Computer Architecture
Lecture 6a: ChargeCache

Hasan Ibrahim Hasan
ETH Zurich
Fall 2018
4 October 2018

ChargeCache
Reducing DRAM Latency by
Exploiting Row Access Locality

Hasan Hassan, SAFARI

Gennady Pekhimenko, Carnegie Mellon

4
hasiga

Nandita Vijaykumar,
Vivek Seshadri, Donghyuk Lee, f\
Oguz Ergin, Onur Mutlu om

Executive Summary

* Goal: Reduce average DRAM access latency with no
modification to the existing DRAM chips
* Observations:
1) A highly-charged DRAM row can be accessed with low latency
2) Arow’'s charge is restored when the row is accessed
3) Arecently-accessed row is likely to be accessed again:
Row Level Temporal Locality (RLTL)

 Key ldea: Track recently-accessed DRAM rows and use lower
timing parameters if such rows are accessed again

* ChargeCache:
— Low cost & no modifications to the DRAM
— Higher performance (8.6-10.6% on average for 8-core)

— Lower DRAM energy (7.9% on average)
SAFARI

Outline
1. DRAM Operation Basics

2. Accessing Highly-charged Rows

3. Row Level Temporal Locality (RLTL)
4. ChargeCache
5. Evaluation

6. Conclusion

SAFARI

DRAM Stores Data as Charge

DRAM
Cell

e

!H

W
Kibige

3. P, Cucu BT | SenSe-Amplifier

I

SAFARI c

DRAM Charge over Time

Ready to Ready to Access
Precharge Charge Level

Ready to Access

Cell

MCell

A — /Data 1
w

Q
S o --
. % Sense-Amplifier
Sense
Amplifier , , , Dataz
‘Sensing ~ Restore Precharge time

HHED _PRE_
s

tRA ,
SAFARI 6

Outline
1. DRAM Operation Basics

2. Accessing Highly-charged Rows
3. Row Level Temporal Locality (RLTL)

4. ChargeCache

5. Evaluation

6. Conclusion

SAFARI

Accessing Highly-charged Rows

Ready to Access Ready to Precharge
A Cell
-~ X z" h
_____ o o F - M ———___Datal
- ~ ~N
Q = ~= \
§|','d::—__./ \
< Sense-Amplifier
Data 0
' , l : —>
Sensing Restore Precharge time

AcT S "PRE_
S

tRA ,
SAFARI 8

Observation 1

A highly-charged DRAM row can be
accessed with low latency

!

e tRCD: 44%
e tRAS: 37%

How does a row become
highly-charged?

SAFARI

How Does a Row Become Highly-Charged?

DRAM cells lose charge over time
Two ways of restoring a row’s charge:
* Refresh Operation

e Access
A
Q \]\%\
=
S
S
: : : —>
Refresh Access Refresh time

SAFARI 10

Observation 2

A row’s charge is restored when the row
is accessed

How likely is a recently-accessed
row to be accessed again?

SAFARI 11

Outline
1. DRAM Operation Basics

2. Accessing Highly-charged Rows

3. Row Level Temporal Locality (RLTL)
4. ChargeCache
5. Evaluation

6. Conclusion

SAFARI

Row Level Temporal Locality (RLTL)

A recently-accessed DRAM row is likely to be
accessed again.

 t-RLTL: Fraction of rows that are accessed

within time t after their previous access
97%

100%
80%
60%
40%
20%

0%

EAIPRUIIE IR IR IR

Snss—RI 1L féorsaight-core workloads

SAFARI 13

Fraction of Accesses

Outline

4. ChargeCache

SAFARI

14

Summary of the Observations

1. A highly-charged DRAM row can be
accessed with low latency

2. Arow’s charge is restored when the
row is accessed

3. Arecently-accessed DRAM row is
likely to be accessed again:

Row Level Temporal Locality (RLTL)

SAFARI

15

Key Idea

Track recently-accessed DRAM rows
and use lower timing parameters if
such rows are accessed again

SAFARI 16

ChargeCache Overview
DRAM

Memory Controller

ChargeCache

mHD OW B

Requests: A D A

Cbbege€GabbdMis: Wse hofaattTimingss

SAFARI 17

Area and Power Overhead
* Modeled with CACTI

e Area

— ~5KB for 128-entry ChargeCache

—0.24% of a 4MB Last Level Cache (LLC)
area

* Power Consumption

—0.15 mW on average (static + dynamic)
—0.23% of the 4MB LLC power consumption

SAFARI

Outline

SAFARI

19

Methodology

 Simulator

— Ramulator [Kim+, CAL'15]
https://github.com/CMU-SAFARI/ramulator

e Workloads

— 22 single-core workloads
« SPEC CPU2006, TPC, STREAM

— 20 multi-programmed 8-core workloads
* By randomly choosing from single-core workloads

— Execute at least 1 billion representative instructions per
core (Pinpoints)
* System Parameters
— 1/8 core system with 4MB LLC
— Default tRCD/tRAS of 11/28 cycles

SAFARI

20

SAFAR

Mechanisms Evaluated

Non-Uniform Access Time Memory Controller (NUAT)
[Shin+, HPCA'14]

— Key idea: Access only recently-refreshed rows with
lower timing parameters
» Recently-refreshed rows can be accessed faster

» Only a small fraction (10-12%) of accesses go to
recently-refreshed rows

ChargeCache
» Recently-accessed rows can be accessed faster

» A large fraction (86-97%) of accesses go to recently-
accessed rows (RLTL)

— 128 entries per core, On hit: tRCD-7, tRAS-20 cycles

Upper Bound: Low Latency DRAM
— Works as ChargeCache with 100% Hit Ratio

- On all DRAM accesses: tRCD-7, tRAS-20 cycles -

Single-core Performance

NUAT Bl chargecCache

B chargecache + NUAT [} LL-DRAM (Upper bound)

ChargeCache improves
single-core performance

SAFARI 22

Eight-core Performance

9.16%
_g 12%
Q 8%
<)
. 4%
90

0%

NUAT 2.5% B chargecache 9%
ChargeCache + NUAT] LL-DRAM (Upperbound) 1394

Idddddddadd

A O A A R A A

ChargeCache significantly i |mproves

multi-core performance

SAFARI 23

DRAM Energy Savings

15% :
0 Average H Maximum

Single-core Eight-core

p—
3
=

DRAM Energy
Reduction

ChargeCache reduces DRAM energy

SAFARI

Other Results In The Paper

* Detailed analysis of the Row Level
Temporal Locality phenomenon

* ChargeCache hit-rate analysis

* Sensitivity studies
o Sensitivity to tin t-RLTL
o ChargeCache capacity

SAFARI

Outline

SAFARI 26

Conclusion

* ChargeCache reduces average DRAM access latency at low cost

* Observations:
1) A highly-charged DRAM row can be accessed with low latency
2) A row’s charge is restored when the row is accessed

3) Arecently-accessed row is likely to be accessed again: Row
Level Temporal Locality (RLTL)

* Key Idea: Track recently-accessed DRAM rows and use lower
timing parameters if such rows are accessed again

* ChargeCache:
— Low cost & no modifications to the DRAM

— Higher performance (8.6-10.6% on average for 8-core)
— Lower DRAM energy (7.9% on average)

SAFARI 27

ChargeCache
Reducing DRAM Latency by
Exploiting Row Access Locality

Hasan Hassan, SAFARI

Gennady Pekhimenko, Carnegie Mellon

4
hasiga

Nandita Vijaykumar,
Vivek Seshadri, Donghyuk Lee, f\
Oguz Ergin, Onur Mutlu om

SAFARI

Backup Slides

29

Detailed Design

© rRE

SAFARI

Insert Row ==—p

Address

Highly-charged

Row Address
Cache (HCRAC)

' N\

t
© AcT

Lookup the
Address

3
Pra—

Invalidation
Mechanism

RLTL Distribution

Ims-RLTL ®32ms - RLTL

0.5ms - RLTL

M 0.125ms - RLTL ® 0.25ms - RLTL

$95S9JJY JO uoijoel

IOVYINY
Adoo\V3IYIS

LTYod)
x9|ods

wniuenbqi|
INQVsnioed
920d1
duals
peNS]
¢dizq
01u0}
ddisuwo
wq
SOABM(
o][[80]
Jawuwy
Jejse
¢Yyodi
exuiyds
Jow
dLd4swe9H
0czaYyoede

9yodsy

31

SAFARI

Sensitivity on Capacity

15% _ _
--Single-core =e=Eight-core

10%

Speedup

5%

D % I I I I I I I I I I I I |

SAFARI 32

Hit-rate Analysis

100%

80%

40%

20%

Single-core
- Fight-core

Single-core (Unlimited Size)
==-Eight-core (Unlimited Size)

0% |

ChargeCache Hit-Rate

SAFARI

© D 2% 8O D © D
P74 Y gV

Number of ChargeCache Entries

33

Sensitivity on t-RLTL

15%
12%
9%
6%
3%
0%

Speedup

SAFARI

ddd]

M Speedup [0 ChargeCache Hit-Rate

1ms ‘ 4Ams ‘ 8mMs ‘16ms

Single-core

Ims ‘ A4ms | 8ms |16ms

Eight-core

100%
80%
60%
40%
20%
0%

Hit Rate

34

