
Computer Architecture (263-2210-00L), Fall 2018 1/6

Lab 1: Data Cache
Assigned: Thu., 20.09; Due: Fri., 05.10 (Midnight)

Instructor: Onur Mutlu
TAs: Mohammed Alser, Can Firtina, Hasan Hassan, Jeremie Kim, Juan Gómez Luna,

Geraldo Francisco de Oliveira, Minesh Patel, Giray Yaglikci

1. Introduction
In this lab, you will extend the provided pipelined MIPS machine, which is specified in Section 2, by
adding a data cache. In this pipelined MIPS machine, we assume that accessing (i.e., reading from
and writing to) the memory takes several cycles. Thus, this will result in pipeline stalls at the memory
stage. As the main goal of this lab, you will add a data cache to reduce the number of stalls due to
memory accesses. Section 3 provides the specification of the data cache.

This lab is to be done individually. You are allowed to consult with the TAs, but the lab should be
completely your own individual work.

2. Specification of the Pipelined MIPS Machine
2.1. Architecture

Instruction Set. The machine supports all of the following MIPS instructions, excluding those
related to control-flow, as shown in the following table.

ADD ADDU ADDI ADDIU AND ANDI BEQ

BGEZ BGEZAL BGTZ BLEZ BLTZ BLTZAL BNE

DIV DIVU J JAL JALR JR LB

LBU LH LHU LUI LW MFHI MFLO

MTHI MTLO MULT MULTU NOR OR ORI

SB SH SLL SLLV SLT SLTI SLTIU

SLTU SRA SRAV SRL SRLV SUB SUBU

SW SYSCALL XOR XORI

System Call Instruction. Terminates the program.

Exceptions and Interrupts. No support.

2.2. Microarchitecture

A pipelined microarchitecture divides the “work” required to execute an instruction across multiple
cycles. Each cycle corresponds to a stage within a pipeline. The major advantage of a pipelined
microarchitecture is that it can execute multiple instructions in parallel: multiple instructions can be
in the pipeline at the same time, albeit at different stages. If you need to brush up on pipelining and
the associated dependence handling issues, please refer to the following lecture videos from Design of
Digital Circuits (Spring 2018):

• Lecture 14: Pipelining (https://youtu.be/f522l7Q-t7g).

• Lecture 15: Pipelining Issues (https://youtu.be/7XXgZIbBLls).

Pipeline Stages. The provided datapath implements the following five-stage pipeline:

https://youtu.be/f522l7Q-t7g
https://youtu.be/7XXgZIbBLls


Computer Architecture (263-2210-00L), Fall 2018 2/6

Stage Specification

1. IF Instruction fetch

2. ID Instruction decode and register file read

3. EX Execution or memory address calculation

4. MEM Memory access

5. WB Writeback to register file

Handling Data Dependences. The provided five-stage pipeline implements forwarding to handle
data dependencies. When a data dependence is detected, an earlier instruction is allowed to send data
directly to a later instruction even before the data has been written back into the register file. Data
is forwarded into the end of the decode stage. The implementation still stalls, but only when stalling
cannot be prevented by forwarding data. Please, see the aforementioned lecture videos, to brush up
on data dependence handling methods.

3. Your Task: Additions to the Pipelined MIPS Machine
In this lab, your task is to implement a data cache, as described in the rest of this section.

Data Cache. Your goal is to implement a data cache.1 The data cache is accessed whenever a load
or store instruction is in the memory stage. The specification of the data cache you will implement is
listed below.

Organization. The data cache is direct mapped and has a parameterized capacity with a 32-bit
block size. The cache is empty to begin with, and it has the default capacity of 8KB.

Hit and Miss Timing. When a load instruction hits in the data cache in the memory stage, the
data is retrieved within the same cycle. When a store instruction hits in the data cache, the data is
written at the end of the cycle. On the other hand, when either a load or a store misses in the data
cache, the block must be read from main memory and installed into the appropriate cache set. The
top module that links the MIPS processor and memory in testbench.v reflects the multi-cycle access
latency of memory. The memory takes 4 cycles to read or write the data.

Table 1 shows the timing of a load instruction that misses in the cache. The core accesses the cache
in cycle 1 with cache addr, which results in a cache miss. Within the same cycle, the cache issues
a memory request with the load address of 0x04000000 through mem addr, which is an address port
from the mips core module to the mips mem module. In cycle 5, the data is returned and installed
into the cache. After the data has returned to the core, the load instruction can fetch it in the next
cycle from the cache through cache data out.2

Cycles 1 2 3 4 5 6

cache addr 0x04000000 0x04000000 0x04000000 0x04000000 0x04000000 0x04000000

mem addr 0x04000000 x x x x x

cache hit 0 0 0 0 0 1

mem data out x x x x 0xdeadbeef 1

cache data out x x x x x 0xdeadbeef

Table 1. Timing of a load that misses in the cache.

Write Policies. The data cache uses the write-back policy. No data is returned from the cache on
a store hit. On a store miss, the cache first reads the block from memory into the cache, and after
the block is in the cache, it then performs the store operation into the block.

1We are not asking you to implement an instruction cache. You do not need to modify anything in the IF stage.
2The ports, cache addr and cache data out, are not provided in the starter code. They are used in the handout for

demonstration purposes.



Computer Architecture (263-2210-00L), Fall 2018 3/6

Handling Dirty Block Evictions. When a dirty block is being evicted due to a cache conflict miss,
it needs to be written back to memory. In this lab, we will simply write back the dirty data first,
before we allocate a new block in the set. Table 2 shows the timing of a load instruction (with address
0x04000000) conflicting with a dirty block in the cache, thus evicting it. Assuming the dirty block’s
address is 0x04008000, the cache will start writing back the dirty data to the memory in the first cycle
of the cache-miss operation. Note that we is asserted along with the mem data in in the first cycle.
Your design will need to hold the mem addr, which is the address of the dirty block being written back
to memory, until the fifth cycle due to the four-cycle delay associated with the propagation of data
to the memory. After the data is written back to memory in the fifth cycle, a memory read operation
will start, in order to fetch the new block into the cache. The sixth cycle is exactly the same as the
first cycle in Table 1.

Cycles 1 2 3 4 5 6

cache addr 0x04000000 0x04000000 0x04000000 0x04000000 0x04000000 0x04000000

mem addr 0x04008000 0x04008000 0x04008000 0x04008000 0x04008000 0x04000000

cache hit 0 0 0 0 0 0

we ’b1111 0 0 0 0 0

mem data in 0xcafecafe x x x x x

cache data out x x x x x x

Table 2. Timing of a dirty block eviction from the cache.

Interface. We provide the interface between the memory and the core. Note that we do not provide
a cache interface, so you have the freedom of designing your own interface between the cache and the
core.

Tests. To test the correctness of your core after adding the data cache, you are provided with four
programs (memtest0, memtest1, arithmetic, and addiu). Each of these includes the assembly code
(*.s) and a hexadecimal file for user text (*.text.dat). You will have to include the name of this
file in mips mem.v, line 222.

You are also encouraged to write your own programs. To this end, you are provided with the SPIM
assembler and a Python script (asm2hex) that will allow you to generate machine code to load it into
your MIPS machine as a user program, using this command:3 ./asm2hex [INPUT MIPS PROGRAM],
where INPUT MIPS PROGRAM is your MIPS assembly file (*.s). Upon running the command, the output
file (*.text.dat) will be generated in the same directory as the input file.

We will test your MIPS machine with our own test cases.

4. Lab Resources
4.1. Source Code

The source code of the pipelined MIPS machine is provided in the Moodle of the Computer Archi-
tecture course (https://moodle-app2.let.ethz.ch/mod/resource/view.php?id=273287). inputs
contains the four programs mentioned in the previous section. assembler contains SPIM and the script
(asm2hex). In src you will find the Verilog code for the pipelined MIPS machine. The list of files in
src is listed below. Please, treat all source files confidentially and do not share with anyone.

• testbench.v: The testbench.

• mips core.sv: The MIPS standalone processor module.

• mips core if.v: IF stage.

• mips core id.v: ID stage.

• mips core ex.v: EX stage.

3To execute this command, the SPIM assembler and asm2hex should be in the same folder.

https://moodle-app2.let.ethz.ch/mod/resource/view.php?id=273287


Computer Architecture (263-2210-00L), Fall 2018 4/6

• mips core mem.v: MEM stage.

• mips core wb.v: WB stage.

• mips decode.v: Decodes MIPS instructions.

• mips mem.v: Dual-ported virtual word-addressed memory with 5 segments.

• memory controller.v: The memory controller.

• mips alu.v: ALU unit.

• multiply coprocessor.v: The multiplier module.

• Div32.v: The divider module.

• mips control.v: Control unit.

• branch unit.v: Branch unit. Not used in this lab.

• mips register file.v: The register file.

• reg write queue.v: Register write queue.

• regfile 3port.v: An array of 3-ported registers. (A “file” is an array of registers.)

• dff.v: Multi-bit D flip-flop.

• exception unit.v: The exception unit. Not used in this lab.

• mips parse.v: Instruction parse.

• mips debug.v: Verilog debugging.

• internal defines.vh: Internal signal constants.

• mips defines.vh: Numerical parameters of the MIPS processor

• regfile init.vh: Register file initialization.

• syscall unit.v: The system call unit: exercised only when the syscall instruction is invoked
to terminate a program.

4.2. Software Tools

For this course, we use the software Vivado for programming and simulation. The computers in rooms
HG E26.1 and 26.3 are already installed with the necessary software. If you wish to use your own
computer, you can refer to the following instructions: https://goo.gl/VUJ34J

5. Getting Started & Tips
5.1. Getting Started

1. We recommend that you review the material on pipelining from the pipelining and dependence
handling lecture videos for Design of Digital Circuits (Spring 2018):

• Lecture 14: Pipelining (https://youtu.be/f522l7Q-t7g).

• Lecture 15: Pipelining Issues (https://youtu.be/7XXgZIbBLls).

2. Please do not distribute the provided MIPS pipeline and program files. These are
for exclusive individual use of each student of the Computer Architecture course.
Distribution and sharing violates the copyright of the software provided to you.

3. Create a new project in Vivado, and include all the provided files in it.

5.2. Tips

• Read this handout in detail.

• If needed, please ask questions to the TAs using the online Q&A forum in Moodle.
(https://moodle-app2.let.ethz.ch/mod/forum/view.php?id=273285.)

https://goo.gl/VUJ34J
https://youtu.be/f522l7Q-t7g
https://youtu.be/7XXgZIbBLls
https://moodle-app2.let.ethz.ch/mod/forum/view.php?id=273285


Computer Architecture (263-2210-00L), Fall 2018 5/6

• When you encounter a technical problem, please first read the logs/reports generated by the
software tools. A search on the web can usually solve many of tool related debugging issues,
and error messages.

• Your Verilog code will require many wires. Please adopt a consistent scheme for naming them.
You will review your code with us. So please make sure your code is readable by a
third person.

• The system call instruction should terminate the program only after all other preceding instruc-
tions have completed execution.

• Make sure your Verilog implementation is synthesizable.

6. Submission
Use the corresponding assignment in Moodle (https://moodle-app2.let.ethz.ch/mod/assign/
view.php?id=273292). You should submit all the files needed to compile and simulate your code in
a single tarball (with the name lab1 YourSurname YourName.tar.gz). Please, include comments
to explain what you have done, in the Verilog files.

7. Extra Credit
We will offer up to 100% additional credit for this lab for exploring different design aspects of the
cache. Please, make sure you attempt optimizations only after you get your cache design (Section 3)
functionally correct and testing it well.

1. Critical path: We will hold a performance competition. Among all implementations that are
correct, the “top”4 students that have the lowest critical path will receive up to 25% additional
credit for this lab.

2. Four-way set-associate cache and replacement policy: You will first need to design and
implement a four-way set-associate cache. On top of your cache, you will explore various cache
replacement and/or insertion policies. The cache replacement policy specifies which cache block
in a set is replaced when a new block is inserted into the cache. The cache insertion policy
specifies where in the list of blocks the new block is placed. You can, for example, implement a
replacement policy that evicts (replaces) the least-recently-used block, and an insertion policy
that places new blocks at the most-recently-used position. However, other replacement and
insertion policies have been studied, and some have been shown to achieve significantly better
performance (fewer cache misses) for certain access patterns [1, 2]. You should experiment with
a variety of test programs and optimize the cache replacement/insertion policy. Among all
implementations that are correct, the “top” students that have the fastest execution time for an
undisclosed set of test inputs will receive up to 40% additional credit for this lab. We will likely
give significant extra credit to the working implementations as well.

3. Any other cache improvements you would like to explore: We covered a large number
of cache optimizations in Lecture 2. You are free to implement any optimization you would like,
e.g., a victim cache [3] or hash-based indexing [4], with the goal of improving the performance
of you basic cache design. Since this part is open-ended, the instructor reserves the amount of
extra credit that can be obtained but 35% extra credit is possible, depending on the difficulty
of the optimization and the goodness of the resulting design and implementation.

Please write a clear and detailed-enough report (report.pdf) that describes 1) how you optimize the
critical path, 2) your findings on cache replacement/insertion policies, and 3) your findings on the
other cache improvements you have implemented. Your report does not need to be more than four
pages. Please also submit the version of your simulator that implements the extra credit parts you
have completed.

4The instructor reserves all rights for the precise definition of the word “top”.

https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=273292
https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=273292


Computer Architecture (263-2210-00L), Fall 2018 6/6

References
[1] M.K. Qureshi et al. Adaptive insertion policies for high performance caching. In ISCA, 2007.

[2] V. Seshadri et al. The evicted-address filter: A unified mechanism to address both cache pollution
and thrashing. In PACT, 2012.

[3] N.P. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-
associative cache and prefetch buffers. In ISCA, 1990.

[4] O. Mutlu. Computer Architecture. Lecture 3: Cache management and memory parallelism, Fall
2017.

https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture3-afterlecture.pdf

	Introduction
	Specification of the Pipelined MIPS Machine
	Architecture
	Microarchitecture

	Your Task: Additions to the Pipelined MIPS Machine
	Lab Resources
	Source Code
	Software Tools

	Getting Started & Tips
	Getting Started
	Tips

	Submission
	Extra Credit

