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Executive Summary

* Goal: Reduce average DRAM access latency with no
modification to the existing DRAM chips
* Observations:
1) A highly-charged DRAM row can be accessed with low latency
2) Arow’'s charge is restored when the row is accessed
3) Arecently-accessed row is likely to be accessed again:
Row Level Temporal Locality (RLTL)

 Key ldea: Track recently-accessed DRAM rows and use lower
timing parameters if such rows are accessed again

* ChargeCache:
— Low cost & no modifications to the DRAM
— Higher performance (8.6-10.6% on average for 8-core)

— Lower DRAM energy (7.9% on average)
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DRAM Stores Data as Charge
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DRAM Charge over Time
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Accessing Highly-charged Rows
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Observation 1

A highly-charged DRAM row can be
accessed with low latency

!

e tRCD: 44%
e tRAS: 37%

How does a row become
highly-charged?
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How Does a Row Become Highly-Charged?

DRAM cells lose charge over time
Two ways of restoring a row’s charge:
* Refresh Operation
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Observation 2

A row’s charge is restored when the row
is accessed

How likely is a recently-accessed
row to be accessed again?
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Row Level Temporal Locality (RLTL)

A recently-accessed DRAM row is likely to be
accessed again.

 t-RLTL: Fraction of rows that are accessed

within time t after their previous access
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Outline

4. ChargeCache
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Summary of the Observations

1. A highly-charged DRAM row can be
accessed with low latency

2. Arow’s charge is restored when the
row is accessed

3. Arecently-accessed DRAM row is
likely to be accessed again:

Row Level Temporal Locality (RLTL)
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Key Idea

Track recently-accessed DRAM rows
and use lower timing parameters if
such rows are accessed again
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ChargeCache Overview
DRAM

Memory Controller

ChargeCache
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Area and Power Overhead
* Modeled with CACTI

e Area

— ~5KB for 128-entry ChargeCache

—0.24% of a 4MB Last Level Cache (LLC)
area

* Power Consumption

—0.15 mW on average (static + dynamic)
—0.23% of the 4MB LLC power consumption
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Methodology

 Simulator

— Ramulator [Kim+, CAL'15]
https://github.com/CMU-SAFARI/ramulator

e Workloads

— 22 single-core workloads
« SPEC CPU2006, TPC, STREAM

— 20 multi-programmed 8-core workloads
* By randomly choosing from single-core workloads

— Execute at least 1 billion representative instructions per
core (Pinpoints)
* System Parameters
— 1/8 core system with 4MB LLC
— Default tRCD/tRAS of 11/28 cycles

SAFARI
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Mechanisms Evaluated

Non-Uniform Access Time Memory Controller (NUAT)
[Shin+, HPCA'14]

— Key idea: Access only recently-refreshed rows with
lower timing parameters
» Recently-refreshed rows can be accessed faster

» Only a small fraction (10-12%) of accesses go to
recently-refreshed rows

ChargeCache
» Recently-accessed rows can be accessed faster

» A large fraction (86-97%) of accesses go to recently-
accessed rows (RLTL)

— 128 entries per core, On hit: tRCD-7, tRAS-20 cycles

Upper Bound: Low Latency DRAM
— Works as ChargeCache with 100% Hit Ratio

- On all DRAM accesses: tRCD-7, tRAS-20 cycles -



Single-core Performance

NUAT Bl chargecCache

B chargecache + NUAT [} LL-DRAM (Upper bound)

ChargeCache improves
single-core performance
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Eight-core Performance
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DRAM Energy Savings
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ChargeCache reduces DRAM energy
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Other Results In The Paper

* Detailed analysis of the Row Level
Temporal Locality phenomenon

* ChargeCache hit-rate analysis

* Sensitivity studies
o Sensitivity to tin t-RLTL
o ChargeCache capacity
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Conclusion

* ChargeCache reduces average DRAM access latency at low cost

* Observations:
1) A highly-charged DRAM row can be accessed with low latency
2) A row’s charge is restored when the row is accessed

3) Arecently-accessed row is likely to be accessed again: Row
Level Temporal Locality (RLTL)

* Key Idea: Track recently-accessed DRAM rows and use lower
timing parameters if such rows are accessed again

* ChargeCache:
— Low cost & no modifications to the DRAM

— Higher performance (8.6-10.6% on average for 8-core)
— Lower DRAM energy (7.9% on average)
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Detailed Design
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RLTL Distribution
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Sensitivity on Capacity
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Hit-rate Analysis
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Sensitivity on t-RLTL
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