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Executive Summary

e Motivation:

* We can authenticate a system via unique signatures if we can
evaluate a Physical Unclonable Function (PUF) on it

» Signatures (PUF response) reflect inherent properties of a device
* DRAM is a promising substrate for PUFs because it is widely used

* Problem: Current DRAM PUFs are 1) very slow, 2) require a DRAM
reboot, or 3) require additional custom hardware

* Goal: To develop a novel and effective PUF for existing commodity
DRAM devices with low-latency evaluation time and low system
interference across all operating temperatures

 DRAM Latency PUF: Reduce DRAM access latency below reliable
values and exploit the resulting error patterns as unique identifiers

* Evaluation:
1. Experimentally characterize 223 real LPDDR4 DRAM devices

2. DRAM latency PUF (88.2 ms) achieves a speedup of 102x/860x
at 70°C/55°C over prior DRAM PUF evaluation mechanisms
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The DRAM Latency PUF Outline
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Motivation

We want a way to ensure that a system’s
components are not compromised

* Physical Unclonable Function (PUF): a function we evaluate
on a device to generate a signature unique to the device

* We refer to the unique signature as a PUF response
* Often used in a Challenge-Response Protocol (CRP)
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Ch I;{) u Authenticated
Trusted Device w’ Device
Checki Evaluati
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Motivation

1. We want a runtime-accessible PUF

- Should be evaluated quickly with minimal impact
on concurrent applications

- Can protect against attacks that swap system
components with malicious parts

2. DRAM is a promising substrate for evaluating
PUFs because it is ubiquitous in modern systems

- Unfortunately, current DRAM PUFs are slow and get
exponentially slower at lower temperatures
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The DRAM Latency PUF Outline
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Effective PUF Characteristics

1. Repeatability

Challengeo DRAM =
Trusted Device
Device 0
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Effective PUF Characteristics

1. Repeatability
2. Diffuseness
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Effective PUF Characteristics

1. Repeatability
2. Diffuseness
3. Uniform Randomness
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Effective PUF Characteristics

1. Repeatability

2. Diffuseness DRAM
3. Uniform Randomness Device
4. Uniqueness \\e&w 1

Challenge .
Trusted 2 Device
0

(4
%y,

4 )
All PUF responses of

different devices are

ignificantly diff t
\51gn1 icantly differen y

SAFARI 12/45




Effective PUF Characteristics

1. Repeatability
2. Diffuseness
3. Uniform Randomness

4. Uniqueness
5. Unclonability

DRAM
Trusted Device
Device 0
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Effective PUF Characteristics

More analysis
of the effective PUF characteristics

in the paper
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Effective PUF Characteristics

Runtime-accessible PUFs must have

1. Low Latency

- Each device can quickly generate a PUF
response

2. Low System Interference

- PUF evaluation minimally affects
performance of concurrently-running
applications
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The DRAM Latency PUF Outline

DRAM Latency PUF
DRAM Operation

DRAM Operation
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DRAM Accesses and Failures
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DRAM Accesses and Failures
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The DRAM Latency PUF Outline

DRAM Latency PUF
Keyldea

Key Idea
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DRAM Latency PUF Key Idea

* A cell's latency failure probability is inherently related to
random process variation from manufacturing

* We can provide repeatable and unique device
signatures using latency error patterns

Low % chance to fail

High % chance to fail
J with reduced tg,

with reduced tg,
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DRAM Latency PUF Key Idea

The key idea is to compose a PUF response
using the DRAM cells that fail

with high probability
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Evaluating a DRAM Latency PUF

Determine whether a single cell’s location should be
included in a DRAM latency PUF response

- Include if the cell fails with a probability greater than
a chosen threshold when accessed with a reduced tg

Chosen Threshold: 50% | This Cell’s Failure Rate: 60%

Failure rate is greater than the
chosen threshold, so the cell’s
location should be included

X X XX XX
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Evaluating a DRAM Latency PUF

* We induce latency failures 100 times and use a
threshold of 10% (i.e., use cells that fail > 10 times)

* We do this for every cell in a continuous 8KiB memory
region, that we refer to as a PUF memory segment

FUr Response
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Evaluating a DRAM Latency PUF

We can evaluate
the DRAM latency PUF

in only 88.2ms on average
regardless of temperature!
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The DRAM Latency PUF Outline

Prior Best DRAM PUF: DRAM Retention PUF
DRAM Cell Retention
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DRAM Cell Leakage

DRAM encodes information in leaky capacitors

wordline

access —L
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charge
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Stored data is corrupted if too much charge leaks
(i.e., the capacitor voltage degrades too much)
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DRAM Cell Retention

100%
Retention SUCCESS

Vmin

RetentiontFailliie

Capacitor voltage (Vdd)

0
0% ¢ ~
Retention time

time

Retention failure - when leakage corrupts stored data
Retention time - how long a cell holds its value
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Each Cell has a Different Retention Time

wordline

Row Decoder

AMA

Row Buffer

8GB DRAM = 6.4e10 cells
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The DRAM Latency PUF Outline

Prior Best DRAM PUF: DRAM Retention PUF

Key Idea
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Evaluating a DRAM Retention PUF

Generate a PUF response with locations of cells
in a PUF memory segment that fail

with a refresh interval N
Can handle a
& longer refresh

interval
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The pattern of retention failures across a segment of

DRAM is unique to the device
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Evaluating a DRAM Retention PUF

We use the best methods
from prior work

and optimize the retention PUF
for our devices
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The DRAM Latency PUF Outline

Prior Best DRAM PUF: DRAM Retention PUF

Weaknesses
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DRAM Retention PUF Weaknesses

DRAM Retention PUF evaluation time is very long
and leads to high system interference

Long evaluation time:

1. Most DRAM cells are strong > need to wait for long time to
drain charge from capacitors

2. Especially at low temperatures

High system interference:

1. DRAM refresh can only be disabled at a channel
granularity (512MB - 2GB)

2. Mustissue manual refreshes to maintain data correctness
in the rest of the channel during entire evaluation time

3. Manually refreshing DRAM consumes significant
bandwidth on the DRAM bus
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DRAM Retention PUF Weaknesses

Long evaluation time could be ameliorated in 2 ways:
1. Increase temperature - higher rate of charge leakage

-> Observe failures faster
Unfortunately:

1. Difficult to control DRAM temperature in the field

2. Operating at high temperatures is undesirable

2. Increase PUF memory segment size - more cells with low
retention time in PUF memory segment

- Observe more failures faster

Unfortunately:
* Large PUF memory segment

-> high DRAM capacity overhead
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The DRAM Latency PUF Outline

Methodology
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Methodology
*223 2y-nm LPDDR4 DRAM devices

- 2GB device size
- From 3 major DRAM manufacturers

* Thermally controlled testing chamber

- Ambient temperature range: {40°C - 55°C} + 0.25°C
- DRAM temperature is held at 15°C above ambient

* Precise control over DRAM commands

and timing parameters

- Test retention time effects by disabling refresh
- Test reduced latency effects by reducing t;., parameter
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The DRAM Latency PUF Outline
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Results - PUF Evaluation Latency
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Results - PUF Evaluation Latency

| : DRAM Retention PUF
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Results - PUF Evaluation Latency
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Results - PUF Evaluation Latency

| : DRAM Retention PUF
104 8KiB memory segment Manufacturer A
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1. Fast and constant latency (88.2ms)

2. 0n average, 102x/860x faster than the previous
DRAM PUF with the same DRAM capacity overhead (64KiB)
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Results - System Interference

During PUF evaluation on commodity devices:

* The DRAM Retention PUF
- Disables refresh at channel granularity (~512MB - 2GB)

* Issue manual refresh operations to rows in channel but not in PUF
memory segment to prevent data corruption

- Has long evaluation time at low temperatures

* The DRAM Latency PUF

- Does not require disabling refresh
- Has short evaluation time at any operating temperature
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Other Results in the Paper

 How the DRAM latency PUF meets the basic
requirements for an effective PUF

* A detailed analysis on:

- Devices of the three major DRAM manufacturers
- The evaluation time of a PUF

* Further discussion on:

Optimizing retention PUFs

System interference of DRAM retention and latency PUFs
Algorithm to quickly and reliably evaluate DRAM latency PUF
Design considerations for a DRAM latency PUF

The DRAM Latency PUF overhead analysis
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The DRAM Latency PUF Outline
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Executive Summary

e Motivation:

* We can authenticate a system via unique signatures if we can
evaluate a Physical Unclonable Function (PUF) on it

» Signatures (PUF response) reflect inherent properties of a device
* DRAM is a promising substrate for PUFs because it is widely used

* Problem: Current DRAM PUFs are 1) very slow, 2) require a DRAM
reboot, or 3) require additional custom hardware

* Goal: To develop a novel and effective PUF for existing commodity
DRAM devices with low-latency evaluation time and low system
interference across all operating temperatures

 DRAM Latency PUF: Reduce DRAM access latency below reliable
values and exploit the resulting error patterns as unique identifiers

* Evaluation:
1. Experimentally characterize 223 real LPDDR4 DRAM devices

2. DRAM latency PUF (88.2 ms) achieves a speedup of 102x/860x
at 70°C/55°C over prior DRAM PUF evaluation mechanisms
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DRAM Architecture Background
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Evaluating DRAM Retention PUFs

Algorithm 1: Evaluate Retention PUF [103,120, 121,124, 135]

1 evaluate DRAM_retention_PUF(seg_id, wait_time):
rank_id <— DRAM rank containing seg_id
disable refresh for Rank[rank id]
start_time <— current_time()
while current_time() - start_time < wait_time:

foreach row in Rank[rank_id]:

if row not in Segment[seg id]:
issue refresh to row // refresh all other rows

enable refresh for Rank[rank_id]
return data at Segment|[seg_id]

C ORI AAUTE WD

ek
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A
B
C

#Chips

#Tested Memory Segments

91
65
67

17,408
12,544
10,580

Table 1: The number of tested PUF memory segments across

the tested chips from each of the three manufacturers.
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Figure 3: Distributions of Jaccard indices calculated across ev-
ery possible pair of PUF responses across all tested PUF mem-
ory segments from each of 223 LPDDR4 DRAM chips.
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Figure 4: Distributions of Jaccard indices calculated between
PUF responses of DRAM chips from a single manufacturer.
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Table 2: Number of PUFmemory segmentstestec

A
B
C

#Total Memory Segments

#Chips
A 19
B 12
C 14

589,824
442,879
437,990

%Memory Segments per Chip

Intra-Jaccard index range <0.1

Intra-Jaccar d index range <0.2

100.00 [99.08, 100.00]
00.39 [82.13, 99.96]
95.74 [89.20, 100.00]

100.00 [100.00, 100.00]
96.34 [95.37, 100.00]
96.65 [95.48, 100.00]

Table 3: Percentage of PUF memory segments per chip with

Intra-Jaccard index ranges <0.1 or 0.2 over a 30-day period.

Median [minimum, maximum] values are shown.
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Temperature Effects
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Figure 6: DRAM latency PUF repeatability vs. temperature.
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Evaluating a DRAM Latency PUF

Algorithm 2: Evaluate DRAM latency PUF

1 evaluate_ DRAM_latency PUF(seg_id):
2  write known data (all 1’s) to Segment[seg_id]
3  rank_id <~ DRAM rank containing seg_id

4  obtain exclusive access to Rank[rank_id]

5 set low tgcp for Rank[rank_id]

6 fori = 1tonum iterations :
7
8
9

for col in Segment[seg_id]

for row in Segment[seg_id]: // column-order reads
read() // induce read failures
10 memory_barrier() // one access at a time
11 count_failures() // record in another rank
12  set default tgep for Rank[rank_id]
13  filter the PUF memory segment // See Filtering Mechanism

14  release exclusive access to Rank|[rank_id]
15  return error pattern at Segment[seg_id]
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Memory Footprint. Equation 2 provides the memory foot-
print required by PUF evaluation:

Mmemyiotq]l = (Sizemem_seg) + (Sizecounter_buﬂer) (2)

where sizemem_seg is the size of the PUF memory segment and
SiZ€counter buffer 1S the size of the counter bufter. The size of
the counter buffer can be calculated using Equation 3:

Sizecounter_buﬁer = (Sizemem_seg) X ﬂogz Niters_| (3)
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#Chips | Good Memory Segments per Chip (%)
A 19 100.00 [100.00, 100.00]
B 12 100.00 [64.06, 100.00]
C 14 30.86 [19.37, 95.31]

Table 4: Percentage of good memory segments per chip across
manufacturers. Median [min, max] values are shown.
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DRAM Characterization
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Sources of Retention Time Variation

* Process/voltage /temperature

* Data pattern dependence (DPD)

- Retention times change with data in cells/neighbors
-e.g,all I’'svs.all 0’s

* Variable retention time (VRT)

- Retention time changes randomly (unpredictably)
- Due to a combination of various circuit effects
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Long-term Continuous Profiling

Representative chip from Vendor B, 2048ms, 45°C

o
N

ling Cells

Error correction codes (ECC)
and online profiling are necessary
to manage new failing cells

* New failing cells continue to appear over time
- Attributed to variable retention time (VRT)

* The set of failing cells changes over time
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Single-cell Failure Probability (Cartoon)
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Single-cell Failure Probability (Real)

operate here profile here

Any cell is more likely to fall
at a longer refresh interval

OR a higher temperature

1.5 1.6 1.7 1.8 1.9 2.0
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Temperature Relationship

» Well-fitting exponential relationship:

Ry o< 02207 Ry o< 02007 R o< 02007

*E.g., 10°C ~ 10x more failures
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Retention Failures @ 45°C

I Unique: failures not observed at lower refresh intervals
[ Non-repeat: failures observed at lower refresh intervals, but not at current
B Repeat: failures observed at both current and lower refresh intervals
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VRT Failure Accumulation Rate
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800 Rounds of Profiling @ 2048ms, 45°C

Cumulative: all failures observed so far
102 _ - Repeat: previously-observed failures
- Unique: newly-observed failures

Steady-state accumulation

log(# failing cells)

10°

0 1 2 3 4 5 6

profiling runtime (days)
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800 Rounds of Profiling @ 2048ms, 45°C
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Individual Cell Failure Probabilities
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* Single representative chip of Vendor B at 40° C

* Refresh intervals ranging from 64ms to 4096ms
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Individual Cell Failure Distributions
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Single-cell Failures With Temperature

refresh interval (s)

PASS
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temperature (°C)

o

* Single representative chip of Vendor B
* {mean, std} for cells between 64ms and 4096ms



