
Chai: Collaborative Heterogeneous Applications
for Integrated-architectures

Juan Gómez-Luna∗, Izzat El Hajj†, Li-Wen Chang†, Vı́ctor Garcı́a-Flores‡§,
Simon Garcia de Gonzalo†, Thomas B. Jablin†¶, Antonio J. Peña§ and Wen-mei Hwu†

∗Universidad de Córdoba, †University of Illinois at Urbana-Champaign, ‡Universitat Politècnica de Catalunya,
§Barcelona Supercomputing Center, ¶MulticoreWare, Inc.

el1goluj@uco.es, {elhajj2, lchang20}@illinois.edu, vgarcia@ac.upc.edu,
{grcdgnz2, jablin}@illinois.edu, antonio.pena@bsc.es, w-hwu@illinois.edu

Abstract—Heterogeneous system architectures are evolving to-
wards tighter integration among devices, with emerging features
such as shared virtual memory, memory coherence, and system-
wide atomics. Languages, device architectures, system specifica-
tions, and applications are rapidly adapting to the challenges
and opportunities of tightly integrated heterogeneous platforms.
Programming languages such as OpenCL 2.0, CUDA 8.0, and
C++ AMP allow programmers to exploit these architectures for
productive collaboration between CPU and GPU threads. To
evaluate these new architectures and programming languages,
and to empower researchers to experiment with new ideas, a suite
of benchmarks targeting these architectures with close CPU-GPU
collaboration is needed.

In this paper, we classify applications that target heterogeneous
architectures into generic collaboration patterns including data
partitioning, fine-grain task partitioning, and coarse-grain task
partitioning. We present Chai, a new suite of 14 benchmarks that
cover these patterns and exercise different features of hetero-
geneous architectures with varying intensity. Each benchmark
in Chai has seven different implementations in different pro-
gramming models such as OpenCL, C++ AMP, and CUDA, and
with and without the use of the latest heterogeneous architecture
features. We characterize the behavior of each benchmark with
respect to varying input sizes and collaboration combinations,
and evaluate the impact of using the emerging features of
heterogeneous architectures on application performance.

I. INTRODUCTION

Throughput-oriented, massively parallel processor architec-
tures such as GPUs have become a central part of modern
computing systems because of their ability to provide high
performance at low energy costs. As a result, applications are
increasingly requiring tighter integration of CPUs and GPUs to
reduce the overhead incurred when leveraging the computing
power of the entire system [1]. For this reason, heterogeneous
system architectures and programming models are moving
towards such tighter integration [2], [3] by introducing fea-
tures such as shared virtual memory, memory coherence, and
system-wide atomics to enable fine-grained CPU and GPU
collaboration.

While the concepts of these features may appear simple,
their design and implementation involve complex tradeoffs
that must be guided with compelling use cases and bench-
marks. Furthermore, to explore new ideas and innovations for
future computing systems, the community needs a suite of

collaborative heterogeneous benchmarks. Such a suite must
cover a wide variety of CPU-GPU collaboration patterns, it
must exercise a wide range of architectural features, and it
must include implementations in both high- and low-level
programming models. Chai is designed to serve these needs.

Applications that execute on heterogeneous architectures
with close collaboration between different processors have dif-
ferent collaboration patterns. Some applications perform data
partitioning where different processors perform the same op-
eration on different data elements. Other applications perform
task partitioning where different processors carry out different
tasks based on their strengths. Moreover, task partitioning
could be fine-grain or coarse-grain depending on whether data-
parallel tasks are partitioned on an individual basis or on a
group basis at global synchronization points.

Many benchmarks suites [4], [5], [6], [7], [8] have been
widely used for evaluating heterogeneous platforms. How-
ever, these suites are originally designed for evaluating GPU
computing use cases and do not capture true collaboration
between CPUs and GPUs that new heterogeneous architectures
enable. A few suites [9], [10] are designed for benchmarking
collaboration between CPUs and GPUs. However, these suites
either fall short in considering close collaboration using latest
features of heterogeneous architectures, or miss collaboration
patterns and sub-patterns that are needed for well-rounded
studies of the new generations of heterogeneous systems. For
example, Hetero-Mark [10], [11], [12] is a recent benchmark
suite that covers collaborative CPU and GPU execution. How-
ever, it only provides one data partitioning benchmark without
variability in partitioning granularity, input vs. output partition-
ing, use of system-wide atomics, inter-worker synchronization,
and load balance of data parallel tasks. All these features
are essential for a complete and well-rounded performance
analysis and characterization of heterogeneous architectures
and software stacks.

To fill this gap, Chai provides 14 benchmarks that cover
various collaboration patterns, and within each pattern, cover
different computation behaviors to exercise different features
of the architecture. Chai encompasses a well-rounded com-
bination of aspects such as partitioning granularity, use of
system-wide atomics, inter-worker synchronization, and load

43 978-1-5386-3890-3/17/$31.00 ©2017 IEEE

balance. Moreover, each benchmark in Chai has seven dif-
ferent implementations in different programming models such
as OpenCL, C++ AMP, and CUDA, and with and without the
use of the latest heterogeneous architecture features.

We make the following contributions:
• We propose classifications for heterogeneous applications

based on the nature of collaboration between processors.
• We implement 14 benchmarks in 5 different programming

models that cover the proposed classifications and that
exercise different features of heterogeneous architectures.
These benchmarks have been open-sourced.

• We use our benchmarks to evaluate the impact of using
the latest features of heterogeneous architectures over
traditional methods.

• We characterize the behavior of each benchmark with
respect to varying heterogeneity and input size.

The rest of this paper is organized as follows. Section II
gives a brief overview of recent features of heterogeneous ar-
chitectures and programming models that are targeted by Chai.
Section III describes the collaboration patterns. Section IV
describes the benchmarks. Section V shows the diversity of
the benchmarks within each pattern. Section VI summarizes
how the benchmarks are implemented in alternative program-
ming models. Section VII presents different experiments to
evaluate heterogeneous architecture features, characterize the
benchmarks, and compare programming models. Section VIII
discusses related work. Section IX concludes.

II. HETEROGENEOUS ARCHITECTURE FEATURES

This section gives a very brief overview of the latest features
of heterogeneous architectures and programming models that
are important for collaboration.

Shared Virtual Memory (SVM) allows host and device
processors to share the same virtual address range. This
feature improves programmability by eliminating the need for
double allocation of data on host and device, tracking contents
of memory buffers and explicit copying of data. With this
support, CPU and GPU can access data structures through
the same pointers. It also has the potential to improve perfor-
mance via dedicated memory transfer mechanisms and copy
avoidance, otherwise data in collaborative programs might
be copied back and forth multiple times between processors.
SVM is a great feature of modern heterogeneous architectures
for writing simpler and more efficient code.

With the introduction of SVM, memory coherence be-
comes an important issue. In programs with close collabo-
ration between processors, multiple devices might access or
even update the same addresses frequently in SVM. Thus het-
erogeneous architectures are moving towards adding support
for memory coherence.

System-wide atomics are introduced to allow visible atomic
updates across all processors in the system. This feature
enables fine-grain communication and synchronization across
devices [1] and provides essential support for a variety of
CPU-GPU collaboration patterns.

A variety of programming models have introduced support
for the heterogeneous architecture features described in this
section, including low-level ones such as OpenCL 2.0 and
CUDA 8.0 and high-level ones such as C++ AMP. Shared
Virtual Memory is OpenCL 2.0 terminology. In CUDA, it is
called Unified Memory which first appeared with CUDA 6.0,
with memory coherence implemented later with CUDA 8.0
and the Pascal architecture. In HSA, it is called Unified
Memory Space. System-wide atomics is CUDA terminology.
In OpenCL 2.0, they are just C++11 atomics with the memory
scope set appropriately. In HSA, they are called platform
atomics. In the literature, they have also been called system-
scope atomics [10] and cross-device atomics [13].

III. COLLABORATION PATTERNS

The benchmarks in this paper are categorized into collab-
oration patterns based on how work is partitioned between
devices. The main patterns are data partitioning, fine-grain task
partitioning, and coarse-grain task partitioning. These patterns
are summarized in Figure 1 and described in this section.

Figure 1(a) shows an example application that consists of a
coarse-gain task composed of two coarse-grain sub-tasks with
a dependence between them. The execution of the bottom task
depends on the result of the top task. Each coarse-grain sub-
task consists of a collection of data-parallel fine-grain tasks.
Each fine-grain task is a chain of dependent sub-tasks with the
dependence between them going from top to bottom.

A. Data Partitioning

In data partitioning, different devices perform the same
task on different parts of the data concurrently. Figure 1(b)
illustrates how data partitioning can be applied to the example
in Figure 1(a), and the corresponding execution flow for data
partitioning is shown in Figure 1(c). Data partitioning benefits
from heterogeneous architectures because input and output
data can be stored in SVM which helps avoid explicit copying
of data between devices and merging of final result. Moreover,
system-wide atomics can be used in applications that require
atomic updates to an output value or synchronization flag.

One of the challenges with this computation pattern is
identifying the best strategy for partitioning data. Our hetero-
geneous benchmark suite provides researchers with a flexible
interface to experiment with different partitioning strategies.
Such strategies could be static, dynamic, data-dependent,
profiling-based, learning-based, etc. By default, we use a naive
dynamic strategy where workers from all participating devices
use system-wide atomics to grab tiles of work from a shared
worklist in SVM.

B. Fine-grain Task Partitioning

In fine-grain task partitioning, different devices perform
different sub-tasks of the fine-grain parallel tasks in a computa-
tion. Figure 1(d) illustrates how fine-grain task partitioning can
be applied to the example in Figure 1(a), and the corresponding
execution flow is shown in Figure 1(e). While sub-tasks of the
same fine-grain task cannot be performed in parallel because

44

(a) Application Structure

BA

BA

A B

(b) Data Partitioning

(c) Data Partitioning

Execution Flow

B

A

B

A

A B

queue

queue

(d) Fine-grain Task Partitioning

(e) Fine-grain Task Partitioning

Execution Flow

A

B

A B

(f) Coarse-grain Task Partitioning

(g) Coarse-grain Task Partitioning

Execution Flow

fine-grain sub-tasks

fine-grain task

coarse-grain sub-task

coarse-grain task

coarse-grain synchronization

A, B different devices

LEGEND

Fig. 1. Computation Patterns

of the dependence between them, sub-tasks of different parallel
tasks can be parallelized which enables different devices in this
pattern to execute concurrently. For example, in Figure 1(e), all
pentagon sub-tasks execute on device A in parallel and deliver
their results to device B where the triangle sub-tasks wait for
them. A triangle sub-task executes as soon as it receives its
value in parallel with other triangle sub-tasks on device B, and
also in parallel with other pentagon sub-tasks on device A from
different fine-grain tasks. Fine-grain task partitioning benefits
from heterogeneous architectures because the use of SVM
and system-wide atomics makes fine-grain communication of
intermediate results between devices practical.

C. Coarse-grain Task Partitioning

In coarse-grain task partitioning, different devices perform
different coarse-grain sub-tasks of the entire computation.
Figure 1(f) illustrates how coarse-grain task partitioning can be
applied to the example in Figure 1(a), and the corresponding
execution flow is shown in Figure 1(g). Coarse-grain task
partitioning benefits from heterogeneous architectures because
the use of SVM eliminates the need to copy data across devices
between task partitions. Furthermore, the efficiency of global
barrier synchronization depends on the latency and throughput
of the implementation of system-wide atomics.

Different devices cannot execute concurrently in this pat-
tern because a dependence exists between coarse-grain tasks.
However, it is possible to achieve concurrency if multiple data
sets are processed together in a pipeline fashion. In Chai, both
kinds of benchmarks are provided.

IV. HETEROGENEOUS BENCHMARKS

Table I shows a summary of the benchmarks included in the
Chai benchmark suite, categorized according to the patterns
described in Section III. The suite contains 14 programs from
10 unique benchmarks with some benchmarks having multiple

implementations. This section describes each program in the
suite, providing details about the implementation of each.

A. Bézier Surface (BS)

Bézier tensor-product surfaces are geometric constructions
widely used in engineering and computer-graphics. In partic-
ular, we use a parametric non-rational formulation of Bézier
surfaces on a regular 2D surface.

This implementation of Bézier Surface performs data par-
titioning on the output surface, dividing it into square tiles
and assigning them to different CPU threads or GPU work-
groups. The GPU work-group size is chosen to be the same
as the tile size such that each surface point in the tile is
computed by one GPU work-item. SVM is used to store the
input matrix of control points and the output surface points.
As an optimization, the input control points are loaded into
the local GPU on-chip memory.

B. Canny Edge Detection - Data Partitioning (CEDD)

Canny Edge Detection [14] is a widely used edge detection
algorithm in image processing. Multiple frames of a video
stream are each processed through four stages: (1) a Gaussian
filter to remove noise, (2) a Sobel filter to obtain the intensity
and direction of edge gradients, (3) non-maximum suppression
to make edges thinner, and (4) hysteresis to suppress weak
edges not connected to strong ones.

This implementation of Canny Edge Detection performs
data partitioning on the video, assigning different frames to the
CPU and the GPU. Each stage is implemented as a different
kernel, but all kernels for a frame are executed all on the CPU
or all on the GPU. The data partitioning is considered coarse-
grain because a frame is processed by the entire CPU thread
pool or the entire GPU kernel. SVM is used to store all input,
output, and partial results of the imaging pipelines.

45

Collaboration
Pattern

Short
Name

Benchmark

Data Partitioning

BS Bézier Surface
CEDD Canny Edge Detection
HSTI Image Histogram (Input Partitioning)
HSTO Image Histogram (Output Partitioning)
PAD Padding
RSCD Random Sample Consensus
SC Stream Compaction
TRNS In-place Transposition

Task
Partitioning

Fine-
grain

RSCT Random Sample Consensus
TQ Task Queue System (Synthetic)
TQH Task Queue System (Histogram)

Coarse-
grain

BFS Breadth-First Search
CEDT Canny Edge Detection
SSSP Single-Source Shortest Path

TABLE I
SUMMARY OF BENCHMARKS INCLUDED IN CHAI.

C. Image Histogram - Input Partitioning (HSTI)

Histograms count the number of observations in an input
that fall into disjoint bins. They are widely used in many appli-
cations, notably in image processing and pattern recognition.
This program calculates a histogram of the pixel values in a
monochrome image.

We provide two implementations of image histogram based
on input and output data partitioning. This implementation,
based on input partitioning, performs data partitioning on the
input image, dividing it into chunks of pixels and assigning the
chunks to different CPU threads and GPU work-groups. The
GPU work-group size is chosen to be the same as the chunk
size such that each pixel is processed by one GPU work-item.
SVM is used to store the input image and output histogram
bins, and system-wide atomics are used by the CPU threads
and GPU work-items to update the bins atomically.

As an optimization, private histograms of partial results are
allocated for each CPU thread or GPU work-group and merged
into the global one at the end to reduce contention of atomic
operations on the bins. The CPU per-thread private histograms
do not need to be updated with atomics since they are only
accessed by a single thread. The GPU per-work-group private
histograms are stored in local on-chip memory.

D. Image Histogram - Output Partitioning (HSTO)

This implementation of image histogram, based on output
partitioning, performs static data partitioning on the output
histogram bins, dividing them into two mutually exclusive sets,
one for the CPU, and one for the GPU. Both the CPU and
the GPU must go through the entire input, but they only vote
on a bin if it falls in their own partition. This arrangement
eliminates conflicts between CPU threads and GPU work-
items on the output bins.

E. Padding (PAD)

Padding is a data manipulation primitive that inserts space
between elements of an array. It is commonly used for memory
alignment adjustment and matrix transposition. We use in-
place padding which unidirectionally shifts data in memory
to expand an array, while ensuring that shifted elements do
not overwrite old values before they are consumed.

This implementation of padding performs data partitioning
on the input matrix, assigning each row to a different CPU
thread or GPU work-group. It uses synchronization flags to
notify adjacent workers that it is safe to write to the locations it
loaded from [15]. SVM is used to store the array being padded
and the synchronization flags, and system-wide atomics are
used to set the flags.

F. Random Sample Consensus - Data Partitioning (RSCD)

Random Sample Consensus (RANSAC) is an iterative
method to estimate parameters of a mathematical model from
a set of input data using random sampling [16]. Each iter-
ation includes two main stages: (1) an inherently sequential
model fitting stage using random samples of input, and (2) a
massively parallel evaluation stage measuring outlier counts
and model errors. The iteration space is parallelized such that
different random sample sets are attempted simultaneously.

We provide two implementations of RANSAC based on data
and task partitioning. The data partitioning implementation
partitions the iteration space, assigning each iteration to a
different CPU thread or GPU work-group. On the GPU, the
fitting stage of each iteration is computed by only one work-
item in the work-group, since it is inherently sequential, while
the evaluation stage is computed by all work-items. SVM is
used to store the input data and resulting models. System-wide
atomics are used for enqueueing successful models.

G. Stream Compaction (SC)

Stream compaction, also known as filtering, is a data manip-
ulation primitive that removes elements from an array, keeping
those satisfying a certain predicate. It is commonly used in
tree traversal, image processing, and databases. We use in-
place stream compaction which, like padding, unidirectionally
shifts data in memory. Unlike padding, it shrinks the array and
is more irregular, removing a variable number of elements.

This implementation of stream compaction performs data
partitioning on the input array, assigning tiles to a different
CPU threads or GPU work-groups. It uses synchronization
flags like padding to synchronize with adjacent workers.
SVM is used to store the array being compacted and the
synchronization flags, and system-wide atomics are used to
set the flags

H. In-place Transposition (TRNS)

Transposition is an important data manipulation primitive
that converts between data layouts such as Array-of-Structures
(AoS), Structure-of-Arrays (SoA), and Array-of-Structure-of-
Tiled-Arrays (ASTA). It is important in heterogeneous systems
because it reshapes data according to the memory access
preferences of different devices (e.g., stride-one access for
CPU vs. coalesced access for GPU). We use in-place trans-
position which reduces memory consumption, but requires
sophisticated cycle dependency checks [17].

This implementation of transpose performs data partitioning
on the set of dependency cycles, assigning each cycle to one
or more CPU threads or GPU work-groups. Only dynamic

46

partitioning is possible with this program because the full
set of cycles is not known at the beginning to be statically
partitioned. SVM is used to store the matrix being transposed
and the flags used to synchronize between CPU threads or
GPU work-groups collaborating on the same cycle. System-
wide atomics are used for updating the collaboration flags.

I. Random Sample Consensus - Task Partitioning (RSCT)

This implementation of RANSAC (see Section IV-F) per-
forms task partitioning of each iteration, executing the se-
quential fitting stage on the CPU and the parallel evaluation
stage on the GPU. Once a CPU thread computes the model of
an iteration, it sets a flag that enables a GPU work-group to
evaluate the model. The work-group then atomically updates
the best model and checks if convergence has been reached.
SVM is used to store the input data and the variables used
to track the convergence point. System-wide atomics are used
for updating the convergence point.

J. Task Queue System (TQ)

A task queue system is a generic computation where the
host generates and enqueues tasks on several queues residing
in device memory. Chen et al. [18] present a task queue system
that uses asynchronous data transfers, zero-copies, and events
to create a task queue system for GPUs. Such a system can
be implemented with fewer lines of code using SVM and
system-wide atomics because there is no need for double
declaration/allocation and data transfers are not necessary.

We provide two implementations of task queue system
based on a synthetic and a histogram application. In this
implementation, CPU threads generate and enqueue two types
of synthetic tasks (heavy and light) that GPU work-groups
dequeue and execute these tasks. Each work-item in the work-
group performs some arithmetic additions on an input data
element and updates it. SVM is used to store the queue
and queue counters, and system-wide atomics are used to
update the counters in order to enqueue/dequeue tasks. These
counters include the number of enqueued tasks, the number
of consumed tasks, and the current number of tasks in queue.

K. Task Queue System - Histogram Application (TQH)

This is a histogram application that is built on top of TQ,
where the CPU reads and enqueues frames of a video sequence
and the GPU calculates a histogram of pixel brightness in each
frame. Since atomic operations contend on the histogram bins,
the execution time for each frame can be vary significantly
based on the frame’s pixel distribution.

L. Breadth-First Search (BFS)

Breadth-First Search is a well-known graph traversal algo-
rithm. We use a queue-based version which starts at a single
source node, and on each iteration, visits the neighbors of
every node in the current frontier and enqueues previously
unvisited neighbors in the next frontier.

Our implementation of BFS applies coarse-grain task par-
titioning on the set of frontiers. Because graphs are irregular,

different frontiers often have a different number of nodes and
node neighbors to process. Small frontiers are more efficiently
processed on the CPU while large ones are better suited for
the GPU. The CPU loops over nodes in the current frontier
and enqueues unvisited neighbors sequentially, while the GPU
assigns different work-items to different frontier nodes which
use atomics to enqueue unvisited neighbors concurrently.

As an optimization, a hierarchical queueing system [19] is
used on the GPU where each work-group updates a local
queue in on-chip memory then merges the result to the
global queue at the end. SVM is used to allocate data which
makes it easy to switch between the CPU and the GPU
between frontiers. System-wide atomics are used to implement
global synchronization across the CPU and the GPU between
frontiers before a switch takes place (if any).

M. Canny Edge Detection - Task Partitioning (CEDT)

This implementation of Canny Edge Detection (see Sec-
tion IV-B) performs task partitioning on the four imaging
stages. Gaussian and Sobel filters are executed on the GPU
because they are more regular. Non-maximum suppression
and hysteresis are executed on the CPU because they contain
control flow statements that can make GPU threads diverge,
thereby underutilizing the vector lanes. SVM is used to store
all data which makes it easy to switch between CPU and GPU
between stages. Different devices can execute different stages
from different frames in parallel forming a pipeline pattern.

N. Single-Source Shortest Path (SSSP)

Single-Source Shortest Path (SSSP) is a well-known graph
traversal algorithm which finds the path with the minimal sum
of edge weights from a given source node to each node in the
graph. All nodes except the source are initialized to having
infinite cost. Frontiers are then constructed in a manner similar
to BFS, but at the enqueueing of each neighbor, the minimum
cost of reaching that neighbor is also calculated and updated.

This implementation of SSSP is similar to BFS, with
additional work needed to calculate and atomically update
the minimum cost. It turns out that this additional work
significantly affects the characteristics of the benchmark with
respect to the impact of using SVM and system-wide atomics,
which is why we choose to include both in the suite.

V. HETEROGENEOUS BENCHMARK SUITE DIVERSITY

In addition to covering the three general collaboration pat-
terns, Chai is designed to exhibit diversity within each pattern
as well. Different benchmarks in each pattern are chosen
to have different computation and memory access patterns
such that they exercise different features of the architecture
with varying intensity. Table II summarizes the differences
between benchmarks in each pattern, and the following section
elaborates more on each aspect.

Different data partitioning benchmarks have different levels
of data partitioning granularity: fine-grain, where work-groups
grab tiles of data parallel tasks but each work-item processes
an independent task, medium-grain, where data parallel tasks

47

Data Partitioning Fine-grain Task Partitioning
Benchmark Partitioning

Granularity
Partitioned
Data

System-wide
Atomics

Load
Balance

Benchmark System-wide Atomics Load
Balance

BS Fine Output None Yes RSCT Sync, Compute Yes
CEDD Coarse Input, Output None Yes TQ Sync No
HSTI Fine Input Compute No TQH Sync No
HSTO Fine Output None No Coarse-grain Task Partitioning
PAD Fine Input, Output Sync Yes Benchmark System-wide Atomics Partitioning Concurrency
RSCD Medium Output Compute Yes BFS Sync, Compute Iterative No
SC Fine Input, Output Sync No CEDT Sync Non-iterative Yes
TRNS Medium Input, Output Sync No SSSP Sync, Compute Iterative No

TABLE II
HETEROGENEOUS BENCHMARK SUITE DIVERSITY.

are assigned to work-groups as a whole, and coarse-grain,
where data parallel tasks are assigned to kernels as a whole.
The reason we do not consider partitioning granularity to be a
major pattern classification criterion like in task partitioning is
that granularity has a more fundamental impact on benchmark
structure in task partitioning than it does in data partitioning.

There are other aspects that also differentiate data parti-
tioning benchmarks. One aspect is whether the input and
output are each partitioned or shared. This aspect is useful
for studying read-only and read-write accesses to shared
caches. Another aspect is the use of system-wide atomics.
Some benchmarks use system-wide atomics for computation to
update output values and counters. Other benchmarks exhibit
inter-worker synchronization and use system-wide atomics to
update and spin-lock on synchronization flags. This aspect
is useful for evaluating performance of atomics as well as
software optimizations related to the use of atomics. Another
aspect is whether or not data parallel tasks are load balanced.
This aspect is useful for evaluating scheduling policies and
other optimizations related to load balancing.

Task partitioning benchmarks are already classified accord-
ing to partitioning granularity into fine-grain or coarse-grain
partitioning. Fine-grain task partitioning benchmarks, like data
partitioning ones, are also diverse in their use of system-wide
atomics for computation and in load balancing. However, they
all use system-wide atomics for inter-worker synchronization
between fine-grain sub-tasks, which is a defining characteristic
of this pattern.

For coarse-grain task partitioning, use of system-wide atom-
ics for computation is also a differentiating aspect between
benchmarks. However, all benchmarks use system-wide atom-
ics for global synchronization between coarse-grain tasks.
Load balance is a less relevant aspect because it is contained
within a coarse-grain task, not across coarse-grain task parti-
tion boundaries. One aspect that is relevant to coarse-grain
task partitioning is whether concurrency is supported (see
Section III-C). Another aspect is whether different coarse-
grain tasks are the same operation applied iteratively to
different data, or if they are entirely different operations. These
aspects are useful for studying task partitioning heuristics and
scheduling policies.

VI. ALTERNATIVE IMPLEMENTATIONS

The implementations described in Section IV are written in
OpenCL. These are the primary implementations contributed
by the suite, and are referred to as OpenCL-U. The suffix ‘-U’
denotes the use of a unified address space and system-wide
atomics. However, to provide additional value for researchers,
Chai also includes six other alternative implementations of
each benchmark: OpenCL-D, C++ AMP, CUDA-U, CUDA-D,
CUDA-U-Sim, and CUDA-D-Sim. The suffix ‘-D’ denotes the
use of discrete address spaces, and the suffix ‘-Sim’ denotes
that the benchmark is written for the gem5-gpu simulator [20].
These alternatives are described in this section.

A. OpenCL-D
For all benchmarks, we provide OpenCL implementations

that run on systems without SVM, coherence, and system-wide
atomics. These benchmarks use traditional techniques such as
double allocation of buffers, copying of data between devices,
and kernel launch/termination for cross-device synchroniza-
tion. Comparing the OpenCL-U implementations to their
OpenCL-D counterparts is useful for evaluating the impact
of integrated heterogeneous architecture features.

For data partitioning, the OpenCL-D implementations have
the additional burden of merging the final output results pro-
duced by the CPU and GPU after the copy. Moreover, dynamic
partitioning is not possible without system-wide atomics if
data partitioning is not coarse-grain so only static partitioning
can be employed. Inter-worker synchronization between CPU
and GPU workers is also not possible without system-wide
atomics, so only the GPU is used in those benchmarks (PAD,
SC, TRNS).

For fine-grain task partitioning, fine-grain communication is
not possible without system-wide atomics. For this reason, the
OpenCL-D implementations perform all instances of a fine-
grain sub-tasks on its assigned device, store the intermediate
results in a buffer and copy it to the other device, then perform
all instances of the fine-grain sub-task on the other device.

For coarse-grain task partitioning, the OpenCL-D imple-
mentations copy data between devices whenever switching
takes place. Kernel termination and relaunch is used instead
of system-wide atomics for global synchronization.

B. C++ AMP
For all benchmarks, we provide a C++ AMP implementation

that reproduces the OpenCL-U versions. The main differ-

48

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

D U D U D U D U D U D U D U D U D U D U D U D U D U D U

BS CEDD HSTI HSTO PAD RSCD SC TRNS RSCT TQ TQH BFS CEDT SSSP

Fine-grain Coarse-grain

Data Partitioning Task Partitioning

E
x
ec

u
ti

o
n

 T
im

e
(n
o
rm
.)

Allocation

Copy To

Device

Copy Back

& Merge

Kernel

Fig. 2. Comparing OpenCL-D and OpenCL-U

Benchmark Configuration (#wi, #wg) Datasets
BS 16×16, 32 4x4 (default), 8x8, 12x12
CEDD [23] 16×16, framesize/#wi Peppa (default), Maradona, Paw
HSTI 256, 16 256 bins (default), 32, 4096
HSTO 256, 16 256 bins (default), 32, 4096
PAD [15] 64, 16 1000×999 (default), 6000×5999, 12000×11999
RSCD 256, 64 2000 iterations (default), 4000, 8000
SC [15] 256, 32 50% (default), 0%, 100%
TRNS [17] 64, 64 tile=32 (default), 4, 128
RSCT 256, 64 2000 iterations (default)
TQ [18] 64, 320 50% (default)
TQH [18] 64, 160 Basket (default)
BFS [19] 256, 8 NY (default), NE, UT
CEDT [23] 16×16, framesize/#wi Peppa (default), Maradona, Paw
SSSP [19] 64, 32 NY (default), NE, UT

TABLE III
BENCHMARK SOURCE, GPU CONFIGURATIONS, AND DATASETS.

ence is that system-wide atomics and coherent memory are
implicit, not explicitly declared. Comparing the OpenCL-U
implementations to their C++ AMP counterparts is useful
for evaluating the tradeoffs between high-level and low-level
implementations programming models.

C. CUDA

For all OpenCL-U and OpenCL-D implementations, we
additionally provide equivalent CUDA implementations de-
noted as CUDA-U and CUDA-D respectively. We also provide
CUDA implementations for the gem5-gpu simulator [20],
denoted as CUDA-U-Sim and CUDA-D-Sim respectively.

VII. EVALUATION

A. Methodology

The OpenCL and C++ AMP experiments are performed on
an AMD Kaveri A10-7850K APU with HSA features. This
integrated platform includes 4 CPU cores, and 8 GPU compute
units. They share DDR3 DRAM memory. The AMD APP
SDK 3.0 is used for compiling OpenCL and ROCm 1.2 [21]
is used for compiling C++ AMP. Timing measurements are
obtained with regular Linux timers for uniformity across
implementations. We run the programs 10 times. In each run,
the kernel time is the average of 50 runs, after 5 warm-up runs.
Profiling results are obtained using CodeXL [22]. CUDA-U-
Sim experiments are simulated on gem5-gpu [20], a cycle-level
simulator that merges gem5 and GPGPU-Sim.

Table III lists the benchmarks with the corresponding GPU
configurations and datasets used. For benchmarks leveraging

existing code, we cite the source; otherwise, the benchmark
was implemented from scratch. For GPU configurations, we
select the work-group and work-item count with the best
performance on our system. For datasets, we provide a default
dataset and two additional ones for the benchmarks used in
the experiments in Section VII-C.

B. Impact of Heterogeneous Architecture Features

Figure 2 compares the execution time of OpenCL-D and
OpenCL-U versions broken down into allocation, copy, and
kernel time. The objective of this experiment is to evaluate the
impact of using heterogeneous architecture features. Default
datasets are used as well as the best GPU+CPU configuration
for each benchmark (see Section VII-C). For data partitioning
benchmarks, both OpenCL-D and OpenCL-U implementations
use the best static partitioning for each for fair comparison.

All data partitioning benchmarks show improvement in
execution time for OpenCL-U over OpenCL-D if allocation
time is not considered. While the kernel execution times
are generally comparable, the main source of improvement
comes from the elimination of the copy and merge time. It is
noteworthy, however, that SVM allocation in OpenCL-U takes
longer than regular allocation in OpenCL-D, which makes
OpenCL-U slower in total for a few cases. In real applications,
this is less of an issue because buffers are allocated once then
copied to and reused multiple times, but in general, this result
is useful for researchers working on optimizing software and
hardware support for memory allocation and management.

An interesting observation when comparing just kernel
execution time is that the benchmarks where the OpenCL-
U kernels take slightly longer than the OpenCL-D kernels are
the same ones that use system-wide atomics for computation
and synchronization as indicated in Table II. That is because
system-wide atomics are more expensive than regular atomics.
These results are useful for researchers working on software
and hardware optimizations for system-wide atomics.

Another interesting observation when comparing just kernel
execution time is that only in CEDD, OpenCL-U outperforms
OpenCL-D. One possible reason is that OpenCL-U on Kaveri
can potentially achieve higher effective memory bandwidth by
using both the Radeon memory bus and the fusion bus [24], in
contrast with OpenCL-D just using the Radeon memory bus.
The fact that data partitioning in CEDD is coarse-grain means

49

4

16

64

256

1024

4096

1CPU 2CPU 4CPU GPU GPU +

1CPU

GPU +

2CPU

GPU +

4CPU

E
x
ec

u
ti

o
n

 T
im

e
(m
s)

12x12 (300x300)
8x8 (300x300)
4x4 (300x300)

(a) BS

best

16

64

256

1024

4096

16384

1CPU 2CPU 4CPU GPU GPU +

1CPU

GPU +

2CPU

GPU +

4CPU

E
x
ec

u
ti

o
n

 T
im

e
(m
s) Paw

Peppa
Maradona

(b) CEDD

1

2

4

8

16

32

1CPU 2CPU 4CPU GPU GPU +

1CPU

GPU +

2CPU

GPU +

4CPU

E
x
ec

u
ti

o
n

 T
im

e
(m
s) 4096 bins

256 bins
32 bins

(c) HSTI

8

9

10

11

12

13

1CPU 2CPU 4CPU GPU GPU +

1CPU

GPU +

2CPU

GPU +

4CPU

E
x
ec

u
ti

o
n

 T
im

e
(m
s) 4096 bins

256 bins
32 bins

(d) HSTO

best

1

4

16

64

256

1024

4096

1CPU 2CPU 4CPU GPU GPU +

1CPU

GPU +

2CPU

GPU +

4CPU

E
x
ec

u
ti

o
n

 T
im

e
(m
s)

12000x11999
6000x5999
1000x999

(e) PAD

best

8

32

128

512

1CPU 2CPU 4CPU GPU GPU +

1CPU

GPU +

2CPU

GPU +

4CPU

E
x
ec

u
ti

o
n

 T
im

e
(m
s)

1
0.5
0

(g) SC

best

16

64

256

1024

1CPU 2CPU 4CPU GPU GPU +

1CPU

GPU +

2CPU

GPU +

4CPU

E
x
ec

u
ti

o
n

 T
im

e
(m
s)

b=4
b=32
b=128

(h) TRNS

best

1

4

16

64

256

1024

1CPU 2CPU 4CPU GPU GPU +

1CPU

GPU +

2CPU

GPU +

4CPU

E
x
ec

u
ti

o
n

 T
im

e
(m
s) 8000 iters

4000 iters
2000 iters

(f) RSCD

best

best

best

Fig. 3. Characterizing Data Partitioning Benchmarks with respect to Hetero-
geneity Combinations and Input Size

that there is no data sharing between the CPU and the GPU
which process different frames, thus favoring the combined
use of Radeon and fusion buses in OpenCL-U.

All fine-grain task partitioning benchmarks show perfor-
mance improvement for OpenCL-U over OpenCL-D even with
allocation time included. Like data partitioning benchmarks,

(a) BFS

32

64

128

256

512

1024

2048

4096

GPU + 1CPU GPU + 2CPU GPU + 4CPU

E
x
ec

u
ti

o
n

 T
im

e
(m
s)

Paw
Peppa
Maradona

(b) CEDT

16

128

1024

8192

65536

524288

1CPU 2CPU 4CPU GPU GPU +

1CPU

GPU +

2CPU

GPU +

4CPU

E
x
ec

u
ti

o
n

 T
im

e
(m
s)

NE
NY
UT

16.00

32.00

64.00

128.00

256.00

512.00

1CPU 2CPU 4CPU GPU GPU +

1CPU

GPU +

2CPU

GPU +

4CPU

E
x
ec

u
ti

o
n

 T
im

e
(m
s)

NE
NY
UT

best

best

best

(c) SSSP

Fig. 4. Characterizing Coarse-grain Task Partitioning Benchmarks with
respect to Heterogeneity Combinations and Input Size

part of the improvement comes from elimination of copy time.
However, a significant improvement in kernel execution time
is also observed. This comes from the fact that fine-grain
communication enables concurrent execution of independent
sub-tasks on different devices which OpenCL-D serializes.

All coarse-grain task partitioning benchmarks show perfor-
mance improvement for OpenCL-U over OpenCL-D. Again,
the elimination of the copy time contributes to this improve-
ment. Moreover, kernel time in iterative benchmarks improves
due to the use of system-wide atomics for global synchroniza-
tion instead of kernel termination/relaunch. Note that SSSP is
much less sensitive than BFS despite their similarity because
it performs more computations.

Finally, we note that the benchmarks showing the most
improvement for OpenCL-U over OpenCL-D (e.g., HSTI, TQ,
BFS) have in common that they perform little computation
relative to the data transfer and synchronization activities
which new features of integrated heterogeneous architectures
are intended to optimize.

C. Collaboration Combinations and Problem Size

The objective of the experiment in this section is to charac-
terize each benchmark with respect to varying combinations of
collaborative versus non-collaborative execution and problem
size. OpenCL-U is used and all three datasets are tested.

Results for data partitioning benchmarks are shown in
Figure 3. It is clear that heterogeneous collaboration improves
performance over CPU-only and GPU-only execution. The
best CPU+GPU version outperforms the GPU-only version
by up to 47%, 91%, 34%, 16%, 55%, 82%, and 10% for
BS, CEDD, HSTI, PAD, RSCD, SC, and TRNS respectively
(the difference is hard to see in the figure). One interesting
observation is that the improvement tends to be smaller for
benchmarks that are more memory-bound such as PAD and
TRNS. For example, PAD and SC implement similar algo-

50

0

0.5

1

1.5

2

2.5

BS CEDD HSTI HSTO PAD RSCD SC TRNS RSCT TQ TQH BFS CEDT SSSP geomean

S
p
ee
d
u
p

OpenCL-U

C++AMP

4.37 11.93 8.08

Fig. 5. Comparing OpenCL-U and C++ AMP Execution Time

rithms, but SC performs additional reductions and prefix-sum
operations that make it more compute-bound, thus benefiting
more from additional CPU threads. Moreover, adding all four
CPU cores to assist the GPU is not always beneficial. There
is usually a sweet spot for the number of CPU threads to add
which varies for each benchmark and even each dataset in
the same benchmark. These results are useful for researchers
working on schedulers and tuners.

Comparing HSTI and HSTO, we note that HSTI is faster
for the three datasets. That is because the image is large so
HSTO is burdened by all CPU threads and GPU work-groups
needing to load the entire image. However, HSTO is better
for small images and large histograms. For example, it is 7×
faster for a 4096-bin histogram of a 384×256 image.

Fine-grain task partitioning benchmarks are not evaluated in
this experiment because they require both devices to execute
simultaneously by definition. Since the objective of this exper-
iment is to show the benefit of collaborative execution over
non-collaborative execution, just showing the collaborative
combinations is not interesting because there are no CPU-only
and GPU-only versions to compare to.

Results for coarse-grain task partitioning benchmarks are
shown in Figure 4. CEDT does not have CPU-only and GPU-
only versions because the coarse-grain sub-tasks for different
devices are represented by different kernels, some written for
the CPU and some written for the GPU. On the other hand,
BFS and SSSP are iterative and can be executed as CPU-
only or GPU-only by biasing the condition that decides when
to switch. Similar to data partitioning benchmarks, the best
CPU+GPU version outperforms the GPU-only version by up
to 15% and 22% for BFS and SSSP respectively, with the
sweet spot varying for different benchmarks and datasets.

D. Comparison with C++ AMP

Figure 5 compares the performance of OpenCL-U and
C++ AMP benchmarks normalized to the slower implemen-
tation. Note that C++ AMP implementations of RSCD and
RSCT are disadvantaged because compilation fails when the
outlier counter is placed in local memory, so global memory
is used. This is a known issue [25].

The results show that the C++AMP implementations per-
form comparably for most benchmarks. C++ AMP versions
perform slightly better in a few cases while OpenCL-U
versions perform significantly better in other cases. Overall,
OpenCL-U implementations have a geometric mean speedup
of 1.64× over C++ AMP implementations (1.22× if we
exclude RSCD and RSCT). These results are useful for the

0%
20%
40%
60%
80%

100% Occupancy

MemUnitBusy

CacheHitVALUUtilization

VALUBusy

LEGEND:

BS CEDD (gaussian)

CEDD (sobel) CEDD (non-max) HSTI

HSTO PAD RSCD SC

CEDD (hysteresis)

TRNS TQ TQH

BFS CEDT (gaussian) CEDT (sobel)

RSCT

SSSP

Fig. 6. Profiling Metrics for each Benchmark

evaluation of new programming models and tools compared
to existing low- and high-level languages.

E. Benchmark Profiling

The objective of the experiments in this section is to further
show the diversity of the benchmarks and validate some
observations in Sections VII-B and VII-C.

Figure 6 shows radar charts for each benchmark for five
profiling metrics, obtained by profiling the GPU kernels of
CPU+GPU runs. We considered all metrics CodeXL provides
and found these five to be the most useful for basic clas-
sification. VALUBusy and MemUnitBusy are the percentage
of GPU time that vector ALUs and memory units are active
respectively. CacheHit is the percentage of memory opera-
tions that hit the data cache. VALUBusy, MemUnitBusy, and
CacheHit together help distinguish compute- and memory-
bound benchmarks. Occupancy is the ratio of active wave-
fronts to the maximum, and VALUUtilization is the percentage

51

0
2
4
6
8

10
12
14

S
y

st
e
m

-w
id

e
 A

to
m

ic
s

(o
p

s
/

th
o
u

sa
n

d
 c

y
cl

es
) CPU Atomics GPU Atomics 49.5 64.8

Fig. 7. Usage of System-wide Atomics

of active lanes in a wavefront. Occupancy and VALUUtiliza-
tion show the quality of the GPU implementations.

Looking at MemUnitBusy and VALUBusy with reference
to the results in Section VII-C gives multiple insights. BS
and SC are more compute-bound which is why they benefit
from increasing heterogeneity, while PAD and TRNS are more
memory-bound and do not benefit as much. RSCD, despite
keeping the memory unit busy, has a high L2 cache hit rate so
it does not saturate the memory, which is why it does benefit
from increased heterogeneity. HSTI, HSTO, and TQH have
low MemUnitBusy and VALUBusy because most of the time
is spent updating private histograms in local memory. Looking
at VALUUtilization, most benchmarks show high utilization
except CEDD (non-max) which contains many control flow
statements that make work-items diverge, and BFS which is
irregular by nature. As for Occupancy, most benchmarks have
100% occupancy because the configurations have already been
selected to have the best performance. Exceptions are BS, SC,
and PAD which use thread coarsening to exploit ILP and MLP.

Because CodeXL does not provide profiling information
about system-wide atomics, we use the CUDA-U-Sim imple-
mentations to obtain this information from the simulator. The
results are shown in Figure 7. These results further verify the
classifications in Table II. All data partitioning benchmarks use
system-wide atomics for dynamic partitioning. Beyond that,
BS, CEDD, and HSTO do not use system-wide atomics; PAD,
SC, and TRNS use them for inter-worker synchronization;
HSTI and RSCD use them for computation but RSCD has
more computations to hide them. For fine-grain task parti-
tioning benchmarks, RSCT, TQ, and TQH all use system-
wide atomics for fine-grain communication across devices,
but RSCT does more work which hides them compared to
the other two. Note that RSCT uses slightly more than RSCD
because they both use them for computation, but RSCT also
uses them for fine-grain communication. For coarse-grain task
partitioning benchmarks, BFS and SSSP have very high usage
because they use them for both computation and global syn-
chronization, while CEDT only uses them for sycnhronication
between CPU proxy threads.

VIII. RELATED WORK

Many high-quality benchmark suites [4], [5], [6], [7], [8]
are widely used for evaluating CPU and GPU computing, but
they are not originally designed to capture true collaboration
between devices. These suites could be modified to use new
features of integrated heterogeneous systems for collaborative
execution. However, the benchmarks in these suites may not be

the best candidates for collaboration and may not collectively
achieve the coverage we provide because the suites were not
designed with these objectives in mind.

A few suites [9], [10] are designed with truly collaborative
patterns. Valar [9] provides OpenCL benchmarks with closely-
coupled execution on multiple OpenCL devices. However,
it targets an old generation of AMD APUs without HSA
and does not exercise latest features of heterogeneous ar-
chitectures. Chai focuses on truly collaborative benchmarks
using the latest heterogeneous architecture features. Hetero-
Mark [10], [11], [12] provides collaborative benchmarks that
exercise new features of heterogeneous architectures, including
one data partitioning benchmark and three task partitioning
benchmarks. However, it does not emphasize diversity within
collaboration patterns and classifies task partitioning bench-
marks by the order in which devices execute. Chai provides
wider coverage within each pattern for more well-rounded per-
formance analyses. It also considers partitioning granularity a
more important sub-classification for task partitioning because
it has a more fundamental impact on program structure.

MachSuite [26] is designed for accelerators and high-
level synthesis which may or may not involve heterogeneous
computing. Chai is designed for heterogeneous computing.

Multiple studies investigate the benefits and limitations
of current heterogeneous architectures. Spafford et al. [27]
evaluate performance, power, and programmability tradeoffs
between integrated and discrete architectures. Lee et al. [28]
characterize the performance of data-intensive kernels on
integrated architectures. Zhu et al. [29] study co-run perfor-
mance on APUs. Farooqui et al. [30] investigate optimizations
for graph applications on APUs. Garcia-Flores et al. [31]
propose a design of shared last-level cache for heterogeneous
architectures. Erb et al. [32] address the problem of buffer
overflow from GPU code, which is exacerbated by the sharing
of CPU and GPU address spaces. Chai is a benchmark suite
that would be useful to all such studies.

In addition to SVM and system-wide atomics, another
emerging feature in heterogeneous systems is device-side
kernel launch. This feature has stimulated much architecture
and compiler research [33], [34], [35], [36], [37] but still lacks
benchmark suite support, which is an important subject for
future work.

IX. CONCLUSION

We present Chai, a suite of 14 collaborative heterogeneous
benchmarks that leverage the latest features of heterogeneous
architectures, cover a wide range of collaboration patterns, ex-
hibit great diversity within each pattern, and have seven differ-
ent implementations each: OpenCL-U, OpenCL-D, C++ AMP,
CUDA-U, CUDA-D, CUDA-U-Sim, and CUDA-D-Sim. We
use the benchmarks to show the impact of using heterogeneous
architecture features and to demonstrate the potential of col-
laborative execution. Chai provides a suite that is much-needed
for a well-rounded evaluation of heterogeneous architectures,
programming models, and software stacks.

52

ACKNOWLEDGMENT

This work is supported by the Ministry of Education of
Spain (TIN2013-42253P), the Junta de Andalucı́a of Spain
(TIC-1692), Hewlett-Packard Enterprise Labs, the Starnet
Center for Future Architecture Research (C-FAR), the Huawei
Project on High Performance Algorithm Compilation for Het-
erogeneous System (YB2015120003). and the DoE National
Nuclear Security Administration (DE-NA0002374).

REFERENCES

[1] W.-m. W. Hwu, Heterogeneous System Architecture: A New Compute
Platform Infrastructure. Morgan Kaufman, 2015.

[2] Khronos group, “The OpenCL specification,” Version 2.0, 2015.
[3] NVIDIA, “CUDA C programming guide v. 8.0,” September 2016.
[4] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,

N. Anssari, G. D. Liu, and W.-m. W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput computing,”
IMPACT Technical Report, 2012.

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in Workload Characterization, IEEE International Symposium on,
pp. 44–54, 2009.

[6] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spaf-
ford, V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous comput-
ing (SHOC) benchmark suite,” in Proceedings of the 3rd Workshop on
General-Purpose Computation on Graphics Processing Units, pp. 63–
74, 2010.

[7] Y. Ukidave, F. N. Paravecino, L. Yu, C. Kalra, A. Momeni, Z. Chen,
N. Materise, B. Daley, P. Mistry, and D. Kaeli, “NUPAR: A bench-
mark suite for modern GPU architectures,” in Proceedings of the
6th ACM/SPEC International Conference on Performance Engineering,
2015.

[8] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irregular
programs on GPUs,” in Workload Characterization, IEEE International
Symposium on, pp. 141–151, 2012.

[9] P. Mistry, Y. Ukidave, D. Schaa, and D. Kaeli, “Valar: A benchmark
suite to study the dynamic behavior of heterogeneous systems,” in
Proceedings of the 6th Workshop on General Purpose Processor Using
Graphics Processing Units, pp. 54–65, 2013.

[10] Y. Sun, X. Gong, A. K. Ziabari, L. Yu, X. Li, S. Mukherjee, C. Mc-
Cardwell, A. Villegas, and D. Kaeli, “Hetero-Mark, a benchmark suite
for CPU-GPU collaborative computing,” in Workload Characterization,
IEEE International Symposium on, 2016.

[11] S. Mukherjee, X. Gong, L. Yu, C. McCardwell, Y. Ukidave, T. Dao, F. N.
Paravecino, and D. Kaeli, “Exploring the features of OpenCL 2.0,” in
Proceedings of the 3rd International Workshop on OpenCL, pp. 5:1–5:5,
2015.

[12] S. Mukherjee, Y. Sun, P. Blinzer, A. K. Ziabari, and D. Kaeli, “A
comprehensive performance analysis of HSA and OpenCL 2.0,” in
Performance Analysis of Systems and Software, IEEE International
Symposium on, pp. 183–193, 2016.

[13] M. Gupta, D. Das, P. Raghavendra, T. Tye, L. Lobachev, A. Agarwal,
and R. Hegde, “Implementing cross-device atomics in heterogeneous
processors,” in Parallel and Distributed Processing Symposium Work-
shop, IEEE International, pp. 659–668, 2015.

[14] J. Canny, “A computational approach to edge detection,” Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on, no. 6, pp. 679–698,
1986.

[15] J. Gómez Luna, L.-W. Chang, I.-J. Sung, W.-M. Hwu, and N. Guil, “In-
place data sliding algorithms for many-core architectures,” in Parallel
Processing, 44th International Conference on, pp. 210–219, 2015.

[16] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, pp. 381–395, June
1981.

[17] I.-J. Sung, G. Liu, and W.-M. Hwu, “DL: A data layout transformation
system for heterogeneous computing,” in Innovative Parallel Computing,
pp. 1 –11, 2012.

[18] L. Chen, O. Villa, S. Krishnamoorthy, and G. Gao, “Dynamic load
balancing on single- and multi-GPU systems,” in Parallel Distributed
Processing, IEEE International Symposium on, pp. 1–12, 2010.

[19] L. Luo, M. Wong, and W.-m. Hwu, “An effective GPU implementation
of breadth-first search,” in Proceedings of the 47th Design Automation
Conference, pp. 52–55, 2010.

[20] J. Power, J. Hestness, M. Orr, M. Hill, and D. Wood, “gem5-gpu:
A heterogeneous CPU-GPU simulator,” Computer Architecture Letters,
vol. 13, Jan 2014.

[21] RadeonOpenCompute, “ROCm: Platform for GPU enabled HPC and
ultrascale computing.” https://github.com/RadeonOpenCompute/ROCm,
2016.

[22] AMD, “App profiler settings.” http://developer.amd.com/tools-and-sdks/
archive/compute/amd-app-profiler/user-guide/app-profiler-settings/.

[23] S. Kelley. https://github.com/smskelley/canny-opencl.
[24] AMD, “Memory system on Fusion APUs. The benefits of zero copy.”

http://developer.amd.com/wordpress/media/2013/06/1004 final.pdf,
June 2011.

[25] bshaozi, “Compile problem.” https://github.com/RadeonOpenCompute/
hcc/issues/124, September 2016.

[26] B. Reagen, R. Adolf, Y. S. Shao, G. Y. Wei, and D. Brooks, “MachSuite:
Benchmarks for accelerator design and customized architectures,” in
Workload Characterization, IEEE International Symposium on, pp. 110–
119, 2014.

[27] K. L. Spafford, J. S. Meredith, S. Lee, D. Li, P. C. Roth, and J. S. Vetter,
“The tradeoffs of fused memory hierarchies in heterogeneous computing
architectures,” in Proceedings of the 9th conference on Computing
Frontiers, pp. 103–112, 2012.

[28] K. Lee, H. Lin, and W.-c. Feng, “Performance characterization of data-
intensive kernels on AMD fusion architectures,” Computer Science-
Research and Development, vol. 28, no. 2-3, pp. 175–184, 2013.

[29] Q. Zhu, B. Wu, X. Shen, K. Shen, L. Shen, and Z. Wang, “Understanding
co-run performance on CPU-GPU integrated processors: observations,
insights, directions,” Frontiers of Computer Science, pp. 1–17, 2016.

[30] N. Farooqui, I. Roy, Y. Chen, V. Talwar, and K. Schwan, “Accelerating
graph applications on integrated GPU platforms via instrumentation-
driven optimizations,” in Proceedings of the ACM International Confer-
ence on Computing Frontiers, pp. 19–28, 2016.

[31] V. Garcia-Flores, J. Gómez-Luna, T. Grass, A. Rico, E. Ayguade,
and A. J. Pena, “Evaluating the effect of last-level cache sharing
on integrated GPU-CPU systems with heterogeneous applications,” in
Workload Characterization, IEEE International Symposium on, pp. 1–
10, 2016.

[32] C. Erb, M. Collins, and J. L. Greathouse, “Dynamic buffer overflow de-
tection for gpgpus,” in Proceedings of the 2017 International Symposium
on Code Generation and Optimization, pp. 61–73, 2017.

[33] G. Chen and X. Shen, “Free launch: optimizing GPU dynamic kernel
launches through thread reuse,” in Proceedings of the 48th International
Symposium on Microarchitecture, pp. 407–419, 2015.

[34] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili, “Dynamic thread
block launch: A lightweight execution mechanism to support irregular
applications on GPUs,” in ACM SIGARCH Computer Architecture News,
vol. 43, pp. 528–540, 2015.

[35] H. Wu, D. Li, and M. Becchi, “Compiler-assisted workload consolidation
for efficient dynamic parallelism on GPU,” in Parallel and Distributed
Processing Symposium, 2016 IEEE International, pp. 534–543, 2016.

[36] I. El Hajj, J. Gómez-Luna, C. Li, L.-W. Chang, D. Milojicic, and W.-m.
Hwu, “KLAP: Kernel launch aggregation and promotion for optimizing
dynamic parallelism,” in Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on, pp. 1–12, IEEE, 2016.

[37] X. Tang, A. Pattnaik, H. Jiang, O. Kayiran, A. Jog, M. I. Sreepathi Pai,
M. T. Kandemir, and C. R. Das, “Controlled kernel launch for dynamic
parallelism in GPUs,”

53

54

