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Designed to accelerate 

multimedia and 

communications 

software, iz'lillx 
tech nology impmues 

performance by 

introducing data types 

and instructions to the 

IA that exploit the 

parallelism in these 

applications. 

MX technology extends the Intel 
architecture (IA) to improve the 
performance of multimedia, com- 

munications, and other numeric-intensive 
applications. It uses a SIMD (single-instruc- 
tion, multiple-data) technique to exploit the 
parallelism inherent in many algorithms. pro- 
ducing kill application peiformance of 1.5 to 
2 times faster than the same applications nin 
on the same processor without W?x. The 
extension also maintains hill compatibility 
with existing IA microprocessors, operating 
systems, and applications n-hile providing 
new instructions and data types that applica- 
tions can use to achieve a higher level of per- 
formance on the host CPU.' 

We formed a group of microprocessor 
architects and select software 
that worked together to define 
nology with clear guidelines and specific 
goals in mind. We aimed not only to 
improve performance and retain backniard 
compatibility but also to design an innova- 
tive, state-of-the-art architecture that would 
scale with future higher frequency. 
advanced-microarchitecture processors. 

We analyzed a nride range of sofware 
applications. including graphics. MPEG video, 
music synthesis, speech compression. image 
processing, games, speech recognition. and 
videoconferencing. The analysis results 
revealed that although the applications cross 
different domains, in most cases the compu- 
tationally intensive, time-consuming routines 
within them have common characteristics. 
These are small native data types (for exam- 
ple, 8-bit pixels, 16-bit audio samples), local- 
ized recurring operations, and parallelism. 
This pointed us in the direction of a SIMD 
architecture that m ~ ~ u l d  exploit the available 
parallelism. The SIMD technique lets one 
instruction perform the same operation on 
multiple data elements, in parallel. It is the 
fundamental reason for the speedups 

achieved by MMX technology. 
The imperative requirement that MMX 

technology retain full compatibility with 
existing operating systems and software 
placed some interesting constraints on our 
design. For example, we couldn't introduce 
new states, such as a register set, additional 
control registers, or new condition codes. 
Also, we couldn't permit new events (for 
example, new numeric exceptions) that 
existing operating systems would not 
acknowledge. Last but not least, we had to 
ensure that applications or operating systems 
would not rely on the invalid-opcode excep- 
tion that present-day CPUs generate when 
executing the new MMX opcodes (for exam- 
ple, to internally signal some special event). 

Basically, we used the existing floating- 
point registers as the MMX registers to main- 
tain compatibility. We made this decision 1) 
to enjoy the existing 64-bit width possible with 
the floating-point registers and 2) as the main 
means to maintain full IA compatibility with 
existing applications and operating systems. 

processors 
SIMD instructions have been implemented 

in other general-purpose processor architec- 
tures. The 860' and MC881103 processors 
implemented a limited set of SIMD graphics 
instructions targeted to support a few basic 
algorithms in 3D graphics, for example, 2 
buffering. More recently, the PA-71OOLC 
processor4 together with the SIMD instruction 
support in the PA-RISC 2.0 Architecture,s and 
the UltraSparc processors6 have added a set 
of extensions to accelerate multimedia appli- 
cations. Like MMX technology, both these 
architectures support parallel operations on 
multiple small packed data elements. 

Like the UltraSparc design, MMX technol- 
ogy shares the floating-point registers 
between the floating-point and MMX instruc- 
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tion 5ets 
To summarize, MMX technology employs 

data types of srnall data elements packed together into 
one register (we call them packed data types); 
an enlianced instruction set that operates on all data ele- 
ments in a register in parallel, in a SIMD fashion; 
64-bit MMX registers that are mapped on the IA floating- 
point registers; and 
full IA compatibility. 

32 31 0 

The MMX instructions are nonprivileged and usable in appli- 
cations, libraries, and drivers. They require a minimal amount 
of incremental die area, making it practical to incorporate MMX 
technology into future Intel microprocessors. 

Data types 
MMX technology defines three packed (or compressed) 

data types and the 64-bit quadword. Each element within a 
packed data type is a fixed-point integer. Users control the 
place of the fixed point within each element and its placement 
throughout the calculation. While this adds a burden on users, 
it also gives them a large amount of flexibility. They can select 
and change fixed-point formats during the application course 
to fully control the dynamic range of their values. 

MMX defines the following four data types (see Figure 1): 

packed byte, 8 bytes packed into one 64-bit quantity, 
packed word, 4 words packed into one 64-bit quantity, 
packed doubleword, 2 doublewords packed into one 
64-bit quantity, and 
quadword, one 64-hit quantity. 

Enhanced instruction set 
We defined a rich set of instructions that perform parallel 

operations on multiple data elements (8X8-, 4x16-, or 2x32-bit 
fixed point] packed into 64 bits. We defined full support for 
packed word (16-bit) data types. We had noted that the main 
data type in many multimedia algorithms is 16 bits, and it also 
serves as the higher precision backup for operations on byte 
data. To enable a wide variety of image algorithms, we sup- 
plied rich support for packed bytes. Basic support for packed 
doubleword ctata types helps operations that need higher pre- 
cision than 16 bits, and a variety of 3D graphics algorithms. 
Overall, 57 MMX instructions were added to the IA. 

Our instructions vary from one another by a few charac- 
teristics. The first is the data type on which they operate. 
Different instructions perform the same operation on differ- 
ent data types; for example, one instruction operates on a 
packed byte, and another operates on a packed word. Some 
instructions also vary in whether they treat values they oper- 
ate upon as signed or unsigned. 

A major feature of MMX instructions is saturation arith- 
metic. In regu1:rr fixed-point arithmetic when an operation 
overflows or underflows the register, we lose the most sig- 
nificant bits. For example, addition of two unsigned 16-bit 
numbers residing in a 16-bit register may result in an 
unsigned 17-bit result. This number is too large to be repre- 
sented in a 16-bit register. The result's low-order 16 bits will 

(c) 
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Figure 1. MMX technology data types: packed byte (a), 
packed word (b), packed doubleword (c), and quadword (d). 

appear in the result register; the seventeenth bit, however, 
will not fit and is usually truncated. This behavior generates 
a wraparound effect. In some architectures, a status flag 
(overflow and/or underflow indication) signals the occur- 
rence of such a truncation. 

With a saturating unsigned add instruction, instead of gen- 
erating a 17-bit result and losing the seventeenth bit, the 
instruction result clamps to the largest possible unsigned 
number that can be represented in a 16-bit register, FFFFh. 
This operation is very important, for example, in algorithms 
dealing with visual data such as a 3D game implementing a 
Gouraud-shading technique.' This technique shades poly- 
gons by interpolating color values across scan lines. Along 
the way, calculations may start to overflow. Without pre- 
cautions, this may generate, as a result of the wraparound 
effect, a completely different value than expected. A dark 
polygon being shaded toward the color black may sudden- 
ly acquire white pixels. 

Saturation makes sure these kinds of problems do not occur. 
It also eliminates the need to check for overflows (or under- 
flows), a time-consuming operation that can substantially slow 
clown fast inner loops. In MMX technology, saturation is not 
a mode. It is not activated by setting a control bit or soine- 
thing similar. Simply, some instructions have saturation as part 
of their operation. For example, MMX add instructions vary; 
some use wraparound arithmetic, and others use saturating 
arithmetic. 

We designed the MMX instructions to be fast and scale 

On the first implementation, a Pentium processor, all MMX 
instructions with the exception of the multiply instructions 
execute in one cycle. The multiply instructions have a three- 
cycle execution latency, but the multiply unit's pipelined 
design enables a new multiply instruction to start every cycle. 

with higher frequencies and advanced microarchitectures. 
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Table 1. MMX instruction set summary. 

Opcode mnemonic* Options Cycle count Description 

PADD(b,w,d), Wraparound 1 Adds or subtracts packed 8 bytes, four 16-bit words, or two 
PSUB(b,w,d) and saturate 32-bit doublewords in parallel 
PCMPEQ(b,w,d), Equal or greater than 1 Compares packed 8 bytes, four 16-bit words, or two 32-bit 
PCMPGT(b,w,d) 
PMULLW, Result high- Latency 3, Multiplies four packed, signed 1 6-bit words in parallel 
PMULHW 
PMADDWD Word to doubleword Latency 3, Multiplies four packed, signed 16-bit words and adds 

elements in parallel Result is mask of 1 s if true or Os if false 

Chooses low- or high-order 16 bits of the 32-bit result 

together adjacent pairs of 32-bit results in parallel Result 
is ii douhl~word 

or low-order bits throughput 1 

conversion throughput 1 

PSRA(w,d), PSLL(w,d,q), Shift count in register 1 
PSRL(w,d,q) or immediate 
PUN PC KL( bw, wd, dq) 1 
PUNPCKH(bw,wd,dq) doublewords with interleaving 
PACKSS(wb,dw) Always saturate 1 Packs doublewords to words or to bytes in parallel 
PAND, PANDN, POR, PXOR - 1 Performs 64 bit bitwise logical operations 
MOV(d,q) - 1 (if data Moves 32 or 64 bits between memory and MMX registers, 

EMMS - Varies by Empty floating-point registers tag bits 

Shifts arithmetic right, logical left and right packed 4 words, 
2 doublewords, or the full 64 bits (quadword) in parallel 

Merges packed 8 bytes, four 16-bit words, or two 32-bit - 

in cache) 

implementation 

32 bits can be moved between MMX and integer registers 

*If an instruction supports multiple data types, brackets indicate the data type: b = byte, w = word, d = doubleword, q = 

quadword; hw = from byte to word, wd = from word to doublevord. dq = from doubleword to quadword, wb = word to 
byte, dw = from doubleword to word. 

This means that with software loop unrolling8 the processor 
can achieve a throughput of one cycle per SIMD multiply. 

Table 1 summarizes the types of instructions included in 
MMX and the operations they perform. 

Packed addition and subtraction with optional satu- 
ration. These instructions exist for the three packed data 
types. Each single add or subtract operation is independent of 
the others; takes place in parallel; and comes in wraparound, 
unsigned-saturation, and signed-saturation versions. The 
upper and lower saturation limits are FFh and OOh for unsigned 
bytes and 7Fh and 80h for signed bytes. For words and dou- 
blewords, the limits are also the maximum and minimum 
unsigned or signed values that these data types can represent. 

Packed multiplications. We defined two variations of 
these instructions, both of which support 16-bit-precision 
multiplications. 

The first performs four 16-biut16-bit multiplies and lets the 
user choose the low- or  high-order parts of the 32-bit multi- 
ply result. Thus, the input operands and the results are 
packed 16-bit data types. 

The second is the basis for the fast multiply-accumulate capa- 
bility in MMX (see Figure 2). The idea was to design a 16-bit 
multiplier but perform accumulation in 32 bits to enable full 
accumulation precision. This instruction starts from a packed 
16-bit data type and returns a packed 32-bit data type. It mul- 
tiplies respective elements from both its sources, generating 
four 32-bit results. It adds two adjacent products for one 32-bit 
result, then adds the two other adjacent products to generate 
the final packed doubleword. Thus, the packed multiply-add 
instruction performs four multiplies and two 32-bit accumula- 

tions in one instruction. To complete the multiply-accumulate 
operation. a PADDD instruction adds the results to another reg- 
ister, which is used as the accumulator. 

Packed compares. These instructions independently com- 
pare all the respective data elements of two packed data types, 
in parallel. They generate a mask of Is and Os, depending on 
-whether the condition is tme or false. There are no new con- 
dition code flags for the packed compares, and they do not 
affect existing LA condition code flags. Figure 3 shows an exam- 
ple of a compare greater-than operation on packed-word data. 

Subsequent code can use the result mask of 1s and Os to 
select elements from different inputs, when combined with 
logical operations. We explain the use of MMX compare 
instructions more fully in the later chroma key example. 

Packed shift instructions. MMX implements two ver- 
sions of logical left, right, and arithmetic right shift opera- 
tions. The first is the regular packed shift that independently 
shifts each element in the packed data type in parallel. MMX 
supports shift operations on packed word and doubleword 
data types. Packed shift instructions let users control preci- 
sion by having full control over the binary-point position in 
fixed-point values. We did not include packed byte shifts 
because our studies indicated that bytes are usually used at 
full precision and do not require frequent precision control. 

The second version of shift operations is logical shift left 
or right on the whole 64-bit MMX register. These shift oper- 
ations are especially important; they enable realignment of 
the packed data that was loaded from memory. MMX is 
based on moving 64-bit quantities around, and loading or 
storing them to memory. Because most IA CPUs have a sub- 
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stantial performance degradation on misaligned memory 
accesses, MMX code should perform only 64-bit aligned 
accesses. Also, most compilers and code writers do not 
enforce 64-bit alignment. For example, an MMX code devel- 
oper might want to access an array of bytes, loading 8 bytes 
at a time but at an alignment that does not start on an address 
that divides by eight. To avoid performance degradation, the 
code developer can perform two adjacent aligned memory 
accesses of 64 bits each, and then, using the 64-bit MMX shift 
instructions, realign the data as needed. 

Conversion instructions. The MMX pack and unpack 
instructions facilitate conversions between the packed data 
types. This is especially important when an algorithm needs 
higher precision in its intermediate calculations. For exam- 
ple, in an image-filtering operation the data is loaded as 
packed bytes-one byte per pixel in one of the color planes. 
The filter operation first requires multiplying the filter coef- 
ficient with a set of adjacent image pixels, and then adding 
the results-an operation that almost certainly will overflow 
8 bits. To avoid the overflow problem, users can unpack the 
packed bytes into packed words, perform the whole oper- 
ation in 16-bit precision, and then with one pack instruction 
go back to packed byte data and store to memory. 

The unpack instruction unpacks from a smaller precision 
data type to a higher precision data type. However this 
instruction also serves another purpose: It performs an inter- 
leaved merge operation. Figure 4 is an example of an unpack 
instruction on packed byte data. Here, the instruction takes 
four low-order bytes from each input operand and inter- 
leaves them into the result register. This operation is useful 
in many instances such as 

interpolation operations in which a new pixel is 
required between every pair of old pixels, 
matrix transpositions (converting columns to rows), and 
conversions between RGB or RGBA-pixel format to and 
from color planes. 

The special case of an input register that holds Bn as all Os 
achieves the effect of unpacking unsigned bytes of An to 
unsigned words. 

Logical operations. MMX technology adds a set of 64-bit 
logical operations: AND, ANDNOT, OR, and XOR. 

Memory transfer. Since MMX technology deals with 64- 
bit quantities, we had to add new instructions to transfer 
packed data to and from memory. The move quadword 
(MOVQ) instruction moves 64-bit data between MMX regis- 
ters and memory or between MMX registers and themselves. 
We also added a 32-bit memory move for packed data 
(MOVD) to transfer 32 hits of data between memory and 
MMX registers. This instruction 

users in maintaining compatibility with IA and existing soft- 
ware (see later section). 

64-bit MMX registers 
We provided eight 64-bit general-purpose registers that are 

actually the floating-point registers. Assembly code can direct- 
ly address each register by designating MMO-MM7 register 
names in the MMX instructions. The registers are random- 
access registers; that is, they are not accessed via a stack model 
as with the floating-point instructions. The MMX registers hold 
only MMX data. MMX instructions that specify a memory 
operand use the IA integer registers to address that operand. 

Thus, the following example is a legal MMX instruction: 

Paddw mm4,16[ebxl: Add packed word in memory to mm4 

Note that one of the issues programmers have with the IA 
is that it contains a small number of general-purpose integer 
registers-even the eight IA integer registers are not all gen- 
eral purpose. (ESP, the stack pointer register, maintains a 
pointer to the top of the stack and is implicitly manipulated 
in many IA instructions that access the software stack. As a 
result, it cannot lie used as a general-purpose register.) 

Since the MMX registers are actually the floating-point reg- 
isters, applications that use MMX instructions can use almost 
16 registers. Eight are the MMWfloating-point registers, each 
of which are 64 bits in size and hold packed data. The other 
eight are integer registers available for different operations 
such as addressing, loop control, or other data manipula- 
tion. We found that this release o f  register pressure makes 
register allocation much simpler and saves many instances 

I A3 I A2 I A1 I A0 I 
I B3 I B2 I B1 I BO I 

X X X X 

I A3xB3 I A2xB2 I I A lxB1 I AOxBO 1 
1 1  l /  , -  - 

1 A3xB3+A2xB21 AlxBl+AOxBOI 

Figure 2. Packed mult ip ly-add w o r d  t o  doubleword. 

1 7 3 1 2 1  5 1  6 1  

1000 ." 0 11 1 1 ... 1 1000 'A' 01 11 1 '.. 1 I 

Figure 3. Packed compare greater-than word. 

always moves the low-order 32 bits 
of an MMX register. The register-to- 1 I I I I 
implements the operation of moving 
data between the MMX and integer 
register files. 

Empty MMX state operation. 
We also added one instruction to aid 

register version of this instruction 

Figure 4. Unpacking byte data. 
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Floating-point tag Floating-point registers 
80 63 0 

I MM7 I 

MM1 

MMO 

MMX 
registers 

Figure 5. Mapp ing  M M X  registers t o  f loat ing-point  regis- 
ters. TOS: top-of-stack field. 

of having to store values temporarily to memory. 

FU 
MMX achieves full compatibility with existing operating 

systems and applications by using the existing IA floating- 
point state as temporary storage for MMX data (see Figure 5). 
We did not add registers, condition codes, or events to sup- 
port MMX. With no mode switch or IMMX mode indication. 
an existing operating system has nothing new to address. 

Sharing the floating-point registers revealed several chal- 
lenging definition issues. One is the elimination of the stack 
architecture of the floating-point register file for MMX register 
access. Access is random. 

Another issue regards an application that requires use of 
MMX and floating-point codes. The dual usage of the float- 
ing-point registers does not preclude applications from using 
both MMX and floating-point code. Applications, though, 
should not attempt to use the registers simultaneously for 
floating-point and M data. Since floating-point register val- 
ues are interpreted differently when accessed by floating- 
point and MMX instructions, users should not rely on register 
content across transitions between MMX and floating-point 
codes. Partitioning the floating-point and MMX codes into 
long execution spells makes transition events infrequent and 
simple to handle. 

For all practical purposes, an existing operating system 
views MMX as an extension of floating-point instructions, 
not a new extension. 

Mapping. MMX instructions write values to the lomr-order 
64 bits (the mantissa) of the LA SO-bit floating-point registers. 
When an MMX instruction writes to a register, the exponent 
field of the corresponding floating-point register (bits 64 though 
78) and the sign bit (bit 79) are set to Is. This makes the value 
in the register a NAN (not a number) or infinity when viewed 

as a floating-point value. Since MMX instructions operate only 
on the low-order 64 bits of the floating-point registers, they are 
not affected by their generation of invalid floating-point values. 

The software convention followed today by PC code writ- 
ers is to leave the floating-point stack empty after using it. IA 
defines a tag field for each floating-point register. These fields 
signal Then their corresponding register is empty, valid, or a 
special case of floating-point value (a NAN, for example). When 
an application tries to load a value into the floating-point stack 
beyond its capacity. the tag bits indicate the space problem 
and a stack overflow indication or exception is generated. 

Following the convention ensures that subsequent 
floating-point code can start operating on an empty stack. 
When a nen- value is pushed onto the stack into a new float- 
ing-point register, the corresponding tag field becomes valid. 
When a value i s  popped off the stack and out of a floating- 
point register, the corresponding floating-point tag field 
changes to empty. This implicit emptyhalid effect is a nat- 
ural side effect of organizing the floating-point registers into 
a stack architecture. 

An operating system can use these tags to perform "intel- 
ligent" state saving on context switches. For example, an 
operating system may compare the whole tag register (a reg- 
ister holding all tag fields) to all 1s (the empty indication). If 
it finds all registers empty, it doesn't save them. 

Randomly accessed MMX registers make it difficult to iniple- 
men1 the implicit effect that the floating-point instiuctions have 
over the floating-point tags. As a result, we decided to design 
the effect on the tags more explicitly. The first time an MMX 
instruction accesses a floating-point register, the tag bits of all 
the floating-point registers are validated. This ensures t l u t  all 
the registers are saved on a context switch. MMX also sup- 
plies the EhlMS (empty MMX state) instruction to convert all 
the tag bits at once to the empty state. Programmers should 
insert EMMS after each MMX code section that may be fol- 
lon,ed by- floating-point code. EMMS is the MMX means to 
conform to the sofware convention of leaving the floating- 
point stack empty before someone eke's floating-point code 
ma!- ti?- to use it. EMMS affects only the tags, not the register 
content. So if the need arises, MMX instructions can continue 
to operate on the values in the registers after EMMS executes. 

Table 2 summarizes the effects of the MMX instructions 
on the floating-point state. 

Context switch support. To complete our compatibili- 
ty needs. n'e macle sure that MMX technology uses the same 
techniques used by the floating-point architecture to interface 
with the operating system. 

For example, IA includes the concept of lazy task switch- 
ing. If floating point is not used extensively, there is no point 
in saving and restoring the floating-point state on every task 
switch. The floating-point state must be saved only if more 
than one task uses floating point. IA implements this by sup- 
plying a bit that the operating system can set. This bit instructs 
the CPU to signal when any task tries to use floating point. 
By setting this bit, the first floating-point instruction that exe- 
cutes in a task will trigger an exception. This exception 
enables an operating system to save the context of a previ- 
ous floating-point task only if another task wants to use float- 
ing point. Since MMX code uses the floating-point registers, 
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the same behavior extends to MMX 
instructions. The first MMX instruc- 
tion executed after setting the bit for 
lazy task switching  ill also trigger 
the exception. This enables the oper- 
ating system to save the floating- 
point state before the MMX code 
overwrites it. 

The instructions an operating sys- 
tem uses to Save and restore the float- 
ing-point state (FSAVE and FRSTOR) 
also save and restore the MMX Tal- 
ues. These instructions save the val- 
ues in the floating-point registers 
regardless of whether they are used 
by floating-point or MMX codes. 

Enhancing existing applica- 
tions. Executing the CPUID instruc- 
tion and checking a set bit in the result 
detects the existence of MMX tech- 
nology on Intel microprocessors. This 
gives software developers the flexi- 
bility of determining what software 
should be run. During runtime, the 
software can query the microproces- 
sor to determine MMX support and 
execute regular IA or MMX code 
based on the answer. This enables the 
software developer to  distribute one 
version of the product that will run on 
a CPU without MMX support, but run 
even better on a CPU with MMX. 

Table 2. Effects of MMX instructions on the floating-point state. 

Instruction Floating-point Other FPU Exponent! 
type tag word state signed bits Mantissa 

MMX register All fields set to 00 (valid) Unchanged Unchanged Unchanged 

MMX register All fields set to  00 (valid) Unchanged Set to Is Overwritten 

EMMS All fields set to 1 1  (empty) Unchanged Unchanged Unchanged 

read 

write 

vector-x-matrix-4~4(MMX64 *v, MMX64 "m) i 
MMX64 v0101,v2323,tO,tl,t2,13, 

vOl0l = punpckldq(v,v); 
v2323 = punpckhdq(v,v), 
tO = pmaddwd(v0101,m[O1), 
t l  = pmaddwd(v2323,m[ll); 
t2 = pmaddwd(v0101,m[21), 
t3 = pmaddwd(v2323,m[31), 
tO = paddd(tO,tl), 
t2 = pdddd(t2,t3); 
v = packssdw(tO,t2); 

/" unpack vO and v l  with themselves */ 
/* unpack v2 and v3 with themselves */ 
P multiply v0 and v l  with first 2 row5 */ 
P multiply v2 and v3 with first 2 rows */ 
/* multiply v0 and v l  with last 2 rows */ 
/" multiply v2 and v3 with last 2 row5 */ 
/* add first half of first rows with second half */ 
/* add first half of last rows with second half */ 
/* pack the results from 32-bit to 16-bit with 

saturate */ 
1 

Figure 6 .  Sample using MMX instruction intrinsics. 

Binary-code size will need to grow to support this duality Our 
studies show that since MMX code is mainly applied to small, 
tight, computationally intensive loops, and only two versions 
of these loops must he supplied, the overall binary-code 
growth is about 10 percent. 

Accessing instructions from C 
MMX technology is an assembly extension and requires 

coding in assembly. Though most software developers do 
not find it easy to code in assembly, they don't have to 
recode the whole application to enjoy the full benefits of 
MMX technology. Only the computationally intensive loops 
need to be recoded in MMX instructions. For example, in 
MPEG-2 video decoding,9 sLlbsYdntkd1 speedup comes from 
rewriting the IDCT (inverse discrete cosine transform)'" with 
MMX instructions. TDCT has a well-defined interface and a 
relatively small code footprint. It also turns out that these 
small computationally intensive loops are the best place to 
employ MMX technology. The rest of the code in many cases 
does not lend itself to easy conversion to MMX and its par- 
allel characteristics. 

sics. Intrinsics generate optimized MMX assembly, even while 
coding directly in C. Programmers still need to design the 
algorithm with MMX data types and dataflow in mind, but 
they can use a C level macro interface to abstract the MMX 
instructions. The main advantage of this technique is that 

W e  3150 developed the conczpt of MMX instructiun intrin- 

programmers do not need to worry about register allocatior 
or  assembly code scheduling; the compiler takes care o 
these optimizations. 

The example using intrinsics in Figure 6 shows how t( 
multiply a 4x4 matrix by a four-element vector, resulting ir 
a four-element vector. We assumed the input and matrix ele 
ments are 16-bit signed values. The result is a packed worc 
that holds the result vector. To facilitate the exploitation o 
the available parallelism in this operation, we reordered thc 
matrix elements as follows: 

MMX64 type that appears in the code is compiler specific 
and can, for example, be an abstraction of the int64 data typt 
or a structure with two long integers. 

Duplicating a pair of vector elements to generate (VO, V1 
VO, Vl) and reordering the matrix elements enable eacl- 
PMADDWD instruction to multiply simultaneously two row: 
of the matrix against the vector. Figure 7 shows the flow 01 

perform the next two results. 
the algorithm for t h c :  fimt two r e d t s .  Tlic m r n c  opcmtirm: 

Performance examples 
We can analyze the performance enhancement of MMX tech- 

nology with an example of a matrix-vector multiplication veq 
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PMADDWD~ vo I VI I vo I V I  I I v 2  I v3 I v 2  1 v 3  1 
X X X X X X X X 

1 MOO 1 MO1 I M10 I M I 1  I I MO2 I MO3 1 M12 I M13 1 
1 VOxMOO+Vl xMOl I VOxMl O+V1 xM11 I 1 V2xM02+V3xM03 I V2xM12+V3xMl3 I 

1 First result I Second result 1 
P A D D D ~  + / 

Figure 7. Flow diagram of matrix-vector mult iply. 

much like the one in Figure 6. This operation and similar ones 
appear in many multimedia algorithms and applications. 

A multiply-accumulate operation (MAC)-the product of 
two operands added to a third operand (the accumulator)- 
requires two loads (operands of the multiplication opera- 
tion), a multiply, and an add (to the accumulator). MMX does 
not support three-operand instructions, therefore it does not 
have a full MAC capability. On the other hand, MMX does 
define the PMADDWD instruction that performs four multi- 
plies and two 32-bit adds. A following PADDD instruction 
performs the additional two adds. 

We start by looking at a vector dot product, the building 
block of the matrix-vector multiplication. For this perfor- 
mance example, we assume both input vectors are 16 ele- 
ments long, with each element in the vectors being signed 
16 bits. Accumulation takes place in 32-bit precision. A 
Pentium processor microarchitecture, for example, would 
have to process the operations one at a time in sequential 
fashion. This amounts to 32 loads, 16 multiplies, and 1 j addi- 
tions, for a total of 63 instructions. Assume we perform four 
MACs (out of the 16) per loop iteration of our code. Then, 
we need to add 12 instructions for loop control (3 instructions 
per iteration, increment, compare, branch) and 1 instruction 
to store the result. Now the total is 76 instructions. 

Assuming all data and instructions are in the on-chip 
caches, and that exiting the loop will incur one branch mis- 
prediction, the integer assembly optimized version of this 
code (using both pipelines) takes just over 200 cycles on a 
Pentium processor microarchitecture. The cycle count is 
dominated by the nonpipelined, 11-cycle integer multiply 
operation. Under the same conditions, but assuming the data 
is in floating-point format, the floating-point optimized 
assembly version executes in 74 cycles. This version is faster 
as the floating-point multiply takes only three cycles to exe- 
cute and executes in a pipelined unit. 

Now, we can look at MMX technology MMX computes 
four elements at a time. This reduces the instruction count to 
eight loads, four PMADDWD instructions, three PADDD 
instructions, one store instruction, and three additional 
instructions (overhead due to packed data types), totaling 19 
instructions. Performing loop unrolling of four PMADDWD 
instructions eliminates the need to insert loop control instruc- 
tions. The four PMADDWDs already perform the 16 required 
MACs. Thus, the MMX instruction count is four times less than 
that for integer or floating-point operations. With the same 
assumptions applied to a Pentium processor microarchitec- 
ture, an MMX-optimized assembly version of the code using 
both pipelines will execute in only 12 cycles. This is a 

speedup of six times over floating- 
point and much more over integer. 

Now, we extend this example to 
a full matrix-vector multiply. We 
assume a 16x16 matrix multiplies a 
16-element vector, an operation built 
of 16 vector dot products. Repeating 
the same exercise as before, and 
assuming a loop unrolling that per- 
forms four vector dot products each 
iteration, the regular Pentium proces- 

sol- floating-point code will total 4(4x76 + 3) or 1,228 instnic- 
tions. Using MMX technology will require 4(4x19 + 3) or 316 
instructions. The MMX instruction count is 3.9 times less than 
when using regular operations. The best regular code imple- 
mentation (floating-point optimized version) takes just under 
1;200 cycles to complete in comparison to 207 cycles for the 
MMX code version. This is a speedup of 5.8 times. 

Chroma k e y ~ ~ g  
Chroma keying is an image overlay technique frequently 

referred to as the weatherman example. In this example, we 
use a dark-blue screen to overlay an image of a woman on 
a picture of a spring blossom (see Figure 8). The required C 
code operation is 

for (i=O: i<image-size; i++) i 
if (x[il == Blue) new-image[i] =y[il; 

else new-image[il = x[il; 
1 

arhere x is the image of the woman on a blue blackground, 
and y is the image of the spring blossom. 

Using MMX technology, we load eight pixels from the pic- 
ture with the woman on a blue background. In Figure 9, the 
compare instruction builds a mask for that data. This mask 
is a sequence of byte elements that are all 1s or all Os, rep- 
resenting the Boolean values of true and false. This reflects 
the h"anted" background and what we want to keep. 
Figure 9 shows this result using a black-and-white picture. 

Figure 10 shows this mask being used on the same eight 
pixels from the picture with the woman and the corre- 
sponding eight pixels from the spring blossom. The PANDN 
and PAND instructions use the mask to identify which pix- 
els to keep from the spring blossom and the woman. They 
also turn the unwanted pixels to Os. The POR instruction 
builds the final picture 

The MMX code sequence in Figure 11 processes eight pix- 
els using only six MMX instructions and doing so without 
branches. Being able to process a conditional move without 
using branch instructions or looking up condition codes is 
becoming an important performance issue with the advanced, 
deep-pipeline microarchitectures that use branch prediction. 
A branch based on the result of a compare operation on the 
incoming data is usually difficult to predict, as incoming data 
in many cases can change randomly and thus degrade the pre- 
diction quality. Eliminating branches used for data selection, 
together nTith the parallelism of the MMX instructions, com- 
bines into an important performance enhancement feature. 
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Figure 8. Chroma keying: image overlay using a background color. 
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Figure 9. Generating the  selection b i t  mask. 
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Figure IO. Using the  mask w i t h  logical M M X  instructions t o  per form a condit ional select. 

When unrolling the loop and scheduling it for a Pentium 
processor microarchitecture, the MMX code processes eight 
pixels in three cycles (assuming data is in the on-chip cache), 
that is, 3/8 cycles per pixel. Doing the same with the regu- 
lar TA integer instruction set would require almost three 
cycles for a single pixel. (This assumes a high, 85 percent 
correct branch prediction.) 

In general, the performance boosts of MMX code on Intel 
processors with MMX technology result from the comhina- 
tion of the following two features: 

ad eight pixels from the 
blossom image 

the advantage in instruction count resulting from the 
multiple parallel operations performed in each SIMD 

Figure 11. M M X  code sequence fo r  performing a condi- 
t ional  select. 
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MMX instruction, and 
0 exploiting parallelism between instructions via the 

advanced microarchitectural implementations of Intel 
processors (for example, superscalar execution). 

MMX technology enhances applications that benefit from 
SIMD architecture and parallelism. MMX speeds up compu- 
tationally intensive inner loops or subroutines on average 
between three to five times. When these are applied to the 
full application, that application typically runs on the same 
processor 1.5 to 2 times faster than the same application with- 
out MMX technology. 

For example, a certain MPEG-1 video decoding application 
on a Pentium class processor with MMX technology executes 
1.5 times faster than the same application on the same 
processor not using MMX technology. An assortment of 
image filters in an image-processing application execute just 
over four times faster. 

INTEL PLANS TO IMPLEMENT MMX technology on 
future Pentium and Intel architecture processors. It will make 
MMX technology a base capability on all company CPUs to 
allow existing and new applications to run faster. We believe 
the performance gains from this technology will scale well 
with the CPU operating frequency and future Intel microar- 
chitecture generations. 
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