
Computer Architecture
Lecture 11:

Control-Flow Handling

Prof. Onur Mutlu

ETH Zürich

Fall 2017

26 October 2017

Summary of Yesterday’s Lecture

 Control Dependence Handling

 Problem

 Six solutions

 Branch Prediction

2

Agenda for Today

 Trace Caches

 Other Methods of Control Dependence Handling

3

Required Readings

 McFarling, “Combining Branch Predictors,” DEC WRL
Technical Report, 1993. Required

 T. Yeh and Y. Patt, “Two-Level Adaptive Training Branch
Prediction,” Intl. Symposium on Microarchitecture,
November 1991.

 MICRO Test of Time Award Winner (after 24 years)

 Required

4

Recommended Readings

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 Recommended

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

 Recommended

5

Techniques to Reduce Fetch Breaks

 Compiler

 Code reordering (basic block reordering)

 Superblock

 Hardware

 Trace cache

 Hardware/software cooperative

 Block structured ISA

6

Trace Cache: Basic Idea

 A trace is a sequence of executed instructions.

 It is specified by a start address and the outcomes of control
transfer instructions within the trace.

 Traces repeat: programs have frequently executed paths

 Trace cache idea: Store a dynamic instruction sequence in the
same physical location so that it can be fetched in unison.

7

Reducing Fetch Breaks: Trace Cache

 Dynamically determine the basic blocks that are executed consecutively

 Trace: Consecutively executed basic blocks

 Idea: Store consecutively-executed basic blocks in physically-contiguous
internal storage (called trace cache)

 Basic trace cache operation:
 Fetch from consecutively-stored basic blocks (predict next trace or branches)

 Verify the executed branch directions with the stored ones

 If mismatch, flush the remaining portion of the trace

 Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction
Fetching,” MICRO 1996. Received the MICRO Test of Time Award 20 years later

 Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997.

8

Trace Cache: Example

9

An Example Trace Cache Based Processor

 From Patel’s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar
Processors,” University of Michigan, 1999.

10

Multiple Branch Predictor

 S. Patel, “Trace Cache Design for Wide Issue Superscalar Processors,” PhD
Thesis, University of Michigan, 1999.

11

What Does A Trace Cache Line Store?

 Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR,
1997.

12

Trace Cache: Advantages/Disadvantages

+ Reduces fetch breaks (assuming branches are biased)

+ No need for decoding (instructions can be stored in decoded form)

+ Can enable dynamic optimizations within a trace

-- Requires hardware to form traces (more complexity)  called fill unit

-- Results in duplication of the same basic blocks in the cache

-- Can require the prediction of multiple branches per cycle

-- If multiple cached traces have the same start address

-- What if XYZ and XYT are both likely traces?

13

Trace Cache Design Issues: Example

 Branch promotion: promote highly-biased branches to branches
with static prediction

+ Larger traces

+ No need for consuming

branch predictor BW

+ Can enable optimizations

within trace

-- Requires hardware to

determine highly-biased

branches

14

How to Determine Biased Branches

15

Fill Unit Optimizations

 Fill unit constructs traces out of decoded instructions

 Can perform optimizations across basic blocks

 Branch promotion: promote highly-biased branches to
branches with static prediction

 Can treat the whole trace as an atomic execution unit

 All or none of the trace is retired (based on branch directions in trace)

 Enables many optimizations across blocks

 Dead code elimination

 Instruction reordering

 Reassociation

 Friendly et al., “Putting the Fill Unit to Work: Dynamic Optimizations for
Trace Cache Microprocessors,” MICRO 1998.

16

Remember This Optimization?

17

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

1

Original Code

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

Part of Trace in Fill Unit

opC’: mul r3<-r2,3

opA: mul r1<-r2,3

opC: mov r3<-r1

opB: add r2<-r2,199

1

Optimized Trace

opC’: mul r3<-r2,3

Intel Pentium 4 Trace Cache

 A 12K-uop trace cache replaces the L1 I-cache

 Trace cache stores decoded and cracked instructions

 Micro-operations (uops): returns 6 uops every other cycle

 x86 decoder can be simpler and slower

 A. Peleg, U. Weiser; "Dynamic Flow Instruction Cache Memory Organized
Around Trace Segments Independent of Virtual Address Line", United States
Patent No. 5,381,533, Jan 10, 1995

18

Front End BTB

4K Entries

ITLB &

Prefetcher
L2 Interface

x86 Decoder

Trace Cache

12K uop’s
Trace Cache BTB

512 Entries

Other Ways of Handling

Branches

19

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

20

Delayed Branching (I)

 Change the semantics of a branch instruction

 Branch after N instructions

 Branch after N cycles

 Idea: Delay the execution of a branch. N instructions (delay
slots) that come after the branch are always executed
regardless of branch direction.

 Problem: How do you find instructions to fill the delay
slots?

 Branch must be independent of delay slot instructions

 Unconditional branch: Easier to find instructions to fill the delay slot

 Conditional branch: Condition computation should not depend on
instructions in delay slots  difficult to fill the delay slot

21

Delayed Branching (II)

22

A

B

C

BC X

D

E

F

if ex

A

AB

BC

CBC

BC

GX:

--

A

B

C

BC X

D

E

F

GX:

if ex

A

AC

CBC

BCB

BG

--G

Normal code: Timeline: Delayed branch code: Timeline:

6 cycles 5 cycles

Fancy Delayed Branching (III)

 Delayed branch with squashing

 In SPARC

 Semantics: If the branch falls through (i.e., it is not taken),
the delay slot instruction is not executed

 Why could this help?

23

A

B

C

BC X

D

E

X:

Normal code: Delayed branch code:

A

B

C

BC X

D

E

X:

NOP

Delayed branch w/ squashing:

A

B

C

BC X

D

E

X:

A

Delayed Branching (IV)
 Advantages:

+ Keeps the pipeline full with useful instructions in a simple way assuming

1. Number of delay slots == number of instructions to keep the pipeline
full before the branch resolves

2. All delay slots can be filled with useful instructions

 Disadvantages:

-- Not easy to fill the delay slots (even with a 2-stage pipeline)

1. Number of delay slots increases with pipeline depth, superscalar
execution width

2. Number of delay slots should be variable with variable latency
operations. Why?

-- Ties ISA semantics to hardware implementation

-- SPARC, MIPS, HP-PA: 1 delay slot

-- What if pipeline implementation changes with the next design?
24

An Aside: Filling the Delay Slot

25

a. From before b. From target c. From fall through

sub $t4, $t5, $t6

…

add $s1, $s2, $s3

if $s1 = 0 then

add $s1, $s2, $s3

if $s1 = 0 then

add $s1, $s2, $s3

if $s1 = 0 then

 sub $t4, $t5, $t6

add $s1, $s2, $s3

if $s1 = 0 then

 sub $t4, $t5, $t6

add $s1, $s2, $s3

if $s2 = 0 then

BecomesBecomesBecomes

Delay slot

Delay slot

Delay slot

sub $t4, $t5, $t6

if $s2 = 0 then

 add $s1, $s2, $s3

within same
basic block

For correctness:
add a new instruction
to the not-taken path?

For correctness:
add a new instruction
to the taken path?

Safe?

reordering data
independent
(RAW, WAW,
WAR)
instructions
does not change
program semantics

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

26

Fine-Grained Multithreading

27

Fine-Grained Multithreading

 Idea: Hardware has multiple thread contexts (PC+registers).
Each cycle, fetch engine fetches from a different thread.

 By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

 Branch/instruction resolution latency overlapped with execution
of other threads’ instructions

+ No logic needed for handling control and

data dependences within a thread

-- Single thread performance suffers

-- Extra logic for keeping thread contexts

-- Does not overlap latency if not enough

threads to cover the whole pipeline

28

Fine-Grained Multithreading (II)

 Idea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

 Tolerates the control and data dependency latencies by
overlapping the latency with useful work from other threads

 Improves pipeline utilization by taking advantage of multiple
threads

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

29

Fine-Grained Multithreading: History

 CDC 6600’s peripheral processing unit is fine-grained
multithreaded

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.

 Processor executes a different I/O thread every cycle

 An operation from the same thread is executed every 10 cycles

 Denelcor HEP (Heterogeneous Element Processor)
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

 120 threads/processor

 available queue vs. unavailable (waiting) queue for threads

 each thread can have only 1 instruction in the processor pipeline; each thread
independent

 to each thread, processor looks like a non-pipelined machine

 system throughput vs. single thread performance tradeoff

30

Fine-Grained Multithreading in HEP

 Cycle time: 100ns

 8 stages  800 ns to

complete an
instruction

 assuming no memory
access

 No control and data
dependency checking

31

Multithreaded Pipeline Example

32Slide credit: Joel Emer

Sun Niagara Multithreaded Pipeline

33

Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.

Fine-grained Multithreading

 Advantages

+ No need for dependency checking between instructions

(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

 Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register
files, …), thread selection logic

- Reduced single thread performance (one instruction fetched every N
cycles from the same thread)

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
34

Modern GPUs Are FGMT Machines

35

NVIDIA GeForce GTX 285 “core”

36

…

= instruction stream decode= data-parallel (SIMD) func. unit,

control shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage

for thread contexts

(registers)

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

37

…
64 KB of storage

for thread contexts

(registers)

 Groups of 32 threads share instruction stream (each group is
a Warp): they execute the same instruction on different data

 Up to 32 warps are interleaved in an FGMT manner

 Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

………

………

………

………

………

………

………

………

………

38

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

End of

Fine-Grained Multithreading

39

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

40

Predicate Combining (not Predicated Execution)

 Complex predicates are converted into multiple branches

 if ((a == b) && (c < d) && (a > 5000)) { … }

 3 conditional branches

 Problem: This increases the number of control
dependencies

 Idea: Combine predicate operations to feed a single branch
instruction instead of having one branch for each

 Predicates stored and operated on using condition registers

 A single branch checks the value of the combined predicate

+ Fewer branches in code  fewer mipredictions/stalls

-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates

 Condition registers exist in IBM RS6000 and the POWER architecture

41

Predication (Predicated Execution)

 Idea: Convert control dependence to data dependence

 Simple example: Suppose we had a Conditional Move
instruction…

 CMOV condition, R1  R2

 R1 = (condition == true) ? R2 : R1

 Employed in most modern ISAs (x86, Alpha)

 Code example with branches vs. CMOVs

if (a == 5) {b = 4;} else {b = 3;}

CMPEQ condition, a, 5;

CMOV condition, b  4;

CMOV !condition, b  3;
42

D D

Predication (Predicated Execution)
 Idea: Compiler converts control dependence into data

dependence  branch is eliminated
 Each instruction has a predicate bit set based on the predicate computation

 Only instructions with TRUE predicates are committed (others turned into NOPs)

43

(normal branch code)

C B

D

A
T N

p1 = (cond)

branch p1, TARGET

mov b, 1

jmp JOIN

TARGET:

mov b, 0

A

B

C

B

C

D

A

(predicated code)

A

B

C

if (cond) {

b = 0;

}

else {

b = 1;

} p1 = (cond)

(!p1) mov b, 1

(p1) mov b, 0

add x, b, 1add x, b, 1

Predicated Execution References

 Allen et al., “Conversion of control dependence to data
dependence,” POPL 1983.

 Kim et al., “Wish Branches: Combining Conditional
Branching and Predication for Adaptive Predicated
Execution,” MICRO 2005.

44

Conditional Move Operations

 Very limited form of predicated execution

 CMOV R1  R2

 R1 = (ConditionCode == true) ? R2 : R1

 Employed in most modern ISAs (x86, Alpha)

45

Predicated Execution (II)

 Predicated execution can be high performance and energy-
efficient

46

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

A
E

F

Predicated Execution

Branch Prediction

Pipeline flush!!

E D BF

Fetch Decode Rename Schedule RegisterRead Execute

AB AC B AC BD AD C BE AE D CF B AF E D C B A AF BCDEF E D ABCF E ABCDF E D C B AF E D C ABE D C B AF AF BCDE

Predicated Execution
 Eliminates branches  enables straight line code (i.e.,

larger basic blocks in code)

 Advantages

 Eliminates hard-to-predict branches

 Always-not-taken prediction works better (no branches)

 Compiler has more freedom to optimize code (no branches)

 control flow does not hinder inst. reordering optimizations

 code optimizations hindered only by data dependencies

 Disadvantages

 Useless work: some instructions fetched/executed but
discarded (especially bad for easy-to-predict branches)

 Requires additional ISA (and hardware) support

 Can we eliminate all branches this way?
47

Predicated Execution vs. Branch Prediction
+ Eliminates mispredictions for hard-to-predict branches

+ No need for branch prediction for some branches

+ Good if misprediction cost > useless work due to predication

-- Causes useless work for branches that are easy to predict

-- Reduces performance if misprediction cost < useless work

-- Adaptivity: Static predication is not adaptive to run-time branch
behavior. Branch behavior changes based on input set, program
phase, control-flow path.

48

Predicated Execution in Intel Itanium

 Each instruction can be separately predicated

 64 one-bit predicate registers

each instruction carries a 6-bit predicate field

 An instruction is effectively a NOP if its predicate is false

49

cmp

br

else1

else2

br

then1

then2

join1

join2

p1 p2 cmp

join1

join2

else1p2

then2p1

else2p2

then1p1

Conditional Execution in the ARM ISA

 Almost all ARM instructions can include an optional
condition code.

 Prior to ARM v8

 An instruction with a condition code is executed only if the
condition code flags in the CPSR meet the specified
condition.

50

Conditional Execution in ARM ISA

51

Conditional Execution in ARM ISA

52

Conditional Execution in ARM ISA

53

Conditional Execution in ARM ISA

54

Conditional Execution in ARM ISA

55

Idealism

 Wouldn’t it be nice

 If the branch is eliminated (predicated) only when it would
actually be mispredicted

 If the branch were predicted when it would actually be
correctly predicted

 Wouldn’t it be nice

 If predication did not require ISA support

56

Improving Predicated Execution

 Three major limitations of predication

1. Adaptivity: non-adaptive to branch behavior

2. Complex CFG: inapplicable to loops/complex control flow graphs

3. ISA: Requires large ISA changes

 Wish Branches [Kim+, MICRO 2005]

 Solve 1 and partially 2 (for loops)

 Dynamic Predicated Execution

 Diverge-Merge Processor [Kim+, MICRO 2006]

 Solves 1, 2 (partially), 3

57

A

Wish Branches

 The compiler generates code (with wish branches) that

can be executed either as predicated code or non-

predicated code (normal branch code)

 The hardware decides to execute predicated code or

normal branch code at run-time based on the confidence of

branch prediction

 Easy to predict: normal branch code

 Hard to predict: predicated code

 Kim et al., “Wish Branches: Enabling Adaptive and
Aggressive Predicated Execution,” MICRO 2006, IEEE Micro
Top Picks, Jan/Feb 2006.

58

59

TARGET:

(p1) mov b,0

TARGET:

(1) mov b,0

(!p1) mov b,1

wish.join !p1 JOIN

(1) mov b,1

wish.join (1) JOIN

Low Confidence
Wish Jump/Join

p1 = (cond)

branch p1, TARGET

C B

D

A
T N

mov b, 1

jmp JOIN

TARGET:

mov b,0

normal branch code

A

B

C

B

C

D

A

p1 = (cond)

(!p1) mov b,1

(p1) mov b,0

predicated code

A

B

C

wish jump/join code

B

A

C

D

wish jump

p1=(cond)

wish.jump p1 TARGET

A

B

C

wish join

D JOIN:

High Confidence

Wish Branches vs. Predicated Execution

 Advantages compared to predicated execution

 Reduces the overhead of predication

 Increases the benefits of predicated code by allowing the compiler to

generate more aggressively-predicated code

 Makes predicated code less dependent on machine configuration (e.g.

branch predictor)

 Disadvantages compared to predicated execution
 Extra branch instructions use machine resources

 Extra branch instructions increase the contention for branch predictor table
entries

 Constrains the compiler’s scope for code optimizations

60

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

61

Multi-Path Execution
 Idea: Execute both paths after a conditional branch

 For all branches: Riseman and Foster, “The inhibition of potential parallelism
by conditional jumps,” IEEE Transactions on Computers, 1972.

 For a hard-to-predict branch: Use dynamic confidence estimation

 Advantages:

+ Improves performance if misprediction cost > useless work

+ No ISA change needed

 Disadvantages:

-- What happens when the machine encounters another hard-to-predict
branch? Execute both paths again?

-- Paths followed quickly become exponential

-- Each followed path requires its own context (registers, PC, GHR)

-- Wasted work (and reduced performance) if paths merge

62

Dual-Path Execution versus Predication

63

Hard to predict

C

D

E

F

B

D

E

F

A

BC

D

E

F

path 1 path 2

C

D

E

F

B

path 1 path 2

Dual-path Predicated Execution

CFMCFM

Handling Other Types of

Branches

64

Remember: Branch Types

Type Direction at
fetch time

Number of
possible next
fetch addresses?

When is next
fetch address
resolved?

Conditional Unknown 2 Execution (register
dependent)

Unconditional Always taken 1 Decode (PC +
offset)

Call Always taken 1 Decode (PC +
offset)

Return Always taken Many Execution (register
dependent)

Indirect Always taken Many Execution (register
dependent)

65

How can we predict an indirect branch with many target addresses?

Call and Return Prediction

 Direct calls are easy to predict

 Always taken, single target

 Call marked in BTB, target predicted by BTB

 Returns are indirect branches

 A function can be called from many points in code

 A return instruction can have many target addresses

 Next instruction after each call point for the same function

 Observation: Usually a return matches a call

 Idea: Use a stack to predict return addresses (Return Address Stack)

 A fetched call: pushes the return (next instruction) address on the stack

 A fetched return: pops the stack and uses the address as its predicted
target

 Accurate most of the time: 8-entry stack  > 95% accuracy

66

Call X

…

Call X

…

Call X

…

Return

Return

Return

Indirect Branch Prediction (I)

 Register-indirect branches have multiple targets

 Used to implement

 Switch-case statements

 Virtual function calls

 Jump tables (of function pointers)

 Interface calls

67

TARG A+1

A
T N

a b

A

d

?

Conditional (Direct) Branch Indirect Jump

r

br.cond TARGET R1 = MEM[R2]

branch R1

Indirect Branch Prediction (II)

 No direction prediction needed

 Idea 1: Predict the last resolved target as the next fetch address

+ Simple: Use the BTB to store the target address

-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch
between different targets

 Idea 2: Use history based target prediction

 E.g., Index the BTB with GHR XORed with Indirect Branch PC

 Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.

+ More accurate

-- An indirect branch maps to (too) many entries in BTB

-- Conflict misses with other branches (direct or indirect)

-- Inefficient use of space if branch has few target addresses

68

Intel Pentium M Indirect Branch Predictor

69

Gochman et al.,

“The Intel Pentium M Processor: Microarchitecture and Performance,”

Intel Technology Journal, May 2003.

More Ideas on Indirect Branches?

 Virtual Program Counter prediction

 Idea: Use conditional branch prediction structures iteratively
to make an indirect branch prediction

 i.e., devirtualize the indirect branch in hardware

 Curious?

 Kim et al., “VPC Prediction: Reducing the Cost of Indirect
Branches via Hardware-Based Dynamic Devirtualization,” ISCA
2007.

70

Indirect Branch Prediction (III)

 Idea 3: Treat an indirect branch as “multiple virtual
conditional branches” in hardware

 Only for prediction purposes

 Predict each “virtual conditional branch” iteratively

 Kim et al., “VPC prediction,” ISCA 2007.

71

0xabcd

0x018a

0x7a9c

0x…

iteration
counter value

PC

Virtual PC

Hash value table

VPC Prediction (I)

72

1111

L

PC

GHR

Direction Predictor

BTB

not taken

TARG1

cond. jump TARG1 // VPC: L
cond. jump TARG2 // VPC: VL2
cond. jump TARG3 // VPC: VL3
cond. jump TARG4 // VPC: VL4

call R1 // PC: L
Real Instruction

Virtual Instructions

Next iteration

VPC Prediction (II)

73

1110

VL2

VPC

VGHR

BTB

not taken

TARG2

cond. jump TARG1 // VPC: L

cond. jump TARG2 // VPC: VL2

cond. jump TARG3 // VPC: VL3

cond. jump TARG4 // VPC: VL4

call R1 // PC: L
Real Instruction

Virtual Instructions

Direction Predictor

Next iteration

VPC Prediction (III)

74

cond. jump TARG1 // VPC: L

cond. jump TARG2 // VPC: VL2

cond. jump TARG3 // VPC: VL3

cond. jump TARG4 // VPC: VL4

call R1 // PC: L
Real Instruction

Virtual Instructions

1100

VL3

VPC

VGHR

BTB

taken

TARG3

Direction Predictor

Predicted Target
= TARG3

VPC Prediction (IV)

 Advantages:

+ High prediction accuracy (>90%)

+ No separate indirect branch predictor

+ Resource efficient (reuses existing components)

+ Improvement in conditional branch prediction algorithms also
improves indirect branch prediction

+ Number of locations in BTB consumed for a branch = number
of target addresses seen

 Disadvantages:

-- Takes multiple cycles (sometimes) to predict the target
address

-- More interference in direction predictor and BTB

75

Issues in Branch Prediction (I)

 Need to identify a branch before it is fetched

 How do we do this?

 BTB hit  indicates that the fetched instruction is a branch

 BTB entry contains the “type” of the branch

 Pre-decoded “branch type” information stored in the
instruction cache identifies type of branch

 What if no BTB?

 Bubble in the pipeline until target address is computed

 E.g., IBM POWER4

76

Issues in Branch Prediction (II)

 Latency: Prediction is latency critical

 Need to generate next fetch address for the next cycle

 Bigger, more complex predictors are more accurate but slower

77

PC + inst size

Next Fetch

Address

BTB target

Return Address Stack target

Indirect Branch Predictor target

Resolved target from Backend

???

Computer Architecture
Lecture 11:

Control-Flow Handling

Prof. Onur Mutlu

ETH Zürich

Fall 2017

26 October 2017

We did not cover the following slides in lecture.

These are for your preparation for the next lecture.

More on Wide Fetch Engines

and Block-Based Execution

80

Trace Cache Design Issues (I)

 Granularity of prediction: Trace based versus branch based?

+ Trace based eliminates the need for multiple predictions/cycle

-- Trace based can be less accurate

-- Trace based: How do you distinguish traces with the same start
address?

 When to form traces: Based on fetched or retired blocks?

+ Retired: Likely to be more accurate

-- Retired: Formation of trace is delayed until blocks are committed

-- Very tight loops with short trip count might not benefit

 When to terminate the formation of a trace

 After N instructions, after B branches, at an indirect jump or
return

81

Trace Cache Design Issues (II)

 Should entire “path” match for a trace cache hit?

 Partial matching: A piece of a trace is supplied based on branch prediction

+ Increases hit rate when there is not a full path match

-- Lengthens critical path (next fetch address dependent on the match)

82

Trace Cache Design Issues (III)

 Path associativity: Multiple traces starting at the same address can be present
in the cache at the same time.

+ Good for traces with unbiased branches (e.g., ping pong between C and D)

-- Need to determine longest matching path

-- Increased cache pressure

83

 Inactive issue: All blocks within a trace
cache line are issued even if they do not
match the predicted path

+ Reduces impact of branch mispredictions

+ Reduces basic block duplication in trace cache

-- Slightly more complex scheduling/branch
resolution

-- Some instructions not dispatched/flushed

Trace Cache Design Issues (IV)

84

Z

Z

Z

Trace Cache Design Issues (V)

 Branch promotion: promote highly-biased branches to branches
with static prediction

+ Larger traces

+ No need for consuming

branch predictor BW

+ Can enable optimizations

within trace

-- Requires hardware to

determine highly-biased

branches

85

How to Determine Biased Branches

86

Effect on Fetch Rate

87

Effect on IPC (16-wide superscalar)

 ~15% IPC increase over “sequential I-cache” that breaks fetch on a
predicted-taken branch

88

Enhanced I-Cache vs. Trace Cache (I)

89

1. Next trace prediction

2. Trace cache fetch

Trace Cache

Enhanced

Instruction Cache

Fetch

Completion

1. Multiple-branch prediction

2. Instruction cache fetch from

multiple blocks (N ports)

3. Instruction alignment &

collapsing

1. Multiple-branch predictor

update

1. Trace construction and fill

2. Trace predictor update

Enhanced I-Cache vs. Trace Cache (II)

90

Frontend vs. Backend Complexity

 Backend is not on the critical path of instruction execution

 Easier to increase its latency without affecting performance

 Frontend is on the critical path

 Increased latency fetch directly increases

 Branch misprediction penalty

 Increased complexity can affect cycle time

91

Redundancy in the Trace Cache

 ABC, BCA, CAB can all be in

the trace cache

 Leads to contention and reduced

hit rate

 One possible solution: Block based trace cache (Black et al., ISCA 1999)

 Idea: Decouple storage of basic blocks from their “names”

 Store traces of pointers to basic blocks rather than traces of basic
blocks themselves

 Basic blocks stored in a separate “block table”

+ Reduces redundancy of basic blocks

-- Lengthens fetch cycle (indirection needed to access blocks)

-- Block table needs to be multiported to obtain multiple blocks per cycle
92

Techniques to Reduce Fetch Breaks

 Compiler

 Code reordering (basic block reordering)

 Superblock

 Hardware

 Trace cache

 Hardware/software cooperative

 Block structured ISA

93

Block Structured ISA

 Blocks (> instructions) are atomic (all-or-none) operations

 Either all of the block is committed or none of it

 Compiler enlarges blocks by combining basic blocks with
their control flow successors

 Branches within the enlarged block converted to “fault”
operations  if the fault operation evaluates to true, the block

is discarded and the target of fault is fetched

94

Block Structured ISA (II)

 Advantages:

+ Larger blocks  larger units can be fetched from I-cache

+ Aggressive compiler optimizations (e.g. reordering) can be enabled
within atomic blocks

+ Can explicitly represent dependencies among operations within an
enlarged block

 Disadvantages:

-- “Fault operations” can lead to work to be wasted (atomicity)

-- Code bloat (multiple copies of the same basic block exists in the binary
and possibly in I-cache)

-- Need to predict which enlarged block comes next

 Optimizations

 Within an enlarged block, the compiler can perform optimizations that
cannot normally be performed across basic blocks

95

Block Structured ISA (III)

 Hao et al., “Increasing the instruction fetch rate via block-
structured instruction set architectures,” MICRO 1996.

96

Superblock vs. BS-ISA

 Superblock

 Single-entry, multiple exit code block

 Not atomic

 Compiler inserts fix-up code on superblock side exit

 BS-ISA blocks

 Single-entry, single exit

 Atomic

97

Superblock vs. BS-ISA

 Superblock

+ No ISA support needed

-- Optimizes for only 1 frequently executed path

-- Not good if dynamic path deviates from profiled path  missed

opportunity to optimize another path

 Block Structured ISA

+ Enables optimization of multiple paths and their dynamic selection.

+ Dynamic prediction to choose the next enlarged block. Can
dynamically adapt to changes in frequently executed paths at run-
time

+ Atomicity can enable more aggressive code optimization

-- Code bloat becomes severe as more blocks are combined

-- Requires “next enlarged block” prediction, ISA+HW support

-- More wasted work on “fault” due to atomicity requirement
98

