one access at a time
11 count_failures() // record in another rank
12 set default tRCD for Rank[rank_id]
13 �lter the PUF memory segment // See Filtering Mechanism
14 release exclusive access to Rank[rank_id]
15 return error pattern at Segment[seg_id]

location should be set (“1”) or cleared (“0”) in the �nal PUF
response. Every bit in the DRAM PUF memory segment has
a corresponding counter that we store in the counter bu�er , a
data structure we allocate in a DRAM rank separate from the
one containing the PUF memory segment. This is to ensure
that read requests to the counter bu�er follow manufacturer-
speci�ed timing parameters and do not induce latency failures.

After each reduced-latency read request in the PUF memory
segment, we �nd all bit locations in the read data that resulted
in a latency failure, and increment their corresponding coun-
ters in the counter bu�er. After all iterations of inducing
latency failures are completed, we compare every counter
of each bit location in the PUF memory segment against a
threshold. If a counter holds a value greater than the threshold
(i.e., the counter’s corresponding bit location failed more than
n times, where n is the threshold), we set the corresponding
bit location. Otherwise, we clear it.
Memory Footprint. Equation 2 provides the memory foot-

print required by PUF evaluation:
memtotal = (sizemem_seg) + (sizecounter_bu�er) (2)

where sizemem_seg is the size of the PUF memory segment and
sizecounter_bu�er is the size of the counter bu�er. The size of
the counter bu�er can be calculated using Equation 3:

sizecounter_bu�er = (sizemem_seg)× dlog2 Niterse (3)
where sizemem_seg is the size of the PUF memory segment
and Niters is the number of iterations that we want to induce
latency failures for. Since we require one counter per bit in
the memory segment, we must multiply this quantity by the
size of each counter. Since the counter must be able to store
up to the value of Niters (e.g., in the case of a cell that fails
every iteration), each counter must be dlog2 Niterse bits wide.
For a memory segment size of 8KiB, we �nd that the DRAM
latency PUF’s total memory footprint is 64KiB. From this, we
conclude that DRAM latency PUFs have insigni�cant DRAM
capacity overhead.
7.3. Variation Among PUF Memory Segments

We observe a variation in latency failure rates across dif-
ferent memory segments, which make some DRAM memory
segments more desirable to evaluate DRAM latency PUFs with
than others. Because we want to �nd 512 bits that fail per
PUF memory segment (Section 5.2), we consider only those
memory segments that have at least 512 failing bits as good
memory segments. In order to determine the best size of the
memory segment to evaluate the DRAM latency PUF on, we
study the e�ect of varying memory segment size on 1) DRAM
capacity overhead, 2) PUF evaluation time, and 3) fraction

of good memory segments per device. As the memory seg-
ment size increases, both the DRAM capacity overhead and
the PUF evaluation time increase linearly. The number of
possible PUF memory segments for a DRAM device with a
DRAM latency PUF is obtained by counting the number of
contiguous PUF memory segments across all of DRAM (i.e.,
dividing the DRAM size by the PUF memory segment size).
Thus, larger PUF memory segments result in fewer possible
PUF memory segments for a DRAM device. From an experi-
mental analysis of the associated tradeo�s of varying the PUF
memory segment size (not shown), we choose a PUF memory
segment size of 8KiB.3

In Table 4, we represent the distribution of the percentage
of good memory segments per chip with a median [minimum,
maximum] across each of the three manufacturers. The left
column shows the number of chips tested, the right column
shows the representation of the distribution, and the rows
indicate the di�erent manufacturers of the chips. We see that
an overwhelming majority of memory segments from man-
ufacturers A and B are good for PUF evaluation. Memory
segments from chips of manufacturer C were observed to
exhibit less latency failures, but across each of our chips we
could �nd at least 19.4% of the memory segments to be good
for PUF evaluation. Of the total number of PUF memory seg-
ments tested (shown in Table 2), we experimentally �nd that
100%, 64.06%, and 19.37% of memory segments are good (i.e.,
contain enough failures to be considered for PUF evaluation)
in the worst-case chips from manufacturers A, B, and C. We
conclude that there are plenty of PUF memory segments that
are good enough for DRAM latency PUF evaluation.

#Chips Good Memory Segments per Chip (%)
A 19 100.00 [100.00, 100.00]
B 12 100.00 [64.06, 100.00]
C 14 30.86 [19.37, 95.31]

Table 4: Percentage of goodmemory segments per chip across
manufacturers. Median [min, max] values are shown.

7.4. Support for Changing Timing Parameters
In order to induce latency failures, the manufacturer-

speci�ed DRAM timing parameters must be changed. Some
existing processors [1, 3, 67] enable software to directly ma-
nipulate DRAM timing parameters. These processors can
trivially implement and evaluate a DRAM latency PUF with
minimal changes to the software and no changes to hardware.
However, for other processors that cannot directly manipulate
DRAM timing parameters, we would need to simply enable
software to programmatically modify memory controller reg-
isters which indicate the DRAM timing parameters that a
memory access must observe.

We �nd that we can reliably induce latency failures when
we reduce the value of tRCD from a default value of 18ns
to between 6ns and 13ns. Given this wide range of failure-
inducing tRCD values, most memory controllers should be able
to issue read requests with a tRCD value within this range.
7.5. Device Enrollment

Device enrollment is a one-time process consisting of eval-
uating all possible PUFs from across the entire challenge-
response space and securely storing the evaluated PUFs in a
trusted database such that they can be later queried for authen-
tication [52, 120, 135]. Since the goal of PUF authentication
is to ensure that a challenge-response is di�cult to replicate
without access to the original device, enrollment must be done
securely so that the full set of all possible challenge-response

3We will provide details in a technical report/extended version for all
other results that we cannot provide detail for in the submission.

11

pairs is known only to the trusted database and can be created
only by the device owner.

Similar to prior works’ approach to DRAM PUFs [120, 123,
135], we assume that a trusted third party (e.g., the DRAM
manufacturer) performs device enrollment prior to making
the system available to the end consumer. This ensures that
the complete set of all possible challenge responses are known
only by the trusted third party. After the device is in the �eld,
even the trusted third party cannot regenerate the enrollment
data. Thus, allowing the trusted third party to both character-
ize and enroll the responses makes it extremely di�cult for a
malicious attacker to obtain the full set of possible response
pairs without �rst compromising the trusted third party.

Because DRAM latency PUF responses vary depending
on the temperature of DRAM during evaluation time (see
Section 6.1.4), we must enroll multiple golden keys at varying
temperature intervals. This enables a PUF response to match
at least one golden key during authentication regardless of the
temperature during evaluation time. We �nd that some chips
generate PUF responses with less variation across a range of
temperatures than other chips. Chips with less variation can
enroll golden keys for temperatures at larger intervals than
chips with more variation.
7.6. In-DRAM Error Correcting Codes

Some new DRAM chips utilize in-DRAM error-correcting
codes (ECC), which perform single-bit error correction per
word (i.e., typically 64 data bits) invisibly to the system [51,
96, 97], to overcome the reliability challenges of DRAM tech-
nology scaling [59, 79, 89, 90, 91, 94, 110]. When such chips
are used for DRAM latency PUFs, ECC words with only one
error appear to be error-free to the memory controller, leav-
ing fewer total errors available for PUF response. We note
that error correction deterministically transforms DRAM error
patterns. Thus, a DRAM PUF (on a chip with in-DRAM ECC)
that repeatably induces the same error pattern prior to ECC
correction, would repeatably result in a di�erent but consistent
error pattern after ECC correction.

In order to support PUF evaluation in a system using DRAM
chips with in-DRAM ECC, we would need to evaluate PUFs
with a higher raw bit error rate (i.e., the error rate before ECC is
performed) relative to non-ECC DRAMs. A higher raw bit er-
ror rate would produce enough observable failures (after ECC
is performed) for a PUF. The DRAM latency PUF can achieve
this higher raw bit error rate by simply reducing the latency
parameter value further. Such reduction would also ideally re-
duce PUF evaluation time and system interference. Therefore,
we expect the DRAM latency PUF to be evaluated even faster
in chips with built-in ECC.4 As stronger ECC mechanisms
are used, i.e., ECC can correct DRAM words containing more
than 1 error, we expect even lower evaluation latencies and
lower system interference with the DRAM latency PUF.
7.7. E�ect of High-Temperature

Our evaluation of the DRAM latency and retention PUFs is
limited to the 70◦C maximum DRAM temperature. We clearly
show in Section 5.2 that DRAM latency PUFs are much faster
than DRAM retention PUFs at 70◦C and lower (Figure 2). How-
ever, at higher temperatures (e.g., > 85◦C), DRAM retention
PUFs could become faster than DRAM latency PUFs.5

4In contrast, DRAM retention PUF must be evaluated with a longer
refresh interval to increase the raw bit error rate in a DRAM chip with
in-DRAM ECC. This leads to a signi�cantly longer DRAM retention PUF
evaluation time when in-DRAM ECC is used.

5Note that the DDR protocol speci�es that every cell must be refreshed
at least every 32ms for LPDDR3/4 or 64ms for DDR3/4 below 85◦C and at
even higher rates at higher temperatures.

If a DRAM retention PUF is faster than the DRAM latency
PUF at a very high temperature, it is easy to envision a mecha-
nism that dynamically switches between DRAM latency PUFs
and DRAM retention PUFs based on the device operating
temperature at the time of evaluation. This mechanism could
exploit the strengths of each type of DRAM PUF in order to
allow the fastest possible PUF evaluation time. By exploiting
in-DRAM temperature sensors that already exist in modern
DRAM chips [47, 48, 50, 67], this mechanism could potentially
be implemented with no additional hardware overhead be-
yond what is already required for DRAM retention PUFs and
DRAM latency PUFs individually.

Such a mechanism would require challenge-response pairs
from both the DRAM retention PUF and DRAM latency PUF
to be enrolled. Furthermore, since retention failure rates vary
signi�cantly across di�erent chips [54, 78, 101], each chip will
have a di�erent temperature at which the mechanism switches
between the two DRAM PUFs. This could considerably impact
enrollment time and complicate the device authentication
process. Ultimately, it is up to the system architect to decide
whether such a mechanism is worth the evaluation runtime
bene�ts at very high temperatures (which is likely to be on
the order of tens of milliseconds). We leave a full exploration
of this hybrid DRAM latency-retention PUF mechanism to
future work.
8. Related Work

To our knowledge, this is the �rst work to: 1) introduce the
idea of violating DRAM read latency parameters to create a
fast, runtime-accessible DRAM PUF without modifying com-
modity DRAM devices, 2) introduce an e�ective DRAM PUF
that is runtime-accessible at all operating temperatures, 3)
demonstrate a wide variety of tradeo�s in DRAM PUFs, based
on extensive new experimental data from 223 state-of-the-art
LPDDR4 DRAM chips, 4) demonstrate the prohibitively slow
evaluation times of the DRAM retention PUF, the previously
fastest DRAM PUF suitable for commodity devices.

In this section, we discuss prior works that propose DRAM
PUFs and PUFs based on other substrates. The proliferation
of recent works on DRAM PUFs re�ects the growing impor-
tance of DRAM PUFs given DRAM’s near ubiquity in modern
systems and large address space.
DRAM Retention PUFs. We have already described the ba-
sics of DRAM retention PUFs in Section 2.2 and extensively
evaluated them in Section 5. We brie�y explain the di�er-
ences between prior proposals. Keller et al. [53] is the �rst to
propose using DRAM retention failures as unique identi�ers,
shortly followed by Xiong et al. [135] and D-PUF [120], both
of which enable runtime-accessible DRAM retention PUFs.
Other works propose further optimizations for improving the
quality of DRAM retention PUFs [103, 122, 124]. As our exper-
imental evaluations across 223 LPDDR4 DRAM chips show,
DRAM retention PUFs take very long to evaluate at common-
case operating temperatures; they are orders of magnitude
slower than our proposal (see Section 5).
Other DRAM PUFs. Hashemian et al. [37] propose adding
a delay generator to the DRAM write-circuitry to induce fail-
ures. However, this requires additional hardware and cannot
be applied to existing DRAM designs. Tehranipoor et al. [123]
suggest using DRAM start-up values for PUFs, but this pre-
cludes runtime evaluation by requiring a DRAM power cycle
for every authentication.
PUFs Based on Other Substrates. Many PUFs have been
proposed for various other substrates, including other mem-
ory technologies and customized hardware designs. We cate-
gorize them into delay-based and memory-based PUFs.
Delay-based PUFs include 1) arbiter PUFs [36, 72, 75, 88,

98, 99, 108, 138], which rely on process variation to extract the

12

unique behavior of two identical competing circuit paths, 2)
ring oscillator PUFs [28,29,77,119], which rely on frequencies
of oscillating signals from chained inverters, and 3) Current
Mirror Array (CMA) PUFs [133], which rely on the manufac-
turing process variation in a customized circuit typically used
for machine learning tasks. These works rely on customized
hardware not present in commodity systems. FPGA-based
PUFs [31, 32, 33, 65, 86, 87] overcome the need for hardware
changes. However, they are not as commonly found as DRAM
in computer systems.
Memory-based PUFs include SRAM PUFs, which rely

on SRAM start up values [9, 20, 32, 41, 42, 121, 134, 145]
and voltage reduction induced failures [6]; butter�y PUFs,
which mimic the behavior of SRAM cells with cross-coupled
data latches [65]; latch PUFs, which cross-couple two NOR-
gates [116]; �ip-�op PUFs, which exploit the power up behav-
ior of regular �ip-�ops [84,127]; and PUFs for emerging mem-
ory technologies [8, 17, 18, 23, 45, 64, 80, 100, 107, 128, 129, 140,
141]. These prior works either require additional customized
hardware or usage of SRAM, which has a small address space
compared to DRAM, and thus cannot accommodate a large
number of challenge-response pairs.
9. Conclusion

We introduce and analyze the DRAM latency PUF, a new
DRAM PUF suitable for runtime authentication. The DRAM
latency PUF intentionally violates manufacturer-speci�ed
DRAM timing parameters in order to provide many highly
repeatable, unique, and unclonable PUF responses with low
latency. Through experimental evaluation using 223 state-
of-the-art LPDDR4 DRAM devices, we show that the DRAM
latency PUF reliably generates PUF responses at runtime-
accessible speeds (i.e., 88.2ms on average) at all operating
temperatures. We show that the DRAM latency PUF achieves
an average speedup of 152x/1426x at 70◦C/55◦C when com-
pared with a DRAM retention PUF of the same DRAM capacity
overhead, and it achieves even greater speedups at lower tem-
peratures. We conclude that the DRAM latency PUF enables a
fast and e�ective substrate for runtime device authentication
across all operating temperatures, and we hope that the ad-
vent of runtime-accessible PUFs like the DRAM latency PUF
and the detailed experimental characterization data we pro-
vide on modern DRAM devices will enable security architects
to develop even more secure systems for future devices.
Acknowledgments

We thank Ivan Puddu for useful comments and anonymous
reviewers and SAFARI group members for feedback.

References
[1] “AMD Opteron 4300 Series Processors,” http:

//www.amd.com/en-us/products/server/4000/4300.
[2] “RDMA Protocol Speci�cation,” http://www.rdmaconsortium.org/.
[3] AMD, “BKDG for AMD Family 16h Models 00h-0Fh Processors,” 2013.
[4] R. Ausavarungnirun et al., “Staged Memory Scheduling: Achieving High Perfor-

mance and Scalability in Heterogeneous Systems,” in ISCA, 2012.
[5] A. Aysu et al., “A New Maskless Debiasing Method for Lightweight Physical Un-

clonable Functions,” in HOST, 2017.
[6] A. Bacha et al., “Authenticache: Harnessing Cache ECC for System Authentica-

tion,” in MICRO, 2015.
[7] S. Baek et al., “Refresh Now and Then,” in TC, 2014.
[8] K. Beckmann et al., “Performance Enhancement of a Time-Delay PUF Design by

Utilizing Integrated Nanoscale ReRAM Devices,” in TETC, 2017.
[9] M. Bhargava et al., “Reliability Enhancement of Bi-Stable PUFs in 65nm Bulk

CMOS,” in HOST, 2012.
[10] I. Bhati et al., “DRAM Refresh Mechanisms, Penalties, and Trade-o�s,” in TC, 2016.
[11] K. Chandrasekar et al., “Exploiting Expendable Process-Margins in DRAMs for

Run-Time Performance Optimization,” in DATE, 2014.
[12] K. K. Chang, “Understanding and Improving Latency of DRAM-Based Memory

Systems,” Ph.D. dissertation, Carnegie Mellon University, 2017.
[13] K. K. Chang et al., “Understanding Latency Variation in Modern DRAM Chips: Ex-

perimental Characterization, Analysis, and Optimization,” in SIGMETRICS, 2016.

[14] K. K. Chang et al., “Improving DRAM Performance by Parallelizing Refreshes
with Accesses,” in HPCA, 2014.

[15] K. K. Chang et al., “Low-cost Inter-linked Subarrays (LISA): Enabling Fast Inter-
subarray Data Movement in DRAM,” in HPCA, 2016.

[16] K. K. Chang et al., “Understanding Reduced-Voltage Operation in Modern DRAM
Devices: Experimental Characterization, Analysis, and Mechanisms,” in SIGMET-
RICS, 2017.

[17] W. Che et al., “A Non-Volatile Memory Based Physically Unclonable Function
without Helper Data,” in ICCAD, 2014.

[18] P.-Y. Chen et al., “Exploiting Resistive Cross-Point Array for Compact Design of
Physical Unclonable Function,” in HOST, 2015.

[19] J. Choi et al., “Modeling and Managing Thermal Pro�les of Rack-mounted Servers
with Thermostat,” in HPCA, 2007.

[20] M. Cortez et al., “Adapting Voltage Ramp-up Time for Temperature Noise Reduc-
tion on Memory-based PUFs,” in HOST, 2013.

[21] Z. Cui et al., “DTail: A Flexible Approach to DRAM Refresh Management,” in SC,
2014.

[22] J. L. Danger et al., “PUFs: Standardization and Evaluation,” in MST, 2016.
[23] J. Das et al., “MRAM PUF: A Novel Geometry Based Magnetic PUF with Inte-

grated CMOS,” in TNANO, 2015.
[24] H. David et al., “Memory Power Management via Dynamic Voltage/Frequency

Scaling,” in ICAC, 2011.
[25] S. Desai, “Process Variation Aware DRAM (Dynamic Random Access Memory)

Design Using Block-based Adaptive Body Biasing Algorithm,” Ph.D. dissertation,
Utah State University, 2012.

[26] N. El-Sayed et al., “Temperature Management in Data Centers: Why Some
(Might) Like it Hot,” in SIGMETRICS, 2012.

[27] Y. Gao et al., “Memristive Crypto Primitive for Building Highly Secure Physical
Unclonable Functions,” in Scienti�c Reports, 2015.

[28] B. Gassend et al., “Silicon Physical Random Functions,” in CCS, 2002.
[29] B. L. Gassend, “Physical Random Functions,” Ph.D. dissertation, Massachusetts

Institute of Technology, 2003.
[30] S. Govindavajhala and A. W. Appel, “Using Memory Errors to Attack a Virtual

Machine,” in SP, 2003.
[31] C. Gu and M. O’Neill, “Ultra-Compact and Robust FPGA-Based PUF Identi�cation

Generator,” in ISCAS, 2015.
[32] J. Guajardo et al., “FPGA Intrinsic PUFs and Their Use for IP Protection,” in CHES,

2007.
[33] J. Guajardo et al., “Physical Unclonable Functions and Public-key Crypto for

FPGA IP Protection,” in FPL, 2007.
[34] T. Hamamoto et al., “On the Retention Time Distribution of Dynamic Random

Access Memory (DRAM),” in ED, 1998.
[35] R. W. Hamming, “Error Detecting and Error Correcting Codes,” in Bell Labs Tech-

nical Journal, 1950.
[36] G. Hammouri et al., “Unclonable Lightweight Authentication Scheme,” in ICICS,

2008.
[37] M. S. Hashemian et al., “A Robust Authentication Methodology Using Physically

Unclonable Functions in DRAM Arrays,” in DATE, 2015.
[38] H. Hassan et al., “ChargeCache: Reducing DRAM Latency by Exploiting Row

Access Locality,” in HPCA, 2016.
[39] H. Hassan et al., “SoftMC: A Flexible and Practical Open-source Infrastructure

for Enabling Experimental DRAM Studies,” in HPCA, 2017.
[40] R. Helinski et al., “A Physical Unclonable Function De�ned Using Power Distri-

bution System Equivalent Resistance Variations,” in DAC, 2009.
[41] D. E. Holcomb et al., “Power-Up SRAM State as an Identifying Fingerprint and

Source of True Random Numbers,” in TC, 2009.
[42] D. E. Holcomb et al., “Initial SRAM State as a Fingerprint and Source of True

Random Numbers for RFID Tags,” in RFID, 2007.
[43] Y. Hori et al., “Quantitative and Statistical Performance Evaluation of Arbiter

Physical Unclonable Functions on FPGAs,” in ReConFig, 2010.
[44] E. Ipek et al., “Self-Optimizing Memory Controllers: A Reinforcement Learning

Approach,” in ISCA, 2008.
[45] A. Iyengar et al., “DWM-PUF: A Low-Overhead, Memory-Based Security Primi-

tive,” in HOST, 2014.
[46] P. Jaccard, “Étude Comparative de la Distribution Florale dans une Portion des

Alpes et des Jura,” in Bull Soc Vaudoise Sci Nat, 1901.
[47] JEDEC, “Double Data Rate 4 (DDR4) SDRAM Standard,” 2012.
[48] JEDEC, “Low Power Double Data Rate 3 (LPDDR3),” 2012.
[49] JEDEC, “Low Power Double Data Rate 4 (LPDDR4) SDRAM Speci�cation,” JEDEC

Solid State Technology Association, 2014.
[50] JEDEC, “LPDDR4,” JEDEC Standard JESD209–4A, 2014.
[51] U. Kang et al., “Co-Architecting Controllers and DRAM to Enhance DRAM Pro-

cess Scaling,” in The Memory Forum, 2014.
[52] S. Katzenbeisser et al., “PUFs: Myth, Fact or Busted? A Security Evaluation of

Physically Unclonable Functions (PUFs) Cast in Silicon,” in CHES, 2012.
[53] C. Keller et al., “Dynamic Memory-based Physically Unclonable Function for the

Generation of Unique Identi�ers and True Random Numbers,” in ISCAS, 2014.
[54] S. Khan et al., “The E�cacy of Error Mitigation Techniques for DRAM Retention

Failures: A Comparative Experimental Study,” in SIGMETRICS, 2014.
[55] S. Khan et al., “PARBOR: An E�cient System-Level Technique to Detect Data-

Dependent Failures in DRAM,” in DSN, 2016.
[56] S. Khan et al., “A Case for Memory Content-Based Detection and Mitigation of

Data-Dependent Failures in DRAM,” in CAL, 2016.
[57] S. Khan et al., “Detecting and Mitigating Data-Dependent DRAM Failures by Ex-

ploiting Current Memory Content,” in MICRO, 2017.

13

http://www.amd.com/en-us/products/server/4000/4300
http://www.amd.com/en-us/products/server/4000/4300
http://www.rdmaconsortium.org/

[58] K. Kim and J. Lee, “A New Investigation of Data Retention Time in Truly
Nanoscaled DRAMs,” in EDL, 2009.

[59] Y. Kim et al., “Flipping Bits in Memory Without Accessing Them: An Experimen-
tal Study of DRAM Disturbance Errors,” in ISCA, 2014.

[60] Y. Kim et al., “ATLAS: A Scalable and High-Performance Scheduling Algorithm
for Multiple Memory Controllers,” in HPCA, 2010.

[61] Y. Kim et al., “Thread Cluster Memory Scheduling: Exploiting Di�erences in
Memory Access Behavior,” in MICRO, 2010.

[62] Y. Kim et al., “A Case for Exploiting Subarray-level Parallelism (SALP) in DRAM,”
in ISCA, 2012.

[63] Y. Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” in CAL, 2016.
[64] P. Koeberl et al., “Memristor PUFs: A New Generation of Memory-based Physi-

cally Unclonable Functions,” in DATE, 2013.
[65] S. S. Kumar et al., “The Butter�y PUF Protecting IP on Every FPGA,” in HOST,

2008.
[66] C. J. Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing Write-

Caused Interference in Memory Systems,” HPS Technical Report, 2010.
[67] D. Lee et al., “Adaptive-latency DRAM: Optimizing DRAM Timing for the

Common-case,” in HPCA, 2015.
[68] D. Lee, “Reducing DRAM Latency at Low Cost by Exploiting Heterogeneity,” Ph.D.

dissertation, Carnegie Mellon University, 2016.
[69] D. Lee et al., “Design-Induced Latency Variation in Modern DRAM Chips: Charac-

terization, Analysis, and Latency Reduction Mechanisms,” in SIGMETRICS, 2017.
[70] D. Lee et al., “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Ar-

chitecture,” in HPCA, 2013.
[71] D. Lee et al., “Decoupled Direct Memory Access: Isolating CPU and IO Tra�c by

Leveraging a Dual-Data-Port DRAM,” in PACT, 2015.
[72] J. W. Lee et al., “A Technique to Build a Secret Key in Integrated Circuits for

Identi�cation and Authentication Applications,” in Symposium on VLSIC, 2004.
[73] M. J. Lee and K. W. Park, “A Mechanism for Dependence of Refresh Time on Data

Pattern in DRAM,” in EDL, 2010.
[74] Y. Li et al., “DRAM Yield Analysis and Optimization by a Statistical Design Ap-

proach,” in CSI, 2011.
[75] D. Lim et al., “Extracting Secret Keys from Integrated Circuits,” VLSI, 2005.
[76] C. H. Lin et al., “SECRET: Selective Error Correction for Refresh Energy Reduction

in DRAMs,” in ICCD, 2012.
[77] C. Q. Liu et al., “ACRO-PUF: A Low-power, Reliable and Aging-Resilient Current

Starved Inverter-Based Ring Oscillator Physical Unclonable Function,” in TCS,
2017.

[78] J. Liu et al., “An Experimental Study of Data Retention Behavior in Modern
DRAM Devices: Implications for Retention Time Pro�ling Mechanisms,” in ISCA,
2013.

[79] J. Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” in ISCA, 2012.
[80] R. Liu et al., “Experimental Characterization of Physical Unclonable Function

Based on 1 KB Resistive Random Access Memory Arrays,” in EDL, 2015.
[81] S. Liu et al., “Hardware/Software Techniques for DRAM Thermal Management,”

in HPCA, 2011.
[82] W. Liu et al., “A Trustworthy Key Generation Prototype Based on DDR3 PUF for

Wireless Sensor Networks,” in Sensors, 2014.
[83] K. Lofstrom et al., “IC Identi�cation Circuit Using Device Mismatch,” in ISSCC,

2000.
[84] R. Maes et al., “Intrinsic PUFs from Flip-�ops on Recon�gurable Devices,” in WIS-

Sec, 2008.
[85] R. Maes and I. Verbauwhede, “Physically Unclonable Functions: A Study on the

State of the Art and Future Research Directions,” in Towards Hardware-Intrinsic
Security, 2010.

[86] A. Maiti et al., “The Impact of Aging on an Fpga-Based Physical Unclonable Func-
tion,” in FPL, 2011.

[87] M. Majzoobi et al., “FPGA PUF Using Programmable Delay Lines,” in WIFS, 2010.
[88] M. Majzoobi et al., “Testing Techniques for Hardware Security,” in ITC, 2008.
[89] J. Meza et al., “Revisiting Memory Errors in Large-scale Production Data Centers:

Analysis and Modeling of New Trends from the Field,” in DSN, 2015.
[90] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in IMW, 2013.
[91] O. Mutlu, “The RowHammer Problem and Other Issues we may Face as Memory

Becomes Denser,” in DATE, 2017.
[92] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Scheduling for Chip

Multiprocessors,” in MICRO, 2007.
[93] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling: Enabling

High-performance And Fair Shared Memory Controllers,” in ISCA, 2008.
[94] O. Mutlu and L. Subramanian, “Research Problems and Opportunities in Memory

Systems,” in SUPERFRI, 2014.
[95] P. J. Nair et al., “ArchShield: Architectural Framework for Assisting DRAM Scal-

ing by Tolerating High Error Rates,” in ISCA, 2013.
[96] P. J. Nair et al., “XED: Exposing On-Die Error Detection Information for Strong

Memory Reliability,” in ISCA, 2016.
[97] T.-Y. Oh et al., “A 3.2Gbps/pin 8Gb 1.0V LPDDR4 SDRAM with Integrated ECC

Engine for sub-1V DRAM Core Operation,” 2014.
[98] E. Öztürk et al., “Physical Unclonable Function with Tristate Bu�ers,” in ISCAS,

2008.
[99] E. Öztürk et al., “Towards Robust Low Cost Authentication for Pervasive Devices,”

in PerCom, 2008.
[100] Y. Pang et al., “Optimization of RRAM-based Physical Unclonable Function with

a Novel Di�erential Read-Out Method,” in EDL, 2017.
[101] M. Patel et al., “The Reach Pro�ler (REAPER): Enabling the Mitigation of DRAM

Retention Failures via Pro�ling at Aggressive Conditions,” in ISCA, 2017.

[102] M. K. Qureshi et al., “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh
for DRAM Systems,” in DSN, 2015.

[103] A. Rahmati et al., “Probable Cause: The Deanonymizing E�ects of Approximate
DRAM,” in ISCA, 2016.

[104] P. J. Restle et al., “DRAM Variable Retention Time,” in IEDM, 1992.
[105] S. Rixner, “Memory Controller Optimizations For Web Servers,” in MICRO, 2004.
[106] S. Rixner et al., “Memory Access Scheduling,” in ISCA, 2000.
[107] G. S. Rose et al., “Foundations of Memristor Based PUF Architectures,” in

NANOARCH, 2013.
[108] U. Rührmair et al., “On the Foundations of Physical Unclonable Functions,” in

IACR Cryptology Archive, 2009.
[109] A. Schaller et al., “Intrinsic Rowhammer PUFs: Leveraging the Rowhammer Ef-

fect for Improved Security,” in HOST, 2017.
[110] B. Schroeder et al., “DRAM Errors in the Wild: a Large-scale Field Study,” in

SIGMETRICS, 2009.
[111] V. Seshadri, “Simple DRAM and Virtual Memory Abstractions to Enable Highly

E�cient Memory Systems,” Ph.D. dissertation, Carnegie Mellon University, 2016.
[112] V. Seshadri et al., “RowClone: Fast and Energy-E�cient In-DRAM Bulk Data

Copy and Initialization,” in MICRO, 2013.
[113] V. Seshadri et al., “Ambit: In-memory Accelerator for Bulk Bitwise Operations

Using Commodity DRAM Technology,” in MICRO, 2017.
[114] W. Shin et al., “NUAT: A Non-Uniform Access Time Memory Controller,” inHPCA,

2014.
[115] C. G. Shirley and W. R. Daasch, “Copula Models of Correlation: A DRAM Case

Study,” in TC, 2014.
[116] Y. Su et al., “A 1.6 pJ/bit 96% Stable Chip-ID Generating Circuit Using Process

Variations,” in ISSCC, 2007.
[117] L. Subramanian et al., “The Blacklisting Memory Scheduler: Achieving High Per-

formance And Fairness At Low Cost,” in ICCD, 2014.
[118] L. Subramanian et al., “BLISS: Balancing Performance, Fairness and Complexity

in Memory Access Scheduling,” in TPDS, 2016.
[119] G. E. Suh and S. Devadas, “Physical Unclonable Functions for Device Authentica-

tion and Secret Key Generation,” in DAC, 2007.
[120] S. Sutar et al., “D-PUF: An Intrinsically Recon�gurable DRAM PUF for Device

Authentication in Embedded Systems,” in CASES, 2016.
[121] S. Sutar et al., “Memory-based Combination PUFs for Device Authentication in

Embedded Systems,” in arXiv, 2017.
[122] Q. Tang et al., “A DRAM Based Physical Unclonable Function Capable of Gener-

ating >1032 Challenge Response Pairs per 1Kbit Array for Secure Chip Authenti-
cation,” in CICC, 2017.

[123] F. Tehranipoor et al., “DRAM Based Intrinsic Physical Unclonable Functions for
System Level Security,” in GLVLSI, 2015.

[124] F. Tehranipoor et al., “Investigation of DRAM PUFs Reliability Under Device Ac-
celerated Aging E�ects,” in ISCAS, 2017.

[125] P. Tuyls et al., “Read-proof Hardware From Protective Coatings,” in CHES, 2006.
[126] H. Usui et al., “DASH: Deadline-Aware High-performance Memory Scheduler for

Heterogeneous Systems �th Hardware Accelerators,” in TACO, 2016.
[127] V. Van der Leest et al., “Hardware Intrinsic Security from D Flip-�ops,” in ACM

STC, 2010.
[128] E. I. Vatajelu et al., “STT MRAM-Based PUFs,” in DATE, 2015.
[129] E. I. Vatajelu et al., “STT-MRAM-Based PUF Architecture Exploiting Magnetic

Tunnel Junction Fabrication-Induced Variability,” in JETC, 2016.
[130] J. Wang et al., “ProactiveDRAM: A DRAM-initiated Retention Management

Scheme,” in ICCD, 2014.
[131] Y. Wang et al., “RADAR: A Case for Retention-aware DRAM Assembly and Repair

in Future FGR DRAM Memory,” in DAC, 2015.
[132] Y. Wang et al., “Flash Memory for Ubiquitous Hardware Security Functions: True

Random Number Generation and Device Fingerprints,” in SP, 2012.
[133] Z. Wang et al., “Current Mirror Array: A Novel Circuit Topology for Combining

Physical Unclonable Function and Machine Learning,” in TCS, 2017.
[134] K. Xiao et al., “Bit Selection Algorithm Suitable for High-volume Production of

SRAM-PUF,” in HOST, 2014.
[135] W. Xiong et al., “Run-time Accessible DRAM PUFs in Commodity Devices,” in

CHES, 2016.
[136] W. Yan et al., “A Novel Way to Authenticate Untrusted Integrated Circuits,” in

ICCAD, 2015.
[137] D. S. Yaney et al., “A Meta-stable Leakage Phenomenon in DRAM Charge Storage-

Variable Hold Time,” in IEDM, 1987.
[138] J. Ye et al., “OPUF: Obfuscation Logic Based Physical Unclonable Function,” in

IOLTS, 2015.
[139] C. E. Yin et al., “Design and Implementation of a Group-Based RO PUF,” in DATE,

2013.
[140] L. Zhang et al., “Highly Reliable Spin-Transfer Torque Magnetic RAM-Based

Physical Unclonable Function with Multi-Response-Bits per Cell,” in TIFS, 2015.
[141] L. Zhang et al., “Optimizating Emerging Nonvolatile Memories for Dual-Mode

Applications: Data Storage and Key Generator,” in TCAD, 2015.
[142] T. Zhang et al., “Half-DRAM: A High-bandwidth and Low-power DRAM Archi-

tecture from the Rethinking of Fine-grained Activation,” in ISCA, 2014.
[143] X. Zhang et al., “Exploiting DRAM Restore Time Variations In Deep Sub-micron

Scaling,” in DATE, 2015.
[144] X. Zhang et al., “Restore Truncation for Performance Improvement in Future

DRAM Systems,” in HPCA, 2016.
[145] Y. Zheng et al., “RESP: A Robust Physical Unclonable Function Retro�tted into

Embedded SRAM Array,” in DAC, 2013.

14

	Introduction
	Background
	DRAM Organization
	blackDRAM Refresh and DRAM Retention PUFs
	DRAM Operation
	DRAM Timing Parameters
	Violating Manufacturer-Specified Timing Parameters

	Properties of a Runtime-Accessible PUF
	Characteristics of a Desirable PUF
	Characteristics of a Runtime-Accessible PUF

	Testing Environment
	DRAM Retention PUFs: Analysis
	Evaluating Retention PUFs
	Evaluation Times of Retention PUFs
	Optimizing Retention PUFs

	DRAM Latency PUFs
	PUF Characteristics: Experimental Analysis
	Diffuseness
	Uniqueness and Uniform Randomness
	Unclonability
	Repeatability

	Runtime-Accessible PUF Metrics Evaluation
	Low Latency
	Low System Interference

	Design Considerations
	Repeatability of Cell Latency Failures
	DRAM Latency PUF Evaluation Algorithm
	Variation Among PUF Memory Segments
	Support for Changing Timing Parameters
	Device Enrollment
	In-DRAM Error Correcting Codes
	Effect of High-Temperature

	Related Work
	Conclusion

