
Computer Architecture (263-2210-00L), Fall 2017

HW 4: Vector Processing, GPU, Memory Scheduling, Cache Partitioning

Solutions

Instructor: Prof. Onur Mutlu
TAs: Hasan Hassan, Arash Tavakkol, Mohammad Sadr, Lois Orosa, Juan Gomez Luna

Assigned: Thursday, Nov 9, 2017
Due: Thursday, Nov 23, 2017

• Handin - Critical Paper Reviews (1). You need to submit your reviews to https:

//safari.ethz.ch/review/architecture/. Please check your inbox. You should have
received an email with the password you can use to login to the paper review system. If you
have not received any email, please contact comparch@lists.ethz.ch. In the first page after
login, you should click in “Architecture - Fall 2017 Home”, and then go to “any submitted
paper” to see the list of papers.
• Handin - Questions (2-7). Please upload your solution to the Moodle (https://moodle-
app2.let.ethz.ch/) as a single PDF file. Please use a typesetting software (e.g.,
LaTeX) or a word processor (e.g., MS Word, LibreOfficeWriter) to generate
your PDF file. Feel free to draw your diagrams either using an appropriate
software or by hand, and include the diagrams into your solutions PDF.

1 Critical Paper Reviews [200 points]

Please read the following handout on how to write critical reviews. We will give out extra credit that is
worth 0.5% of your total grade for each good review.

• Lecture slides on guidelines for reviewing papers. Please follow this format.
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-f17-

how-to-do-the-paper-reviews.pdf

• Some sample reviews can be found here: https://safari.ethz.ch/architecture/fall2017/doku.

php?id=readings

(a) Write a one-page critical review for at least two of the following papers:

• E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, ”Fairness via Source Throttling: A Configurable
and High-Performance Fairness Substrate for Multi-Core Memory Systems,” ASPLOS 2010. https:
//people.inf.ethz.ch/omutlu/pub/fst_asplos10.pdf

• Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, ”ATLAS: A Scalable and High-Performance
Scheduling Algorithm for Multiple Memory Controllers,” HPCA 2010. https://people.inf.ethz.
ch/omutlu/pub/atlas_hpca10.pdf

• S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and T. Moscibroda, ”Reducing Memory
Interference in Multicore Systems via Application-Aware Memory Channel Partitioning,” MICRO
2011. https://people.inf.ethz.ch/omutlu/pub/memory-channel-partitioning-micro11.pdf

• L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, ”BLISS: Balancing Performance,
Fairness and Complexity in Memory Access Scheduling,” TPDS 2016. https://people.inf.ethz.

ch/omutlu/pub/bliss-memory-scheduler_ieee-tpds16.pdf

1/15

https://safari.ethz.ch/review/architecture/
https://safari.ethz.ch/review/architecture/
https://moodle-app2.let.ethz.ch/
https://moodle-app2.let.ethz.ch/
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-f17-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-f17-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/architecture/fall2017/doku.php?id=readings
https://safari.ethz.ch/architecture/fall2017/doku.php?id=readings
https://people.inf.ethz.ch/omutlu/pub/fst_asplos10.pdf
https://people.inf.ethz.ch/omutlu/pub/fst_asplos10.pdf
https://people.inf.ethz.ch/omutlu/pub/atlas_hpca10.pdf
https://people.inf.ethz.ch/omutlu/pub/atlas_hpca10.pdf
https://people.inf.ethz.ch/omutlu/pub/memory-channel-partitioning-micro11.pdf
https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-tpds16.pdf
https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-tpds16.pdf

2 Vector Processing [200 points]

You are studying a program that runs on a vector computer with the following latencies for various instruc-
tions:

• VLD and VST: 50 cycles for each vector element; fully interleaved and pipelined.

• VADD: 4 cycles for each vector element (fully pipelined).

• VMUL: 16 cycles for each vector element (fully pipelined).

• VDIV: 32 cycles for each vector element (fully pipelined).

• VRSHF (right shift): 1 cycle for each vector element (fully pipelined).

Assume that:
• The machine has an in-order pipeline.

• The machine supports chaining between vector functional units.

• In order to support 1-cycle memory access after the first element in a vector, the machine interleaves
vector elements across memory banks. All vectors are stored in memory with the first element mapped
to bank 0, the second element mapped to bank 1, and so on.

• Each memory bank has an 8 KB row buffer. Vector elements are 64 bits in size.

• Each memory bank has two ports (so that two loads/stores can be active simultaneously), and there
are two load/store functional units available.

(a) What is the minimum power-of-two number of banks required in order for memory accesses to never
stall? (Assume a vector stride of 1.)

Solution:
64 banks (because memory latency is 50 cycles and the next power of two is 64).

(b) The machine (with as many banks as you found in part a) executes the following program (assume that
the vector stride is set to 1):

VLD V1 ← A
VLD V2 ← B
VADD V3 ← V1, V2
VMUL V4 ← V3, V1
VRSHF V5 ← V4, 2

It takes 111 cycles to execute this program. What is the vector length?

Solution:

VLD |----50------|---(VLEN-1)----|

VLD |1|----50------|

VADD |-4-|

VMUL |-16-|

VRSHF |1|-----(VLEN-1)-----|

1 + 50 + 4 + 16 + 1 + (VLEN - 1) = 71 + VLEN = 111 → VLEN = 40 elements

If the machine did not support chaining (but could still pipeline independent operations), how many
cycles would be required to execute the same program?

Solution:

2/15

VLD |-----50-----|---(VLEN-1)---|

VLD |1|-----50-----|---(VLEN-1)---|

VADD |-4-|--(VLEN-1)---|

VMUL |-16-|--(VLEN-1)---|

VRSHF |1|--(VLEN-1)--|

50 + 1 + 4 + 16 + 1 + 4 × (VLEN - 1) = 68 + 4 × VLEN = 228 cycles

(c) The architect of this machine decides that she needs to cut costs in the machines memory system. She
reduces the number of banks by a factor of 2 from the number of banks you found in part (a) above.
Because loads and stores might stall due to bank contention, an arbiter is added to each bank so that
pending loads from the oldest instruction are serviced first. How many cycles does the program take to
execute on the machine with this reduced-cost memory system (but with chaining)?

Solution:

VLD [0] |----50----| bank 0 (takes port 0)

...

[31] |--31--|----50----| bank 31

[32] |---50---| bank 0 (takes port 0)

...

[39] |--7--| bank 7

VLD [0] |1|----50----| bank 0 (takes port 1)

...

[31] |1|--31--|----50----| bank 31

[32] |---50---| bank 0 (takes port 1)

...

[39] |--7--| bank 7

VADD |--4--| (tracking last elements)

VMUL |--16--|

VRSHF |1|

(B[39]: 1 + 50 + 50 + 7) + 4 + 16 + 1 = 129 cycles

Now, the architect reduces cost further by reducing the number of memory banks (to a lower power
of 2). The program executes in 279 cycles. How many banks are in the system?

Solution:

VLD [0] |---50---|

...

[8] |---50---|

...

[16] |--50--|

...

[24] |--50--|

...

[32] |--50--|

...

[39] |--7--|

VLD [39] |1|

VADD |--4--|

VMUL |--16--|

VRSHF |1|

5×50 + 7 + 1 + 4 + 16 + 1 = 279 cycles → 8 banks

(d) Another architect is now designing the second generation of this vector computer. He wants to build a

3/15

multicore machine in which 4 vector processors share the same memory system. He scales up the number
of banks by 4 in order to match the memory system bandwidth to the new demand. However, when
he simulates this new machine design with a separate vector program running on every core, he finds
that the average execution time is longer than if each individual program ran on the original single-core
system with 1/4 the banks. Why could this be? Provide concrete reason(s).

Solution:

Row-buffer conflicts (all cores interleave their vectors across all banks).

What change could this architect make to the system in order to alleviate this problem (in less than 20
words), while only changing the shared memory hierarchy?

Solution:

Partition the memory mappings, or using better memory scheduling.

4/15

3 Vector Processing [100 points]

Consider the following piece of code:

for (i = 0; i < 100; i++)

A[i] = ((B[i] * C[i]) + D[i])/2;

(a) Translate this code into assembly language using the following instructions in the ISA (note the number
of cycles each instruction takes is shown next to each instruction):

Opcode Operands Number of Cycles Description
LEA Ri, X 1 Ri ← address of X
LD Ri, Rj, Rk 11 Ri ← MEM[Rj + Rk]
ST Ri, Rj, Rk 11 MEM[Rj + Rk] ← Ri

MOVI Ri, Imm 1 Ri ← Imm
MUL Ri, Rj, Rk 6 Ri ← Rj × Rk
ADD Ri, Rj, Rk 4 Ri ← Rj + Rk
ADD Ri, Rj, Imm 4 Ri ← Rj + Imm

RSHFA Ri, Rj, amount 1 Ri ← RSHFA (Rj, amount)
BRcc X 1 Branch to X based on condition codes

Assume one memory location is required to store each element of the array. Also assume that there are
8 registers (R0 to R7).

Condition codes are set after the execution of an arithmetic instruction. You can assume typically
available condition codes such as zero, positive, and negative.

Solution:

MOVI R1, 99 // 1 cycle

LEA R0, A // 1 cycle

LEA R2, B // 1 cycle

LEA R3, C // 1 cycle

LEA R4, D // 1 cycle

LOOP:

LD R5, R2, R1 // 11 cycles

LD R6, R3, R1 // 11 cycles

MUL R7, R5, R6 // 6 cycles

LD R5, R4, R1 // 11 cycles

ADD R8, R7, R5 // 4 cycles

RSHFA R9, R8, R1 // 1 cycle

ST R9, R0, R1 // 11 cycles

ADD R1, R1, -1 // 4 cycles

BRGEZ R1 LOOP // 1 cycle

How many cycles does it take to execute the program?

Solution:

5 + 100× 60 = 6005 cycles

(b) Now write Cray-like vector assembly code to perform this operation in the shortest time possible. Assume
that there are 8 vector registers and the length of each vector register is 64. Use the following instructions
in the vector ISA:

5/15

Opcode Operands Number of Cycles Description
LD Vst, #n 1 Vst ← n (Vst = Vector Stride Register)
LD Vln, #n 1 Vln ← n (Vln = Vector Length Register)

VLD Vi, X 11, pipelined
VST Vi, X 11, pipelined
Vmul Vi, Vj, Vk 6, pipelined
Vadd Vi, Vj, Vk 4, pipelined
Vrshfa Vi, Vj, amount 1

Solution:

LD Vln, 50

LD Vst, 1

VLD V1, B

VLD V2, C

VMUL V4, V1, V2

VLD V3, D

VADD V6, V4, V3

VRSHFA V7, V6, 1

VST V7, A

VLD V1, B + 50

VLD V2, C + 50

VMUL V4, V1, V2

VLD V3, D + 50

VADD V6, V4, V3

VRSHFA V7, V6, 1

VST V7, A + 50

How many cycles does it take to execute the program on the following processors? Assume that memory
is 16-way interleaved.

(i) Vector processor without chaining, 1 port to memory (1 load or store per cycle).

Solution:

The third load (VLD) can be pipelined with the add (VADD). However as there is just only one
port to memory and no chaining, other operations cannot be pipelined.
Processing the first 50 elements takes 346 cycles as below

| 1 | 1 | 11 | 49 | 11 | 49 | 6 | 49 |

| 11 | 49 | 4 | 49 | 1 | 49 | 11 | 49 |

Processing the next 50 elements takes 344 cycles as shown below (no need to initialize Vln and Vst
as they stay at the same value).

| 11 | 49 | 11 | 49 | 6 | 49 |

| 11 | 49 | 4 | 49 | 1 | 49 | 11 | 49 |

Therefore, the total number of cycles to execute the program = 690 cycles

(ii) Vector processor with chaining, 1 port to memory

Solution: In this case, the first two loads cannot be pipelined as there is only one port to memory
and the third load has to wait until the second load has completed. However, the machine supports
chaining, so all other operations can be pipelined.
Processing the first 50 elements takes 242 cycles as below

6/15

| 1 | 1 | 11 | 49 | 11 | 49 |

| 6 | 49 |

| 11 | 49 |

| 4 | 49 |

| 1 | 49 |

| 11 | 49 |

Processing the next 50 elements takes 240 cycles (same time line as above, but without the first 2
instructions to initialize Vln and Vst).

Therefore, the total number of cycles to execute the program = 482 cycles

(iii) Vector processor with chaining, 2 read ports and 1 write port to memory

Solution:

Assuming an in-order pipeline.
The first two loads can also be pipelined as there are two ports to memory. The third load has
to wait until the first two loads complete. However, the two loads for the second 50 elements can
proceed in parallel with the store.

| 1 | 1 | 11 | 49 |

| 1 | 11 | 49 |

| 6 | 49 |

| 11 | 49 |

| 4 | 49 |

| 1 | 49 |

| 11 | 49 |

| 11 | 49 |

| 11 | 49 |

| 6 | 49 |

| 11 | 49 |

| 4 | 49 |

| 1 | 49 |

| 11 | 49 |

Therefore, the total number of cycles to execute the program = 215 cycles

7/15

4 GPUs [150 points]

Histograms are a powerful tool in many fields, such as image processing. Their implementation on GPU is
challenging because of the need for atomic operations. One way to accelerate their computation is using
privatization in the fast shared memory. The following code calculates the histogram of an image ”img”
using privatization:

1 extern __shared__ unsigned int Hs[];// Dynamic shared memory allocation

2 __global__ void histogram_kernel(

3 unsigned int* histo, unsigned int* img, int size, int BINS){

4 // Block and thread index

5 const int bx = blockIdx.x;

6 const int tx = threadIdx.x;

7 // Constants for read access

8 const int begin = bx * blockDim.x + tx;

9 const int end = size;

10 const int step = blockDim.x * gridDim.x;

11 // Sub-histogram initialization

12 for(int pos = tx; pos < BINS; pos += blockDim.x) Hs[pos]=0;

13 __syncthreads(); // Intra-block synchronization

14 // Main loop

15 for(int i = begin; i < end; i += step){

16 // Global memory read

17 unsigned int d = img[i];

18 // Atomic vote in shared memory

19 atomicAdd(&Hs[d], 1);

20 }

21 __syncthreads(); // Intra-block synchronization

22 // Merge in global memory

23 for(int pos = tx; pos < BINS; pos += blockDim.x){

24 unsigned int sum = 0;

25 sum = Hs[pos];

26 // Atomic addition in global memory

27 atomicAdd(histo + pos, sum);

28 }

29 }

(a) As natural images are smooth (that is, they present spatial correlation), it is very likely that neighboring
pixels fall into the same bin. To avoid atomic conflicts, R sub-histograms per block can be used (and
later merged). Lets analyze two different ways of accessing the sub-histograms (to replace line 19):

atomicAdd(&Hs[BINS * (tx % R) + d], 1); // Version 1

atomicAdd(&Hs[tx % R + d * R], 1); // Version 2

This graph shows the execution time for a 32-bins image histogram:

8/15

8.5

3.6

1.6

0.7
0.4 0.3

8.5

2.4

0.7
0.3 0.2 0.1

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

1 2 4 8 16 32

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

R = Number of sub-histograms per block

Version 1 Version 2

Why does version 2 obtain better results? What would happen for an odd-number-sized histogram?

Solution:

Version 1 makes consecutive threads vote in consecutive sub-histograms. If two adjacent threads have to
update the same bin, a bank conflict will occur, because the shared memory has 32 banks. Differently,
version 2 makes consecutive threads update bins allocated in consecutive addresses. If the size is an odd
number, for instance 33, version 1 will not incur in so many bank conflicts, and the performance will be
comparable. See the following graph:

8.2

2.4

0.7
0.3 0.2 0.1

8.1

2.3

0.7
0.3 0.2 0.1

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

1 2 4 8 16 32

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

R = Number of sub-histograms per block

Version 1 Version 2

(b) As can be seen in the above graph, increasing the number R of sub-histogram tends to reduce the number
of atomic conflicts, and consequently the execution time. Could you then explain the following graph?
(Note: Histograms of 256 bins are calculated. Tests have been carried out on a Kepler GPU with a
maximum of 64 warps per multiprocessor, and 48 KB of shared memory. Blocks of 256 threads are
used).

9/15

0.49

0.19

0.11 0.10 0.10

0.17

0.00

0.10

0.20

0.30

0.40

0.50

0.60

1 2 4 8 16 32

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

R = Number of sub-histograms per block

Version 2

Solution:

With up to 8 sub-histograms per block, the occupancy value is 100%. With 16 sub-histograms, the
occupancy falls down to 50%. The conflict reduction compensates for this occupancy reduction. With
32 sub-histograms, only 1 block will be active per multiprocessor (25% occupancy).

(c) For very large histograms, privatization in shared memory is not possible, unless multiple passes are
carried out. Assume that, given the limited shared memory availability, N passes are needed. Atomic
operations in shared memory take 2 ns to complete. For each pass, 10% of the input data loads hit
the L2 cache. Compare this multi-pass approach to an approach where the histogram resides in global
memory. Assume a GPU with global memory atomic operations in L2. Each atomic operation takes
10 ns to complete in L2, and 200 ns to complete in DRAM. 95% of the atomic operations hit the L2
cache. Find the value of N that makes worthwhile each of the approaches. (Note: the global memory
bandwidth is 100 GB/s, and the L2 is 10 times faster).

Solution:

Lets first calculate the average latency for each atomic vote in global memory. We add the load latency
and the atomic latency. The load latency for a 4-byte word can be estimated as 1 / 25 ns. The atomic
latency equals to 5%×200+95%×10 = 19.5 ns. We obtain 19.54 ns. For each atomic vote in shared
memory, we have to take into account that N passes are needed. The load latency for the first of them
is 1 / 25 ns. For the subsequent N-1 passes, 10%×(1 / 250)+90%×(1 / 25) = 0.0364 ns. Thus, the total
latency (load + atomic) can be estimated as 2ns+0.04ns+(N-1)×0.0364 ns. Comparing both approaches,
we can estimate that the multi-pass approach can be better for N < 481.

10/15

5 Memory Scheduling [200 points]

Row-Buffer Conflicts. The following timing diagram shows the operation of a single DRAM channel and
a single DRAM bank for two back-to-back reads that conflict in the row-buffer. Immediately after the bank
has been busy for 10ns with a READ, data starts to be transferred over the data bus for 5ns.

(a) Given a long sequence of back-to-back reads that always conflict in the row-buffer, what is the data
throughput of the main memory system? Please state your answer in gigabytes/second.

Solution:

64B/30ns = 32B/15ns = 32GB/15s = 2.13GB/s

(b) To increase the data throughput, the main memory designer is considering adding more DRAM banks to
the single DRAM channel. Given a long sequence of back-to-back reads to all banks that always conflict
in the row-buffers, what is the minimum number of banks that is required to achieve the maximum data
throughput of the main memory system?

Solution:

30ns/5ns = 6

Row-Buffer Hits. The following timing diagram shows the operation of the single DRAM channel and
the single DRAM bank for four back-to-back reads that hit in the row-buffer. It is important to note that
rowbuffer hits to the same DRAM bank are pipelined: while each READ keeps the DRAM bank busy for
10ns, up to at most half of this latency (5ns) can be overlapped with another read that hits in the row-buffer.

(c) Given a long sequence of back-to-back reads that always hits in the row-buffer, what is the data through-
put of the main memory system? Please state your answer in gigabytes/second.

Solution:

64B/5ns = 64GB/5s = 12.8GB/s

11/15

(d) When the maximum data throughput is achieved for a main memory system that has a single DRAM
channel and a single DRAM bank, what is the bottleneck that prevents the data throughput from
becoming even larger? Circle all that apply.

BANK COMMAND BUS ADDRESS BUS DATA BUS

Memory Scheduling Policies. The diagram below shows the memory controllers request queue at time
0. The shaded rectangles are read requests generated by thread T0, whereas the unshaded rectangles are
read requests generated by thread T1. Within each rectangle, there is a pair of numbers that denotes the
requests (BankAddress, RowAddress). Assume that the memory system has a single DRAM channel and
four DRAM banks. Further assume the following.

• All the row-buffers are closed at time 0.

• Both threads start to stall at time 0 because of memory.

• A thread continues to stall until it receives the data for all of its requests.

• Neither thread generates more requests.

For extra credits (50 points), please make sure that you model contention in the banks as well
as in all of the buses (address/command/data).

(e) For the FCFS scheduling policy, calculate the memory stall time of T0 and T1.

Solution:

T0: (10 + 5 + 5 + 10 + 10 + 10) + 10 + 10 + 10 + 10 + 5 = 95ns

T1: (10 + 5 + 5 + 10 + 10 + 10) + 1 + 10 + 5 + 5 + 10 + 5 = 86ns

(f) For the FR-FCFS scheduling policy, calculate the memory stall time of T0 and T1

Solution:

12/15

T0: (10 + 5 + 5 + 5 + 5 + 5 + 5) + 10 + 5 = 55ns

T1: (10 + 5 + 5 + 5 + 5 + 5 + 5) + 10 + 10 + 10 + 10 + 5 = 85ns

(g) For the PAR-BS scheduling policy, calculate the memory stall time of T0 and T1. Assume that all eight
requests are included in the same batch.

Solution:

T0: (10 + 5 + 5) + 1 + 10 + 10 + 5 + 5 + 5 + 10 + 5 = 71ns

T1: (10 + 5 + 5) + 5 + 10 + 5 = 40ns

13/15

6 Memory Scheduling [50 points]

In class, we covered ”parallelism-aware batch scheduling,” which is a memory scheduling algorithm that aims
to reduce interference between threads in a multi-core system.

(a) What benefit does request batching provide in this algorithm?

Solution:

Request batching allows PAR-BS to avoid starvation as requests of older batches are always prioritized
over requests of younger batches.

(b) How does the algorithm preserve intra-thread bank parallelism?

Solution:

Threads are ranked based on the number of requests they have at all the banks. All banks service
requests based on this ranking. Hence, requests from the same thread will likely be serviced in parallel
in different banks, which preserves the threads bank-level parallelism.

(c) If thread ranking was formed in a ”random manner” (i.e., threads were assigned a random rank), would
each thread’s parallelism be preserved? Why or why not? Explain.

Solution:

It depends on the applications. Assume there are two banks and there is one application which has a lot
of requests to one bank and no requests to the other. A random ranking can prioritize this application
over others and thereby preventing the other applications from exploiting their bank-level parallelism.

14/15

7 Utility-Based Cache Partitioning [100 points]

(a) Does utility-based cache partitioning guarantee a minimum amount of cache space to each thread/core
sharing the cache? Why or why not? Explain.

Solution:

Yes, it is mentioned that at least one way is given to each core by the partitioning algorithm. If not,
the thread running on that core could experience very large slowdowns due to the proposed partitioning
algorithm.

(b) If yes, describe (and analyze) the minimum level of guarantee provided by utility based cache partitioning
to each thread. If no, describe how the basic utility-based cache partitioning mechanism can be modified
to provide a minimum amount of cache space to each thread.

Solution:

At least one way of the shared cache is guaranteed to each thread. The partitioning algorithm simply
ignores all partitions that give 0 ways to a core and can never consider them ’optimal’.

(c) Describe how you would perform utility based cache partitioning if each core has an identical prefetcher
that prefetches into the shared cache. What needs to be modified in the utility based cache partitioning
mechanism described by Qureshi and Patt (MICRO 2006) to take into account prefetches? Explain the
new hardware design.

Solution:

The main problem with prefetches is that it can affect the cache utility of each application, especially if
a prefetcher is aggressive.

Multiple solutions exist. The easiest one is to ignore prefetches altogether (i.e., prefetches do not affect
the number of ways given to each core, but may cause pollution), which likely leads to poor performance.
Another solution is to treat prefetches as demand loads, in which case the prefetcher will affect the number
of ways per core.

A significantly better way would be to estimate the accuracy of the prefetcher dynamically and treat
accurate versus inaccurate prefetch requests differently. Prefetches requested by a prefetcher with very
accuracy can be treated the same as demand loads, whereas prefetches issued by an inaccurate prefetcher
can be ignored.

15/15

	Critical Paper Reviews [200 points]
	Vector Processing [200 points]
	Vector Processing [100 points]
	GPUs [150 points]
	Memory Scheduling [200 points]
	Memory Scheduling [50 points]
	Utility-Based Cache Partitioning [100 points]

