
November 29, 2010 11:59 ham_338065_ch08 Sheet number 1 Page number 267 cyan black

267

c h a p t e r

8
The Memory System

Chapter Objectives

In this chapter you will learn about:

• Basic memory circuits

• Organization of the main memory

• Memory technology

• Direct memory access as an I/O mechanism

• Cache memory, which reduces the effective
memory access time

• Virtual memory, which increases the
apparent size of the main memory

• Magnetic and optical disks used for
secondary storage



November 29, 2010 11:59 ham_338065_ch08 Sheet number 2 Page number 268 cyan black

268 C H A P T E R 8 • The Memory System

Programs and the data they operate on are held in the memory of the computer. In this chapter, we discuss
how this vital part of the computer operates. By now, the reader appreciates that the execution speed of
programs is highly dependent on the speed with which instructions and data can be transferred between the
processor and the memory. It is also important to have sufficient memory to facilitate execution of large
programs having large amounts of data.

Ideally, the memory would be fast, large, and inexpensive. Unfortunately, it is impossible to meet all
three of these requirements simultaneously. Increased speed and size are achieved at increased cost. Much
work has gone into developing structures that improve the effective speed and size of the memory, yet keep
the cost reasonable.

The memory of a computer comprises a hierarchy, including a cache, the main memory, and secondary
storage, as Chapter 1 explains. In this chapter, we describe the most common components and organizations
used to implement these units. Direct memory access is introduced as a mechanism to transfer data between
an I/O device, such as a disk, and the main memory, with minimal involvement from the processor. We
examine memory speed and discuss how access times to memory data can be reduced by means of caches.
Next, we present the virtual memory concept, which makes use of the large storage capacity of secondary
storage devices to increase the effective size of the memory. We start with a presentation of some basic
concepts, to extend the discussion in Chapters 1 and 2.

8.1 Basic Concepts

The maximum size of the memory that can be used in any computer is determined by the
addressing scheme. For example, a computer that generates 16-bit addresses is capable of
addressing up to 216 = 64K (kilo) memory locations. Machines whose instructions generate
32-bit addresses can utilize a memory that contains up to 232 = 4G (giga) locations, whereas
machines with 64-bit addresses can access up to 264 = 16E (exa) ≈ 16× 1018 locations.
The number of locations represents the size of the address space of the computer.

The memory is usually designed to store and retrieve data in word-length quantities.
Consider, for example, a byte-addressable computer whose instructions generate 32-bit
addresses. When a 32-bit address is sent from the processor to the memory unit, the high-
order 30 bits determine which word will be accessed. If a byte quantity is specified, the
low-order 2 bits of the address specify which byte location is involved.

The connection between the processor and its memory consists of address, data, and
control lines, as shown in Figure 8.1. The processor uses the address lines to specify the
memory location involved in a data transfer operation, and uses the data lines to transfer
the data. At the same time, the control lines carry the command indicating a Read or
a Write operation and whether a byte or a word is to be transferred. The control lines
also provide the necessary timing information and are used by the memory to indicate
when it has completed the requested operation. When the processor-memory interface
receives the memory’s response, it asserts the MFC signal shown in Figure 5.19. This is
the processor’s internal control signal that indicates that the requested memory operation
has been completed. When asserted, the processor proceeds to the next step in its execution
sequence.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 3 Page number 269 cyan black

8.1 Basic Concepts 269

Up to 2k addressable

k-bit address

n-bit data

Control lines
Processor

 Memory

locations

Word length = n bits

Processor-memory interface

(R/W, etc.)

Figure 8.1 Connection of the memory to the processor.

A useful measure of the speed of memory units is the time that elapses between the
initiation of an operation to transfer a word of data and the completion of that operation. This
is referred to as the memory access time. Another important measure is the memory cycle
time, which is the minimum time delay required between the initiation of two successive
memory operations, for example, the time between two successive Read operations. The
cycle time is usually slightly longer than the access time, depending on the implementation
details of the memory unit.

A memory unit is called a random-access memory (RAM) if the access time to any
location is the same, independent of the location’s address. This distinguishes such memory
units from serial, or partly serial, access storage devices such as magnetic and optical disks.
Access time of the latter devices depends on the address or position of the data.

The technology for implementing computer memories uses semiconductor integrated
circuits. The sections that follow present some basic facts about the internal structure and
operation of such memories. We then discuss some of the techniques used to increase the
effective speed and size of the memory.

Cache and Virtual Memory
The processor of a computer can usually process instructions and data faster than they

can be fetched from the main memory. Hence, the memory access time is the bottleneck in
the system. One way to reduce the memory access time is to use a cache memory. This is
a small, fast memory inserted between the larger, slower main memory and the processor.
It holds the currently active portions of a program and their data.

Virtual memory is another important concept related to memory organization. With
this technique, only the active portions of a program are stored in the main memory, and the
remainder is stored on the much larger secondary storage device. Sections of the program
are transferred back and forth between the main memory and the secondary storage device



November 29, 2010 11:59 ham_338065_ch08 Sheet number 4 Page number 270 cyan black

270 C H A P T E R 8 • The Memory System

in a manner that is transparent to the application program. As a result, the application
program sees a memory that is much larger than the computer’s physical main memory.

Block Transfers
The discussion above shows that data move frequently between the main memory and

the cache and between the main memory and the disk. These transfers do not occur one
word at a time. Data are always transferred in contiguous blocks involving tens, hundreds,
or thousands of words. Data transfers between the main memory and high-speed devices
such as a graphic display or an Ethernet interface also involve large blocks of data. Hence,
a critical parameter for the performance of the main memory is its ability to read or write
blocks of data at high speed. This is an important consideration that we will encounter
repeatedly as we discuss memory technology and the organization of the memory system.

8.2 Semiconductor RAM Memories

Semiconductor random-access memories (RAMs) are available in a wide range of speeds.
Their cycle times range from 100 ns to less than 10 ns. In this section, we discuss the main
characteristics of these memories. We start by introducing the way that memory cells are
organized inside a chip.

8.2.1 Internal Organization of Memory Chips

Memory cells are usually organized in the form of an array, in which each cell is capable of
storing one bit of information. A possible organization is illustrated in Figure 8.2. Each row
of cells constitutes a memory word, and all cells of a row are connected to a common line
referred to as the word line, which is driven by the address decoder on the chip. The cells
in each column are connected to a Sense/Write circuit by two bit lines, and the Sense/Write
circuits are connected to the data input/output lines of the chip. During a Read operation,
these circuits sense, or read, the information stored in the cells selected by a word line and
place this information on the output data lines. During a Write operation, the Sense/Write
circuits receive input data and store them in the cells of the selected word.

Figure 8.2 is an example of a very small memory circuit consisting of 16 words of 8 bits
each. This is referred to as a 16× 8 organization. The data input and the data output of each
Sense/Write circuit are connected to a single bidirectional data line that can be connected
to the data lines of a computer. Two control lines, R/W and CS, are provided. The R/W
(Read/Write) input specifies the required operation, and the CS (Chip Select) input selects
a given chip in a multichip memory system.

The memory circuit in Figure 8.2 stores 128 bits and requires 14 external connections
for address, data, and control lines. It also needs two lines for power supply and ground
connections. Consider now a slightly larger memory circuit, one that has 1K (1024) memory
cells. This circuit can be organized as a 128× 8 memory, requiring a total of 19 external
connections. Alternatively, the same number of cells can be organized into a 1K× 1 format.
In this case, a 10-bit address is needed, but there is only one data line, resulting in 15 external



November 29, 2010 11:59 ham_338065_ch08 Sheet number 5 Page number 271 cyan black

8.2 Semiconductor RAM Memories 271

circuit
Sense/Write

Address
decoder

CS

cells
Memory

circuit
Sense/Write Sense/Write

circuit

Data input /output lines:

A0

A1

A2

A3

W0

W1

W15

b7 b1 b0

WR/

b ′7 b′1 b′0

b7 b1 b0

Figure 8.2 Organization of bit cells in a memory chip.

connections. Figure 8.3 shows such an organization. The required 10-bit address is divided
into two groups of 5 bits each to form the row and column addresses for the cell array. A
row address selects a row of 32 cells, all of which are accessed in parallel. But, only one
of these cells is connected to the external data line, based on the column address.

Commercially available memory chips contain a much larger number of memory cells
than the examples shown in Figures 8.2 and 8.3. We use small examples to make the figures
easy to understand. Large chips have essentially the same organization as Figure 8.3, but
use a larger memory cell array and have more external connections. For example, a 1G-bit
chip may have a 256M × 4 organization, in which case a 28-bit address is needed and 4
bits are transferred to or from the chip.

8.2.2 Static Memories

Memories that consist of circuits capable of retaining their state as long as power is applied
are known as static memories. Figure 8.4 illustrates how a static RAM (SRAM) cell may be
implemented. Two inverters are cross-connected to form a latch. The latch is connected to
two bit lines by transistors T1 and T2. These transistors act as switches that can be opened or



November 29, 2010 11:59 ham_338065_ch08 Sheet number 6 Page number 272 cyan black

272 C H A P T E R 8 • The Memory System

CS

Sense /Write
circuitry

array
memory cell

address
5-bit row

input/output
Data

5-bit
decoder

address
5-bit column

address
10-bit

output multiplexer
 32-to-1

input demultiplexer

32 32×

WR/

W0

W1

W31

and

Figure 8.3 Organization of a 1K × 1 memory chip.

YX

Word line

Bit lines

b

T2T1

b′

Figure 8.4 A static RAM cell.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 7 Page number 273 cyan black

8.2 Semiconductor RAM Memories 273

closed under control of the word line. When the word line is at ground level, the transistors
are turned off and the latch retains its state. For example, if the logic value at point X is
1 and at point Y is 0, this state is maintained as long as the signal on the word line is at
ground level. Assume that this state represents the value 1.

Read Operation
In order to read the state of the SRAM cell, the word line is activated to close switches

T1 and T2. If the cell is in state 1, the signal on bit line b is high and the signal on bit line b′

is low. The opposite is true if the cell is in state 0. Thus, b and b′ are always complements
of each other. The Sense/Write circuit at the end of the two bit lines monitors their state
and sets the corresponding output accordingly.

Write Operation
During a Write operation, the Sense/Write circuit drives bit lines b and b′, instead of

sensing their state. It places the appropriate value on bit line b and its complement on b′

and activates the word line. This forces the cell into the corresponding state, which the cell
retains when the word line is deactivated.

CMOS Cell
A CMOS realization of the cell in Figure 8.4 is given in Figure 8.5. Transistor pairs

(T3, T5) and (T4, T6) form the inverters in the latch (see Appendix A). The state of the cell
is read or written as just explained. For example, in state 1, the voltage at point X is
maintained high by having transistors T3 and T6 on, while T4 and T5 are off. If T1 and T2

are turned on, bit lines b and b′ will have high and low signals, respectively.

Word line

b

Bit lines

T1 T2

T6T5

T4T3

YX

Vsupply
b′

Figure 8.5 An example of a CMOS memory cell.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 8 Page number 274 cyan black

274 C H A P T E R 8 • The Memory System

Continuous power is needed for the cell to retain its state. If power is interrupted, the
cell’s contents are lost. When power is restored, the latch settles into a stable state, but not
necessarily the same state the cell was in before the interruption. Hence, SRAMs are said
to be volatile memories because their contents are lost when power is interrupted.

A major advantage of CMOS SRAMs is their very low power consumption, because
current flows in the cell only when the cell is being accessed. Otherwise, T1, T2, and one
transistor in each inverter are turned off, ensuring that there is no continuous electrical path
between Vsupply and ground.

Static RAMs can be accessed very quickly. Access times on the order of a few nanosec-
onds are found in commercially available chips. SRAMs are used in applications where
speed is of critical concern.

8.2.3 Dynamic RAMs

Static RAMs are fast, but their cells require several transistors. Less expensive and higher
density RAMs can be implemented with simpler cells. But, these simpler cells do not
retain their state for a long period, unless they are accessed frequently for Read or Write
operations. Memories that use such cells are called dynamic RAMs (DRAMs).

Information is stored in a dynamic memory cell in the form of a charge on a capacitor,
but this charge can be maintained for only tens of milliseconds. Since the cell is required
to store information for a much longer time, its contents must be periodically refreshed by
restoring the capacitor charge to its full value. This occurs when the contents of the cell are
read or when new information is written into it.

An example of a dynamic memory cell that consists of a capacitor, C, and a transistor,
T , is shown in Figure 8.6. To store information in this cell, transistor T is turned on and an
appropriate voltage is applied to the bit line. This causes a known amount of charge to be
stored in the capacitor.

After the transistor is turned off, the charge remains stored in the capacitor, but not
for long. The capacitor begins to discharge. This is because the transistor continues to

T

C

Word line

Bit line

Figure 8.6 A single-transistor dynamic memory cell.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 9 Page number 275 cyan black

8.2 Semiconductor RAM Memories 275

Column

CSSense/Write
circuits

Cell array

latch
address

Row

Column

latch

decoder
Row

decoderaddress

R/W

A24 11– A10 0–/

D0D7

RAS

CAS

16,384 rows

2,048 bytes
by

Figure 8.7 Internal organization of a 32M × 8 dynamic memory chip.

conduct a tiny amount of current, measured in picoamperes, after it is turned off. Hence,
the information stored in the cell can be retrieved correctly only if it is read before the charge
in the capacitor drops below some threshold value. During a Read operation, the transistor
in a selected cell is turned on. A sense amplifier connected to the bit line detects whether the
charge stored in the capacitor is above or below the threshold value. If the charge is above
the threshold, the sense amplifier drives the bit line to the full voltage representing the logic
value 1. As a result, the capacitor is recharged to the full charge corresponding to the logic
value 1. If the sense amplifier detects that the charge in the capacitor is below the threshold
value, it pulls the bit line to ground level to discharge the capacitor fully. Thus, reading the
contents of a cell automatically refreshes its contents. Since the word line is common to all
cells in a row, all cells in a selected row are read and refreshed at the same time.

A 256-Megabit DRAM chip, configured as 32M× 8, is shown in Figure 8.7. The cells
are organized in the form of a 16K × 16K array. The 16,384 cells in each row are divided
into 2,048 groups of 8, forming 2,048 bytes of data. Therefore, 14 address bits are needed
to select a row, and another 11 bits are needed to specify a group of 8 bits in the selected
row. In total, a 25-bit address is needed to access a byte in this memory. The high-order 14
bits and the low-order 11 bits of the address constitute the row and column addresses of a
byte, respectively. To reduce the number of pins needed for external connections, the row
and column addresses are multiplexed on 14 pins. During a Read or a Write operation, the
row address is applied first. It is loaded into the row address latch in response to a signal
pulse on an input control line called the Row Address Strobe (RAS). This causes a Read
operation to be initiated, in which all cells in the selected row are read and refreshed.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 10 Page number 276 cyan black

276 C H A P T E R 8 • The Memory System

Shortly after the row address is loaded, the column address is applied to the address pins
and loaded into the column address latch under control of a second control line called the
Column Address Strobe (CAS). The information in this latch is decoded and the appropriate
group of 8 Sense/Write circuits is selected. If the R/W control signal indicates a Read
operation, the output values of the selected circuits are transferred to the data lines, D7−0.
For a Write operation, the information on the D7−0 lines is transferred to the selected circuits,
then used to overwrite the contents of the selected cells in the corresponding 8 columns. We
should note that in commercial DRAM chips, the RAS and CAS control signals are active
when low. Hence, addresses are latched when these signals change from high to low. The
signals are shown in diagrams as RAS and CAS to indicate this fact.

The timing of the operation of the DRAM described above is controlled by the RAS
and CAS signals. These signals are generated by a memory controller circuit external to the
chip when the processor issues a Read or a Write command. During a Read operation, the
output data are transferred to the processor after a delay equivalent to the memory’s access
time. Such memories are referred to as asynchronous DRAMs. The memory controller is
also responsible for refreshing the data stored in the memory chips, as we describe later.

Fast Page Mode
When the DRAM in Figure 8.7 is accessed, the contents of all 16,384 cells in the

selected row are sensed, but only 8 bits are placed on the data lines, D7−0. This byte is
selected by the column address, bitsA10−0. Asimple addition to the circuit makes it possible
to access the other bytes in the same row without having to reselect the row. Each sense
amplifier also acts as a latch. When a row address is applied, the contents of all cells in the
selected row are loaded into the corresponding latches. Then, it is only necessary to apply
different column addresses to place the different bytes on the data lines.

This arrangement leads to a very useful feature. All bytes in the selected row can be
transferred in sequential order by applying a consecutive sequence of column addresses
under the control of successive CAS signals. Thus, a block of data can be transferred at a
much faster rate than can be achieved for transfers involving random addresses. The block
transfer capability is referred to as the fast page mode feature. (A large block of data is
often called a page.)

It was pointed out earlier that the vast majority of main memory transactions involve
block transfers. The faster rate attainable in the fast page mode makes dynamic RAMs
particularly well suited to this environment.

8.2.4 Synchronous DRAMs

In the early 1990s, developments in memory technology resulted in DRAMs whose op-
eration is synchronized with a clock signal. Such memories are known as synchronous
DRAMs (SDRAMs). Their structure is shown in Figure 8.8. The cell array is the same as
in asynchronous DRAMs. The distinguishing feature of an SDRAM is the use of a clock
signal, the availability of which makes it possible to incorporate control circuitry on the chip
that provides many useful features. For example, SDRAMs have built-in refresh circuitry,
with a refresh counter to provide the addresses of the rows to be selected for refreshing. As
a result, the dynamic nature of these memory chips is almost invisible to the user.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 11 Page number 277 cyan black

8.2 Semiconductor RAM Memories 277

R/ W

RAS

CAS

CS

Clock

Cell array
latch

address
Row

decoder
Row

decoder
Column Read/Write

circuits & latchescounter
address
Column

Row/Column
address

Data input
register

Data output
register

Data

Refresh
counter

Mode register
and

timing control

Figure 8.8 Synchronous DRAM.

The address and data connections of an SDRAM may be buffered by means of registers,
as shown in the figure. Internally, the Sense/Write amplifiers function as latches, as in
asynchronous DRAMs. A Read operation causes the contents of all cells in the selected
row to be loaded into these latches. The data in the latches of the selected column are
transferred into the data register, thus becoming available on the data output pins. The
buffer registers are useful when transferring large blocks of data at very high speed. By
isolating external connections from the chip’s internal circuitry, it becomes possible to start
a new access operation while data are being transferred to or from the registers.

SDRAMs have several different modes of operation, which can be selected by writing
control information into a mode register. For example, burst operations of different lengths
can be specified. It is not necessary to provide externally-generated pulses on the CAS line
to select successive columns. The necessary control signals are generated internally using
a column counter and the clock signal. New data are placed on the data lines at the rising
edge of each clock pulse.

Figure 8.9 shows a timing diagram for a typical burst read of length 4. First, the row
address is latched under control of the RAS signal. The memory typically takes 5 or 6 clock



November 29, 2010 11:59 ham_338065_ch08 Sheet number 12 Page number 278 cyan black

278 C H A P T E R 8 • The Memory System

R/W

RAS

CAS

Clock

Row Col

D0 D1 D2 D3

Address

Data

Figure 8.9 A burst read of length 4 in an SDRAM.

cycles (we use 2 in the figure for simplicity) to activate the selected row. Then, the column
address is latched under control of the CAS signal. After a delay of one clock cycle, the
first set of data bits is placed on the data lines. The SDRAM automatically increments the
column address to access the next three sets of bits in the selected row, which are placed on
the data lines in the next 3 clock cycles.

Synchronous DRAMs can deliver data at a very high rate, because all the control signals
needed are generated inside the chip. The initial commercial SDRAMs in the 1990s were
designed for clock speeds of up to 133 MHz. As technology evolved, much faster SDRAM
chips were developed. Today’s SDRAMs operate with clock speeds that can exceed 1 GHz.

Latency and Bandwidth
Data transfers to and from the main memory often involve blocks of data. The speed of

these transfers has a large impact on the performance of a computer system. The memory
access time defined earlier is not sufficient for describing the memory’s performance when
transferring blocks of data. During block transfers, memory latency is the amount of time
it takes to transfer the first word of a block. The time required to transfer a complete block
depends also on the rate at which successive words can be transferred and on the size of the
block. The time between successive words of a block is much shorter than the time needed
to transfer the first word. For instance, in the timing diagram in Figure 8.9, the access cycle
begins with the assertion of the RAS signal. The first word of data is transferred five clock
cycles later. Thus, the latency is five clock cycles. If the clock rate is 500 MHz, then the
latency is 10 ns. The remaining three words are transferred in consecutive clock cycles, at
the rate of one word every 2 ns.

The example above illustrates that we need a parameter other than memory latency to
describe the memory’s performance during block transfers. A useful performance measure
is the number of bits or bytes that can be transferred in one second. This measure is often



November 29, 2010 11:59 ham_338065_ch08 Sheet number 13 Page number 279 cyan black

8.2 Semiconductor RAM Memories 279

referred to as the memory bandwidth. It depends on the speed of access to the stored data
and on the number of bits that can be accessed in parallel. The rate at which data can be
transferred to or from the memory depends on the bandwidth of the system interconnections.
For this reason, the interconnections used always ensure that the bandwidth available for
data transfers between the processor and the memory is very high.

Double-Data-Rate SDRAM
In the continuous quest for improved performance, faster versions of SDRAMs have

been developed. In addition to faster circuits, new organizational and operational features
make it possible to achieve high data rates during block transfers. The key idea is to take
advantage of the fact that a large number of bits are accessed at the same time inside the chip
when a row address is applied. Various techniques are used to transfer these bits quickly to
the pins of the chip. To make the best use of the available clock speed, data are transferred
externally on both the rising and falling edges of the clock. For this reason, memories that
use this technique are called double-data-rate SDRAMs (DDR SDRAMs).

Several versions of DDR chips have been developed. The earliest version is known as
DDR. Later versions, called DDR2, DDR3, and DDR4, have enhanced capabilities. They
offer increased storage capacity, lower power, and faster clock speeds. For example, DDR2
and DDR3 can operate at clock frequencies of 400 and 800 MHz, respectively. Therefore,
they transfer data using the effective clock speeds of 800 and 1600 MHz, respectively.

Rambus Memory
The rate of transferring data between the memory and the processor is a function of

both the bandwidth of the memory and the bandwidth of its connection to the processor.
Rambus is a memory technology that achieves a high data transfer rate by providing a
high-speed interface between the memory and the processor. One way for increasing the
bandwidth of this connection is to use a wider data path. However, this requires more space
and more pins, increasing system cost. The alternative is to use fewer wires with a higher
clock speed. This is the approach taken by Rambus.

The key feature of Rambus technology is the use of a differential-signaling technique
to transfer data to and from the memory chips. The basic idea of differential signaling
is described in Section 7.5.1. In Rambus technology, signals are transmitted using small
voltage swings of 0.1 V above and below a reference value. Several versions of this standard
have been developed, with clock speeds of up to 800 MHz and data transfer rates of several
gigabytes per second.

Rambus technology competes directly with the DDR SDRAM technology. Each has
certain advantages and disadvantages. A nontechnical consideration is that the specification
of DDR SDRAM is an open standard that can be used free of charge. Rambus, on the other
hand, is a proprietary scheme that must be licensed by chip manufacturers.

8.2.5 Structure of Larger Memories

We have discussed the basic organization of memory circuits as they may be implemented
on a single chip. Next, we examine how memory chips may be connected to form a much
larger memory.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 14 Page number 280 cyan black

280 C H A P T E R 8 • The Memory System

Static Memory Systems
Consider a memory consisting of 2M words of 32 bits each. Figure 8.10 shows how

this memory can be implemented using 512K× 8 static memory chips. Each column in the
figure implements one byte position in a word, with four chips providing 2M bytes. Four
columns implement the required 2M × 32 memory. Each chip has a control input called

19-bit internal chip address

Chip-select

 memory chip

decoder
2-bit

address
21-bit

19-bit
address

512K 8×

A0
A1

A19

 memory chip

A20

D31-24 D7-0D23-16 D15-8

512K 8×

8-bit data
input/output

Figure 8.10 Organization of a 2M × 32 memory module using 512K × 8 static memory chips.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 15 Page number 281 cyan black

8.2 Semiconductor RAM Memories 281

Chip-select. When this input is set to 1, it enables the chip to accept data from or to place data
on its data lines. The data output for each chip is of the tri-state type described in Section
7.2.3. Only the selected chip places data on the data output line, while all other outputs
are electrically disconnected from the data lines. Twenty-one address bits are needed to
select a 32-bit word in this memory. The high-order two bits of the address are decoded
to determine which of the four rows should be selected. The remaining 19 address bits are
used to access specific byte locations inside each chip in the selected row. The R/W inputs
of all chips are tied together to provide a common Read/Write control line (not shown in
the figure).

Dynamic Memory Systems
Modern computers use very large memories. Even a small personal computer is likely

to have at least 1G bytes of memory. Typical desktop computers may have 4G bytes or more
of memory. A large memory leads to better performance, because more of the programs and
data used in processing can be held in the memory, thus reducing the frequency of access
to secondary storage.

Because of their high bit density and low cost, dynamic RAMs, mostly of the syn-
chronous type, are widely used in the memory units of computers. They are slower than
static RAMs, but they use less power and have considerably lower cost per bit. Available
chips have capacities as high as 2G bits, and even larger chips are being developed. To
reduce the number of memory chips needed in a given computer, a memory chip may be
organized to read or write a number of bits in parallel, as in the case of Figure 8.7. Chips
are manufactured in different organizations, to provide flexibility in designing memory
systems. For example, a 1-Gbit chip may be organized as 256M × 4, or 128M × 8.

Packaging considerations have led to the development of assemblies known as memory
modules. Each such module houses many memory chips, typically in the range 16 to 32,
on a small board that plugs into a socket on the computer’s motherboard. Memory modules
are commonly called SIMMs (Single In-line Memory Modules) or DIMMs (Dual In-line
Memory Modules), depending on the configuration of the pins. Modules of different sizes
are designed to use the same socket. For example, 128M × 64, 256M × 64, and 512M
× 64 bit DIMMs all use the same 240-pin socket. Thus, total memory capacity is easily
expanded by replacing a smaller module with a larger one, using the same socket.

Memory Controller
The address applied to dynamic RAM chips is divided into two parts, as explained

earlier. The high-order address bits, which select a row in the cell array, are provided first
and latched into the memory chip under control of the RAS signal. Then, the low-order
address bits, which select a column, are provided on the same address pins and latched under
control of the CAS signal. Since a typical processor issues all bits of an address at the same
time, a multiplexer is required. This function is usually performed by a memory controller
circuit. The controller accepts a complete address and the R/W signal from the processor,
under control of a Request signal which indicates that a memory access operation is needed.
It forwards the R/W signals and the row and column portions of the address to the memory
and generates the RAS and CAS signals, with the appropriate timing. When a memory
includes multiple modules, one of these modules is selected based on the high-order bits



November 29, 2010 11:59 ham_338065_ch08 Sheet number 16 Page number 282 cyan black

282 C H A P T E R 8 • The Memory System

of the address. The memory controller decodes these high-order bits and generates the
chip-select signal for the appropriate module. Data lines are connected directly between
the processor and the memory.

Dynamic RAMs must be refreshed periodically. The circuitry required to initiate
refresh cycles is included as part of the internal control circuitry of synchronous DRAMs.
However, a control circuit external to the chip is needed to initiate periodic Read cycles to
refresh the cells of an asynchronous DRAM. The memory controller provides this capability.

Refresh Overhead
A dynamic RAM cannot respond to read or write requests while an internal refresh

operation is taking place. Such requests are delayed until the refresh cycle is completed.
However, the time lost to accommodate refresh operations is very small. For example,
consider an SDRAM in which each row needs to be refreshed once every 64 ms. Suppose
that the minimum time between two row accesses is 50 ns and that refresh operations are
arranged such that all rows of the chip are refreshed in 8K (8192) refresh cycles. Thus,
it takes 8192× 0.050 = 0.41 ms to refresh all rows. The refresh overhead is 0.41/64 =
0.0064, which is less than 1 percent of the total time available for accessing the memory.

Choice of Technology
The choice of a RAM chip for a given application depends on several factors. Foremost

among these are the cost, speed, power dissipation, and size of the chip.
Static RAMs are characterized by their very fast operation. However, their cost and bit

density are adversely affected by the complexity of the circuit that realizes the basic cell.
They are used mostly where a small but very fast memory is needed. Dynamic RAMs, on
the other hand, have high bit densities and a low cost per bit. Synchronous DRAMs are the
predominant choice for implementing the main memory.

8.3 Read-only Memories

Both static and dynamic RAM chips are volatile, which means that they retain information
only while power is turned on. There are many applications requiring memory devices that
retain the stored information when power is turned off. For example, Chapter 4 describes
the need to store a small program in such a memory, to be used to start the bootstrap
process of loading the operating system from a hard disk into the main memory. The
embedded applications described in Chapters 10 and 11 are another important example.
Many embedded applications do not use a hard disk and require nonvolatile memories to
store their software.

Different types of nonvolatile memories have been developed. Generally, their contents
can be read in the same way as for their volatile counterparts discussed above. But, a special
writing process is needed to place the information into a nonvolatile memory. Since its
normal operation involves only reading the stored data, a memory of this type is called a
read-only memory (ROM).



November 29, 2010 11:59 ham_338065_ch08 Sheet number 17 Page number 283 cyan black

8.3 Read-only Memories 283

P
Not connected to store a 1

Connected to store a 0

Bit line

Word line

T

Figure 8.11 A ROM cell.

8.3.1 ROM

A memory is called a read-only memory, or ROM, when information can be written into
it only once at the time of manufacture. Figure 8.11 shows a possible configuration for a
ROM cell. A logic value 0 is stored in the cell if the transistor is connected to ground at
point P; otherwise, a 1 is stored. The bit line is connected through a resistor to the power
supply. To read the state of the cell, the word line is activated to close the transistor switch.
As a result, the voltage on the bit line drops to near zero if there is a connection between
the transistor and ground. If there is no connection to ground, the bit line remains at the
high voltage level, indicating a 1. A sense circuit at the end of the bit line generates the
proper output value. The state of the connection to ground in each cell is determined when
the chip is manufactured, using a mask with a pattern that represents the information to be
stored.

8.3.2 PROM

Some ROM designs allow the data to be loaded by the user, thus providing a programmable
ROM (PROM). Programmability is achieved by inserting a fuse at point P in Figure 8.11.
Before it is programmed, the memory contains all 0s. The user can insert 1s at the required
locations by burning out the fuses at these locations using high-current pulses. Of course,
this process is irreversible.

PROMs provide flexibility and convenience not available with ROMs. The cost of
preparing the masks needed for storing a particular information pattern makes ROMs cost-
effective only in large volumes. The alternative technology of PROMs provides a more
convenient and considerably less expensive approach, because memory chips can be pro-
grammed directly by the user.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 18 Page number 284 cyan black

284 C H A P T E R 8 • The Memory System

8.3.3 EPROM

Another type of ROM chip provides an even higher level of convenience. It allows the stored
data to be erased and new data to be written into it. Such an erasable, reprogrammable ROM
is usually called an EPROM. It provides considerable flexibility during the development
phase of digital systems. Since EPROMs are capable of retaining stored information for a
long time, they can be used in place of ROMs or PROMs while software is being developed.
In this way, memory changes and updates can be easily made.

An EPROM cell has a structure similar to the ROM cell in Figure 8.11. However,
the connection to ground at point P is made through a special transistor. The transistor is
normally turned off, creating an open switch. It can be turned on by injecting charge into it
that becomes trapped inside. Thus, an EPROM cell can be used to construct a memory in
the same way as the previously discussed ROM cell. Erasure requires dissipating the charge
trapped in the transistors that form the memory cells. This can be done by exposing the
chip to ultraviolet light, which erases the entire contents of the chip. To make this possible,
EPROM chips are mounted in packages that have transparent windows.

8.3.4 EEPROM

An EPROM must be physically removed from the circuit for reprogramming. Also, the
stored information cannot be erased selectively. The entire contents of the chip are erased
when exposed to ultraviolet light. Another type of erasable PROM can be programmed,
erased, and reprogrammed electrically. Such a chip is called an electrically erasable PROM,
or EEPROM. It does not have to be removed for erasure. Moreover, it is possible to erase
the cell contents selectively. One disadvantage of EEPROMs is that different voltages are
needed for erasing, writing, and reading the stored data, which increases circuit complexity.
However, this disadvantage is outweighed by the many advantages of EEPROMs. They
have replaced EPROMs in practice.

8.3.5 Flash Memory

An approach similar to EEPROM technology has given rise to flash memory devices. A
flash cell is based on a single transistor controlled by trapped charge, much like an EEPROM
cell. Also like an EEPROM, it is possible to read the contents of a single cell. The key
difference is that, in a flash device, it is only possible to write an entire block of cells. Prior
to writing, the previous contents of the block are erased. Flash devices have greater density,
which leads to higher capacity and a lower cost per bit. They require a single power supply
voltage, and consume less power in their operation.

The low power consumption of flash memories makes them attractive for use in
portable, battery-powered equipment. Typical applications include hand-held computers,
cell phones, digital cameras, and MP3 music players. In hand-held computers and cell
phones, a flash memory holds the software needed to operate the equipment, thus obviating
the need for a disk drive. A flash memory is used in digital cameras to store picture data.
In MP3 players, flash memories store the data that represent sound. Cell phones, digital



November 29, 2010 11:59 ham_338065_ch08 Sheet number 19 Page number 285 cyan black

8.4 Direct Memory Access 285

cameras, and MP3 players are good examples of embedded systems, which are discussed
in Chapters 10 and 11.

Single flash chips may not provide sufficient storage capacity for the applications
mentioned above. Larger memory modules consisting of a number of chips are used where
needed. There are two popular choices for the implementation of such modules: flash cards
and flash drives.

Flash Cards
One way of constructing a larger module is to mount flash chips on a small card. Such

flash cards have a standard interface that makes them usable in a variety of products. A card
is simply plugged into a conveniently accessible slot. Flash cards with a USB interface are
widely used and are commonly known as memory keys. They come in a variety of memory
sizes. Larger cards may hold as much as 32 Gbytes. A minute of music can be stored in
about 1 Mbyte of memory, using the MP3 encoding format. Hence, a 32-Gbyte flash card
can store approximately 500 hours of music.

Flash Drives
Larger flash memory modules have been developed to replace hard disk drives, and

hence are called flash drives. They are designed to fully emulate hard disks, to the point
that they can be fitted into standard disk drive bays. However, the storage capacity of flash
drives is significantly lower. Currently, the capacity of flash drives is on the order of 64 to
128 Gbytes. In contrast, hard disks have capacities exceeding a terabyte. Also, disk drives
have a very low cost per bit.

The fact that flash drives are solid state electronic devices with no moving parts provides
important advantages over disk drives. They have shorter access times, which result in a
faster response. They are insensitive to vibration and they have lower power consumption,
which makes them attractive for portable, battery-driven applications.

8.4 Direct Memory Access

Blocks of data are often transferred between the main memory and I/O devices such as
disks. This section discusses a technique for controlling such transfers without frequent,
program-controlled intervention by the processor.

The discussion in Chapter 3 concentrates on single-word or single-byte data transfers
between the processor and I/O devices. Data are transferred from an I/O device to the
memory by first reading them from the I/O device using an instruction such as

Load R2, DATAIN

which loads the data into a processor register. Then, the data read are stored into a memory
location. The reverse process takes place for transferring data from the memory to an I/O
device. An instruction to transfer input or output data is executed only after the processor
determines that the I/O device is ready, either by polling its status register or by waiting
for an interrupt request. In either case, considerable overhead is incurred, because several
program instructions must be executed involving many memory accesses for each data word



November 29, 2010 11:59 ham_338065_ch08 Sheet number 20 Page number 286 cyan black

286 C H A P T E R 8 • The Memory System

transferred. When transferring a block of data, instructions are needed to increment the
memory address and keep track of the word count. The use of interrupts involves operating
system routines which incur additional overhead to save and restore processor registers, the
program counter, and other state information.

An alternative approach is used to transfer blocks of data directly between the main
memory and I/O devices, such as disks. A special control unit is provided to manage the
transfer, without continuous intervention by the processor. This approach is called direct
memory access, or DMA. The unit that controls DMA transfers is referred to as a DMA
controller. It may be part of the I/O device interface, or it may be a separate unit shared by a
number of I/O devices. The DMA controller performs the functions that would normally be
carried out by the processor when accessing the main memory. For each word transferred,
it provides the memory address and generates all the control signals needed. It increments
the memory address for successive words and keeps track of the number of transfers.

Although a DMA controller transfers data without intervention by the processor, its
operation must be under the control of a program executed by the processor, usually an
operating system routine. To initiate the transfer of a block of words, the processor sends to
the DMA controller the starting address, the number of words in the block, and the direction
of the transfer. The DMAcontroller then proceeds to perform the requested operation. When
the entire block has been transferred, it informs the processor by raising an interrupt.

Figure 8.12 shows an example of the DMA controller registers that are accessed by the
processor to initiate data transfer operations. Two registers are used for storing the starting
address and the word count. The third register contains status and control flags. The R/W
bit determines the direction of the transfer. When this bit is set to 1 by a program instruction,
the controller performs a Read operation, that is, it transfers data from the memory to the I/O
device. Otherwise, it performs a Write operation. Additional information is also transferred
as may be required by the I/O device. For example, in the case of a disk, the processor
provides the disk controller with information to identify where the data is located on the
disk (see Section 8.10.1 for disk details).

Done

IE

IRQ

Status and control

Starting address

Word count

WR/

31 30 1 0

Figure 8.12 Typical registers in a DMA controller.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 21 Page number 287 cyan black

8.4 Direct Memory Access 287

When the controller has completed transferring a block of data and is ready to receive
another command, it sets the Done flag to 1. Bit 30 is the Interrupt-enable flag, IE. When this
flag is set to 1, it causes the controller to raise an interrupt after it has completed transferring
a block of data. Finally, the controller sets the IRQ bit to 1 when it has requested an interrupt.

Figure 8.13 shows how DMA controllers may be used in a computer system such as
that in Figure 7.18. One DMA controller connects a high-speed Ethernet to the computer’s
I/O bus (a PCI bus in the case of Figure 7.18). The disk controller, which controls two disks,
also has DMA capability and provides two DMA channels. It can perform two independent
DMA operations, as if each disk had its own DMA controller. The registers needed to store
the memory address, the word count, and so on, are duplicated, so that one set can be used
with each disk.

To start a DMA transfer of a block of data from the main memory to one of the disks,
an OS routine writes the address and word count information into the registers of the
disk controller. The DMA controller proceeds independently to implement the specified
operation. When the transfer is completed, this fact is recorded in the status and control
register of the DMA channel by setting the Done bit. At the same time, if the IE bit is set,
the controller sends an interrupt request to the processor and sets the IRQ bit. The status
register may also be used to record other information, such as whether the transfer took
place correctly or errors occurred.

memory

Processor

PCI bus

Main

interface
Ethernet

Disk/DMA
controller

DMA
controller

DiskDisk

Bridge

Figure 8.13 Use of DMA controllers in a computer system.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 22 Page number 288 cyan black

288 C H A P T E R 8 • The Memory System

8.5 Memory Hierarchy

We have already stated that an ideal memory would be fast, large, and inexpensive. From
the discussion in Section 8.2, it is clear that a very fast memory can be implemented using
static RAM chips. But, these chips are not suitable for implementing large memories,
because their basic cells are larger and consume more power than dynamic RAM cells.

Although dynamic memory units with gigabyte capacities can be implemented at a
reasonable cost, the affordable size is still small compared to the demands of large programs
with voluminous data. A solution is provided by using secondary storage, mainly magnetic
disks, to provide the required memory space. Disks are available at a reasonable cost,
and they are used extensively in computer systems. However, they are much slower than
semiconductor memory units. In summary, a very large amount of cost-effective storage
can be provided by magnetic disks, and a large and considerably faster, yet affordable,
main memory can be built with dynamic RAM technology. This leaves the more expensive
and much faster static RAM technology to be used in smaller units where speed is of the
essence, such as in cache memories.

All of these different types of memory units are employed effectively in a computer
system. The entire computer memory can be viewed as the hierarchy depicted in Figure
8.14. The fastest access is to data held in processor registers. Therefore, if we consider the

Processor

Primary
cache

Secondary
cache

Main

Magnetic disk

memory

Increasing
size

Increasing
speed

secondary
memory

Increasing
cost per bit

Registers

L1

L2

Figure 8.14 Memory hierarchy.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 23 Page number 289 cyan black

8.6 Cache Memories 289

registers to be part of the memory hierarchy, then the processor registers are at the top in
terms of speed of access. Of course, the registers provide only a minuscule portion of the
required memory.

At the next level of the hierarchy is a relatively small amount of memory that can
be implemented directly on the processor chip. This memory, called a processor cache,
holds copies of the instructions and data stored in a much larger memory that is provided
externally. The cache memory concept was introduced in Section 1.2.2 and is examined
in detail in Section 8.6. There are often two or more levels of cache. A primary cache is
always located on the processor chip. This cache is small and its access time is comparable
to that of processor registers. The primary cache is referred to as the level 1 (L1) cache. A
larger, and hence somewhat slower, secondary cache is placed between the primary cache
and the rest of the memory. It is referred to as the level 2 (L2) cache. Often, the L2 cache
is also housed on the processor chip.

Some computers have a level 3 (L3) cache of even larger size, in addition to the L1
and L2 caches. An L3 cache, also implemented in SRAM technology, may or may not be
on the same chip with the processor and the L1 and L2 caches.

The next level in the hierarchy is the main memory. This is a large memory implemented
using dynamic memory components, typically assembled in memory modules such as
DIMMs, as described in Section 8.2.5. The main memory is much larger but significantly
slower than cache memories. In a computer with a processor clock of 2 GHz or higher, the
access time for the main memory can be as much as 100 times longer than the access time
for the L1 cache.

Disk devices provide a very large amount of inexpensive memory, and they are widely
used as secondary storage in computer systems. They are very slow compared to the main
memory. They represent the bottom level in the memory hierarchy.

During program execution, the speed of memory access is of utmost importance. The
key to managing the operation of the hierarchical memory system in Figure 8.14 is to bring
the instructions and data that are about to be used as close to the processor as possible. This
is the main purpose of using cache memories, which we discuss next.

8.6 Cache Memories

The cache is a small and very fast memory, interposed between the processor and the main
memory. Its purpose is to make the main memory appear to the processor to be much
faster than it actually is. The effectiveness of this approach is based on a property of
computer programs called locality of reference. Analysis of programs shows that most of
their execution time is spent in routines in which many instructions are executed repeatedly.
These instructions may constitute a simple loop, nested loops, or a few procedures that
repeatedly call each other. The actual detailed pattern of instruction sequencing is not
important—the point is that many instructions in localized areas of the program are executed
repeatedly during some time period. This behavior manifests itself in two ways: temporal
and spatial. The first means that a recently executed instruction is likely to be executed
again very soon. The spatial aspect means that instructions close to a recently executed
instruction are also likely to be executed soon.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 24 Page number 290 cyan black

290 C H A P T E R 8 • The Memory System

Cache
Main

memoryProcessor

Figure 8.15 Use of a cache memory.

Conceptually, operation of a cache memory is very simple. The memory control
circuitry is designed to take advantage of the property of locality of reference. Temporal
locality suggests that whenever an information item, instruction or data, is first needed, this
item should be brought into the cache, because it is likely to be needed again soon. Spatial
locality suggests that instead of fetching just one item from the main memory to the cache,
it is useful to fetch several items that are located at adjacent addresses as well. The term
cache block refers to a set of contiguous address locations of some size. Another term that
is often used to refer to a cache block is a cache line.

Consider the arrangement in Figure 8.15. When the processor issues a Read request, the
contents of a block of memory words containing the location specified are transferred into
the cache. Subsequently, when the program references any of the locations in this block,
the desired contents are read directly from the cache. Usually, the cache memory can store
a reasonable number of blocks at any given time, but this number is small compared to the
total number of blocks in the main memory. The correspondence between the main memory
blocks and those in the cache is specified by a mapping function. When the cache is full
and a memory word (instruction or data) that is not in the cache is referenced, the cache
control hardware must decide which block should be removed to create space for the new
block that contains the referenced word. The collection of rules for making this decision
constitutes the cache’s replacement algorithm.

Cache Hits
The processor does not need to know explicitly about the existence of the cache. It

simply issues Read and Write requests using addresses that refer to locations in the memory.
The cache control circuitry determines whether the requested word currently exists in the
cache. If it does, the Read or Write operation is performed on the appropriate cache location.
In this case, a read or write hit is said to have occurred. The main memory is not involved
when there is a cache hit in a Read operation. For a Write operation, the system can proceed
in one of two ways. In the first technique, called the write-through protocol, both the cache
location and the main memory location are updated. The second technique is to update
only the cache location and to mark the block containing it with an associated flag bit, often
called the dirty or modified bit. The main memory location of the word is updated later,
when the block containing this marked word is removed from the cache to make room for
a new block. This technique is known as the write-back, or copy-back, protocol.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 25 Page number 291 cyan black

8.6 Cache Memories 291

The write-through protocol is simpler than the write-back protocol, but it results in
unnecessary Write operations in the main memory when a given cache word is updated
several times during its cache residency. The write-back protocol also involves unnecessary
Write operations, because all words of the block are eventually written back, even if only
a single word has been changed while the block was in the cache. The write-back protocol
is used most often, to take advantage of the high speed with which data blocks can be
transferred to memory chips.

Cache Misses
A Read operation for a word that is not in the cache constitutes a Read miss. It causes

the block of words containing the requested word to be copied from the main memory into
the cache. After the entire block is loaded into the cache, the particular word requested is
forwarded to the processor. Alternatively, this word may be sent to the processor as soon as
it is read from the main memory. The latter approach, which is called load-through, or early
restart, reduces the processor’s waiting time somewhat, at the expense of more complex
circuitry.

When a Write miss occurs in a computer that uses the write-through protocol, the
information is written directly into the main memory. For the write-back protocol, the
block containing the addressed word is first brought into the cache, and then the desired
word in the cache is overwritten with the new information.

Recall from Section 6.7 that resource limitations in a pipelined processor can cause
instruction execution to stall for one or more cycles. This can occur if a Load or Store in-
struction requests access to data in the memory at the same time that a subsequent instruction
is being fetched. When this happens, instruction fetch is delayed until the data access op-
eration is completed. To avoid stalling the pipeline, many processors use separate caches
for instructions and data, making it possible for the two operations to proceed in parallel.

8.6.1 Mapping Functions

There are several possible methods for determining where memory blocks are placed in the
cache. It is instructive to describe these methods using a specific small example. Consider
a cache consisting of 128 blocks of 16 words each, for a total of 2048 (2K) words, and
assume that the main memory is addressable by a 16-bit address. The main memory has
64K words, which we will view as 4K blocks of 16 words each. For simplicity, we have
assumed that consecutive addresses refer to consecutive words.

Direct Mapping
The simplest way to determine cache locations in which to store memory blocks is

the direct-mapping technique. In this technique, block j of the main memory maps onto
block j modulo 128 of the cache, as depicted in Figure 8.16. Thus, whenever one of the
main memory blocks 0, 128, 256, . . . is loaded into the cache, it is stored in cache block
0. Blocks 1, 129, 257, . . . are stored in cache block 1, and so on. Since more than one
memory block is mapped onto a given cache block position, contention may arise for that
position even when the cache is not full. For example, instructions of a program may start
in block 1 and continue in block 129, possibly after a branch. As this program is executed,



November 29, 2010 11:59 ham_338065_ch08 Sheet number 26 Page number 292 cyan black

292 C H A P T E R 8 • The Memory System

tag

tag

tag

Cache

Main
memory

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

Block 0

Block 1

Block 127

7 4 Main memory address

Tag Block Word

5

Figure 8.16 Direct-mapped cache.

both of these blocks must be transferred to the block-1 position in the cache. Contention is
resolved by allowing the new block to overwrite the currently resident block.

With direct mapping, the replacement algorithm is trivial. Placement of a block in the
cache is determined by its memory address. The memory address can be divided into three
fields, as shown in Figure 8.16. The low-order 4 bits select one of 16 words in a block.
When a new block enters the cache, the 7-bit cache block field determines the cache position
in which this block must be stored. The high-order 5 bits of the memory address of the



November 29, 2010 11:59 ham_338065_ch08 Sheet number 27 Page number 293 cyan black

8.6 Cache Memories 293

block are stored in 5 tag bits associated with its location in the cache. The tag bits identify
which of the 32 main memory blocks mapped into this cache position is currently resident in
the cache. As execution proceeds, the 7-bit cache block field of each address generated by
the processor points to a particular block location in the cache. The high-order 5 bits of the
address are compared with the tag bits associated with that cache location. If they match,
then the desired word is in that block of the cache. If there is no match, then the block
containing the required word must first be read from the main memory and loaded into the
cache. The direct-mapping technique is easy to implement, but it is not very flexible.

Associative Mapping
Figure 8.17 shows the most flexible mapping method, in which a main memory block

can be placed into any cache block position. In this case, 12 tag bits are required to identify
a memory block when it is resident in the cache. The tag bits of an address received from the
processor are compared to the tag bits of each block of the cache to see if the desired block
is present. This is called the associative-mapping technique. It gives complete freedom in

4

tag

tag

tag

Cache

Main
memory

Block 0

Block 1

Block i

Block 4095

Block 0

Block 1

Block 127

12 Main memory address

Tag Word

Figure 8.17 Associative-mapped cache.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 28 Page number 294 cyan black

294 C H A P T E R 8 • The Memory System

choosing the cache location in which to place the memory block, resulting in a more efficient
use of the space in the cache. When a new block is brought into the cache, it replaces (ejects)
an existing block only if the cache is full. In this case, we need an algorithm to select the
block to be replaced. Many replacement algorithms are possible, as we discuss in Section
8.6.2. The complexity of an associative cache is higher than that of a direct-mapped cache,
because of the need to search all 128 tag patterns to determine whether a given block is in
the cache. To avoid a long delay, the tags must be searched in parallel. A search of this
kind is called an associative search.

Set-Associative Mapping
Another approach is to use a combination of the direct- and associative-mapping tech-

niques. The blocks of the cache are grouped into sets, and the mapping allows a block of the
main memory to reside in any block of a specific set. Hence, the contention problem of the
direct method is eased by having a few choices for block placement. At the same time, the
hardware cost is reduced by decreasing the size of the associative search. An example of
this set-associative-mapping technique is shown in Figure 8.18 for a cache with two blocks
per set. In this case, memory blocks 0, 64, 128, . . . , 4032 map into cache set 0, and they
can occupy either of the two block positions within this set. Having 64 sets means that the
6-bit set field of the address determines which set of the cache might contain the desired
block. The tag field of the address must then be associatively compared to the tags of the
two blocks of the set to check if the desired block is present. This two-way associative
search is simple to implement.

The number of blocks per set is a parameter that can be selected to suit the requirements
of a particular computer. For the main memory and cache sizes in Figure 8.18, four blocks
per set can be accommodated by a 5-bit set field, eight blocks per set by a 4-bit set field,
and so on. The extreme condition of 128 blocks per set requires no set bits and corresponds
to the fully-associative technique, with 12 tag bits. The other extreme of one block per set
is the direct-mapping method. A cache that has k blocks per set is referred to as a k-way
set-associative cache.

Stale Data
When power is first turned on, the cache contains no valid data. A control bit, usually

called the valid bit, must be provided for each cache block to indicate whether the data in that
block are valid. This bit should not be confused with the modified, or dirty, bit mentioned
earlier. The valid bits of all cache blocks are set to 0 when power is initially applied to
the system. Some valid bits may also be set to 0 when new programs or data are loaded
from the disk into the main memory. Data transferred from the disk to the main memory
using the DMA mechanism are usually loaded directly into the main memory, bypassing
the cache. If the memory blocks being updated are currently in the cache, the valid bits of
the corresponding cache blocks are set to 0. As program execution proceeds, the valid bit
of a given cache block is set to 1 when a memory block is loaded into that location. The
processor fetches data from a cache block only if its valid bit is equal to 1. The use of the
valid bit in this manner ensures that the processor will not fetch stale data from the cache.

A similar precaution is needed in a system that uses the write-back protocol. Under this
protocol, new data written into the cache are not written to the memory at the same time.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 29 Page number 295 cyan black

8.6 Cache Memories 295

tag

tag

tag

Cache

Main
memory

Block 0

Block 1

Block 63

Block 64

Block 65

Block 127

Block 128

Block 129

Block 4095

Block 0

Block 1

Block 126

tag

tag

Block 2

Block 3

tag
Block 127

Main memory address6 6 4

Tag Set Word

Set 0

Set 1

Set 63

Figure 8.18 Set-associative-mapped cache with two blocks per set.

Hence, data in the memory do not always reflect the changes that may have been made in the
cached copy. It is important to ensure that such stale data in the memory are not transferred
to the disk. One solution is to flush the cache, by forcing all dirty blocks to be written back
to the memory before performing the transfer. The operating system can do this by issuing
a command to the cache before initiating the DMA operation that transfers the data to the
disk. Flushing the cache does not affect performance greatly, because such disk transfers do



November 29, 2010 11:59 ham_338065_ch08 Sheet number 30 Page number 296 cyan black

296 C H A P T E R 8 • The Memory System

not occur often. The need to ensure that two different entities (the processor and the DMA
subsystems in this case) use identical copies of the data is referred to as a cache-coherence
problem.

8.6.2 Replacement Algorithms

In a direct-mapped cache, the position of each block is predetermined by its address; hence,
the replacement strategy is trivial. In associative and set-associative caches there exists
some flexibility. When a new block is to be brought into the cache and all the positions that
it may occupy are full, the cache controller must decide which of the old blocks to overwrite.
This is an important issue, because the decision can be a strong determining factor in system
performance. In general, the objective is to keep blocks in the cache that are likely to be
referenced in the near future. But, it is not easy to determine which blocks are about to be
referenced. The property of locality of reference in programs gives a clue to a reasonable
strategy. Because program execution usually stays in localized areas for reasonable periods
of time, there is a high probability that the blocks that have been referenced recently will
be referenced again soon. Therefore, when a block is to be overwritten, it is sensible to
overwrite the one that has gone the longest time without being referenced. This block is
called the least recently used (LRU) block, and the technique is called the LRU replacement
algorithm.

To use the LRU algorithm, the cache controller must track references to all blocks as
computation proceeds. Suppose it is required to track the LRU block of a four-block set
in a set-associative cache. A 2-bit counter can be used for each block. When a hit occurs,
the counter of the block that is referenced is set to 0. Counters with values originally lower
than the referenced one are incremented by one, and all others remain unchanged. When a
miss occurs and the set is not full, the counter associated with the new block loaded from
the main memory is set to 0, and the values of all other counters are increased by one.
When a miss occurs and the set is full, the block with the counter value 3 is removed, the
new block is put in its place, and its counter is set to 0. The other three block counters are
incremented by one. It can be easily verified that the counter values of occupied blocks are
always distinct.

The LRU algorithm has been used extensively. Although it performs well for many
access patterns, it can lead to poor performance in some cases. For example, it produces
disappointing results when accesses are made to sequential elements of an array that is
slightly too large to fit into the cache (see Section 8.6.3 and Problem 8.11). Performance
of the LRU algorithm can be improved by introducing a small amount of randomness in
deciding which block to replace.

Several other replacement algorithms are also used in practice. An intuitively reason-
able rule would be to remove the “oldest” block from a full set when a new block must be
brought in. However, because this algorithm does not take into account the recent pattern
of access to blocks in the cache, it is generally not as effective as the LRU algorithm in
choosing the best blocks to remove. The simplest algorithm is to randomly choose the
block to be overwritten. Interestingly enough, this simple algorithm has been found to be
quite effective in practice.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 31 Page number 297 cyan black

8.6 Cache Memories 297

8.6.3 Examples of Mapping Techniques

We now consider a detailed example to illustrate the effects of different cache mapping
techniques. Assume that a processor has separate instruction and data caches. To keep the
example simple, assume the data cache has space for only eight blocks of data. Also assume
that each block consists of only one 16-bit word of data and the memory is word-addressable
with 16-bit addresses. (These parameters are not realistic for actual computers, but they
allow us to illustrate mapping techniques clearly.) Finally, assume the LRU replacement
algorithm is used for block replacement in the cache.

Let us examine changes in the data cache entries caused by running the following
application. A 4× 10 array of numbers, each occupying one word, is stored in main
memory locations 7A00 through 7A27 (hex). The elements of this array, A, are stored in
column order, as shown in Figure 8.19. The figure also indicates how tags for different
cache mapping techniques are derived from the memory address. Note that no bits are
needed to identify a word within a block, as was done in Figures 8.16 through 8.18, because
we have assumed that each block contains only one word. The application normalizes the
elements of the first row of A with respect to the average value of the elements in the row.
Hence, we need to compute the average of the elements in the row and divide each element
by that average. The required task can be expressed as

A(0, i)← A(0, i)
(∑9

j=0 A(0, j)
) /

10
for i = 0, 1, . . . , 9

0 1 1 1 1 10 0 0 0 0 0 0 0 0 0

1 1 1 10 10 0 0 0 0 0 0 0 0 1

0 1 1 1 1 10 0 0 0 0 0 0 0 01

0 1 1 1 1 10 0 0 0 0 0 0 0 1 1

0 1 1 1 1 10 0 0 0 0 0 0 1 0 0

0 1 1 1 1 10 0 0 0 1 0 0 1 0 0

1 1 1 10 10 0 0 0 1 0 0 1 0 1

0 1 1 1 1 10 0 0 0 1 0 0 1 01

0 1 1 1 1 10 0 0 0 1 0 0 1 1 1

A(0,0)

A(1,0)

A(2,0)

A(3,0)

A(0,1)

A(0,9)

A(1,9)

A(2,9)

A(3,9)

ContentsMemory address

Tag for direct mapped

Tag for set-associative

Tag for associative

(7A00)

(7A01)

(7A02)

(7A03)

(7A04)

(7A24)

(7A25)

(7A26)

(7A27)

Figure 8.19 An array stored in the main memory.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 32 Page number 298 cyan black

298 C H A P T E R 8 • The Memory System

SUM := 0
for j := 0 to 9 do

SUM := SUM + A(0,j)
end
AVG := SUM/10
for i := 9 downto 0 do

A(0,i) := A(0,i)/AVG
end

Figure 8.20 Task for example in Section 8.6.3.

Figure 8.20 gives the structure of a program that corresponds to this task. We use the
variables SUM and AVE to hold the sum and average values, respectively. These variables,
as well as index variables i and j, are held in processor registers during the computation.

Direct-Mapped Cache
In a direct-mapped data cache, the contents of the cache change as shown in Figure

8.21. The columns in the table indicate the cache contents after various passes through
the two program loops in Figure 8.20 are completed. For example, after the second pass
through the first loop (j = 1), the cache holds the elements A(0, 0) and A(0, 1). These
elements are in block positions 0 and 4, as determined by the three least-significant bits of
the address. During the next pass, the A(0, 0) element is replaced by A(0, 2), which maps
into the same block position. Note that the desired elements map into only two positions
in the cache, thus leaving the contents of the other six positions unchanged from whatever
they were before the normalization task started.

Elements A(0, 8) and A(0, 9) are loaded into the cache during the ninth and tenth passes
through the first loop (j = 8, 9). The second loop reverses the order in which the elements
are handled. The first two passes through this loop (i = 9, 8) find the required data in the
cache. When i = 7, element A(0, 9) is replaced with A(0, 7). When i = 6, element A(0, 8)

Block
position

Contents of data cache after pass:

j 1= j 3= j 5= j 7= j 9= i 6= i 4= i 2= i 0=

A(0,0) A(0,2) A(0,4) A(0,6) A(0,8) A(0,6) A(0,4) A(0,2) A(0,0)

A(0,1) A(0,3) A(0,5) A(0,7) A(0,9) A(0,7) A(0,5) A(0,3) A(0,1)

0

1

2

3

4

5

6

7

Figure 8.21 Contents of a direct-mapped data cache.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 33 Page number 299 cyan black

8.6 Cache Memories 299

is replaced with A(0, 6), and so on. Thus, eight elements are replaced while the second
loop is executed. In total, there are only two hits during execution of this task.

The reader should keep in mind that the tags must be kept in the cache for each block.
They are not shown to keep the figure simple.

Associative-Mapped Cache
Figure 8.22 presents the changes in cache contents for the case of an associative-mapped

cache. During the first eight passes through the first loop, the elements are brought into
consecutive block positions, assuming that the cache was initially empty. During the ninth
pass (j = 8), the LRU algorithm chooses A(0, 0) to be overwritten by A(0, 8). In the next
and last pass through the j loop, element A(0, 1) is replaced with A(0, 9). Now, for the first
eight passes through the second loop (i = 9, 8, . . . , 2) all the required elements are found
in the cache. When i = 1, the element needed is A(0, 1), so it replaces the least recently
used element, A(0, 9). During the last pass, A(0, 0) replaces A(0, 8).

In this case, when the second loop is executed, only two elements are not found in
the cache. In the direct-mapped case, eight of the elements had to be reloaded during the
second loop. Obviously, the associative-mapped cache benefits from the complete freedom
in mapping a memory block into any position in the cache. In both cases, better utilization
of the cache is achieved by reversing the order in which the elements are handled in the
second loop of the program. It is interesting to consider what would happen if the second
loop dealt with the elements in the same order as in the first loop. Using either direct
mapping or the LRU algorithm, all elements would be overwritten before they are used in
the second loop (see Problem 8.10).

Set-Associative-Mapped Cache
For this example, we assume that a set-associative data cache is organized into two sets,

each capable of holding four blocks. Thus, the least-significant bit of an address determines
which set a memory block maps into, but the memory data can be placed in any of the four
blocks of the set. The high-order 15 bits of the address constitute the tag.

Block
position

Contents of data cache after pass:

j 7= j 8= j 9= i 1= i 0=

A(0,0) A(0,8) A(0,8) A(0,8) A(0,0)

A(0,4) A(0,4) A(0,4) A(0,4) A(0,4)

0

1

2

3

4

5

6

7

A(0,1) A(0,1) A(0,9) A(0,1) A(0,1)

A(0,2) A(0,2) A(0,2) A(0,2) A(0,2)

A(0,3) A(0,3) A(0,3) A(0,3) A(0,3)

A(0,5) A(0,5) A(0,5) A(0,5) A(0,5)

A(0,6) A(0,6) A(0,6) A(0,6) A(0,6)

A(0,7) A(0,7) A(0,7) A(0,7) A(0,7)

Figure 8.22 Contents of an associative-mapped data cache.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 34 Page number 300 cyan black

300 C H A P T E R 8 • The Memory System

Contents of data cache after pass:

j 3= j 7= j 9= i 4= i 2= i 0=

A(0,0) A(0,4) A(0,8) A(0,4) A(0,4) A(0,0)
A(0,1) A(0,5) A(0,9) A(0,5) A(0,5) A(0,1)
A(0,2) A(0,6) A(0,6) A(0,6) A(0,2) A(0,2)
A(0,3) A(0,7) A(0,7) A(0,7) A(0,3) A(0,3)

Set 0

Set 1

Figure 8.23 Contents of a set-associative-mapped data cache.

Changes in the cache contents are depicted in Figure 8.23. Since all the desired blocks
have even addresses, they map into set 0. In this case, six elements are reloaded during
execution of the second loop.

Even though this is a simplified example, it illustrates that in general, associative
mapping performs best, set-associative mapping is next best, and direct mapping is the
worst. However, fully-associative mapping is expensive to implement, so set-associative
mapping is a good practical compromise.

8.7 Performance Considerations

Two key factors in the commercial success of a computer are performance and cost; the
best possible performance for a given cost is the objective. A common measure of success
is the price/performance ratio. Performance depends on how fast machine instructions
can be brought into the processor and how fast they can be executed. Chapter 6 shows
how pipelining increases the speed of program execution. In this chapter, we focus on the
memory subsystem.

The memory hierarchy described in Section 8.5 results from the quest for the best
price/performance ratio. The main purpose of this hierarchy is to create a memory that
the processor sees as having a short access time and a large capacity. When a cache is
used, the processor is able to access instructions and data more quickly when the data from
the referenced memory locations are in the cache. Therefore, the extent to which caches
improve performance is dependent on how frequently the requested instructions and data
are found in the cache. In this section, we examine this issue quantitatively.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 35 Page number 301 cyan black

8.7 Performance Considerations 301

8.7.1 Hit Rate and Miss Penalty

An excellent indicator of the effectiveness of a particular implementation of the memory
hierarchy is the success rate in accessing information at various levels of the hierarchy.
Recall that a successful access to data in a cache is called a hit. The number of hits stated
as a fraction of all attempted accesses is called the hit rate, and the miss rate is the number
of misses stated as a fraction of attempted accesses.

Ideally, the entire memory hierarchy would appear to the processor as a single memory
unit that has the access time of the cache on the processor chip and the size of the magnetic
disk. How close we get to this ideal depends largely on the hit rate at different levels of the
hierarchy. High hit rates well over 0.9 are essential for high-performance computers.

Performance is adversely affected by the actions that need to be taken when a miss
occurs. A performance penalty is incurred because of the extra time needed to bring a block
of data from a slower unit in the memory hierarchy to a faster unit. During that period, the
processor is stalled waiting for instructions or data. The waiting time depends on the details
of the operation of the cache. For example, it depends on whether or not the load-through
approach is used. We refer to the total access time seen by the processor when a miss occurs
as the miss penalty.

Consider a system with only one level of cache. In this case, the miss penalty consists
almost entirely of the time to access a block of data in the main memory. Let h be the
hit rate, M the miss penalty, and C the time to access information in the cache. Thus, the
average access time experienced by the processor is

tavg = hC + (1− h)M

The following example illustrates how the values of these parameters affect the average
access time.

Example 8.1Consider a computer that has the following parameters. Access times to the cache and the
main memory are τ and 10τ , respectively. When a cache miss occurs, a block of 8 words is
transferred from the main memory to the cache. It takes 10τ to transfer the first word of the
block, and the remaining 7 words are transferred at the rate of one word every τ seconds.
The miss penalty also includes a delay of τ for the initial access to the cache, which misses,
and another delay of τ to transfer the word to the processor after the block is loaded into
the cache (assuming no load-through). Thus, the miss penalty in this computer is given by:

M = τ + 10τ + 7τ + τ = 19τ

Assume that 30 percent of the instructions in a typical program perform a Read or a
Write operation, which means that there are 130 memory accesses for every 100 instructions
executed. Assume that the hit rates in the cache are 0.95 for instructions and 0.9 for data.
Assume further that the miss penalty is the same for both read and write accesses. Then,



November 29, 2010 11:59 ham_338065_ch08 Sheet number 36 Page number 302 cyan black

302 C H A P T E R 8 • The Memory System

a rough estimate of the improvement in memory performance that results from using the
cache can be obtained as follows:

Time without cache
Time with cache

= 130× 10τ

100(0.95τ + 0.05× 19τ ) + 30(0.9τ + 0.1× 19τ )
= 4.7

This result shows that the cache makes the memory appear almost five times faster than
it really is. The improvement factor increases as the speed of the cache increases relative
to the main memory. For example, if the access time of the main memory is 20τ , the
improvement factor becomes 7.3.

High hit rates are essential for the cache to be effective in reducing memory access
time. Hit rates depend on the size of the cache, its design, and the instruction and data
access patterns of the programs being executed. It is instructive to consider how effective
the cache of this example is compared to the ideal case in which the hit rate is 100 percent.
With ideal cache behavior, all memory references take one τ . Thus, an estimate of the
increase in memory access time caused by misses in the cache is given by:

Time for real cache
Time for ideal cache

= 100(0.95τ + 0.05× 19τ ) + 30(0.9τ + 0.1× 19τ )

130τ
= 2.1

In other words, a 100% hit rate in the cache would make the memory appear twice as fast
as when realistic hit rates are used.

How can the hit rate be improved? One possibility is to make the cache larger, but
this entails increased cost. Another possibility is to increase the cache block size while
keeping the total cache size constant, to take advantage of spatial locality. If all items in a
larger block are needed in a computation, then it is better to load these items into the cache
in a single miss, rather than loading several smaller blocks as a result of several misses.
The high data rate achievable during block transfers is the main reason for this advantage.
But larger blocks are effective only up to a certain size, beyond which the improvement in
the hit rate is offset by the fact that some items may not be referenced before the block is
ejected (replaced). Also, larger blocks take longer to transfer, and hence increase the miss
penalty. Since the performance of a computer is affected positively by increased hit rate
and negatively by increased miss penalty, block size should be neither too small nor too
large. In practice, block sizes in the range of 16 to 128 bytes are the most popular choices.

Finally, we note that the miss penalty can be reduced if the load-through approach is
used when loading new blocks into the cache. Then, instead of waiting for an entire block
to be transferred, the processor resumes execution as soon as the required word is loaded
into the cache.

8.7.2 Caches on the Processor Chip

When information is transferred between different chips, considerable delays occur in driver
and receiver gates on the chips. Thus, it is best to implement the cache on the processor



November 29, 2010 11:59 ham_338065_ch08 Sheet number 37 Page number 303 cyan black

8.7 Performance Considerations 303

chip. Most processor chips include at least one L1 cache. Often there are two separate L1
caches, one for instructions and another for data.

In high-performance processors, two levels of caches are normally used, separate L1
caches for instructions and data and a larger L2 cache. These caches are often implemented
on the processor chip. In this case, the L1 caches must be very fast, as they determine the
memory access time seen by the processor. The L2 cache can be slower, but it should be
much larger than the L1 caches to ensure a high hit rate. Its speed is less critical because
it only affects the miss penalty of the L1 caches. A typical computer may have L1 caches
with capacities of tens of kilobytes and an L2 cache of hundreds of kilobytes or possibly
several megabytes.

Including an L2 cache further reduces the impact of the main memory speed on the
performance of a computer. Its effect can be assessed by observing that the average access
time of the L2 cache is the miss penalty of either of the L1 caches. For simplicity, we will
assume that the hit rates are the same for instructions and data. Thus, the average access
time experienced by the processor in such a system is:

tavg = h1C1 + (1− h1)(h2C2 + (1− h2)M )

where

h1 is the hit rate in the L1 caches.

h2 is the hit rate in the L2 cache.

C1 is the time to access information in the L1 caches.

C2 is the miss penalty to transfer information from the L2 cache to an L1 cache.

M is the miss penalty to transfer information from the main memory to the L2 cache.

Of all memory references made by the processor, the number of misses in the L2 cache is
given by (1− h1)(1− h2). If both h1 and h2 are in the 90 percent range, then the number
of misses in the L2 cache will be less than one percent of all memory accesses. This makes
the value of M , and in turn the speed of the main memory, less critical. See Problem 8.14
for a quantitative examination of this issue.

8.7.3 Other Enhancements

In addition to the main design issues just discussed, several other possibilities exist for
enhancing performance. We discuss three of them in this section.

Write Buffer
When the write-through protocol is used, each Write operation results in writing a new

value into the main memory. If the processor must wait for the memory function to be
completed, as we have assumed until now, then the processor is slowed down by all Write
requests. Yet the processor typically does not need immediate access to the result of a
Write operation; so it is not necessary for it to wait for the Write request to be completed.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 38 Page number 304 cyan black

304 C H A P T E R 8 • The Memory System

To improve performance, a Write buffer can be included for temporary storage of Write
requests. The processor places each Write request into this buffer and continues execution
of the next instruction. The Write requests stored in the Write buffer are sent to the main
memory whenever the memory is not responding to Read requests. It is important that the
Read requests be serviced quickly, because the processor usually cannot proceed before
receiving the data being read from the memory. Hence, these requests are given priority
over Write requests.

The Write buffer may hold a number of Write requests. Thus, it is possible that a
subsequent Read request may refer to data that are still in the Write buffer. To ensure
correct operation, the addresses of data to be read from the memory are always compared
with the addresses of the data in the Write buffer. In the case of a match, the data in the
Write buffer are used.

A similar situation occurs with the write-back protocol. In this case, Write commands
issued by the processor are performed on the word in the cache. When a new block of data
is to be brought into the cache as a result of a Read miss, it may replace an existing block
that has some dirty data. The dirty block has to be written into the main memory. If the
required write-back is performed first, then the processor has to wait for this operation to
be completed before the new block is read into the cache. It is more prudent to read the
new block first. The dirty block being ejected from the cache is temporarily stored in the
Write buffer and held there while the new block is being read. Afterwards, the contents of
the buffer are written into the main memory. Thus, the Write buffer also works well for the
write-back protocol.

Prefetching
In the previous discussion of the cache mechanism, we assumed that new data are

brought into the cache when they are first needed. Following a Read miss, the processor
has to pause until the new data arrive, thus incurring a miss penalty.

To avoid stalling the processor, it is possible to prefetch the data into the cache before
they are needed. The simplest way to do this is through software. A special prefetch
instruction may be provided in the instruction set of the processor. Executing this instruction
causes the addressed data to be loaded into the cache, as in the case of a Read miss. Aprefetch
instruction is inserted in a program to cause the data to be loaded in the cache shortly before
they are needed in the program. Then, the processor will not have to wait for the referenced
data as in the case of a Read miss. The hope is that prefetching will take place while the
processor is busy executing instructions that do not result in a Read miss, thus allowing
accesses to the main memory to be overlapped with computation in the processor.

Prefetch instructions can be inserted into a program either by the programmer or by
the compiler. Compilers are able to insert these instructions with good success for many
applications. Software prefetching entails a certain overhead because inclusion of prefetch
instructions increases the length of programs. Moreover, some prefetches may load into
the cache data that will not be used by the instructions that follow. This can happen if the
prefetched data are ejected from the cache by a Read miss involving other data. However, the
overall effect of software prefetching on performance is positive, and many processors have
machine instructions to support this feature. See Reference [1] for a thorough discussion
of software prefetching.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 39 Page number 305 cyan black

8.8 Virtual Memory 305

Prefetching can also be done in hardware, using circuitry that attempts to discover a
pattern in memory references and prefetches data according to this pattern. A number of
schemes have been proposed for this purpose, as described in References [2] and [3].

Lockup-Free Cache
Software prefetching does not work well if it interferes significantly with the normal

execution of instructions. This is the case if the action of prefetching stops other accesses
to the cache until the prefetch is completed. While servicing a miss, the cache is said to
be locked. This problem can be solved by modifying the basic cache structure to allow the
processor to access the cache while a miss is being serviced. In this case, it is possible to have
more than one outstanding miss, and the hardware must accommodate such occurrences.

A cache that can support multiple outstanding misses is called lockup-free. Such a
cache must include circuitry that keeps track of all outstanding misses. This may be done
with special registers that hold the pertinent information about these misses. Lockup-free
caches were first used in the early 1980s in the Cyber series of computers manufactured by
the Control Data company [4].

We have used software prefetching to motivate the need for a cache that is not locked by
a Read miss. A much more important reason is that in a pipelined processor, which overlaps
the execution of several instructions, a Read miss caused by one instruction could stall the
execution of other instructions. A lockup-free cache reduces the likelihood of such stalls.

8.8 Virtual Memory

In most modern computer systems, the physical main memory is not as large as the ad-
dress space of the processor. For example, a processor that issues 32-bit addresses has an
addressable space of 4G bytes. The size of the main memory in a typical computer with
a 32-bit processor may range from 1G to 4G bytes. If a program does not completely fit
into the main memory, the parts of it not currently being executed are stored on a secondary
storage device, typically a magnetic disk. As these parts are needed for execution, they
must first be brought into the main memory, possibly replacing other parts that are already
in the memory. These actions are performed automatically by the operating system, using
a scheme known as virtual memory. Application programmers need not be aware of the
limitations imposed by the available main memory. They prepare programs using the entire
address space of the processor.

Under a virtual memory system, programs, and hence the processor, reference in-
structions and data in an address space that is independent of the available physical main
memory space. The binary addresses that the processor issues for either instructions or
data are called virtual or logical addresses. These addresses are translated into physical
addresses by a combination of hardware and software actions. If a virtual address refers to a
part of the program or data space that is currently in the physical memory, then the contents
of the appropriate location in the main memory are accessed immediately. Otherwise, the
contents of the referenced address must be brought into a suitable location in the memory
before they can be used.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 40 Page number 306 cyan black

306 C H A P T E R 8 • The Memory System

Data

Data

DMA transfer

Physical address

Physical address

Virtual address

Disk storage

Main memory

Cache

MMU

Processor

Figure 8.24 Virtual memory organization.

Figure 8.24 shows a typical organization that implements virtual memory. A special
hardware unit, called the Memory Management Unit (MMU), keeps track of which parts of
the virtual address space are in the physical memory. When the desired data or instructions
are in the main memory, the MMU translates the virtual address into the corresponding
physical address. Then, the requested memory access proceeds in the usual manner. If
the data are not in the main memory, the MMU causes the operating system to transfer the
data from the disk to the memory. Such transfers are performed using the DMA scheme
discussed in Section 8.4.

8.8.1 Address Translation

Asimple method for translating virtual addresses into physical addresses is to assume that all
programs and data are composed of fixed-length units called pages, each of which consists
of a block of words that occupy contiguous locations in the main memory. Pages commonly
range from 2K to 16K bytes in length. They constitute the basic unit of information that is
transferred between the main memory and the disk whenever the MMU determines that a
transfer is required. Pages should not be too small, because the access time of a magnetic
disk is much longer (several milliseconds) than the access time of the main memory. The



November 29, 2010 11:59 ham_338065_ch08 Sheet number 41 Page number 307 cyan black

8.8 Virtual Memory 307

reason for this is that it takes a considerable amount of time to locate the data on the disk,
but once located, the data can be transferred at a rate of several megabytes per second. On
the other hand, if pages are too large, it is possible that a substantial portion of a page may
not be used, yet this unnecessary data will occupy valuable space in the main memory.

This discussion clearly parallels the concepts introduced in Section 8.6 on cache mem-
ory. The cache bridges the speed gap between the processor and the main memory and is
implemented in hardware. The virtual-memory mechanism bridges the size and speed gaps
between the main memory and secondary storage and is usually implemented in part by
software techniques. Conceptually, cache techniques and virtual-memory techniques are
very similar. They differ mainly in the details of their implementation.

A virtual-memory address-translation method based on the concept of fixed-length
pages is shown schematically in Figure 8.25. Each virtual address generated by the proces-

Page frame

Virtual address from processor

in memory

Offset

Offset

Virtual page numberPage table address

Page table base register

Control
bits

Physical address in main memory

PAGE TABLE

Page frame

+

Figure 8.25 Virtual-memory address translation.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 42 Page number 308 cyan black

308 C H A P T E R 8 • The Memory System

sor, whether it is for an instruction fetch or an operand load/store operation, is interpreted
as a virtual page number (high-order bits) followed by an offset (low-order bits) that spec-
ifies the location of a particular byte (or word) within a page. Information about the main
memory location of each page is kept in a page table. This information includes the main
memory address where the page is stored and the current status of the page. An area in
the main memory that can hold one page is called a page frame. The starting address of
the page table is kept in a page table base register. By adding the virtual page number
to the contents of this register, the address of the corresponding entry in the page table is
obtained. The contents of this location give the starting address of the page if that page
currently resides in the main memory.

Each entry in the page table also includes some control bits that describe the status of
the page while it is in the main memory. One bit indicates the validity of the page, that is,
whether the page is actually loaded in the main memory. It allows the operating system to
invalidate the page without actually removing it. Another bit indicates whether the page has
been modified during its residency in the memory. As in cache memories, this information
is needed to determine whether the page should be written back to the disk before it is
removed from the main memory to make room for another page. Other control bits indicate
various restrictions that may be imposed on accessing the page. For example, a program
may be given full read and write permission, or it may be restricted to read accesses only.

Translation Lookaside Buffer
The page table information is used by the MMU for every read and write access.

Ideally, the page table should be situated within the MMU. Unfortunately, the page table
may be rather large. Since the MMU is normally implemented as part of the processor
chip, it is impossible to include the complete table within the MMU. Instead, a copy of only
a small portion of the table is accommodated within the MMU, and the complete table is
kept in the main memory. The portion maintained within the MMU consists of the entries
corresponding to the most recently accessed pages. They are stored in a small table, usually
called the Translation Lookaside Buffer (TLB). The TLB functions as a cache for the page
table in the main memory. Each entry in the TLB includes a copy of the information in
the corresponding entry in the page table. In addition, it includes the virtual address of the
page, which is needed to search the TLB for a particular page. Figure 8.26 shows a possible
organization of a TLB that uses the associative-mapping technique. Set-associative mapped
TLBs are also found in commercial products.

Address translation proceeds as follows. Given a virtual address, the MMU looks in
the TLB for the referenced page. If the page table entry for this page is found in the TLB,
the physical address is obtained immediately. If there is a miss in the TLB, then the required
entry is obtained from the page table in the main memory and the TLB is updated.

It is essential to ensure that the contents of the TLB are always the same as the contents
of page tables in the memory. When the operating system changes the contents of a page
table, it must simultaneously invalidate the corresponding entries in the TLB. One of the
control bits in the TLB is provided for this purpose. When an entry is invalidated, the TLB
acquires the new information from the page table in the memory as part of the MMU’s
normal response to access misses.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 43 Page number 309 cyan black

8.8 Virtual Memory 309

No

Yes

Hit

Miss

Virtual address from processor

TLB

OffsetVirtual page number

number
Virtual page Page frame

in memory
Control

bits

Offset

Physical address in main memory

Page frame

=?

Figure 8.26 Use of an associative-mapped TLB.

Page Faults
When a program generates an access request to a page that is not in the main memory,

a page fault is said to have occurred. The entire page must be brought from the disk into
the memory before access can proceed. When it detects a page fault, the MMU asks the
operating system to intervene by raising an exception (interrupt). Processing of the program
that generated the page fault is interrupted, and control is transferred to the operating system.
The operating system copies the requested page from the disk into the main memory. Since
this process involves a long delay, the operating system may begin execution of another



November 29, 2010 11:59 ham_338065_ch08 Sheet number 44 Page number 310 cyan black

310 C H A P T E R 8 • The Memory System

program whose pages are in the main memory. When page transfer is completed, the
execution of the interrupted program is resumed.

When the MMU raises an interrupt to indicate a page fault, the instruction that requested
the memory access may have been partially executed. It is essential to ensure that the
interrupted program continues correctly when it resumes execution. There are two options.
Either the execution of the interrupted instruction continues from the point of interruption,
or the instruction must be restarted. The design of a particular processor dictates which of
these two options is used.

If a new page is brought from the disk when the main memory is full, it must replace
one of the resident pages. The problem of choosing which page to remove is just as critical
here as it is in a cache, and the observation that programs spend most of their time in a few
localized areas also applies. Because main memories are considerably larger than cache
memories, it should be possible to keep relatively larger portions of a program in the main
memory. This reduces the frequency of transfers to and from the disk. Concepts similar
to the LRU replacement algorithm can be applied to page replacement, and the control bits
in the page table entries can be used to record usage history. One simple scheme is based
on a control bit that is set to 1 whenever the corresponding page is referenced (accessed).
The operating system periodically clears this bit in all page table entries, thus providing a
simple way of determining which pages have not been used recently.

A modified page has to be written back to the disk before it is removed from the
main memory. It is important to note that the write-through protocol, which is useful in the
framework of cache memories, is not suitable for virtual memory. The access time of the disk
is so long that it does not make sense to access it frequently to write small amounts of data.

Looking up entries in the TLB introduces some delay, slowing down the operation of
the MMU. Here again we can take advantage of the property of locality of reference. It is
likely that many successive TLB translations involve addresses on the same program page.
This is particularly likely when fetching instructions. Thus, address translation time can be
reduced by keeping the most recently used TLB entries in a few special registers that can
be accessed quickly.

8.9 Memory Management Requirements

In our discussion of virtual-memory concepts, we have tacitly assumed that only one large
program is being executed. If all of the program does not fit into the available physical
memory, parts of it (pages) are moved from the disk into the main memory when they are
to be executed. Although we have alluded to software routines that are needed to manage
this movement of program segments, we have not been specific about the details.

Memory management routines are part of the operating system of the computer. It is
convenient to assemble the operating system routines into a virtual address space, called
the system space, that is separate from the virtual space in which user application programs
reside. The latter space is called the user space. In fact, there may be a number of user
spaces, one for each user. This is arranged by providing a separate page table for each user
program. The MMU uses a page table base register to determine the address of the table



November 29, 2010 11:59 ham_338065_ch08 Sheet number 45 Page number 311 cyan black

8.10 Secondary Storage 311

to be used in the translation process. Hence, by changing the contents of this register, the
operating system can switch from one space to another. The physical main memory is thus
shared by the active pages of the system space and several user spaces. However, only the
pages that belong to one of these spaces are accessible at any given time.

In any computer system in which independent user programs coexist in the main mem-
ory, the notion of protection must be addressed. No program should be allowed to destroy
either the data or instructions of other programs in the memory. The needed protection
can be provided in several ways. Let us first consider the most basic form of protection.
Most processors can operate in one of two modes, the supervisor mode and the user mode.
The processor is usually placed in the supervisor mode when operating system routines are
being executed and in the user mode to execute user programs. In the user mode, some
machine instructions cannot be executed. These are privileged instructions. They include
instructions that modify the page table base register, which can only be executed while the
processor is in the supervisor mode. Since a user program is executed in the user mode, it
is prevented from accessing the page tables of other users or of the system space.

It is sometimes desirable for one application program to have access to certain pages
belonging to another program. The operating system can arrange this by causing these pages
to appear in both spaces. The shared pages will therefore have entries in two different page
tables. The control bits in each table entry can be set to control the access privileges granted
to each program. For example, one program may be allowed to read and write a given page,
while the other program may be given only read access.

8.10 Secondary Storage

The semiconductor memories discussed in the previous sections cannot be used to provide
all of the storage capability needed in computers. Their main limitation is the cost per
bit of stored information. The large storage requirements of most computer systems are
economically realized in the form of magnetic and optical disks, which are usually referred
to as secondary storage devices.

8.10.1 Magnetic Hard Disks

The storage medium in a magnetic-disk system consists of one or more disk platters mounted
on a common spindle. A thin magnetic film is deposited on each platter, usually on both
sides. The assembly is placed in a drive that causes it to rotate at a constant speed. The
magnetized surfaces move in close proximity to read/write heads, as shown in Figure
8.27a. Data are stored on concentric tracks, and the read/write heads move radially to
access different tracks.

Each read/write head consists of a magnetic yoke and a magnetizing coil, as indicated
in Figure 8.27b. Digital information can be stored on the magnetic film by applying current
pulses of suitable polarity to the magnetizing coil. This causes the magnetization of the film
in the area immediately underneath the head to switch to a direction parallel to the applied



November 29, 2010 11:59 ham_338065_ch08 Sheet number 46 Page number 312 cyan black

312 C H A P T E R 8 • The Memory System

drive shaft
Rotary

Disk
Access

mechanism

head
Read/Write

(a) Mechanical structure

Air
gap

Magnetic
thin film

yoke
Magnetic

Magnetizing
current

(b) Read/Write head detail

Direction of
magnetization

0 1 0 1 1 1 0

One bit

(c) Bit representation by phase encoding

Figure 8.27 Magnetic disk principles.

field. The same head can be used for reading the stored information. In this case, changes
in the magnetic field in the vicinity of the head caused by the movement of the film relative
to the yoke induce a voltage in the coil, which now serves as a sense coil. The polarity of
this voltage is monitored by the control circuitry to determine the state of magnetization of
the film. Only changes in the magnetic field under the head can be sensed during the Read
operation. Therefore, if the binary states 0 and 1 are represented by two opposite states of
magnetization, a voltage is induced in the head only at 0-to-1 and at 1-to-0 transitions in
the bit stream. A long string of 0s or 1s causes an induced voltage only at the beginning
and end of the string. Therefore, to determine the number of consecutive 0s or 1s stored, a
clock must provide information for synchronization.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 47 Page number 313 cyan black

8.10 Secondary Storage 313

In some early designs, a clock was stored on a separate track, on which a change in
magnetization is forced for each bit period. Using the clock signal as a reference, the
data stored on other tracks can be read correctly. The modern approach is to combine the
clocking information with the data. Several different techniques have been developed for
such encoding. One simple scheme, depicted in Figure 8.27c, is known as phase encoding
or Manchester encoding. In this scheme, changes in magnetization occur for each data bit,
as shown in the figure. Clocking information is provided by the change in magnetization at
the midpoint of each bit period. The drawback of Manchester encoding is its poor bit-storage
density. The space required to represent each bit must be large enough to accommodate
two changes in magnetization. We use the Manchester encoding example to illustrate how
a self-clocking scheme may be implemented, because it is easy to understand. Other, more
compact codes have been developed. They are much more efficient and provide better
storage density. They also require more complex control circuitry. The discussion of such
codes is beyond the scope of this book.

Read/write heads must be maintained at a very small distance from the moving disk
surfaces in order to achieve high bit densities and reliable Read and Write operations. When
the disks are moving at their steady rate, air pressure develops between the disk surface
and the head and forces the head away from the surface. This force is counterbalanced by a
spring-loaded mounting arrangement that presses the head toward the surface. The flexible
spring connection between the head and its arm mounting permits the head to fly at the
desired distance away from the surface in spite of any small variations in the flatness of the
surface.

In most modern disk units, the disks and the read/write heads are placed in a sealed,
air-filtered enclosure. This approach is known as Winchester technology. In such units, the
read/write heads can operate closer to the magnetized track surfaces, because dust particles,
which are a problem in unsealed assemblies, are absent. The closer the heads are to a track
surface, the more densely the data can be packed along the track, and the closer the tracks
can be to each other. Thus, Winchester disks have a larger capacity for a given physical
size compared to unsealed units. Another advantage of Winchester technology is that data
integrity tends to be greater in sealed units, where the storage medium is not exposed to
contaminating elements.

The read/write heads of a disk system are movable. There is one head per surface. All
heads are mounted on a comb-like arm that can move radially across the stack of disks to
provide access to individual tracks, as shown in Figure 8.27a. To read or write data on a
given track, the read/write heads must first be positioned over that track.

The disk system consists of three key parts. One part is the assembly of disk platters,
which is usually referred to as the disk. The second part comprises the electromechanical
mechanism that spins the disk and moves the read/write heads; it is called the disk drive. The
third part is the disk controller, which is the electronic circuitry that controls the operation
of the system. The disk controller may be implemented as a separate module, or it may be
incorporated into the enclosure that contains the entire disk system. We should note that
the term disk is often used to refer to the combined package of the disk drive and the disk
it contains. We will do so in the sections that follow, when there is no ambiguity in the
meaning of the term.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 48 Page number 314 cyan black

314 C H A P T E R 8 • The Memory System

Organization and Accessing of Data on a Disk
The organization of data on a disk is illustrated in Figure 8.28. Each surface is divided

into concentric tracks, and each track is divided into sectors. The set of corresponding
tracks on all surfaces of a stack of disks forms a logical cylinder. All tracks of a cylinder
can be accessed without moving the read/write heads. Data are accessed by specifying
the surface number, the track number, and the sector number. Read and Write operations
always start at sector boundaries.

Data bits are stored serially on each track. Each sector may contain 512 or more
bytes. The data are preceded by a sector header that contains identification (addressing)
information used to find the desired sector on the selected track. Following the data, there
are additional bits that constitute an error-correcting code (ECC). The ECC bits are used
to detect and correct errors that may have occurred in writing or reading the data bytes.
There is a small inter-sector gap that enables the disk control circuitry to distinguish easily
between two consecutive sectors.

An unformatted disk has no information on its tracks. The formatting process writes
markers that divide the disk into tracks and sectors. During this process, the disk controller
may discover some sectors or even whole tracks that are defective. The disk controller
keeps a record of such defects and excludes them from use. The formatting information
comprises sector headers, ECC bits, and inter-sector gaps. The capacity of a formatted
disk, after accounting for the formating information overhead, is the proper indicator of the
disk’s storage capability. After formatting, the disk is divided into logical partitions.

Figure 8.28 indicates that each track has the same number of sectors, which means that
all tracks have the same storage capacity. In this case, the stored information is packed
more densely on inner tracks than on outer tracks. It is also possible to increase the storage
density by placing more sectors on the outer tracks, which have longer circumference. This
would be at the expense of more complicated access circuitry.

Sector 0, track 0

Sector 3, track n Sector 0, track 1

Figure 8.28 Organization of one surface of a disk.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 49 Page number 315 cyan black

8.10 Secondary Storage 315

Access Time
There are two components involved in the time delay between the disk receiving an

address and the beginning of the actual data transfer. The first, called the seek time, is the
time required to move the read/write head to the proper track. This time depends on the
initial position of the head relative to the track specified in the address. Average values
are in the 5- to 8-ms range. The second component is the rotational delay, also called
latency time, which is the time taken to reach the addressed sector after the read/write head
is positioned over the correct track. On average, this is the time for half a rotation of the
disk. The sum of these two delays is called the disk access time. If only a few sectors of
data are accessed in a single operation, the access time is at least an order of magnitude
longer than the time it takes to transfer the data.

Data Buffer/Cache
Adisk drive is connected to the rest of a computer system using some standard intercon-

nection scheme, such as SCSI or SATA. The interconnection hardware is usually capable
of transferring data at much higher rates than the rate at which data can be read from disk
tracks. An efficient way to deal with the possible differences in transfer rates is to include
a data buffer in the disk unit. The buffer is a semiconductor memory, capable of storing
a few megabytes of data. The requested data are transferred between the disk tracks and
the buffer at a rate dependent on the rotational speed of the disk. Transfers between the
data buffer and the main memory can then take place at the maximum rate allowed by the
interconnect between them.

The data buffer in the disk controller can also be used to provide a caching mechanism
for the disk. When a Read request arrives at the disk, the controller can first check to see
if the desired data are already available in the buffer. If so, the data are transferred to the
memory in microseconds instead of milliseconds. Otherwise, the data are read from a disk
track in the usual way, stored in the buffer, then transferred to the memory. Because of
locality of reference, a subsequent request is likely to refer to data that sequentially follow
the data specified in the current request. In anticipation of future requests, the disk controller
may read more data than needed and place them into the buffer. When used as a cache,
the buffer is typically large enough to store entire tracks of data. So, a possible strategy is
to begin transferring the contents of the track into the data buffer as soon as the read/write
head is positioned over the desired track.

Disk Controller
Operation of a disk drive is controlled by a disk controller circuit, which also provides

an interface between the disk drive and the rest of the computer system. One disk controller
may be used to control more than one drive.

A disk controller that communicates directly with the processor contains a number
of registers that can be read and written by the operating system. Thus, communication
between the OS and the disk controller is achieved in the same manner as with any I/O
interface, as discussed in Chapter 7. The disk controller uses the DMA scheme to transfer
data between the disk and the main memory. Actually, these transfers are from/to the data
buffer, which is implemented as a part of the disk controller module. The OS initiates
the transfers by issuing Read and Write requests, which entail loading the controller’s



November 29, 2010 11:59 ham_338065_ch08 Sheet number 50 Page number 316 cyan black

316 C H A P T E R 8 • The Memory System

registers with the necessary addressing and control information. Typically, this information
includes:

Main memory address—The address of the first main memory location of the block of
words involved in the transfer.

Disk address—The location of the sector containing the beginning of the desired block of
words.

Word count—The number of words in the block to be transferred.

The disk address issued by the OS is a logical address. The corresponding physical address
on the disk may be different. For example, bad sectors may be detected when the disk
is formatted. The disk controller keeps track of such sectors and maintains the mapping
between logical and physical addresses. Normally, a few spare sectors are kept on each
track, or on another track in the same cylinder, to be used as substitutes for the bad sectors.

On the disk drive side, the controller’s major functions are:

Seek—Causes the disk drive to move the read/write head from its current position to the
desired track.

Read—Initiates a Read operation, starting at the address specified in the disk address
register. Data read serially from the disk are assembled into words and placed into
the data buffer for transfer to the main memory. The number of words is determined
by the word count register.

Write—Transfers data to the disk, using a control method similar to that for Read opera-
tions.

Error checking—Computes the error correcting code (ECC) value for the data read from
a given sector and compares it with the corresponding ECC value read from the disk.
In the case of a mismatch, it corrects the error if possible; otherwise, it raises an
interrupt to inform the OS that an error has occurred. During a Write operation, the
controller computes the ECC value for the data to be written and stores this value on
the disk.

Floppy Disks
The disks discussed above are known as hard or rigid disk units. Floppy disks are

smaller, simpler, and cheaper disk units that consist of a flexible, removable, plastic diskette
coated with magnetic material. The diskette is enclosed in a plastic jacket, which has an
opening where the read/write head can be positioned. A hole in the center of the diskette
allows a spindle mechanism in the disk drive to position and rotate the diskette.

The main feature of floppy disks is their low cost and shipping convenience. However,
they have much smaller storage capacities, longer access times, and higher failure rates
than hard disks. In recent years, they have largely been replaced by CDs, DVDs, and flash
cards as portable storage media.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 51 Page number 317 cyan black

8.10 Secondary Storage 317

RAID Disk Arrays
Processor speeds have increased dramatically. At the same time, access times to disk

drives are still on the order of milliseconds, because of the limitations of the mechanical
motion involved. One way to reduce access time is to use multiple disks operating in
parallel. In 1988, researchers at the University of California-Berkeley proposed such a
storage system [5]. They called it RAID, for Redundant Array of Inexpensive Disks.
(Since all disks are now inexpensive, the acronym was later reinterpreted as Redundant
Array of Independent Disks.) Using multiple disks also makes it possible to improve the
reliability of the overall system. Different configurations were proposed, and many more
have been developed since.

The basic configuration, known as RAID 0, is simple. A single large file is stored in
several separate disk units by dividing the file into a number of smaller pieces and storing
these pieces on different disks. This is called data striping. When the file is accessed for
a Read operation, all disks access their portions of the data in parallel. As a result, the
rate at which the data can be transferred is equal to the data rate of individual disks times
the number of disks. However, access time, that is, the seek and rotational delay needed
to locate the beginning of the data on each disk, is not reduced. Since each disk operates
independently, access times vary. Individual pieces of the data are buffered, so that the
complete file can be reassembled and transferred to the memory as a single entity.

Various RAID configurations form a hierarchy, with each level in the hierarchy pro-
viding additional features. For example, RAID 1 is intended to provide better reliability by
storing identical copies of the data on two disks rather than just one. The two disks are said
to be mirrors of each other. If one disk drive fails, all Read and Write operations are di-
rected to its mirror drive. Other levels of the hierarchy achieve increased reliability through
various parity-checking schemes, without requiring a full duplication of disks. Some also
have error-recovery capability.

The RAID concept has gained commercial acceptance. RAID systems are available
from many manufacturers for use with a variety of operating systems.

8.10.2 Optical Disks

Storage devices can also be implemented using optical means. The familiar compact disk
(CD), used in audio systems, was the first practical application of this technology. Soon
after, the optical technology was adapted to the computer environment to provide a high-
capacity read-only storage medium known as a CD-ROM.

The first generation of CDs was developed in the mid-1980s by the Sony and Philips
companies. The technology exploited the possibility of using a digital representation for
analog sound signals. To provide high-quality sound recording and reproduction, 16-bit
samples of the analog signal are taken at a rate of 44,100 samples per second. Initially, CDs
were designed to hold up to 75 minutes, requiring a total of about 3× 109 bits (3 gigabits)
of storage. Since then, higher-capacity devices have been developed.

CD Technology
The optical technology that is used for CD systems makes use of the fact that laser

light can be focused on a very small spot. A laser beam is directed onto a spinning disk,



November 29, 2010 11:59 ham_338065_ch08 Sheet number 52 Page number 318 cyan black

318 C H A P T E R 8 • The Memory System

with tiny indentations arranged to form a long spiral track on its surface. The indentations
reflect the focused beam toward a photodetector, which detects the stored binary patterns.

The laser emits a coherent light beam that is sharply focused on the surface of the
disk. Coherent light consists of synchronized waves that have the same wavelength. If a
coherent light beam is combined with another beam of the same kind, and the two beams
are in phase, the result is a brighter beam. But, if the waves of the two beams are 180
degrees out of phase, they cancel each other. Thus, a photodetector can be used to detect
the beams. It will see a bright spot in the first case and a dark spot in the second case.

A cross-section of a small portion of a CD is shown in Figure 8.29a. The bottom layer
is made of transparent polycarbonate plastic, which serves as a clear glass base. The surface
of this plastic is programmed to store data by indenting it with pits. The unindented parts are
called lands. A thin layer of reflecting aluminum material is placed on top of a programmed
disk. The aluminum is then covered by a protective acrylic. Finally, the topmost layer is
deposited and stamped with a label. The total thickness of the disk is 1.2 mm, almost all of
it contributed by the polycarbonate plastic. The other layers are very thin.

The laser source and the photodetector are positioned below the polycarbonate plastic.
The emitted beam travels through the plastic layer, reflects off the aluminum layer, and
travels back toward the photodetector. Note that from the laser side, the pits actually appear
as bumps rising above the lands.

Figure 8.29b shows what happens as the laser beam scans across the disk and encounters
a transition from a pit to a land. Three different positions of the laser source and the detector
are shown, as would occur when the disk is rotating. When the light reflects solely from
a pit, or from a land, the detector sees the reflected beam as a bright spot. But, a different
situation arises when the beam moves over the edge between a pit and the adjacent land.
The pit is one quarter of a wavelength closer to the laser source. Thus, the reflected beams
from the pit and the adjacent land will be 180 degrees out of phase, cancelling each other.
Hence, the detector will not see a reflected beam at pit-land and land-pit transitions, and
will detect a dark spot.

Figure 8.29c depicts several transitions between lands and pits. If each transition,
detected as a dark spot, is taken to denote the binary value 1, and the flat portions represent
0s, then the detected binary pattern will be as shown in the figure. This pattern is not a
direct representation of the stored data. CDs use a complex encoding scheme to represent
data. Each byte of data is represented by a 14-bit code, which provides considerable error
detection capability. We will not delve into details of this code.

The pits are arranged on a long track on the surface of the disk, spiraling from the
middle of the disk toward the outer edge. But, it is customary to refer to each circular path
spanning 360 degrees as a separate track, which is analogous to the terminology used for
magnetic disks. The CD is 120 mm in diameter, with a 15-mm hole in the center. The tracks
cover the area from a 25-mm radius to a 58-mm radius. The space between the tracks is 1.6
microns. Pits are 0.5 microns wide and 0.8 to 3 microns long. There are more than 15,000
tracks on a disk. If the entire track spiral were unraveled, it would be over 5 km long!

CD-ROM
Since CDs store information in a binary form, they are suitable for use as a storage

medium in computer systems. The main challenge is to ensure the integrity of stored data.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 53 Page number 319 cyan black

8.10 Secondary Storage 319

Aluminum Acrylic Label

(a) Cross-section

Polycarbonate plastic

Source Detector Source Detector Source Detector

No reflection

Reflection Reflection

(b) Transition from pit to land

Pit Land

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0

(c) Stored binary pattern

Pit Land

1

Figure 8.29 Optical disk.

Because the pits are very small, it is difficult to implement all of the pits perfectly. In audio
and video applications, some errors in the data can be tolerated, because they are unlikely
to affect the reproduced sound or image in a perceptible way. However, such errors are not
acceptable in computer applications. Since physical imperfections cannot be avoided, it is



November 29, 2010 11:59 ham_338065_ch08 Sheet number 54 Page number 320 cyan black

320 C H A P T E R 8 • The Memory System

necessary to use additional bits to provide error detection and correction capability. The
CDs used to store computer data are called CD-ROMs, because, like semiconductor ROM
chips, their contents can only be read.

Stored data are organized on CD-ROM tracks in the form of blocks called sectors.
There are several different formats for a sector. One format, known as Mode 1, uses 2352-
byte sectors. There is a 16-byte header that contains a synchronization field used to detect
the beginning of the sector and addressing information used to identify the sector. This is
followed by 2048 bytes of stored data. At the end of the sector, there are 288 bytes used to
implement the error-correcting scheme. The number of sectors per track is variable; there
are more sectors on the longer outer tracks. With the Mode 1 format, a CD-ROM has a
storage capacity of about 650 Mbytes.

Error detection and correction is done at more than one level. As mentioned earlier,
each byte of information stored on a CD is encoded using a 14-bit code that has some
error-correcting capability. This code can correct single-bit errors. Errors that occur in
short bursts, affecting several bits, are detected and corrected using the error-checking bits
at the end of the sector.

CD-ROM drives operate at a number of different rotational speeds. The basic speed,
known as 1X, is 75 sectors per second. This provides a data rate of 153,600 bytes/s (150
Kbytes/s), using the Mode 1 format. Higher speed CD-ROM drives are identified in relation
to the basic speed. Thus, a 56X CD-ROM has a data transfer rate that is 56 times that of
the 1X CD-ROM, or about 6 Mbytes/s. This transfer rate is considerably lower than the
transfer rates of magnetic hard disks, which are in the range of tens of megabytes per second.
Another significant difference in performance is the seek time, which in CD-ROMs may be
several hundred milliseconds. So, in terms of performance, CD-ROMs are clearly inferior
to magnetic disks. Their attraction lies in their small physical size, low cost, and ease of
handling as a removable and transportable mass-storage medium. As a result, they are
widely used for the distribution of software, textbooks, application programs, video games,
and so on.

CD-Recordable
The CDs described above are read-only devices, in which the information is stored at

the time of manufacture. First, a master disk is produced using a high-power laser to burn
holes that correspond to the required pits. A mold is then made from the master disk, which
has bumps in the place of holes. Copies are made by injecting molten polycarbonate plastic
into the mold to make CDs that have the same pattern of holes (pits) as the master disk.
This process is clearly suitable only for volume production of CDs containing the same
information.

A new type of CD was developed in the late 1990s on which data can be easily recorded
by a computer user. It is known as CD-Recordable (CD-R). A shiny spiral track covered by
an organic dye is implemented on a disk during the manufacturing process. Then, a laser
in a CD-R drive burns pits into the organic dye. The burned spots become opaque. They
reflect less light than the shiny areas when the CD is being read. This process is irreversible,
which means that the written data are stored permanently. Unused portions of a disk can
be used to store additional data at a later time.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 55 Page number 321 cyan black

8.10 Secondary Storage 321

CD-Rewritable
The most flexible CDs are those that can be written multiple times by the user. They

are known as CD-RWs (CD-ReWritables).
The basic structure of CD-RWs is similar to the structure of CD-Rs. Instead of using

an organic dye in the recording layer, an alloy of silver, indium, antimony, and tellurium
is used. This alloy has interesting and useful behavior when it is heated and cooled. If it
is heated above its melting point (500 degrees C) and then cooled down, it goes into an
amorphous state in which it absorbs light. But, if it is heated only to about 200 degrees C
and this temperature is maintained for an extended period, a process known as annealing
takes place, which leaves the alloy in a crystalline state that allows light to pass through. If
the crystalline state represents land area, pits can be created by heating selected spots past
the melting point. The stored data can be erased using the annealing process, which returns
the alloy to a uniform crystalline state. A reflective material is placed above the recording
layer to reflect the light when the disk is read.

A CD-RW drive uses three different laser powers. The highest power is used to record
the pits. The middle power is used to put the alloy into its crystalline state; it is referred to
as the “erase power.” The lowest power is used to read the stored information.

CD drives designed to read and write CD-RW disks can usually be used with other
compact disk media. They can read CD-ROMs and can read and write CD-Rs. They are
designed to meet the requirements of standard interconnection interfaces, such as SATA
and USB.

CD-RW disks provide low-cost storage media. They are suitable for archival storage
of information that may range from databases to photographic images. They can be used
for low-volume distribution of information, just like CD-Rs, and for backup purposes. The
CD-RW technology has made CD-Rs less relevant because it offers superior capability at
only slightly higher cost.

DVD Technology
The success of CD technology and the continuing quest for greater storage capability

has led to the development of DVD (Digital Versatile Disk) technology. The first DVD
standard was defined in 1996 by a consortium of companies, with the objective of being
able to store a full-length movie on one side of a DVD disk.

The physical size of a DVD disk is the same as that of CDs. The disk is 1.2 mm thick,
and it is 120 mm in diameter. Its storage capacity is made much larger than that of CDs by
several design changes:

• A red-light laser with a wavelength of 635 nm is used instead of the infrared light laser
used in CDs, which has a wavelength of 780 nm. The shorter wavelength makes it
possible to focus the light to a smaller spot.

• Pits are smaller, having a minimum length of 0.4 micron.
• Tracks are placed closer together; the distance between tracks is 0.74 micron.

Using these improvements leads to a DVD capacity of 4.7 Gbytes.
Further increases in capacity have been achieved by going to two-layered and two-sided

disks. The single-layered single-sided disk, defined in the standard as DVD-5, has a structure



November 29, 2010 11:59 ham_338065_ch08 Sheet number 56 Page number 322 cyan black

322 C H A P T E R 8 • The Memory System

that is almost the same as the CD in Figure 8.29a. A double-layered disk makes use of two
layers on which tracks are implemented on top of each other. The first layer is the clear base,
as in CD disks. But, instead of using reflecting aluminum, the lands and pits of this layer are
covered by a translucent material that acts as a semi-reflector. The surface of this material
is then also programmed with indented pits to store data. A reflective material is placed on
top of the second layer of pits and lands. The disk is read by focusing the laser beam on the
desired layer. When the beam is focused on the first layer, sufficient light is reflected by the
translucent material to detect the stored binary patterns. When the beam is focused on the
second layer, the light reflected by the reflective material corresponds to the information
stored on this layer. In both cases, the layer on which the beam is not focused reflects a
much smaller amount of light, which is eliminated by the detector circuit as noise. The total
storage capacity of both layers is 8.5 Gbytes. This disk is called DVD-9 in the standard.

Two single-sided disks can be put together to form a sandwich-like structure where the
top disk is turned upside down. This can be done with single-layered disks, as specified in
DVD-10, giving a composite disk with a capacity of 9.4 Gbytes. It can also be done with
the double-layered disks, as specified in DVD-18, yielding a capacity of 17 Gbytes.

Access times for DVD drives are similar to CD drives. However, when the DVD
disks rotate at the same speed, the data transfer rates are much higher because of the higher
density of pits. Rewritable versions of DVD devices have also been developed, providing
large storage capacities.

8.10.3 Magnetic Tape Systems

Magnetic tapes are suited for off-line storage of large amounts of data. They are typically
used for backup purposes and for archival storage. Magnetic-tape recording uses the same
principle as magnetic disks. The main difference is that the magnetic film is deposited on
a very thin 0.5- or 0.25-inch wide plastic tape. Seven or nine bits (corresponding to one
character) are recorded in parallel across the width of the tape, perpendicular to the direction
of motion. A separate read/write head is provided for each bit position on the tape, so that
all bits of a character can be read or written in parallel. One of the character bits is used as
a parity bit.

Data on the tape are organized in the form of records separated by gaps, as shown in
Figure 8.30. Tape motion is stopped only when a record gap is underneath the read/write
heads. The record gaps are long enough to allow the tape to attain its normal speed before
the beginning of the next record is reached. If a coding scheme such as that in Figure 8.27c
is used for recording data on the tape, record gaps are identified as areas where there is
no change in magnetization. This allows record gaps to be detected independently of the
recorded data. To help users organize large amounts of data, a group of related records is
called a file. The beginning of a file is identified by a file mark, as shown in Figure 8.30.
The file mark is a special single- or multiple-character record, usually preceded by a gap
longer than the inter-record gap. The first record following a file mark can be used as a
header or identifier for the file. This allows the user to search a tape containing a large
number of files for a particular file.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 57 Page number 323 cyan black

8.11 Concluding Remarks 323

File
File

mark
mark

File

7 or 9

gap gap
File gap Record RecordRecord Record

bits

Figure 8.30 Organization of data on magnetic tape.

Cartridge Tape System
Tape systems have been developed for backup of on-line disk storage. One such system

uses an 8-mm video-format tape housed in a cassette. These units are called cartridge tapes.
They have capacities in the range of 2 to 5 gigabytes and handle data transfers at the rate of
a few hundred kilobytes per second. Reading and writing is done by a helical scan system
operating across the tape, similar to that used in video cassette tape drives. Bit densities
of tens of millions of bits per square inch are achievable. Multiple-cartridge systems are
available that automate the loading and unloading of cassettes so that tens of gigabytes of
on-line storage can be backed up unattended.

8.11 Concluding Remarks

The design of the memory hierarchy is critical to the performance of a computer system.
Modern operating systems and application programs place heavy demands on both the
capacity and speed of the memory. In this chapter, we presented the most important techno-
logical and organizational details of memory systems and how they have evolved to meet
these demands.

Developments in semiconductor technology have led to significant improvements in the
speed and capacity of memory chips, accompanied by a large decrease in the cost per bit. The
performance of computer memories is enhanced further by the use of a memory hierarchy.
Today, a large yet affordable main memory is implemented with dynamic memory chips.
One or more levels of cache memory are always provided. The introduction of the cache
memory reduces significantly the effective memory access time seen by the processor.
Virtual memory makes the main memory appear larger than the physical memory.

Magnetic disks continue to be the primary technology for secondary storage. They
provide enormous storage capacity, reaching and exceeding a trillion bytes on a single
drive, with a very low cost per bit. But, flash semiconductor technology is beginning to
compete effectively in some applications.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 58 Page number 324 cyan black

324 C H A P T E R 8 • The Memory System

8.12 Solved Problems

This section presents some examples of the types of problems that a student may be asked
to solve, and shows how such problems can be solved.

Example 8.2 Problem: Describe a structure similar to the one in Figure 8.10 for an 8M × 32 memory
using 512K × 8 memory chips.

Solution: The required structure is essentially the same as in Figure 8.10, except that 16
rows are needed, each with four 512 × 8 chips. Address lines A18−0 should be connected
to all chips. Address lines A22−19 should be connected to a 4-bit decoder to select one of
the 16 rows.

Example 8.3 Problem: A computer system uses 32-bit memory addresses and it has a main memory
consisting of 1G bytes. It has a 4K-byte cache organized in the block-set-associative manner,
with 4 blocks per set and 64 bytes per block.

(a) Calculate the number of bits in each of the Tag, Set, and Word fields of the memory
address.

(b) Assume that the cache is initially empty. Suppose that the processor fetches 1088
words of four bytes each from successive word locations starting at location 0. It
then repeats this fetch sequence nine more times. If the cache is 10 times faster than
the memory, estimate the improvement factor resulting from the use of the cache.
Assume that the LRU algorithm is used for block replacement.

Solution: Consecutive addresses refer to bytes.

(a) A block has 64 bytes; hence the Word field is 6 bits long. With 4× 64 = 256 bytes
in a set, there are 4K/256 = 16 sets, requiring a Set field of 4 bits. This leaves
32− 4− 6 = 22 bits for the Tag field.

(b) The 1088 words constitute 68 blocks, occuping blocks 0 to 67 in the memory. The
cache has space for 64 blocks. Hence, after blocks 0, 1, 2, . . . , 63 have been read
from the memory into the cache on the first pass, the cache is full. The next four
blocks, numbered 64 to 67, map to sets 0, 1, 2, and 3. Each of them will replace
the least recently used cache block in its set, which is block 0. During the second
pass, memory block 0 has to be reloaded into set 0 of the cache, since it has been
overwritten by block 64. It will be placed in the least recently used block of set 0 at
that point, which is block 1. Next, memory blocks 1, 2, and 3 will replace block 1 of
sets 1, 2 and 3 in the cache, respectively. Memory blocks 4 to 15 will be found in the
cache. Memory blocks 16 to 19, which were in block location 1 of sets 0 to 3, have
now been overwritten, and will be reloaded in block location 2 of these sets.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 59 Page number 325 cyan black

8.12 Solved Problems 325

As execution proceeds, all memory blocks that occupy the first four of the 16 cache
sets are always overwritten before they can be used on a succeeding pass. Memory
blocks 0, 16, 32, 48, and 64 continually displace each other as they compete for the 4
block positions in cache set 0. The same thing occurs in cache set 1 (memory blocks
1, 17, 33, 49, 65), cache set 2 (memory blocks 2, 18, 34, 50, 66), and cache set 3
(memory blocks 3, 19, 35, 51, 67). Memory blocks that occupy the last 12 sets (sets
4 through 15) are fetched once on the first pass and remain in the cache for the next
9 passes.

In summary, on the first pass, all 68 blocks of the loop are fetched from the memory.
On each of the 9 successive passes, 48 blocks are found in sets 4 through 15 of the
cache, and the remaining 20 blocks must be fetched from the memory. Let τ be the
access time of the cache. Therefore,

Improvement factor = Time without cache
Time with cache

= 10× 68× 10τ

1× 68× 11τ + 9(20× 11τ + 48τ )

= 2.15

This example illustrates a weakness of the LRU algorithm during the execution of
program loops. See Problem 8.9 for the performance of an alternative algorithm in this
case.

Example 8.4Problem: Suppose that a computer has a processor with two L1 caches, one for instructions
and one for data, and an L2 cache. Let τ be the access time for the two L1 caches. The
miss penalties are approximately 15τ for transferring a block from L2 to L1, and 100τ for
transferring a block from the main memory to L2. For the purpose of this problem, assume
that the hit rates are the same for instructions and data and that the hit rates in the L1 and
L2 caches are 0.96 and 0.80, respectively.

(a) What fraction of accesses miss in both the L1 and L2 caches, thus requiring access
to the main memory?

(b) What is the average access time as seen by the processor?

(c) Suppose that the L2 cache has an ideal hit rate of 1. By what factor would this reduce
the average memory access time as seen by the processor?

(d) Consider the following change to the memory hierarchy. The L2 cache is removed
and the size of the L1 caches is increased so that their miss rate is cut in half. What
is the average memory access time as seen by the processor in this case?



November 29, 2010 11:59 ham_338065_ch08 Sheet number 60 Page number 326 cyan black

326 C H A P T E R 8 • The Memory System

Solution: The average memory access time with one cache level is given in Section 8.7.1
as

tavg = hC + (1− h)M

With L1 and L2 caches, the average memory access time is given in Section 8.7.2 as

tavg = h1C1 + (1− h1)(h2C2 + (1− h2)M )

(a) The fraction of memory accesses that miss in both the L1 and L2 caches is

(1− h1)(1− h2) = (1− 0.96)(1− 0.80) = 0.008

(b) The average memory access time using two cache levels is

tavg = 0.96τ + 0.04(0.80× 15τ + 0.20× 100τ )

= 2.24τ

(c) With no misses in the L2 cache, we get:

tavg(ideal) = 0.96τ + 0.04× 15τ = 1.56τ

Therefore,

tavg(actual)
tavg(ideal)

= 2.24τ

1.56τ
= 1.44

(d) With larger L1 caches and the L2 cache removed, the access time is

tavg = 0.98τ + 0.02× 100τ = 2.98τ

Example 8.5 Problem: A 1024× 1024 array of 32-bit numbers is to be normalized as follows. For each
column, the largest element is found and all elements of the column are divided by the value
of this element. Assume that each page in the virtual memory consists of 4K bytes, and that
1M bytes of the main memory are allocated for storing array data during this computation.
Assume that it takes 10 ms to load a page from the disk into the main memory when a page
fault occurs.

(a) Assume that the array is processed one column at a time. How many page faults
would occur and how long does it take to complete the normalization process if the
elements of the array are stored in column order in the virtual memory?

(b) Repeat part (a) assuming the elements are stored in row order?

(c) Propose an alternative way for processing the array to reduce the number of page
faults when the array is stored in the memory in row order. Estimate the number of
page faults and the time needed for your solution.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 61 Page number 327 cyan black

8.12 Solved Problems 327

Solution: Each 32-bit number comprises 4 bytes. Hence, each page holds 1024 numbers.
There is space for 256 pages in the 1M-byte portion of the main memory that is allocated
for storing data during the computation.

(a) Each column is stored in one page; there is a page fault to bring each column to the
main memory, for a total of 1024 page faults.

Processing time = 1024× 10 ms = 10.24 s.

(b) Processing of each column requires two passes, the first to find the largest element
and the second to perform the normalization. When processing the first column, each
element access results in a page fault that brings all elements of the corresponding row
into the main memory. After 256 elements have been examined, the main memory is
full. Accessing the next 256 elements results in page faults that replace all the data
in the memory, and the process repeats. Thus, a page fault occurs for every access to
every element in the array.

Processing time = 2× 1024× 1024× 10 ms = 20,972 s = 5.8 hours.

(c) A more efficient alternative for this arrangement of the data is to complete the first
pass for only one quarter of each column for all columns, then process the second
quarter, and so on. The second pass is handled in the same way. In this case, each
pass through the array results in 1024 page faults, for a total of 2048.

Processing time = 2048× 10 ms = 20.48 s.

This example illustrates how the number of page faults can increase dramatically in
some cases when the size of the main memory is insufficient for the application. This
behavior is called thrashing.

Example 8.6Problem: Consider a long sequence of accesses to a disk with an average seek time of 6
ms and an average rotational delay of 3 ms. The average size of a block being accessed is
8K bytes. The data transfer rate from the disk is 34 Mbytes/sec.

(a) Assuming that the data blocks are randomly located on the disk, estimate the average
percentage of the total time occupied by seek operations and rotational delays.

(b) Repeat part (a) for the situation in which disk accesses are arranged so that in 90
percent of the cases, the next access will be to a data block on the same cylinder.

Solution: It takes 8K/34M = 0.23 ms to transfer a block of data.

(a) The total time needed to access each block is 6 + 3 + 0.23 = 9.23 ms. The portion
of time occupied by seek and rotational delay is 9/9.23 = 0.97 = 97%.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 62 Page number 328 cyan black

328 C H A P T E R 8 • The Memory System

(b) In 90% of the cases, only rotational delays are involved. Therefore, the average
time to access a block is 0.9× 3 + 0.1× 9 + 0.23 = 3.89 ms. The portion of time
occupied by seek and rotational delay is 3.6/3.89 = 0.92 = 92%.

Problems

8.1 [M] Consider the dynamic memory cell of Figure 8.6. Assume that C = 30 femtofarads
(10−15 F) and that leakage current through the transistor is about 0.25 picoamperes (10−12

A). The voltage across the capacitor when it is fully charged is 1.5 V. The cell must be
refreshed before this voltage drops below 0.9 V. Estimate the minimum refresh rate.

8.2 [M] Consider a main memory built with SDRAM chips. Data are transferred in bursts
as shown in Figure 8.9, except that the burst length is 8. Assume that 32 bits of data are
transferred in parallel. If a 400-MHz clock is used, how much time does it take to transfer:
(a) 32 bytes of data
(b) 64 bytes of data
What is the latency in each case?

8.3 [E] Describe a structure similar to that in Figure 8.10 for a 16M × 32 memory using 1M
× 4 memory chips.

8.4 [E] Give a critique of the following statement: “Using a faster processor chip results in
a corresponding increase in performance of a computer even if the main memory speed
remains the same.”

8.5 [M] The memory of a computer is byte-addressable, and the word length is 32 bits. A
program consists of two nested loops—a small inner loop and a much larger outer loop.
The general structure of the program is given in Figure P8.1. The decimal memory addresses
shown delineate the location of the two loops and the beginning and end of the total program.
All memory locations in the various sections of the program, 8-52, 56-136, 140-240, and
so on, contain instructions to be executed in straight-line sequencing. The program is to
be run on a computer that has an instruction cache organized in the direct-mapped manner
(see Figure 8.16) with the following parameters:

Cache size 1K bytes
Block size 128 bytes

The miss penalty in the instruction cache is 80τ , where τ is the access time of the cache.
Compute the total time needed for instruction fetching during execution of the program in
Figure P8.1.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 63 Page number 329 cyan black

Problems 329

8

56

140

240

1200

1504

START

END

Inner loop
executed
20 times

Outer loop
executed
10 times

Figure P8.1 A program structure for Problem 8.5.

8.6 [M] A computer with a 16-bit word length has a direct-mapped cache, used for both instruc-
tions and data. Memory addresses are 16 bits long, and the memory is byte-addressable.
The cache is small for illustrative purposes. It contains only four 16-bit words. Each word
constitutes a cache block and has an associated 13-bit tag, as shown in Figure P8.2a. Words
are accessed in the cache using the low-order 3 bits of an address. When a miss occurs
during a Read operation for either an instruction or a data operand, the requested word is
read from the main memory and sent to the processor. At the same time, it is copied into
the cache, and its block number is stored in the associated tag. Consider the following short
loop, in which all instructions are 16 bits long:

LOOP: Add R0, (R1)+
Decrement R2
BNE LOOP

Assume that, before this loop is entered, registers R0, R1, and R2 contain 0, 054E, and 3,
respectively. Also assume that the main memory contains the data shown in Figure P8.2b,
where all entries are given in hexadecimal notation. The loop starts at location LOOP =
02EC. The Autoincrement address mode in the Add instruction is used to access successive
numbers in a 3-number list and add them into register R0. The counter register, R2, is
decremented until it reaches 0, at which point an exit is made from the loop.
(a) Starting with an empty cache, show the contents of the cache, including the tags, at the
end of each pass through the loop.
(b) Assume that the access times of the cache and the main memory are τ and 10τ , respec-
tively. Calculate the execution time for each pass, counting only memory access times.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 64 Page number 330 cyan black

330 C H A P T E R 8 • The Memory System

Tag Data

13 bits 16 bits

0

2

4

6

A03C

05D9

10D7

054E

(a) Cache (b) Main memory

Figure P8.2 Cache and main memory contents in Problem 8.6.

8.7 [M] Repeat Problem 8.6 assuming that only instructions are stored in the cache. Data
operands are fetched directly from the main memory and not copied into the cache. Why
does this choice lead to faster execution than when both instructions and data are loaded
into the cache?

8.8 [E] A block-set-associative cache consists of a total of 64 blocks, divided into 4-block sets.
The main memory contains 4096 blocks, each consisting of 32 words. Assuming a 32-bit
byte-addressable address space, how many bits are there in each of the Tag, Set, and Word
fields?

8.9 [M] Consider the cache in Example 8.3. Assume that whenever a block is to be brought
from the main memory and the corresponding set in the cache is full, the new block replaces
the most recently used block of this set. Derive the solution for part (b) in this case.

8.10 [D] Section 8.6.3 illustrates the effect of different cache-mapping techniques, using the
program in Figure 8.20. Suppose that this program is changed so that in the second loop
the elements are handled in the same order as in the first loop; that is, the control for the
second loop is specified as

for i := 0 to 9 do

Derive the equivalents of Figures 8.21 through 8.23 for this program. What conclusions
can be drawn from this exercise?

8.11 [M] A byte-addressable computer has a small data cache capable of holding eight 32-bit
words. Each cache block consists of one 32-bit word. When a given program is executed,
the processor reads data sequentially from the following hex addresses:

200, 204, 208, 20C, 2F4, 2F0, 200, 204, 218, 21C, 24C, 2F4

This pattern is repeated four times.
(a) Assume that the cache is initially empty. Show the contents of the cache at the end of
each pass through the loop if a direct-mapped cache is used, and compute the hit rate.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 65 Page number 331 cyan black

Problems 331

(b) Repeat part (a) for an associative-mapped cache that uses the LRU replacement algo-
rithm.
(c) Repeat part (a) for a four-way set-associative cache.

8.12 [M] Repeat Problem 8.11, assuming that each cache block consists of two 32-bit words.
For part (c), use a two-way set-associative cache that uses the LRU replacement algorithm.

8.13 [E] The cache block size in many computers is in the range of 32 to 128 bytes. What
would be the main advantages and disadvantages of making the size of cache blocks larger
or smaller?

8.14 [M] A computer has two cache levels L1 and L2. Plot two graphs for the average memory
access time (y-axis) versus hit rate h1 (x-axis) for the two values h2 = 0.75 and h2 = 0.85.
Use the values 0.90, 0.92, 0.94, and 0.96, for h1. Assume that the miss penalties are 15τ and
100τ for the L1 and L2 caches, respectively, where τ is the access time of the L1 caches.

8.15 [E] Consider the two-level cache described in Example 8.4. The average access time is
given in the solution to part (b) of the example as 2.24τ . What value for h1 would be needed
to reduce tavg to 1.5τ , if all other parameters are the same as in the example? Can the same
result be achieved by improving the hit rate of L2?

8.16 [E] Consider the following analogy for the concept of caching. A serviceman comes to a
house to repair the heating system. He carries a toolbox that contains a number of tools that
he has used recently in similar jobs. He uses these tools repeatedly, until he reaches a point
where other tools are needed. It is likely that he has the required tools in his truck outside
the house. But, if the needed tools are not in the truck, he must go to his shop to get them.
Suppose we argue that the toolbox, the truck, and the shop correspond to the L1 cache, the
L2 cache, and the main memory of a computer. How good is this analogy? Discuss its
correct and incorrect features.

8.17 [E] The purpose of using an L2 cache is to reduce the miss penalty of the L1 cache, and in
turn to reduce the memory access time as seen by the processor. An alternative is to increase
the size of the L1 cache to increase its hit rate. What limits the utility of this approach?

8.18 [M] Give a critique of the assumption made in Example 8.1, in Section 8.7.1, that the miss
penalty is the same for both read and write accesses. Consider both the write-through and
write-back cases, as described in Section 8.6, in formulating your answer.

8.19 [M] Consider a computer system in which the available pages in the physical memory
are divided among several application programs. The operating system monitors the page
transfer activity and dynamically adjusts the number of pages allocated to various programs.
Suggest a suitable strategy that the operating system can use to minimize the overall rate
of page transfers.

8.20 [M] In a computer with a virtual-memory system, the execution of an instruction may be
interrupted by a page fault. What state information has to be saved so that this instruction
can be resumed later? Note that bringing a new page into the main memory involves a
DMA transfer, which requires execution of other instructions. Is it simpler to abandon the
interrupted instruction and completely re-execute it later? Can this be done?



November 29, 2010 11:59 ham_338065_ch08 Sheet number 66 Page number 332 cyan black

332 C H A P T E R 8 • The Memory System

8.21 [E] When a program generates a reference to a page that does not reside in the physical
main memory, execution of the program is suspended until the requested page is loaded
into the main memory from a disk. What difficulties might arise when an instruction in
one page has an operand in a different page? What capabilities must the processor have to
handle this situation?

8.22 [M] A disk unit has 24 recording surfaces. It has a total of 14,000 cylinders. There is an
average of 400 sectors per track. Each sector contains 512 bytes of data.
(a) What is the maximum number of bytes that can be stored in this unit?
(b) What is the data transfer rate in bytes per second at a rotational speed of 7200 rpm?
(c) Using a 32-bit word, suggest a suitable scheme for specifying the disk address.

8.23 [M] Consider a long sequence of accesses to a disk with 8 ms average seek time, 3 ms
average rotational delay, and a data transfer rate of 60 Mbytes/sec. The average size of a
block being accessed is 64 Kbytes. Assume that each data block is stored in contiguous
sectors.
(a) Assuming that the blocks are randomly located on the disk, estimate the average per-
centage of the total time occupied by seek operations and rotational delays.
(b) Suppose that 20 blocks are transferred in sequence from adjacent cylinders, reducing
seek time to 1 ms. The blocks are randomly located on these cylinders. What is the total
transfer time?

8.24 [M] The average seek time and rotational delay in a disk system are 6 ms and 3 ms,
respectively. The rate of data transfer to or from the disk is 30 Mbytes/sec, and all disk
accesses are for 8 Kbytes of data, stored in contiguous sectors. Data blocks are stored at
random locations on the disk. The disk controller has an 8-Kbyte buffer. The disk controller,
the processor, and the main memory are all attached to a single bus. The bus data width is
32 bits, and a single bus transfer to or from the main memory takes 10 nanoseconds.
(a) What is the maximum number of disk units that can be simultaneously transferring data
to or from the main memory?
(b) What percentage of main memory accesses are used by one disk unit, on average, over a
long period of time during which a sequence of independent 8-Kbyte transfers takes place?

8.25 [M] Magnetic disks are used as the secondary storage for program and data files in most
virtual-memory systems. Which disk parameter(s) should influence the choice of page size?

References

1. T.C. Mowry, “Tolerating Latency through Software-Controlled Data Prefetching,”
Tech. Report CSL-TR-94-628, Stanford University, Calif., 1994.

2. J.L. Baer and T.F. Chen, “An Effective On-Chip Preloading Scheme to Reduce Data
Access Penalty,” Proceedings of Supercomputing ’91, 1991, pp. 176–186.



November 29, 2010 11:59 ham_338065_ch08 Sheet number 67 Page number 333 cyan black

References 333

3. J.W.C. Fu and J.H. Patel, “Stride Directed Prefetching in Scalar Processors,”
Proceedings of the 24th International Symposium on Microarchitecture, 1992, pp.
102–110.

4. D. Kroft, “Lockup-Free Instruction Fetch/Prefetch Cache Organization,” Proceedings
of the 8th Annual International Symposium on Computer Architecture, 1981, pp.
81–85.

5. D.A. Patterson, G.A. Gibson, and R.H. Katz, “A Case for Redundant Arrays of
Inexpensive Disks (RAID),” Proceedings of the ACM SIGMOD International
Conference on Management of Data, 1988, pp. 109-166.



This page intentionally left blank 


