Computer Architecture
Lecture 11:
Control-Flow Handling

Prof. Onur Mutlu
ETH Zlrich
Fall 2017
26 October 2017

Summary of Yesterday’s Lecture

= Control Dependence Handling
o Problem
o Six solutions

= Branch Prediction

Agenda for Today

Trace Caches

Other Methods of Control Dependence Handling

Required Readings

= McFarling, "Combining Branch Predictors,” DEC WRL
Technical Report, 1993. Required

= T.Yeh and Y. Patt, “"Two-Level Adaptive Training Branch
Prediction,” Intl. Symposium on Microarchitecture,
November 1991.

o MICRO Test of Time Award Winner (after 24 years)
o Required

Recommended Readings

Smith and Sohi, “"The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o More advanced pipelining

o Interrupt and exception handling

o Out-of-order and superscalar execution concepts
o Recommended

Kessler, "The Alpha 21264 Microprocessor,” IEEE Micro
1999.

o Recommended

Techniques to Reduce Fetch Breaks

Compiler
o Code reordering (basic block reordering)
o Superblock

Hardware
o Trace cache

Hardware/software cooperative
o Block structured ISA

Trace Cache: Basic Idea

= A trace is a sequence of executed instructions.

= It is specified by a start address and the outcomes of control
transfer instructions within the trace.

= Traces repeat: programs have frequently executed paths

= Trace cache idea: Store a dynamic instruction sequence in the
same physical location so that it can be fetched in unison.

D
Ca AlIB|] C | D L
o

—D

Al B— C

(a) Instruction cache. (b) Trace cache.

Reducing Fetch Breaks: Trace Cache

Dynamically determine the basic blocks that are executed consecutively
Trace: Consecutively executed basic blocks

Idea: Store consecutively-executed basic blocks in physically-contiguous
internal storage (called trace cache)

time —*

Dynamic Instruction Stream

Basic trace cache operation:

o Fetch from consecutively-stored basic blocks (predict next trace or branches)
o Verify the executed branch directions with the stored ones

o If mismatch, flush the remaining portion of the trace

Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction
Fetching,” MICRO 1996. Received the MICRO Test of Time Award 20 years later

Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997.
8

Trace Cache: Example

Instruction
Cache
n
]
= BB F/)'_/— Instruction Latch
| 3“BB | A To Instruction
—3! 0 n Buffers
> >
Fetch Address A > ¢
Trace Cache
n
7
2BB | 3“BB /
\ hit?
A Take outpur from trace
cache if rrace cache hit;
| otherwise, take output from
instction cache.
Line-Fill Buffer

T ;

An Example Trace Cache Based Processor

-

__ Fetch iﬂ.ddress
Fill Instruction
Unit - Trace Cache Y Cache
Multiple
Branch
)) Predictor
A] [A.rfgnfMerge
Selection Logic ~ je— 20" |
Decoder

l Next Fetch Address

—_
i

'

Register Rename

Y

Execution Core

Level 2

Instruction
Cache

%

Level 2
Data
Cache

-

= From Patel’'s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar
Processors,” University of Michigan, 1999.

10

Multiple Branch Predictor

= S, Patel, “Trace Cache Design for Wide Issue Superscalar Processors,” PhD
Thesis, University of Michigan, 1999.

Fefch Address Pattern
History

@ Table

Global History

Thraa 2-bif counters

]

prediciion for Zmnd branch
prediction for Srd branch

What Does A Trace Cache Line Store?

e 16 slots for instructions. Instructions are stored in decoded form and oceupy approxi-
mately five bytes for a typical ISA. Up to three branches can be stored per line. Each

instruction is marked with a two-bit tag indicating to which block it belongs.

e Four target addresses. With three basic blocks per segment and the ability to fetch
partial segments, there are four possible targets to a segment. The four addresses are
explicitly stored allowing immediate generation of the next fetch address, even for cases

where only a partial segment matches.

e Path information. This field encodes the number and directions of branches in the
segment and includes bits to identify whether a segment ends in a branch and whether
that branch is a return from subroutine instruction. In the case of a return instruction.

the return address stack provides the next fetch address.

= Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR,
1997.

12

Trace Cache: Advantages/Disadvantages

D
Q 8 - Al Bl C D L

—D

Al B—™ C

(a) Instruction cache. (b) Trace cache.

+ Reduces fetch breaks (assuming branches are biased)
+ No need for decoding (instructions can be stored in decoded form)
+ Can enable dynamic optimizations within a trace
-- Requires hardware to form traces (more complexity) = called fill unit
-- Results in duplication of the same basic blocks in the cache
-- Can require the prediction of multiple branches per cycle
-- If multiple cached traces have the same start address
-- What if XYZ and XYT are both likely traces?

13

Trace Cache Design Issues: Example

Branch promotion: promote highly-biased branches to branches
with static prediction

+ Larger traces Without Branch Promorion
+ No need for consuming Ok
branch predictor BW - T
+ Can enable optimizations © -

within trace
-- Requires hardware to (%) s
determine highly-biased . = BBl @)

branches .}9

14

How to Determine Biased Branches

Branch Blas Table

Branch Address
= dir n-bit saturating counter
o D—V Promote
Y
Pravious outcome & Consecutive occurrences

Figure 6.19: Diagram of the branch bias table.

15

Fill Unit Optimizations

Fill unit constructs traces out of decoded instructions

Can perform optimizations across basic blocks
o Branch promotion: promote highly-biased branches to
branches with static prediction

o Can treat the whole trace as an atomic execution unit
All or none of the trace is retired (based on branch directions in trace)
Enables many optimizations across blocks

o Dead code elimination
o Instruction reordering
o Reassociation ADDIRx + Ry + 4 ADDIRx + Ry + 4

—

ADDIRz 4~ Rx + 4 ADDIRz + Ry + 8

Friendly et al., “Putting the Fill Unit to Work: Dynamic Optimizations for
Trace Cache Microprocessors,” MICRO 1998.

16

Remember This Optimization?

OpA: mul r1<-r2,3

99

A

OpB: ada r2<-r2,1

opC: mul r3<-r2,3

1

Original Code

oOpA: mul r1<-r2,3

99

opC: mul r3<-r2,3 :

99

A 4

opC: mov r3<-rl

opA: mul r1<-r2,3

Optimized Trace

17

Intel Pentium 4 Trace Cache

A 12K-uop trace cache replaces the L1 I-cache

Trace cache stores decoded and cracked instructions
o Micro-operations (uops): returns 6 uops every other cycle
x86 decoder can be simpler and slower

A. Peleg, U. Weiser; "Dynamic Flow Instruction Cache Memory Organized

Around Trace Segments Independent of Virtual Address Line", United States
Patent No. 5,381,533, Jan 10, 1995

ok

Other Ways of Handling

Branches

How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)

Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)
Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

Delayed Branching (I)

Change the semantics of a branch instruction

a Branch after N instructions

o Branch after N cycles

Idea: Delay the execution of a branch. N instructions (delay

slots) that come after the branch are always executed
regardless of branch direction.

Problem: How do you find instructions to fill the delay
slots?

o Branch must be independent of delay slot instructions

Unconditional branch: Easier to find instructions to fill the delay slot

Conditional branch: Condition computation should not depend on

instructions in delay slots 2 difficult to fill the delay slot
21

Delayed Branching (1)

Normal code: Timeline:
A if | ex
B
C A
BC X B A
D C B
E BC C
F -- BC

X G G -

6 cycles

Delayed branch code:

Timeline:
if | ex
A

C A
BC C
B BC
G B
5 cycles

22

Fancy Delayed Branching (I11)

Delayed branch with squashing
o In SPARC

o Semantics: If the branch falls through (i.e., it is not taken),
the delay slot instruction is not executed

o Why could this help?

Normal code: Delayed branch code: Delayed branch w/ squashing:
X 1A XA A
B B X:| B)
C C C %
BC X BC X BC X
D NOP A
E D D

23

Delayed Branching (IV)

Advantages:

+ Keeps the pipeline full with useful instructions in a simple way assuming

1. Number of delay slots == number of instructions to keep the pipeline
full before the branch resolves

2. All delay slots can be filled with useful instructions

Disadvantages:

-- Not easy to fill the delay slots (even with a 2-stage pipeline)

1. Number of delay slots increases with pipeline depth, superscalar
execution width

2. Number of delay slots should be variable with variable latency
operations. Why?

-- Ties ISA semantics to hardware implementation
-- SPARC, MIPS, HP-PA: 1 delay slot

-- What if pipeline implementation changes with the next design?
24

An Aside: Filling the Delay Slot

a.

reordering data
independent
(RAW, WAW,

WAR)

instructions
does not change
program semantics

From before

b. From target

From fall through

add $s1, $s2, $s3

sub $t4, $t5, $t6 <

add $s1, $s2, $s3

if $s2 = 0 then —— if $s1 = 0 then
add $s1, $s2, $s3

| Delayslot | | Delayslot |
if $s1 = 0 then —

D | Delaysiot | sub $t4, $t5, $t6
Becomes ‘ Becomes | Becomes |
add $s1, $s2, $s3
if $s2 = 0 then — if $s1 = 0 then ——

|add $sl, $s2, $s3 I

add $s1, $s2, $s3

if $s1 = 0 then ——

| sub $t4, $t5, $t6 |

[sub $t4, $t5, $t6 |

within same
basic block

[Based on original figure from P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.]

For correctness:
add a new instruction
to the not-taken path?

correctness:

Safe?

add a new instruction

to the take

25

How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)
Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)

Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

Fine-Grained Multithreading

Fine-Grained Multithreading

= Idea: Hardware has multiple thread contexts (PC+registers).
Each cycle, fetch engine fetches from a different thread.

o By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

o Branch/instruction resolution latency overlapped with execution
of other threads’ instructions

Instruction Operands

¥

Stream 3 Instruction

+ No logic needed for handling control and | nstruction Fetch

Stream 2 Instruction

data dependences within a thread gtrggg"ﬁﬁﬁ;m
-- Single thread performance suffers N e

Execution Phase

-- Extra logic for keeping thread contexts
-- Does not overlap latency if not enough I —
threads to cover the whole pipeline Result Store

28

Fine-Grained Multithreading (1)

Idea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

Tolerates the control and data dependency latencies by
overlapping the latency with useful work from other threads

Improves pipeline utilization by taking advantage of multiple
threads

Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

29

Fine-Grained Multithreading: History

CDC 6600 s peripheral processing unit is fine-grained
multithreaded

a Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.
o Processor executes a different I/O thread every cycle
o An operation from the same thread is executed every 10 cycles

Denelcor HEP (Heterogeneous Element Processor)
Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
120 threads/processor

available queue vs. unavailable (waiting) queue for threads

each thread can have only 1 instruction in the processor pipeline; each thread
independent

to each thread, processor looks like a non-pipelined machine
o system throughput vs. single thread performance tradeoff

O 0O 0O O

U

30

Fine-Grained Multithreading in HEP

FROM DATA MEMORY TO DATA MEMORY

= Cycle time: 100ns VIA SWITCH VIA SWITCH

QUEUE

= 8 stages - 800 ns to

PERFORM
complete an FUNCTION
Instruction

. PERFORM
o assuming no memaory FUNCTION
access

REGISTER
MEMORY

STORE
RESULT

FETCH
OPERANDS

= No control and data
dependency checking

FETCH
INSTRUCTION QUEUE

PROGRAM
MEMORY

J1

Multithreaded Pipeline Example

select

Slide credit: Joel Emer

:x >
15 —|IR— GpPR1 =
A > >
Y
N
[- [1
N "2 W

32

Sun Niagara Multpresded Pipeline

Crosshar
Interface

Instruction type

Kongetira et al., "Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.

33

Fine-grained Multithreading

Advantages

+ No need for dependency checking between instructions
(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register
files, ...), thread selection logic

- Reduced single thread performance (one instruction fetched every N
cycles from the same thread)

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
34

Modern GPUs Are FGMT Machines

35

NVIDIA GeForce GTX 285 “core’’

64 KB of storage
for thread contexts

= multiply-add
B = multiply

m = data-parallel (SIMD) func. unit,
control shared across 8 units

(registers)

- = instruction stream decode

= execution context storage

Slide credit: Kayvon Fatahalian

36

NVIDIA GeForce GTX 285 “core’’

| 64 KB of storage

l for thread contexts
(registers)

= Groups of 32 threads share instruction stream (each group is
a Warp): they execute the same instruction on different data

= Up to 32 warps are interleaved in an FGMT manner
= Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

37

NVIDIA GeForce GTX 285

[ST=])| [ST]{ [ST=]§ [=]|

| [=]=] | [=]=] | [=I=]{ [=]=]|

 [=]=] | [=]=] [=[=]{| [=]=]|

=[]] (ST=]{ [ST=]{ [ST=])

| [T=] | [ST=])] [wT=]{ [=T];

=[] | (=I5 | (S[=] | =[=],

CLrfr--11170

ANNEED AR

[=T=]| (ST=]| [ST=] | T=]|

| [=[=]| [=]=]{[=[=] | [=[=]

|[=[=])[=]=]{[=[=]1{ [=1=]]

 [=]=]{[=I=] [=I=]{| [=]=]|

[[S[=]] [ST=] | [ST=] | [wT=]|

=[5} (=[5 S[=]{ =[5,

|[=T=] | [=[=]}| [=T=]{ [=[=1 ¥ [sTs] | =[] ST EE) EE]) EE EE EE) (08][oo|[oo||oo|| | [Oe] (0] (o] (o] | | (o] [oe][Ca][oa]
 [w]=] | [=]=]) [=[=]1| [=I=] {§ § [=T=]| [=T=] | [=I=1{ [=I=] § R (== == | [=1=] | =1=]) | [u]=] | [=]=]| [=[=1) [=T=1 | R == | == | =E EE R EE EE EE EE)
-t e -1 -t I -1 Irtd
[=T=]| (=[]} [=T=]{ [=I=1 RN [sT=] | [=T=]) [=T=]{ [sI=]§) (=T=]] [=[=1}| [=T=]{ [=]=]] |[=E]| EE EE EE I EE| EE| EE EE Y EE EE EE EE
EE|EE|EE | EE I EEEE | EE EE I EE EE EE EEEEEE|EEEE EE EE EE EE EE EE EE
Ceirr---TIr e ---Trroy|\frrr---11rti -t I -1 1Tl
(0o][og||oo||oo|| | [Oe][os][ose][oa] | | (o] [oe][oa][oa] EEEEEEEEE EE EE EE N EE EE EE EE
(0o|[og||oo||on|| | [Oe][0s] (0] (o] | | (o] [oe][oa] [oa] EEEEE EE EE EE EE EENEE EE EEEE

INNEED AR

 [=]=]{ [=]=] [=[=]{| [=]=]|

| [T=] | [T [ST=] | [ST=]]

=[] | I=]| S[=] | [=])

 [=]=]{ [=]=] [=[=]{| [=]=]|

[=]=]{[=]=] [=I=] | [=]=]|

 [=]=] | [=]=] [=[=]{| [=]=]|

CLifl---T101]

INNEER RN

INNEEN R

 [=]=]{[=I=] [=I=]{| [=]=]|

| [m]=] | [=]=] [=[=] | [=]=]|

 [=]=]| [=]=]} [=[=] | [=]=]|

 [=]=] | [=]=] [=[=] | [=]=]|

[=[=]|[=]=]|[=I=]| [=]=]

[=[=]|[=I=] [=I=] | [=]=]|

INNEEEEER

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

38

End of
Fine-Grained Multithreading

How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)
Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)

Eliminate control-flow instructions (predicated execution) ‘

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

40

Predicate Combining (7of Predicated Execution)

Complex predicates are converted into multiple branches
o if((@a==Db)&& (c<d)&&(a>5000)) {..}
3 conditional branches

Problem: This increases the number of control
dependencies

Idea: Combine predicate operations to feed a single branch
instruction instead of having one branch for each

o Predicates stored and operated on using condition registers
o A single branch checks the value of the combined predicate

+ Fewer branches in code - fewer mipredictions/stalls
-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates
Condition registers exist in IBM RS6000 and the POWER architecture

41

Predication (Predicated Execution)
Idea: Convert control dependence to data dependence

Simple example: Suppose we had a Conditional Move
instruction...

o CMOV condition, R1 €« R2
o R1 = (condition == true) ? R2 : R1
o Employed in most modern ISAs (x86, Alpha)

Code example with branches vs. CMOVs
if (@==5){b=4;}else {b=3;}

CMPEQ condition, a, 5;
CMOV condition, b < 4;
CMOQV !condition, b € 3;

42

Predication (Predicated Execution)

Idea: Compiler converts control dependence into data

dependence = branch is eliminated

o Each instruction has a predicate bit set based on the predicate computation
o Only instructions with TRUE predicates are committed (others turned into NOPs)

If (cond) {

¥

b=0;

else {

¥

b=1;

(normal branch code)

A

T/ <N
gio

W4
D

pl = (cond)
branch pl, TARGET

mov b, 1
jimp JOIN

TARGET:
mov b, 0

add x, b, 1

(predicated code)

A
B
C
D

pl = (cond)

(Ipl) mov b, 1

(pl) mov b, 0

add x,b, 1

43

Predicated Execution References

Allen et al., "Conversion of control dependence to data
dependence,” POPL 1983.

Kim et al., "Wish Branches: Combining Conditional
Branching and Predication for Adaptive Predicated
Execution,” MICRO 2005.

44

Conditional Move Operations

Very limited form of predicated execution

CMOV R1 €« R2
o R1 = (ConditionCode == true) ? R2 : R1
o Employed in most modern ISAs (x86, Alpha)

45

Predicated Execution (1I)

= Predicated execution can be high performance and energy-

efficient
A

C B
D
-
=

Predicated Execution
Fetch Decode Rename Schedule RegisterRead Execute

/700

Branch Prediction
Fetch Decode Rename Schedule RegisterRead Execute

Pipeline flush!!

Predicated Execution

Eliminates branches - enables straight line code (i.e.,
larger basic blocks in code)

Advantages
o Eliminates hard-to-predict branches
o Always-not-taken prediction works better (no branches)

o Compiler has more freedom to optimize code (no branches)
control flow does not hinder inst. reordering optimizations
code optimizations hindered only by data dependencies

Disadvantages

o Useless work: some instructions fetched/executed but
discarded (especially bad for easy-to-predict branches)

o Requires additional ISA (and hardware) support

o Can we eliminate all branches this way?
47

Predicated Execution vs. Branch Prediction

+ Eliminates mispredictions for hard-to-predict branches
+ No need for branch prediction for some branches
+ Good if misprediction cost > useless work due to predication

-- Causes useless work for branches that are easy to predict
-- Reduces performance if misprediction cost < useless work

-- Adaptivity: Static predication is not adaptive to run-time branch
behavior. Branch behavior changes based on input set, program
phase, control-flow path.

48

Predicated Execution in Intel Itanium

Each instruction can be separately predicated
64 one-bit predicate registers

each instruction carries a 6-bit predicate field
An instruction is effectively a NOP if its predicate is false

cmp pl p2 <-cmp
br pl elsel
~Teol pl thenl
else? Loinl
] ‘ oTThen?
— p2 else?
:henz loin2
» joinl
join2

Conditional Execution in the ARM ISA

Almost all ARM instructions can include an optional
condition code.

o Prior to ARM v8

An instruction with a condition code is executed only if the
condition code flags in the CPSR meet the specified
condition.

50

Conditional Execution in ARM ISA

31 2827 1615 87 0 Instruction type
Cond 0 @ I Opcode Rn Rd OperandZ Data processing / PSR Transfer
Cond 000O0O0TCORA Rd Rn Rs 1001 Rm Multiply
Cond 0000 1ua RAHi RdLo Rs 100 1] Rm Long Multiply (v3M / v4 only)
Cond 00010 B0 Rn Rd 00001001 Em Swap
Cond 0]” 1 H y Bl w Rn Rd offset Load/Store Byte/Word
Cond 1 0 0OBF l.lI S| W Rn Register List Load/Store]‘v[ultiplc
Cond 00 dHUY 1 w Rn Rd Offsetl| 1] 8| H| 1| 0ffset2 | Halfword transfer : Immediate offset (v4 only)
Cond 00 0] H 0] W En Rd 000 01ls]H|IL Rm Halfword transfer: Register offset (w4 only)
Cond 10 1 4 offset Branch
cond 0001|001 111(1111{1110001 Rn Branch Exchange (v4T only)
Cond 110dH Lﬂ NI W Rn CRd CPNum offset Coprocessor data transfer
Cond 1110 op1 CRn CRd CPNum | Op2 | 0| CRm Coprocessor data operation
Cond 1110 opl CRn Rd CPNum | op2 |1| CRm Coprocessor register transfer
Cond | 1111 SWI Number Software interrupt

L

51

Conditional Execution in ARM ISA

31 28 24 20 16 12 8 4 0
élcllllllllllllllllllllllllllllll
on
I_'_l
.
0000 = EQ - Z set (equal) 1001 = LS - C clear or Z (set unsigned
0001 = NE - Z clear (not equal) lower or same)
) 1010 = GE - N set and V set, or N clear
0010 = I];Iifé];’e(ssor—sg 1?:; (unsigned and V clear (>or =)
. 1011 =LT - N setand V clear. or N clear
0011 = {_(;Zi I(;C - C clear (unsigned and V set (>)
0100 = MI -N set (negative) 1100 = GT - Z clear. and either N set and

V set, or N clear and V set (>)

1101 =LE - Z set, or N set and V clear.or
N clear and V set (<, or =)

1110 = AL - always
1111 =NV - reserved.

0101 = PL - N clear (positive or

ZETO0)
0110 =VS -V set (overflow)
0111 =VC - V clear (no overflow)
1000 = HI - C set al}d Z clear

The ARM Instruction Set - ARM University Program - V1.0

Conditional Execution in ARM ISA

* To execute an instruction conditionally, simply postfix it with the
appropriate condition:

* For example an add instruction takes the form:
— ADD r¥0,rl,xr2 ; rO = rl + r2 (ADDAL)
* To execute this only if the zero flag 1s set:

— ADDEQ r0O,rl,xr2 If zero flag set then...

ee. Y0 = rl1l + r2

" wa

* By default, data processing operations do not affect the condition flags
(apart from the comparisons where this is the only effect). To cause the
condition flags to be updated, the S bit of the instruction needs to be set
by postfixing the instruction (and any condition code) with an “S”.

* For example to add two numbers and set the condition flags:

— ADDS r0O,rl,xr2 r0O = rl + xr2
... and set flags

" e

The ARM Instruction Set - ARM University Program - V1.0

53

Conditional Execution in ARM ISA

No

Yes @\- No

rO=r0-r1

ri=r1-r0

The ARM Instruction Set - ARM University Program - V1.0

T3

%

Convert the GCD
algorithm given in this
flowchart into

1) “Normal™ assembler,

where only branches can
be conditional.

2) ARM assembler, where
all instructions are
conditional, thus
improving code density.

The only instructions you
need are CMP, B and SUB.

Conditional Execution in ARM ISA

“Normal’® Assembler

gcd cmp r0, rl
beq stop

blt
sub
bal
sub

bal

less
r0, r0, rl
gcd
less rl, rl, ro0
gcd

stop

;:reached the end?

:if r0 > ri

:;subtract rl1l from r0O

:subtract r0 from rl

ARM Conditional Assembler

gcd cmp r0, ril

subgt r0, roO,
sublt

bne

rl, rl,

ged

The ARM Instruction Set - ARM University Program - V1.0

:if r0 > ri
:subtract rl from rO
:else subtract r0 from ril

;sreached the end?

55

Idealism

Wouldn't it be nice

o If the branch is eliminated (predicated) only when it would
actually be mispredicted

o If the branch were predicted when it would actually be
correctly predicted

Wouldn't it be nice
o If predication did not require ISA support

56

Improving Predicated Execution

Three major limitations of predication

1. Adaptivity: non-adaptive to branch behavior

2. Complex CFG: inapplicable to loops/complex control flow graphs
3. ISA: Requires large ISA changes

Wish Branches [Kim+, MICRO 2005]
o Solve 1 and partially 2 (for loops)

Dynamic Predicated Execution

o Diverge-Merge Processor [Kim+, MICRO 2006]
Solves 1, 2 (partially), 3

57

Wish Branches

The compiler generates code (with wish branches) that
can be executed either as predicated code or non-
predicated code (normal branch code)

The hardware decides to execute predicated code or
normal branch code at run-time based on the confidence of

branch prediction
Easy to predict: normal branch code
Hard to predict: predicated code

Kim et al., “Wish Branches: Enabling Adaptive and
Aggressive Predicated Execution,” MICRO 2006, IEEE Micro
Top Picks, Jan/Feb 2006.

58

Wish Jump/Join

Hoyihn Conflidiemee

W, (’3|UU >

pl = (cond)

(!p1) mov b,1

A
V N\l
C B
pl = (cond)
branch pl, TARGET
mov b, 1
[mp JOIN
TARGET:
mov b,0

(p1) mov b,0

normal branch code

predicated code

C

D

A \wish jump

R\
Wish join

\ 4

C

G

D

pl=(cond)
wish.jump pl TARGET

(11f1) mov b,1 i\QQ

wighsjoioitp (1JOIGIN

TARGET:
(1) mov b,0

JOIN:

wish jump/join code

59

Wish Branches vs. Predicated Execution

Advantages compared to predicated execution

a

a

Reduces the overhead of predication

Increases the benefits of predicated code by allowing the compiler to
generate more aggressively-predicated code

Makes predicated code less dependent on machine configuration (e.g.
branch predictor)

Disadvantages compared to predicated execution

a

a

Extra branch instructions use machine resources

Extra branch instructions increase the contention for branch predictor table
entries

Constrains the compiler’s scope for code optimizations

60

How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)

Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)
Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

Multi-Path Execution

Idea: Execute both paths after a conditional branch

o For all branches: Riseman and Foster, “The inhibition of potential parallelism
by conditional jumps,” IEEE Transactions on Computers, 1972.

o For a hard-to-predict branch: Use dynamic confidence estimation

Advantages:
+ Improves performance if misprediction cost > useless work
+ No ISA change needed

Disadvantages:

-- What happens when the machine encounters another hard-to-predict
branch? Execute both paths again?

-- Paths followed quickly become exponential
-- Each followed path requires its own context (registers, PC, GHR)

-- Wasted work (and reduced performance) if paths merge
62

Dual-Path Execution versus Predication

A | Hard to predict
C B

D

=

=

Dual-path
path 1 path 2
M
> >
. :
- -

path 1

|

C

l

CFM

l

B

l

CEM

Predicated Execution

path 2

03

Handling Other Types of

Branches

Remember: Branch Types

Type Direction at Number of When is next
fetch time possible next fetch address
fetch addresses? | resolved?
Conditional Unknown 2 Execution (register
dependent)
Unconditional Always taken 1 Decode (PC +
offset)
Call Always taken 1 Decode (PC +
offset)
Return Always taken Many Execution (register
dependent)
Indirect Always taken Many Execution (register
dependent)

How can we predict an indirect branch with many target addresses?

65

Call and Return Prediction

.] Call X
Direct calls are easy to predict
o Always taken, single target Call X
o Call marked in BTB, target predicted by BTB Call X
I.'\.’.eturn
Returns are indirect branches ReturF;eturn

o A function can be called from many points in code
o A return instruction can have many target addresses
Next instruction after each call point for the same function
o Observation: Usually a return matches a call
o Idea: Use a stack to predict return addresses (Return Address Stack)

A fetched call: pushes the return (next instruction) address on the stack

A fetched return: pops the stack and uses the address as its predicted
target

Accurate most of the time: 8-entry stack > > 95% accuracy

06

Indirect Branch Prediction (I)

Register-incirect branches have multiple targets

br.cond TARGET A R1 = MEM[RZ]
/ \ 2 branch R1
,’// III \\\‘ \\\\g
R 1 X »
TARG ol 15] p
Conditional (Direct) Branch Indirect Jump

Used to implement

o Switch-case statements

o Virtual function calls

o Jump tables (of function pointers)
o Interface calls

67

Indirect Branch Prediction (1)

No direction prediction needed

Idea 1: Predict the last resolved target as the next fetch address
+ Simple: Use the BTB to store the target address

-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch
between different targets

Idea 2: Use history based target prediction
o E.g., Index the BTB with GHR XORed with Indirect Branch PC
o Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.
+ More accurate
-- An indirect branch maps to (too) many entries in BTB
-- Conflict misses with other branches (direct or indirect)
-- Inefficient use of space if branch has few target addresses

068

Intel Pentium M Indirect Branch Predictor

The advanced branch prediction in the Pentium M
processor 1s based on the Intel Pentium” 4 processor’s
[6] branch predictor. On top of that, two additional
predictors to capture special program flows. were added:
a Loop Detector and an Indirect Branch Predictor.

%

Count | Limit | Prediction

"

e \l/ e
V =

s

/

Figure 2: The Loop Detector logic

Gochman et al.,

Instruction
Pointer

2

Global
History

)

Target : type : hit

target : hit

hit

»,

~

target

Figure 3: The Indirect Branch Predictor logic

“The Intel Pentium M Processor: Microarchitecture and Performance,”

Intel Technology Journal, May 2003.

09

More Ideas on Indirect Branches?

Virtual Program Counter prediction

o Idea: Use conditional branch prediction structures rteratively
to make an indirect branch prediction

o i.e., gevirtualize the indirect branch in hardware

Curious?

o Kim et al., "VPC Prediction: Reducing the Cost of Indirect

Branches via Hardware-Based Dynamic Devirtualization,” ISCA
2007.

70

Indirect Branch Prediction (I11)

= Idea 3: Treat an indirect branch as “multiple virtual
conditional branches” in hardware

a Only for prediction purposes
o Predict each “virtual conditional branch” iteratively
o Kim et al., “VPC prediction,” ISCA 2007.

Hash value table

Oxabcd
iteration 0x018a

counter value Ox7a9C \/R

PC

71

VPC Prediction (I)

Real Instruction
call R1 /[PC: L

Virtual Instructions
cond. jump TARG1 // VPC: L

Next iteration

GHR

Direction Predictor

1111

PC

5}

—J— not taken

BTB

— TARG1

72

VPC Prediction (II)

Real Instruction
call R1 /[PC: L

Virtual Instructions

cond. jump TARG2 // VPC: VL2

Next iteration

Direction Predictor

VGHR

1110

VPC

VL2

5}

"5—* not taken

BTB

B TARG2

73

VPC Prediction (I1I)

Real Instruction
call R1 /[PC: L

Virtual Instructions

cond. jump TARG3 // VPC: VL3

Predicted Target
= TARG3

VGHR

Direction Predictor

1100

VPC

—— taken

5}

VL3

BTB

— TARG3

74

VPC Prediction (IV)

Advantages:

+ High prediction accuracy (>90%)

+ No separate indirect branch predictor

+ Resource efficient (reuses existing components)

+ Improvement in conditional branch prediction algorithms also
improves indirect branch prediction

+ Number of locations in BTB consumed for a branch = number
of target addresses seen

Disadvantages:

-- Takes multiple cycles (sometimes) to predict the target
address

-- More interference in direction predictor and BTB

75

Issues 1n Branch Prediction (I)

Need to identify a branch before it is fetched

How do we do this?
o BTB hit = indicates that the fetched instruction is a branch
o BTB entry contains the “type” of the branch

o Pre-decoded “branch type” information stored in the
instruction cache identifies type of branch

What if no BTB?
o Bubble in the pipeline until target address is computed
o E.g., IBM POWER4

76

Issues 1n Branch Prediction (II)

Latency: Prediction is latency critical
o Need to generate next fetch address for the next cycle
o Bigger, more complex predictors are more accurate but slower

PC + inst size ——»
BTB target Next Fetch

Return Address Stack target > > Address
Indirect Branch Predictor target —
Resolved target from Backend —

?7?77?

77

Computer Architecture
Lecture 11:
Control-Flow Handling

Prof. Onur Mutlu
ETH Zlrich
Fall 2017
26 October 2017

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

More on Wide Fetch Engines
and Block-Based Execution

Trace Cache Design Issues (I)

Granularity of prediction: Trace based versus branch based?
+ Trace based eliminates the need for multiple predictions/cycle
-- Trace based can be less accurate

-- Trace based: How do you distinguish traces with the same start
address?

When to form traces: Based on fetched or retired blocks?

+ Retired: Likely to be more accurate

-- Retired: Formation of trace is delayed until blocks are committed
-- Very tight loops with short trip count might not benefit

When to terminate the formation of a trace

o After N instructions, after B branches, at an indirect jump or
return
81

Trace Cache Design Issues (1I)

Should entire “path” match for a trace cache hit?

Partial matching: A piece of a trace is supplied based on branch prediction
+ Increases hit rate when there is not a full path match
-- Lengthens critical path (next fetch address dependent on the match)

| Address of A | D
AN

;
Trace Cache /..;2{ %,C,\
| { |
Y _/ N
A [& [¢ | ’
Multiple Predicted path: ABC
Branch Fetched segment: ABD
Predictor
No partial matching: miss
Partial Matching: AB
Predictions
'
[Selection Logic 1— TNTIT
(2 [& |

Figure 6.1: The trace cache and branch predictor are indexed with the ad-
dress of block A. The inset figure shows the control flow from
block A. The predictor selects the sequence ABD. The trace
cache only contains ABC. AB is supplied.

Trace Cache Design Issues (111)

Path associativity: Multiple traces starting at the same address can be present
in the cache at the same time.

+ Good for traces with unbiased branches (e.g., ping pong between C and D)
-- Need to determine longest matching path
-- Increased cache pressure

7N
| A)
S NT
YN
)] \ 8)
Address of A T Pt NT
Trace Cacir_e set Trace Cache /
— ‘e ™
S~ e T (b)) c)
~[Al el cllalsl o] N AN
Multiple
- - Branch
‘ Predictor

path selection logic |"

LA &8] o |

83

Trace Cache Design

Predicted path: ABC
Fetched segment: AB] Z

No partial matching: miss
Partial matching: AB
Inactive Issue: AB (active) Z ictive)

Instruction Window

Issues (I1V)

Inactive issue: All blocks within a trace
cache line are issued even if they do not
match the predicted path

+ Reduces impact of branch mispredictions
+ Reduces basic block duplication in trace cache

-- Slightly more complex scheduling/branch
resolution

-- Some instructions not dispatched/flushed

D)
~ A8

o~ I/-’
L \
s,

A\
- a W©)
F G X _)]
E Y
C D
A B 2

84

Trace Cache Design Issues (V)

Branch promotion: promote highly-biased branches to branches
with static prediction

+ Larger traces Without Branch Promorion
+ No need for consuming Ok
branch predictor BW - T
+ Can enable optimizations © -

within trace
-- Requires hardware to (%) s
determine highly-biased . = BBl @)

branches .}9

85

How to Determine Biased Branches

Branch Blas Table

Branch Address
= dir n-bit saturating counter
o D—V Promote
Y
Pravious outcome & Consecutive occurrences

Figure 6.19: Diagram of the branch bias table.

86

Effect on Fetch Rate

Fetch Rate

157 19% 22%
_ 0,
14 —14% 200 4
13 54% 5504 49%

26%

11— 14%
9_
8_
7—
6_
S_
4_
3_
2_
1_
0_

comp gcc go 1peg i m88k perl vor
Benchmarks

14%
40% 5904

m Enhanced TC.ic
= Baseline TC.1c
= Sequential IC

pgp plot ss

87

Ettect on IPC (16-wide

superscalar)

Instructions Per Cycle

LA
|

L
1

5
= 5o
£
Z]
1
T a lot
- : c gs pzp plo ss
o = * SP]EIE]EE Eﬂenchllllmrks . e - UNIX Benchmarks
Configuration | TCache | [Cache Blocks Br Pred | BTB
Name Size S e per Fetch Type Slze
TC e 128K B 1KB 8 Multiple | IKB
TCIC i1k B ik B 3 Multiple | 8KB
te 1O 1K B 128K B 3 Multiple | 16KB
Single - 128K B | Hybrid | 20K B
Sequential - 128K B 3 Multiple | 16K B

m TCic

o TCIC

= te IC

= Single IC

m Sequential IC

~15% IPC increase over “sequential I-cache” that breaks fetch on a

predicted-taken branch

38

Enhanced I-Cache vs. Trace Cache (I)

Enhanced
Instruction Cache Trace Cache

=

. Multiple-branch prediction 1. Next trace prediction

2. Instruction cache fetch from 2. Trace cache fetch
multiple blocks (N ports)

3. Instruction alignment &

collapsing

-------- e R

Execution Core Execution Core

----------- e

Completion 1. Multiple-branch predictor 1. Trace construction and fill
update 2. Trace predictor update

Fetch

89

Enhanced I-Cache vs. Trace Cache (11

Trace cache:

Pros — Moves complexity to backend (fill unit))
Cons — Inefficient instruction storage (redundancy)

<+—— |nstruction storage redundancy

Fetch time complexity ——

Enhanced instruction cache:

Pros — Efficient instruction storage
Cons — Very complex and costly fetch engine

90

Frontend vs. Backend Complexity

Backend is not on the critical path of instruction execution
o Easier to increase its latency without affecting performance

Frontend is on the critical path

o Increased latency fetch directly increases
Branch misprediction penalty

o Increased complexity can affect cycle time

91

Redundancy in the Trace Cache

ABC, BCA, CAB can all be in e
I\ A | instructions
the trace cache --I-”’
Leads to contention and reduced {sj,
hit rate (I\\ |
|I \. C/J & instructions
|

One possible solution: Block based trace cache (Black et al., ISCA 1999)

Idea: Decouple storage of basic blocks from their “names”
o Store traces of pointers to basic blocks rather than traces of basic
blocks themselves
o Basic blocks stored in a separate “block table”
+ Reduces redundancy of basic blocks
-- Lengthens fetch cycle (indirection needed to access blocks)

-- Block table needs to be multiported to obtain multiple blocks per cycle
92

Techniques to Reduce Fetch Breaks

Compiler
o Code reordering (basic block reordering)
o Superblock

Hardware
o Trace cache

Hardware/software cooperative
o Block structured ISA

93

Block Structured ISA

Blocks (> instructions) are atomic (all-or-none) operations
a Either all of the block is committed or none of it

Compiler enlarges blocks by combining basic blocks with
their control flow successors

o Branches within the enlarged block converted to “fault”
operations - if the fault operation evaluates to true, the block

is discarded and the target of fault is fetched

A A
al N 22 alb1 a2
alb2
B
| ' b2 /\b1
C D BC BD E
AN A Y
el c2 dl d2 el e2

A A A
cl c2 di d2 el o2

94

Block Structured ISA (1)

Advantages:
+ Larger blocks = larger units can be fetched from I-cache

+ Aggressive compiler optimizations (e.g. reordering) can be enabled
within atomic blocks

+ Can explicitly represent dependencies among operations within an
enlarged block

Disadvantages:
-- “Fault operations” can lead to work to be wasted (atomicity)

-- Code bloat (multiple copies of the same basic block exists in the binary
and possibly in I-cache)

-- Need to predict which enlarged block comes next

Optimizations

o Within an enlarged block, the compiler can perform optimizations that
cannot normally be performed across basic blocks

95

Block Structured ISA (I11)

Hao et al., “Increasing the instruction fetch rate via block-
structured instruction set architectures,” MICRO 1996.

16 == Conventional ISA
== Conventional ISA m= Block-Structured ISA
== Block-Structured ISA

-1 oo
o o
1 i

12 -

588

S <
Block Size

Execution Time
(Millions of cycles)

[
=
I

1=
|

o
I

gce comp go ijpeg li m88k perl vortex gcc comp go ijpeg |t m88k perl vortex
Benchmark Benchmark

Figure 3. Performance comparison of block- Figure 5. Average block sizes for block-

structured ISA executables and conventional structured and conventional ISA executables.
ISA executables.

96

Superblock vs. BS-ISA

Superblock

a Single-entry, multiple exit code block

2 Not atomic

o Compiler inserts fix-up code on superblock side exit

BS-ISA blocks
o Single-entry, single exit
o Atomic

97

Superblock vs. BS-ISA

Superblock
+ No ISA support needed
-- Optimizes for only 1 frequently executed path

-- Not good if dynamic path deviates from profiled path = missed
opportunity to optimize another path

Block Structured ISA
+ Enables optimization of multiple paths and their dynamic selection.

+ Dynamic prediction to choose the next enlarged block. Can
dynamically adapt to changes in frequently executed paths at run-
time

+ Atomicity can enable more aggressive code optimization

-- Code bloat becomes severe as more blocks are combined

-- Requires “next enlarged block” prediction, ISA+HW support

-- More wasted work on “fault” due to atomicity requirement
98

