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Summary of Yesterday’s Lecture

 Control Dependence Handling

 Problem

 Six solutions

 Branch Prediction
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Agenda for Today

 Trace Caches

 Other Methods of Control Dependence Handling
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Required Readings

 McFarling, “Combining Branch Predictors,” DEC WRL 
Technical Report, 1993.      Required

 T. Yeh and Y. Patt,  “Two-Level Adaptive Training Branch 
Prediction,”  Intl. Symposium on Microarchitecture, 
November 1991.

 MICRO Test of Time Award Winner (after 24 years)

 Required
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Recommended Readings

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 Recommended

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 
1999. 

 Recommended
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Techniques to Reduce Fetch Breaks

 Compiler

 Code reordering (basic block reordering)

 Superblock

 Hardware

 Trace cache

 Hardware/software cooperative

 Block structured ISA

6



Trace Cache: Basic Idea

 A trace is a sequence of executed instructions.

 It is specified by a start address and the outcomes of control 
transfer instructions within the trace.

 Traces repeat: programs have frequently executed paths

 Trace cache idea: Store a dynamic instruction sequence in the 
same physical location so that it can be fetched in unison.
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Reducing Fetch Breaks: Trace Cache

 Dynamically determine the basic blocks that are executed consecutively

 Trace: Consecutively executed basic blocks

 Idea: Store consecutively-executed basic blocks in physically-contiguous 
internal storage (called trace cache)

 Basic trace cache operation:
 Fetch from consecutively-stored basic blocks (predict next trace or branches)

 Verify the executed branch directions with the stored ones

 If mismatch, flush the remaining portion of the trace

 Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction 
Fetching,” MICRO 1996.   Received the MICRO Test of Time Award 20 years later

 Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997.
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Trace Cache: Example

9



An Example Trace Cache Based Processor 

 From Patel’s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar 
Processors,” University of Michigan, 1999. 
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Multiple Branch Predictor

 S. Patel, “Trace Cache Design for Wide Issue Superscalar Processors,” PhD 
Thesis, University of Michigan, 1999. 
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What Does A Trace Cache Line Store?

 Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 
1997.
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Trace Cache: Advantages/Disadvantages

+ Reduces fetch breaks (assuming branches are biased)

+ No need for decoding (instructions can be stored in decoded form)

+ Can enable dynamic optimizations within a trace

-- Requires hardware to form traces (more complexity)  called fill unit

-- Results in duplication of the same basic blocks in the cache

-- Can require the prediction of multiple branches per cycle

-- If multiple cached traces have the same start address

-- What if XYZ and XYT are both likely traces?
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Trace Cache Design Issues: Example

 Branch promotion: promote highly-biased branches to branches 
with static prediction

+ Larger traces

+ No need for consuming

branch predictor BW

+ Can enable optimizations

within trace

-- Requires hardware to

determine highly-biased

branches
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How to Determine Biased Branches 
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Fill Unit Optimizations

 Fill unit constructs traces out of decoded instructions

 Can perform optimizations across basic blocks

 Branch promotion: promote highly-biased branches to 
branches with static prediction

 Can treat the whole trace as an atomic execution unit

 All or none of the trace is retired (based on branch directions in trace)

 Enables many optimizations across blocks

 Dead code elimination

 Instruction reordering

 Reassociation

 Friendly et al., “Putting the Fill Unit to Work: Dynamic Optimizations for 
Trace Cache Microprocessors,” MICRO 1998.
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Remember This Optimization?
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opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

1

Original Code

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

Part of Trace in Fill Unit

opC’: mul r3<-r2,3

opA: mul r1<-r2,3

opC: mov r3<-r1

opB: add r2<-r2,199

1

Optimized Trace

opC’: mul r3<-r2,3



Intel Pentium 4 Trace Cache

 A 12K-uop trace cache replaces the L1 I-cache

 Trace cache stores decoded and cracked instructions

 Micro-operations (uops): returns 6 uops every other cycle

 x86 decoder can be simpler and slower

 A. Peleg, U. Weiser; "Dynamic Flow Instruction Cache Memory Organized 
Around Trace Segments Independent of Virtual Address Line", United States 
Patent No. 5,381,533, Jan 10, 1995 
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Front End BTB

4K Entries

ITLB &

Prefetcher
L2 Interface

x86 Decoder

Trace Cache

12K uop’s
Trace Cache BTB

512 Entries



Other Ways of Handling 

Branches
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How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

 Potential solutions if the instruction is a control-flow 
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution)
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Delayed Branching (I)

 Change the semantics of a branch instruction

 Branch after N instructions

 Branch after N cycles

 Idea: Delay the execution of a branch. N instructions (delay 
slots) that come after the branch are always executed 
regardless of branch direction.

 Problem: How do you find instructions to fill the delay 
slots?

 Branch must be independent of delay slot instructions

 Unconditional branch: Easier to find instructions to fill the delay slot

 Conditional branch: Condition computation should not depend on 
instructions in delay slots  difficult to fill the delay slot
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Delayed Branching (II)
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A

B

C

BC X

D

E

F

if ex

A

AB

BC

CBC

BC

GX:

--

A

B

C

BC X

D

E

F

GX:

if ex

A

AC

CBC

BCB

BG

--G

Normal code: Timeline: Delayed branch code: Timeline:

6 cycles 5 cycles



Fancy Delayed Branching (III)

 Delayed branch with squashing

 In SPARC

 Semantics: If the branch falls through (i.e., it is not taken), 
the delay slot instruction is not executed

 Why could this help?
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A

B

C

BC X

D

E

X:

Normal code: Delayed branch code:

A

B

C

BC X

D

E

X:

NOP

Delayed branch w/ squashing:

A

B

C

BC X

D

E

X:

A



Delayed Branching (IV)
 Advantages:

+ Keeps the pipeline full with useful instructions in a simple way assuming 

1. Number of delay slots == number of instructions to keep the pipeline 
full before the branch resolves

2. All delay slots can be filled with useful instructions

 Disadvantages:

-- Not easy to fill the delay slots (even with a 2-stage pipeline)

1. Number of delay slots increases with pipeline depth, superscalar 
execution width

2. Number of delay slots should be variable with variable latency 
operations. Why?

-- Ties ISA semantics to hardware implementation

-- SPARC, MIPS, HP-PA: 1 delay slot

-- What if pipeline implementation changes with the next design?
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An Aside: Filling the Delay Slot
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a.  From before b.  From target c.  From fall through

sub $t4, $t5, $t6 

 

… 

 

add $s1, $s2, $s3 

 

if $s1 = 0 then 

 

 

add $s1, $s2, $s3 

 

if $s1 = 0 then 

 

  

 

 

add $s1, $s2, $s3 

 

if $s1 = 0 then 

 

  sub $t4, $t5, $t6 

 

 

 

 

add $s1, $s2, $s3 

 

if $s1 = 0 then 

 

   sub $t4, $t5, $t6

add $s1, $s2, $s3 

 

if $s2 = 0 then 

 

    

BecomesBecomesBecomes

Delay slot

Delay slot

Delay slot

sub $t4, $t5, $t6

 

 

if $s2 = 0 then 

 

 add $s1, $s2, $s3

within same
basic block

For correctness: 
add a new instruction
to the not-taken path?

For correctness: 
add a new instruction
to the taken path?

Safe?

reordering data 
independent
(RAW, WAW,
WAR)
instructions
does not change
program semantics

[Based on original figure from P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.]



How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

 Potential solutions if the instruction is a control-flow 
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution)
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Fine-Grained Multithreading
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Fine-Grained Multithreading

 Idea: Hardware has multiple thread contexts (PC+registers). 
Each cycle, fetch engine fetches from a different thread.

 By the time the fetched branch/instruction resolves, no 
instruction is fetched from the same thread

 Branch/instruction resolution latency overlapped with execution 
of other threads’ instructions

+ No logic needed for handling control and

data dependences within a thread 

-- Single thread performance suffers 

-- Extra logic for keeping thread contexts

-- Does not overlap latency if not enough 

threads to cover the whole pipeline
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Fine-Grained Multithreading (II)

 Idea: Switch to another thread every cycle such that no two 
instructions from a thread are in the pipeline concurrently

 Tolerates the control and data dependency latencies by 
overlapping the latency with useful work from other threads

 Improves pipeline utilization by taking advantage of multiple 
threads

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 
1964.

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
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Fine-Grained Multithreading: History

 CDC 6600’s peripheral processing unit is fine-grained 
multithreaded

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.

 Processor executes a different I/O thread every cycle

 An operation from the same thread is executed every 10 cycles

 Denelcor HEP (Heterogeneous Element Processor)
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

 120 threads/processor 

 available queue vs. unavailable (waiting) queue for threads 

 each thread can have only 1 instruction in the processor pipeline; each thread 
independent 

 to each thread, processor looks like a non-pipelined machine

 system throughput vs. single thread performance tradeoff 
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Fine-Grained Multithreading in HEP

 Cycle time: 100ns

 8 stages  800 ns to 

complete an 
instruction

 assuming no memory 
access

 No control and data 
dependency checking
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Multithreaded Pipeline Example

32Slide credit: Joel Emer



Sun Niagara Multithreaded Pipeline
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Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.



Fine-grained Multithreading

 Advantages

+ No need for dependency checking between instructions

(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from 
different threads

+ Improved system throughput, latency tolerance, utilization

 Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register 
files, …), thread selection logic

- Reduced single thread performance (one instruction fetched every N 
cycles from the same thread) 

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
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Modern GPUs Are FGMT Machines
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NVIDIA GeForce GTX 285 “core”
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…

= instruction stream decode= data-parallel (SIMD) func. unit, 

control shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage 

for thread contexts 

(registers)

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285 “core”
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…
64 KB of storage 

for thread contexts 

(registers)

 Groups of 32 threads share instruction stream (each group is 
a Warp): they execute the same instruction on different data

 Up to 32 warps are interleaved in an FGMT manner

 Up to 1024 thread contexts can be stored   

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285

Tex
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Tex

Tex
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………

………
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30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian



End of

Fine-Grained Multithreading
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How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

 Potential solutions if the instruction is a control-flow 
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution)
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Predicate Combining (not Predicated Execution)

 Complex predicates are converted into multiple branches

 if ((a == b) && (c < d) && (a > 5000))  { … }

 3 conditional branches

 Problem: This increases the number of control 
dependencies

 Idea: Combine predicate operations to feed a single branch 
instruction instead of having one branch for each

 Predicates stored and operated on using condition registers

 A single branch checks the value of the combined predicate

+ Fewer branches in code  fewer mipredictions/stalls

-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates

 Condition registers exist in IBM RS6000 and the POWER architecture
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Predication (Predicated Execution)

 Idea: Convert control dependence to data dependence

 Simple example: Suppose we had a Conditional Move 
instruction…

 CMOV condition, R1  R2

 R1 = (condition == true) ? R2 : R1

 Employed in most modern ISAs (x86, Alpha)

 Code example with branches vs. CMOVs

if (a == 5) {b = 4;} else {b = 3;}

CMPEQ condition, a, 5;

CMOV condition, b  4;

CMOV !condition, b  3;
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D D

Predication (Predicated Execution)
 Idea: Compiler converts control dependence into data 

dependence  branch is eliminated
 Each instruction has a predicate bit set based on the predicate computation

 Only instructions with TRUE predicates are committed (others turned into NOPs)
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(normal branch code)

C B

D

A
T N

p1 = (cond)

branch p1, TARGET

mov b, 1 

jmp JOIN

TARGET:

mov b, 0

A

B

C

B

C

D

A

(predicated code) 

A

B

C

if (cond) {

b = 0;

}

else {

b = 1;

} p1 = (cond)

(!p1) mov b, 1

(p1) mov b, 0

add   x, b, 1add   x, b, 1



Predicated Execution References

 Allen et al., “Conversion of control dependence to data 
dependence,” POPL 1983.

 Kim et al., “Wish Branches: Combining Conditional 
Branching and Predication for Adaptive Predicated 
Execution,” MICRO 2005.
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Conditional Move Operations

 Very limited form of predicated execution

 CMOV R1  R2

 R1 = (ConditionCode == true) ? R2 : R1

 Employed in most modern ISAs (x86, Alpha)
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Predicated Execution (II)

 Predicated execution can be high performance and energy-
efficient
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Fetch  Decode  Rename  Schedule RegisterRead ExecuteA

BC

D

A
E

F

Predicated Execution

Branch Prediction

Pipeline flush!!

E D BF

Fetch  Decode  Rename  Schedule RegisterRead Execute

AB AC B AC BD AD C BE AE D CF B AF E D C B A AF BCDEF E D ABCF E ABCDF E D C B AF E D C ABE D C B AF AF BCDE



Predicated Execution
 Eliminates branches  enables straight line code (i.e., 

larger basic blocks in code)

 Advantages

 Eliminates hard-to-predict branches

 Always-not-taken prediction works better (no branches)

 Compiler has more freedom to optimize code (no branches)

 control flow does not hinder inst. reordering optimizations

 code optimizations hindered only by data dependencies

 Disadvantages

 Useless work: some instructions fetched/executed but 
discarded (especially bad for easy-to-predict branches)

 Requires additional ISA (and hardware) support

 Can we eliminate all branches this way?
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Predicated Execution vs. Branch Prediction
+ Eliminates mispredictions for hard-to-predict branches

+ No need for branch prediction for some branches

+ Good if misprediction cost > useless work due to predication

-- Causes useless work for branches that are easy to predict

-- Reduces performance if misprediction cost < useless work

-- Adaptivity: Static predication is not adaptive to run-time branch 
behavior. Branch behavior changes based on input set, program 
phase, control-flow path.
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Predicated Execution in Intel Itanium

 Each instruction can be separately predicated 

 64 one-bit predicate registers

each instruction carries a 6-bit predicate field

 An instruction is effectively a NOP if its predicate is false
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cmp

br

else1

else2

br

then1

then2

join1

join2

p1 p2 cmp

join1

join2

else1p2

then2p1

else2p2

then1p1



Conditional Execution in the ARM ISA

 Almost all ARM instructions can include an optional 
condition code. 

 Prior to ARM v8

 An instruction with a condition code is executed only if the 
condition code flags in the CPSR meet the specified 
condition. 
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Conditional Execution in ARM ISA
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Conditional Execution in ARM ISA
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Conditional Execution in ARM ISA
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Conditional Execution in ARM ISA
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Conditional Execution in ARM ISA

55



Idealism

 Wouldn’t it be nice

 If the branch is eliminated (predicated) only when it would 
actually be mispredicted

 If the branch were predicted when it would actually be 
correctly predicted

 Wouldn’t it be nice

 If predication did not require ISA support
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Improving Predicated Execution

 Three major limitations of predication

1. Adaptivity: non-adaptive to branch behavior

2. Complex CFG: inapplicable to loops/complex control flow graphs

3. ISA: Requires large ISA changes

 Wish Branches [Kim+, MICRO 2005]

 Solve 1 and partially 2 (for loops)

 Dynamic Predicated Execution

 Diverge-Merge Processor [Kim+, MICRO 2006]

 Solves 1, 2 (partially), 3
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Wish Branches

 The compiler generates code (with wish branches) that 

can be executed either as predicated code or non-

predicated code (normal branch code) 

 The hardware decides to execute predicated code or 

normal branch code at run-time based on the confidence of 

branch prediction

 Easy to predict: normal branch code

 Hard to predict: predicated code

 Kim et al., “Wish Branches: Enabling Adaptive and 
Aggressive Predicated Execution,” MICRO 2006, IEEE Micro 
Top Picks, Jan/Feb 2006.
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TARGET:

(p1) mov b,0

TARGET:

(1) mov b,0

(!p1) mov b,1

wish.join !p1 JOIN

(1) mov b,1

wish.join (1) JOIN

Low Confidence
Wish Jump/Join

p1 = (cond)

branch p1, TARGET

C B

D

A
T N

mov b, 1 

jmp JOIN

TARGET:

mov b,0

normal branch code

A

B

C

B

C

D

A

p1 = (cond)

(!p1) mov b,1

(p1) mov b,0

predicated code 

A

B

C

wish jump/join code

B

A

C

D

wish jump

p1=(cond)

wish.jump p1 TARGET

A

B

C

wish join

D JOIN:

High Confidence



Wish Branches vs. Predicated Execution

 Advantages compared to predicated execution

 Reduces the overhead of predication

 Increases the benefits of predicated code by allowing the compiler to 

generate more aggressively-predicated code

 Makes predicated code less dependent on machine configuration (e.g. 

branch predictor)

 Disadvantages compared to predicated execution
 Extra branch instructions use machine resources

 Extra branch instructions increase the contention for branch predictor table 
entries

 Constrains the compiler’s scope for code optimizations
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How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

 Potential solutions if the instruction is a control-flow 
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution)
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Multi-Path Execution
 Idea: Execute both paths after a conditional branch

 For all branches: Riseman and Foster, “The inhibition of potential parallelism 
by conditional jumps,” IEEE Transactions on Computers, 1972.

 For a hard-to-predict branch: Use dynamic confidence estimation

 Advantages:

+ Improves performance if misprediction cost > useless work

+ No ISA change needed

 Disadvantages:

-- What happens when the machine encounters another hard-to-predict 
branch? Execute both paths again?

-- Paths followed quickly become exponential

-- Each followed path requires its own context (registers, PC, GHR)

-- Wasted work (and reduced performance) if paths merge
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Dual-Path Execution versus Predication
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Hard to predict

C

D

E

F

B

D

E

F

A

BC

D

E

F

path 1 path 2 

C

D

E

F

B

path 1 path 2 

Dual-path Predicated Execution

CFMCFM



Handling Other Types of 

Branches
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Remember: Branch Types

Type Direction at 
fetch time

Number of 
possible next 
fetch addresses?

When is next 
fetch address 
resolved?

Conditional Unknown 2 Execution (register 
dependent)

Unconditional Always taken 1 Decode (PC + 
offset)

Call Always taken 1 Decode (PC + 
offset)

Return Always taken Many Execution (register 
dependent)

Indirect Always taken Many Execution (register 
dependent)
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How can we predict an indirect branch with many target addresses?



Call and Return Prediction

 Direct calls are easy to predict

 Always taken, single target

 Call marked in BTB, target predicted by BTB

 Returns are indirect branches 

 A function can be called from many points in code

 A return instruction can have many target addresses

 Next instruction after each call point for the same function

 Observation: Usually a return matches a call

 Idea: Use a stack to predict return addresses (Return Address Stack)

 A fetched call: pushes the return (next instruction) address on the stack

 A fetched return: pops the stack and uses the address as its predicted 
target

 Accurate most of the time: 8-entry stack  > 95% accuracy
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Call X

…

Call X

…

Call X

…

Return

Return

Return



Indirect Branch Prediction (I)

 Register-indirect branches have multiple targets

 Used to implement 

 Switch-case statements

 Virtual function calls

 Jump tables (of function pointers)

 Interface calls 
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TARG A+1

A
T N

a b

A

d

?

Conditional (Direct) Branch Indirect Jump

r

br.cond TARGET R1 = MEM[R2]

branch R1



Indirect Branch Prediction (II)

 No direction prediction needed

 Idea 1: Predict the last resolved target as the next fetch address

+ Simple: Use the BTB to store the target address

-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch 
between different targets

 Idea 2: Use history based target prediction 

 E.g., Index the BTB with GHR XORed with Indirect Branch PC

 Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.

+ More accurate

-- An indirect branch maps to (too) many entries in BTB

-- Conflict misses with other branches (direct or indirect)

-- Inefficient use of space if branch has few target addresses
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Intel Pentium M Indirect Branch Predictor
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Gochman et al., 

“The Intel Pentium M Processor: Microarchitecture and Performance,”

Intel Technology Journal, May 2003.



More Ideas on Indirect Branches?

 Virtual Program Counter prediction

 Idea: Use conditional branch prediction structures iteratively
to make an indirect branch prediction

 i.e., devirtualize the indirect branch in hardware

 Curious?

 Kim et al., “VPC Prediction: Reducing the Cost of Indirect 
Branches via Hardware-Based Dynamic Devirtualization,” ISCA 
2007. 
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Indirect Branch Prediction (III)

 Idea 3: Treat an indirect branch as “multiple virtual 
conditional branches” in hardware

 Only for prediction purposes

 Predict each “virtual conditional branch” iteratively

 Kim et al., “VPC prediction,” ISCA 2007.
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0xabcd

0x018a

0x7a9c

0x…

iteration 
counter value

PC

Virtual PC

Hash value table



VPC Prediction (I)
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1111

L

PC

GHR

Direction Predictor

BTB

not taken

TARG1

cond. jump TARG1 // VPC: L
cond. jump TARG2 // VPC: VL2
cond. jump TARG3 // VPC: VL3
cond. jump TARG4 // VPC: VL4

call R1                     // PC: L
Real Instruction

Virtual Instructions

Next iteration



VPC Prediction (II)
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1110

VL2

VPC

VGHR

BTB

not taken

TARG2

cond. jump TARG1 // VPC: L 

cond. jump TARG2 // VPC: VL2 

cond. jump TARG3 // VPC: VL3

cond. jump TARG4 // VPC: VL4

call R1                     // PC: L
Real Instruction

Virtual Instructions

Direction Predictor

Next iteration



VPC Prediction (III)
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cond. jump TARG1 // VPC: L 

cond. jump TARG2 // VPC: VL2 

cond. jump TARG3 // VPC: VL3 

cond. jump TARG4 // VPC: VL4

call R1                     // PC: L 
Real Instruction

Virtual Instructions

1100

VL3

VPC

VGHR

BTB

taken

TARG3

Direction Predictor

Predicted Target
= TARG3



VPC Prediction (IV)

 Advantages:

+ High prediction accuracy (>90%)

+ No separate indirect branch predictor

+ Resource efficient (reuses existing components)

+ Improvement in conditional branch prediction algorithms also 
improves indirect branch prediction

+ Number of locations in BTB consumed for a branch = number 
of target addresses seen

 Disadvantages:

-- Takes multiple cycles (sometimes) to predict the target 
address 

-- More interference in direction predictor and BTB
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Issues in Branch Prediction (I)

 Need to identify a branch before it is fetched

 How do we do this?

 BTB hit  indicates that the fetched instruction is a branch

 BTB entry contains the “type” of the branch

 Pre-decoded “branch type” information stored in the 
instruction cache identifies type of branch

 What if no BTB?

 Bubble in the pipeline until target address is computed

 E.g., IBM POWER4
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Issues in Branch Prediction (II)

 Latency: Prediction is latency critical

 Need to generate next fetch address for the next cycle

 Bigger, more complex predictors are more accurate but slower
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PC + inst size

Next Fetch

Address

BTB target

Return Address Stack target

Indirect Branch Predictor target

Resolved target from Backend

???
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We did not cover the following slides in lecture. 

These are for your preparation for the next lecture. 



More on Wide Fetch Engines 

and Block-Based Execution
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Trace Cache Design Issues (I)

 Granularity of prediction: Trace based versus branch based?

+ Trace based eliminates the need for multiple predictions/cycle

-- Trace based can be less accurate 

-- Trace based: How do you distinguish traces with the same start 
address?

 When to form traces: Based on fetched or retired blocks?

+ Retired: Likely to be more accurate

-- Retired: Formation of trace is delayed until blocks are committed

-- Very tight loops with short trip count might not benefit

 When to terminate the formation of a trace

 After N instructions, after B branches, at an indirect jump or 
return 
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Trace Cache Design Issues (II) 

 Should entire “path” match for a trace cache hit?

 Partial matching: A piece of a trace is supplied based on branch prediction

+ Increases hit rate when there is not a full path match

-- Lengthens critical path (next fetch address dependent on the match)
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Trace Cache Design Issues (III)

 Path associativity: Multiple traces starting at the same address can be present 
in the cache at the same time.

+ Good for traces with unbiased branches (e.g., ping pong between C and D)

-- Need to determine longest matching path

-- Increased cache pressure
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 Inactive issue: All blocks within a trace 
cache line are issued even if they do not 
match the predicted path

+ Reduces impact of branch mispredictions

+ Reduces basic block duplication in trace cache

-- Slightly more complex scheduling/branch 
resolution

-- Some instructions not dispatched/flushed

Trace Cache Design Issues (IV)

84

Z

Z

Z



Trace Cache Design Issues (V)

 Branch promotion: promote highly-biased branches to branches 
with static prediction

+ Larger traces

+ No need for consuming

branch predictor BW

+ Can enable optimizations

within trace

-- Requires hardware to

determine highly-biased

branches
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How to Determine Biased Branches 
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Effect on Fetch Rate
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Effect on IPC (16-wide superscalar)

 ~15% IPC increase over “sequential I-cache” that breaks fetch on a 
predicted-taken branch
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Enhanced I-Cache vs. Trace Cache (I)
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1. Next trace prediction

2. Trace cache fetch

Trace Cache

Enhanced

Instruction Cache

Fetch

Completion

1. Multiple-branch prediction

2. Instruction cache fetch from

multiple blocks (N ports)

3. Instruction alignment & 

collapsing

1. Multiple-branch predictor 

update

1. Trace construction and fill

2. Trace predictor update



Enhanced I-Cache vs. Trace Cache (II)
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Frontend vs. Backend Complexity

 Backend is not on the critical path of instruction execution

 Easier to increase its latency without affecting performance

 Frontend is on the critical path

 Increased latency fetch directly increases

 Branch misprediction penalty

 Increased complexity can affect cycle time
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Redundancy in the Trace Cache

 ABC, BCA, CAB can all be in

the trace cache

 Leads to contention and reduced 

hit rate

 One possible solution: Block based trace cache (Black et al., ISCA 1999)

 Idea: Decouple storage of basic blocks from their “names”

 Store traces of pointers to basic blocks rather than traces of basic 
blocks themselves

 Basic blocks stored in a separate “block table”

+ Reduces redundancy of basic blocks

-- Lengthens fetch cycle (indirection needed to access blocks)

-- Block table needs to be multiported to obtain multiple blocks per cycle
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Techniques to Reduce Fetch Breaks

 Compiler

 Code reordering (basic block reordering)

 Superblock

 Hardware

 Trace cache

 Hardware/software cooperative

 Block structured ISA
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Block Structured ISA

 Blocks (> instructions) are atomic (all-or-none) operations

 Either all of the block is committed or none of it

 Compiler enlarges blocks by combining basic blocks with 
their control flow successors

 Branches within the enlarged block converted to “fault”
operations  if the fault operation evaluates to true, the block 

is discarded and the target of fault is fetched  
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Block Structured ISA (II)

 Advantages:

+ Larger blocks  larger units can be fetched from I-cache

+ Aggressive compiler optimizations (e.g. reordering) can be enabled 
within atomic blocks

+ Can explicitly represent dependencies among operations within an 
enlarged block

 Disadvantages:

-- “Fault operations” can lead to work to be wasted (atomicity)

-- Code bloat (multiple copies of the same basic block exists in the binary 
and possibly in I-cache)

-- Need to predict which enlarged block comes next

 Optimizations

 Within an enlarged block, the compiler can perform optimizations that 
cannot normally be performed across basic blocks
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Block Structured ISA (III)

 Hao et al., “Increasing the instruction fetch rate via block-
structured instruction set architectures,” MICRO 1996.
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Superblock vs. BS-ISA

 Superblock

 Single-entry, multiple exit code block 

 Not atomic

 Compiler inserts fix-up code on superblock side exit

 BS-ISA blocks

 Single-entry, single exit

 Atomic
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Superblock vs. BS-ISA

 Superblock 

+ No ISA support needed

-- Optimizes for only 1 frequently executed path

-- Not good if dynamic path deviates from profiled path  missed     

opportunity to optimize another path

 Block Structured ISA

+ Enables optimization of multiple paths and their dynamic selection. 

+ Dynamic prediction to choose the next enlarged block. Can 
dynamically adapt to changes in frequently executed paths at run-
time

+ Atomicity can enable more aggressive code optimization

-- Code bloat becomes severe as more blocks are combined

-- Requires “next enlarged block” prediction, ISA+HW support

-- More wasted work on “fault” due to atomicity requirement
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