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Summary of Yesterday

Â Shared vs. private resources in multi-core systems

Â Memory interference and the QoS problem

Â Memory scheduling
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Agenda for Today

Â Memory scheduling wrap-up

Â Other approaches to mitigate and control memory 
interference

Ç Source Throttling

Ç Data Mapping

Ç Thread Scheduling

Â Multi-Core Cache Management
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Quick Summary Papers

Â "Parallelism -Aware Batch Scheduling: Enhancing both 
Performance and Fairness of Shared DRAM Systemsò

Â "The Blacklisting Memory Scheduler: Achieving High 
Performance and Fairness at Low Cost"

Â "Staged Memory Scheduling: Achieving High 
Performance and Scalability in Heterogeneous Systems ò

Â "Parallel Application Memory Schedulingò

Â "Reducing Memory Interference in Multicore Systems 
via Application -Aware Memory Channel Partitioning"
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http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
https://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf


Predictable Performance: 

Strong Memory Service Guarantees
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Goal: Predictable Performance in Complex Systems

Â Heterogeneous agents: CPUs, GPUs, and HWAs 

Â Main memory interference between CPUs, GPUs, HWAs
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How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance? 



Strong Memory Service Guarantees

Â Goal: Satisfy performance/SLA requirements in the 
presence of shared main memory, heterogeneous agents, 
and hybrid memory/storage

Â Approach: 

Ç Develop techniques/models to accurately estimate the 
performance loss of an application/agent in the presence of 
resource sharing

Ç Develop mechanisms (hardware and software) to enable the 
resource partitioning/prioritization needed to achieve the 
required performance levels for all applications

Ç All the while providing high system performance 

Â Subramanian et al., ñMISE: Providing Performance Predictability and Improving Fairness 
in Shared Main Memory Systems,ò HPCA 2013.

Â Subramanian et al., ñThe Application Slowdown Model,ò MICRO 2015.
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Predictable Performance Readings (I)

Â Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High -
Performance Fairness Substrate for Multi -Core Memory 
Systems"
Proceedings of the 15th International Conference on 
Architectural Support for Programming Languages and Operating 
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010. 
Slides (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf


Predictable Performance Readings (II)

Â Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, 
and Onur Mutlu,
"MISE: Providing Performance Predictability and 
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High -
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx


Predictable Performance Readings (III)

Â Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and 
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling 
the Impact of Inter -Application Interference at Shared Caches 
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO ), Waikiki, Hawaii, USA, December 2015. 
[Slides (pptx) (pdf) ] [ Lightning Session Slides (pptx) (pdf) ] [ Poster 
(pptx) (pdf) ] 
[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim


MISE: 

Providing Performance Predictability 

in Shared Main Memory Systems

Lavanya Subramanian , Vivek Seshadri, 

Yoongu Kim, Ben Jaiyen, Onur Mutlu
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Unpredictable Application Slowdowns
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Need for Predictable Performance

Â There is a need for predictable performance

Ç When multiple applications share resources 

Ç Especially if some applications require performance 
guarantees

Â Example 1: In mobile systems

Ç Interactive applications run with non -interactive applications

Ç Need to guarantee performance for interactive applications

Â Example 2: In server systems

Ç Different usersô jobs consolidated onto the same server

Ç Need to provide bounded slowdowns to critical jobs 
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Our Goal: Predictable performance 
in the presence of memory interference



Outline

14

1. Estimate Slowdown

ÇKey Observations

Ç Implementation

ÇMISE Model: Putting it All Together

ÇEvaluating the Model

2. Control Slowdown



Outline
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1. Estimate Slowdown

ÇKey Observations

Ç Implementation

ÇMISE Model: Putting it All Together

ÇEvaluating the Model

2. Control Slowdown

ÇProviding Soft Slowdown Guarantees

ÇMinimizing Maximum Slowdown



Slowdown: Definition
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Key Observation 1

For a memory bound application,  
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Key Observation 2

Request Service Rate Alone (RSRAlone) of an application can be 
estimated by giving the application highest priority in 

accessing memory 

Highest priority Ą Little interference

(almost as if the application were run alone)
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Key Observation 2

19

Request Buffer State

Main 
Memory

1. Run alone
Time units Service order

Main 
Memory

12

Request Buffer State

Main 
Memory

2. Run with another application
Service order

Main 
Memory

123

Request Buffer State

Main 
Memory

3. Run with another application: highest priority
Service order

Main 
Memory

123

Time units

Time units

3



20

Memory Interference-induced Slowdown Estimation 
(MISE) model for memory bound applications
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Key Observation 3

Â Memory-bound application
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Key Observation 3

Â Non-memory-bound application
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Outline
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1. Estimate Slowdown

ÇKey Observations

Ç Implementation

ÇMISE Model: Putting it All Together

ÇEvaluating the Model

2. Control Slowdown

ÇProviding Soft Slowdown Guarantees

ÇMinimizing Maximum Slowdown



Interval Based Operation
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Measuring RSRSharedand ǟ

Â Request Service Rate Shared (RSRShared)

Ç Per-core counter to track number of requests serviced

Ç At the end of each interval, measure

Â Memory Phase Fraction (  )

Ç Count number of stall cycles at the core

Ç Compute fraction of cycles stalled for memory

Length Interval

Serviced Requests ofNumber 
  RSRShared=

a
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Estimating Request Service Rate Alone (RSRAlone)

Â Divide each interval into shorter epochs

Â At the beginning of each epoch

Ç Memory controller randomly picks an application as the 
highest priority application

Â At the end of an interval, for each application, estimate 

PriorityHigh Given n Applicatio Cycles ofNumber 

EpochsPriority High  During Requests ofNumber 
RSR

           

Alone=
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Goal: Estimate RSRAlone

How: Periodically give each application 
highest priority in accessing memory 



Inaccuracy in Estimating RSRAlone
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Accounting for Interference in RSRAloneEstimation

Â Solution: Determine and remove interference cycles from 
RSRAlone calculation

Â A cycle is an interference cycle if

Ç a request from the highest priority application is 
waiting in the request buffer and

Ç another applicationôs request was issued previously
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Outline
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1. Estimate Slowdown

ÇKey Observations

Ç Implementation

ÇMISE Model: Putting it All Together

ÇEvaluating the Model

2. Control Slowdown

ÇProviding Soft Slowdown Guarantees

ÇMinimizing Maximum Slowdown



MISE Model: Putting it All Together 
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Outline
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1. Estimate Slowdown

ÇKey Observations

Ç Implementation

ÇMISE Model: Putting it All Together

ÇEvaluating the Model

2. Control Slowdown

ÇProviding Soft Slowdown Guarantees

ÇMinimizing Maximum Slowdown



Previous Work on Slowdown Estimation

Â Previous work on slowdown estimation

Ç STFM (Stall Time Fair Memory) Scheduling [Mutlu+, MICRO ó07] 

Ç FST (Fairness via Source Throttling) [Ebrahimi+, ASPLOS ó10]

Ç Per -thread Cycle Accounting [Du Bois+, HiPEACó13]

Â Basic Idea:
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Two Major Advantages of MISE Over STFM

Â Advantage 1:

Ç STFM estimates alone performance while an 
application is receiving interference Ą Hard

Ç MISE estimates alone performance while giving an 
application the highest priority Ą Easier

Â Advantage 2:

Ç STFM does not take into account compute phase for 
non-memory-bound applications 

Ç MISE accounts for compute phase Ą Better accuracy
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Methodology

Â Configuration of our simulated system

Ç 4 cores

Ç 1 channel, 8 banks/channel

Ç DDR3 1066 DRAM 

Ç 512 KB private cache/core

Â Workloads

Ç SPEC CPU2006 

Ç 300 multi programmed workloads
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Quantitative Comparison
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Comparison to STFM
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Outline
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1. Estimate Slowdown

ÇKey Observations

Ç Implementation

ÇMISE Model: Putting it All Together

ÇEvaluating the Model

2. Control Slowdown

ÇProviding Soft Slowdown Guarantees

ÇMinimizing Maximum Slowdown



Providing òSoftó Slowdown Guarantees

Â Goal

1. Ensure QoS-critical applications meet a prescribed 
slowdown bound

2. Maximize system performance for other applications

Â Basic Idea

Ç Allocate just enough bandwidth to QoS-critical 
application

Ç Assign remaining bandwidth to other applications
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MISE-QoS: Mechanism to Provide Soft QoS

Â Assign an initial bandwidth allocation to QoS-critical application

Â Estimate slowdown of QoS-critical application using the MISE 
model

Â After every N intervals

Ç If slowdown > bound B +/ - ɽ, increase bandwidth allocation

Ç If slowdown < bound B +/ - ɽ, decrease bandwidth allocation

Â When slowdown bound not met for N intervals

Ç Notify the OS so it can migrate/de -schedule jobs
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Methodology

Â Each application (25 applications in total) considered the 
QoS-critical application

Â Run with 12 sets of co-runners of different memory 
intensities

Â Total of 300 multiprogrammed workloads

Â Each workload run with 10 slowdown bound values

Â Baseline memory scheduling mechanism

Ç Always prioritize QoS-critical application 

[ Iyer+, SIGMETRICS 2007]

Ç Other applicationsô requests scheduled in FRFCFS order

[Zuravleff +, US Patent 1997, Rixner+, ISCA 2000]
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A Look at One Workload
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Effectiveness of MISE in Enforcing QoS
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Performance of Non-QoS-Critical Applications
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Outline
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1. Estimate Slowdown

ÇKey Observations

Ç Implementation

ÇMISE Model: Putting it All Together

ÇEvaluating the Model

2. Control Slowdown

ÇProviding Soft Slowdown Guarantees

ÇMinimizing Maximum Slowdown



Other Results in the Paper

Â Sensitivity to model parameters

Ç Robust across different values of model parameters

Â Comparison of STFM and MISE models in enforcing soft 
slowdown guarantees

Ç MISE significantly more effective in enforcing guarantees

Â Minimizing maximum slowdown

Ç MISE improves fairness across several system configurations
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Summary

Â Uncontrolled memory interference slows down  
applications unpredictably

Â Goal: Estimate and control slowdowns

Â Key contribution
Ç MISE: An accurate slowdown estimation model 

Ç Average error of MISE: 8.2%

Â Key Idea
Ç Request Service Rate is a proxy for performance

Ç Request Service Rate Alone estimated by giving an application highest 
priority in accessing memory

Â Leverage slowdown estimates to control slowdowns
Ç Providing soft slowdown guarantees

Ç Minimizing maximum slowdown
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MISE: Pros and Cons

Â Upsides:

Ç Simple new insight to estimate slowdown

Ç Much more accurate slowdown estimations than prior 
techniques (STFM, FST)

Ç Enables a number of QoS mechanisms that can use slowdown 
estimates to satisfy performance requirements

Â Downsides:

Ç Slowdown estimation is not perfect - there are still errors

Ç Does not take into account caches and other shared resources 
in slowdown estimation
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More on MISE

Â Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, 
and Onur Mutlu,
"MISE: Providing Performance Predictability and 
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High -
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx


Handling Memory Interference 

In Multithreaded Applications

Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, 
Chang Joo Lee, Onur Mutlu, and Yale N. Patt, 
"Parallel Application Memory Scheduling"

Proceedings of the 44th International Symposium on Microarchitecture (MICRO ), 
Porto Alegre, Brazil, December 2011. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx


Multithreaded (Parallel) Applications

Â Threads in a multi-threaded application can be inter-
dependent

Ç As opposed to threads from different applications

Â Such threads can synchronize with each other

Ç Locks, barriers, pipeline stages, condition variables, 
semaphores, é

Â Some threads can be on the critical path of execution due 
to synchronization; some threads are not

Â Even within a thread, some ñcode segmentsò may be on 
the critical path of execution; some are not

50



Critical Sections

Â Enforce mutually exclusive access to shared data

Â Only one thread can be executing it at a time

Â Contended critical sections make threads wait Ą threads 

causing serialization can be on the critical path

51
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loop {

Compute

lock(A)

Update shared data

unlock(A)

}

N

C



Barriers

Â Synchronization point

Â Threads have to wait until all threads reach the barrier

Â Last thread arriving at the barrier is on the critical path

52

Each thread:

loop1 {

Compute

}

barrier

loop2 {

Compute

}



Stages of Pipelined Programs

Â Loop iterations are statically divided into code segments called stages

Â Threads execute stages on different cores

Â Thread executing the slowest stage is on the critical path
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Handling Interference in Parallel Applications

Â Threads in a multithreaded application are inter -dependent

Â Some threads can be on the critical path of execution due 
to synchronization; some threads are not

Â How do we schedule requests of inter-dependent threads 
to maximize multithreaded application performance?

Â Idea: Estimate limiter threads likely to be on the critical path and 
prioritize their requests; shuffle priorities of non -limiter threads
to reduce memory interference among them [Ebrahimi+, MICROô11]

Â Hardware/software cooperative limiter thread estimation:

Â Thread executing the most contended critical section

Â Thread executing the slowest pipeline stage

Â Thread that is falling behind the most in reaching a barrier

54PAMS Micro 2011 Talk

//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/ebrahimi_micro2011_talk.pptx


Prioritizing Requests from Limiter Threads
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Parallel App Mem Scheduling: Pros and Cons

Â Upsides:

Ç Improves the performance of multi -threaded applications

Ç Provides a mechanism for estimating ñlimiter threadsò

Ç Opens a path for slowdown estimation for multi -threaded 
applications

Â Downsides:

Ç What if there are multiple multi -threaded applications running 
together?

Ç Limiter thread estimation can become complex
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More on PAMS

Â Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo
Lee, Onur Mutlu, and Yale N. Patt, 
"Parallel Application Memory Scheduling"
Proceedings of the 44th International Symposium on 
Microarchitecture (MICRO ), Porto Alegre, Brazil, December 
2011. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx


Other Ways of 

Handling Memory Interference



Fundamental Interference Control Techniques

Â Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling
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Designing QoS-Aware Memory Systems: Approaches

Â Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism

Ç QoS-aware memory controllers 

Ç QoS-aware interconnects

Ç QoS-aware caches

Â Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping

Ç Source throttling to control access to memory system 

Ç QoS-aware data mapping to memory controllers 

Ç QoS-aware thread scheduling to cores
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Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda, 

"Reducing Memory Interference in Multicore Systems via 
Application -Aware Memory Channel Partitioningò

44th International Symposium on Microarchitecture (MICRO ), 
Porto Alegre, Brazil, December 2011. Slides (pptx)

MCP Micro 2011 Talk

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/subramanian_micro11_talk.pptx


Observation: Modern Systems Have Multiple Channels

A new degree of freedom

Mapping data across multiple channels
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Data Mapping in Current Systems
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Partitioning Channels Between Applications
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Overview: Memory Channel Partitioning (MCP) 

Â Goal

Ç Eliminate harmful interference between applications

Â Basic Idea

Ç Map the data of badly-interfering applications to different 
channels

Â Key Principles

Ç Separate low and high memory-intensity applications

Ç Separate low and high row-buffer locality applications

65Muralidhara et al., ñMemory Channel Partitioning,ò MICROô11.



Key Insight 1: Separate by Memory Intensity

High memory-intensity applications interfere with low 
memory-intensity applications in shared memory channels
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Key Insight 2: Separate by Row-Buffer Locality
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High row-buffer locality applications interfere with low 

row-buffer locality applications in shared memory channels
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Memory Channel Partitioning (MCP) Mechanism

1. Profile applications

2. Classifyapplications into groups

3. Partition channels between application groups

4. Assign a preferred channel to each application

5. Allocate application pagesto preferred channel
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Hardware

System 

Software

Muralidhara et al., ñMemory Channel Partitioning,ò MICROô11.



Interval Based Operation
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time

Current Interval Next Interval

1. Profile applications

2. Classify applications into groups
3. Partition channels between groups
4. Assign preferred channel to applications

5. Enforce channel preferences



Observations

Â Applications with very low memory-intensity rarely 
access memory
Ą Dedicating channels to them results in precious 
memory bandwidth waste

Â They have the most potential to keep their cores busy
Ą We would really like to prioritize them

Â They interfere minimally with other applications
Ą Prioritizing them does not hurt others

70



Integrated Memory Partitioning and Scheduling (IMPS)

Â Always prioritize very low memory-intensity 
applications in the memory scheduler

Â Use memory channel partitioning to mitigate 
interference between other applications

71Muralidhara et al., ñMemory Channel Partitioning,ò MICROô11.



Hardware Cost

Â Memory Channel Partitioning (MCP)

Ç Only profiling counters in hardware

Ç No modifications to memory scheduling logic

Ç 1.5 KB storage cost for a 24-core, 4-channel system

Â Integrated Memory Partitioning and Scheduling (IMPS)

Ç A single bit per request

Ç Scheduler prioritizes based on this single bit

72Muralidhara et al., ñMemory Channel Partitioning,ò MICROô11.



Performance of Channel Partitioning
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Combining Multiple Interference Control Techniques

Â Combined interference control techniques can mitigate 
interference much more than a single technique alone can 
do

Â The key challenge is:

Ç Deciding what technique to apply when

Ç Partitioning work appropriately between software and 
hardware
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MCP and IMPS: Pros and Cons

Â Upsides:

Ç Keeps the memory scheduling hardware simple

Ç Combines multiple interference reduction techniques

Ç Can provide performance isolation across applications mapped 
to different channels

Ç General idea of partitioning can be extended to smaller 
granularities in the memory hierarchy: banks, subarrays, etc. 

Â Downsides:

Ç Reacting is difficult if workload changes behavior after 
profiling

Ç Overhead of moving pages between channels restricts benefits 
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More on Memory Channel Partitioning

Â Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, 
Mahmut Kandemir, and Thomas Moscibroda, 
"Reducing Memory Interference in Multicore Systems via 
Application -Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on 
Microarchitecture (MICRO ), Porto Alegre, Brazil, December 
2011. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx


Fundamental Interference Control Techniques

Â Goal: to reduce/control inter -thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling
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Fairness via Source Throttling

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High -Performance 

Fairness Substrate for Multi -Core Memory Systems"
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)

FST ASPLOS 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/ebrahimi_asplos10_talk.pdf
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The Problem with òSmart Resourcesó

Â Independent interference control mechanisms in 
caches, interconnect, and memory can contradict 
each other

Â Explicitly coordinating mechanisms for different 
resources requires complex implementation

Â How do we enable fair sharing of the entire 
memory system by controlling interference in a 
coordinated manner?
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Source Throttling: A Fairness Substrate

Â Key idea: Manage inter-thread interference at the cores 
(sources), not at the shared resources

Â Dynamically estimate unfairness in the memory system 

Â Feed back this information into a controller

Â Throttle coresô memory access ratesaccordingly

Ç Whom to throttle and by how much depends on performance 
target (throughput, fairness, per -thread QoS, etc)

Ç E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

Â Ebrahimi et al., ñFairness via Source Throttling,ò ASPLOSô10, TOCSô12.
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Fairness via Source Throttling (FST)

Â Two components (interval-based)

Â Run-time unfairness evaluation (in hardware)

Ç Dynamically estimates the unfairness (application slowdowns) 
in the memory system

Ç Estimates which application is slowing down which other

Â Dynamic request throttling (hardware or software)

Ç Adjusts how aggressively each core makes requests to the 
shared resources

Ç Throttles down request rates of cores causing unfairness

Â Limit miss buffers, limit injection rate
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Dynamic Request Throttling

Â Goal: Adjust how aggressively each core makes requests to 
the shared memory system 

Â Mechanisms:

Ç Miss Status Holding Register (MSHR) quota

Â Controls the number of concurrent requests accessing shared 
resources from each application

Ç Request injection frequency

Â Controls how often memory requests are issued to the last level 
cache from the MSHRs
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Dynamic Request Throttling

Â Throttling level assigned to each core determines both 
MSHR quota and request injection rate
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Throttling level MSHR quota Request Injection 

Rate

100% 128 Every cycle

50% 64 Every other cycle

25% 32 Once every 4 cycles

10% 12 Once every 10 

cycles

5% 6 Once every 20 

cycles

4% 5 Once every 25 

cycles

3% 3 Once every 30 

cycles

Total # of

MSHRs: 128



System Software Support

Â Different fairness objectives can be configured by       
system software

Ç Keep maximum slowdown in check

Â Estimated Max Slowdown < Target Max Slowdown

Ç Keep slowdown of particular applications in check to achieve a 
particular performance target

Â Estimated Slowdown(i) < Target Slowdown(i)

Â Support for thread priorities

Ç Weighted Slowdown(i) = 
Estimated Slowdown(i) x Weight(i)
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Source Throttling Results: Takeaways

Â Source throttling alone provides better performance than a 
combination of ñsmartò memory scheduling and fair caching

Ç Decisions made at the memory scheduler and the cache 
sometimes contradict each other

Â Neither source throttling alone nor ñsmart resourcesò alone 
provides the best performance

Â Combined approaches are even more powerful 

Ç Source throttling and resource-based interference control
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Source Throttling: Ups and Downs

Â Advantages

+ Core/request throttling is easy to implement: no need to 
change the memory scheduling algorithm

+ Can be a general way of handling shared resource 
contention

+ Can reduce overall load/contention in the memory system

Â Disadvantages

- Requires slowdown estimations Ą difficult to estimate

- Thresholds can become difficult to optimize 

Ą throughput loss due to too much throttling

Ą can be difficult to find an overall -good configuration
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More on Source Throttling (I)

Â Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High -
Performance Fairness Substrate for Multi -Core Memory 
Systems"
Proceedings of the 15th International Conference on 
Architectural Support for Programming Languages and Operating 
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010. 
Slides (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf


More on Source Throttling (II)

Â Kevin Chang, RachataAusavarungnirun, Chris Fallin, and Onur Mutlu,
"HAT: Heterogeneous Adaptive Throttling for On -Chip 
Networks"
Proceedings of the 24th International Symposium on Computer 
Architecture and High Performance Computing(SBAC-PAD), New 
York, NY, October 2012. Slides (pptx) (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://www.sbc.org.br/sbac/2012/
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pdf


More on Source Throttling (III)

Â George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu, 
and SrinivasanSeshan,
"On -Chip Networks from a Networking Perspective: 
Congestion and Scalability in Many -core Interconnects"
Proceedings of the 2012 ACM SIGCOMM Conference
(SIGCOMM ), Helsinki, Finland, August 2012. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://conferences.sigcomm.org/sigcomm/2012/
http://users.ece.cmu.edu/~omutlu/pub/nychis_sigcomm12_talk.pptx


Fundamental Interference Control Techniques

Â Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling

Idea: Pick threads that do not badly interfere with each 
other to be scheduled together on cores sharing the memory 
system
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Application-to-Core Mapping to Reduce Interference

Â Reetuparna Das, RachataAusavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application -to -Core Mapping Policies to Reduce Memory 
System Interference in Multi -Core Systems"
Proceedings of the 19th International Symposium on High -Performance 
Computer Architecture (HPCA), Shenzhen, China, February 2013. 
Slides (pptx)

Â Key ideas:

Ç Cluster threads to memory controllers (to reduce across chip interference)

Ç Isolate interference-sensitive (low-intensity) applications in a separate 
cluster (to reduce interference from high -intensity applications)

Ç Place applications that benefit from memory bandwidth closer to the 
controller
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http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx


Multi-Core to Many-Core

Multi -Core Many -Core
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Many-Core On-Chip Communication
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Problem: Spatial Task Scheduling

Applications Cores

How to map applications to cores?
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Challenges in Spatial Task Scheduling

Applications Cores

How to reduce destructive interference between applications? 

How to reduce communication distance ? 
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How to prioritize applications to improve throughput? 



Application-to-Core Mapping
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