
Computer Architecture

Lecture 13: Memory Interference 

and Quality of Service (II)

Prof. Onur Mutlu

ETH Z¿rich

Fall 2017

2 November 2017



Summary of Yesterday

Â Shared vs. private resources in multi-core systems

Â Memory interference and the QoS problem

Â Memory scheduling

2



Agenda for Today

Â Memory scheduling wrap-up

Â Other approaches to mitigate and control memory 
interference

Ç Source Throttling

Ç Data Mapping

Ç Thread Scheduling

Â Multi-Core Cache Management

3



Quick Summary Papers

Â "Parallelism -Aware Batch Scheduling: Enhancing both 
Performance and Fairness of Shared DRAM Systemsò

Â "The Blacklisting Memory Scheduler: Achieving High 
Performance and Fairness at Low Cost"

Â "Staged Memory Scheduling: Achieving High 
Performance and Scalability in Heterogeneous Systems ò

Â "Parallel Application Memory Schedulingò

Â "Reducing Memory Interference in Multicore Systems 
via Application -Aware Memory Channel Partitioning"

4

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
https://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf


Predictable Performance: 

Strong Memory Service Guarantees

5



Goal: Predictable Performance in Complex Systems

Â Heterogeneous agents: CPUs, GPUs, and HWAs 

Â Main memory interference between CPUs, GPUs, HWAs

6

CPU CPU CPU CPU

Shared Cache

GPU

HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance? 



Strong Memory Service Guarantees

Â Goal: Satisfy performance/SLA requirements in the 
presence of shared main memory, heterogeneous agents, 
and hybrid memory/storage

Â Approach: 

Ç Develop techniques/models to accurately estimate the 
performance loss of an application/agent in the presence of 
resource sharing

Ç Develop mechanisms (hardware and software) to enable the 
resource partitioning/prioritization needed to achieve the 
required performance levels for all applications

Ç All the while providing high system performance 

Â Subramanian et al., ñMISE: Providing Performance Predictability and Improving Fairness 
in Shared Main Memory Systems,ò HPCA 2013.

Â Subramanian et al., ñThe Application Slowdown Model,ò MICRO 2015.
7



Predictable Performance Readings (I)

Â Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High -
Performance Fairness Substrate for Multi -Core Memory 
Systems"
Proceedings of the 15th International Conference on 
Architectural Support for Programming Languages and Operating 
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010. 
Slides (pdf)

8

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf


Predictable Performance Readings (II)

Â Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, 
and Onur Mutlu,
"MISE: Providing Performance Predictability and 
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High -
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)

9

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx


Predictable Performance Readings (III)

Â Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and 
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling 
the Impact of Inter -Application Interference at Shared Caches 
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO ), Waikiki, Hawaii, USA, December 2015. 
[Slides (pptx) (pdf) ] [ Lightning Session Slides (pptx) (pdf) ] [ Poster 
(pptx) (pdf) ] 
[Source Code] 

10

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim


MISE: 

Providing Performance Predictability 

in Shared Main Memory Systems

Lavanya Subramanian , Vivek Seshadri, 

Yoongu Kim, Ben Jaiyen, Onur Mutlu

11



Unpredictable Application Slowdowns

12

0

1

2

3

4

5

6

leslie3d (core 0) gcc (core 1)

S
lo

w
d

o
w

n

0

1

2

3

4

5

6

leslie3d (core 0) mcf (core 1)

S
lo

w
d

o
w

n
An applicationôs performance depends on 

which application it is running with



Need for Predictable Performance

Â There is a need for predictable performance

Ç When multiple applications share resources 

Ç Especially if some applications require performance 
guarantees

Â Example 1: In mobile systems

Ç Interactive applications run with non -interactive applications

Ç Need to guarantee performance for interactive applications

Â Example 2: In server systems

Ç Different usersô jobs consolidated onto the same server

Ç Need to provide bounded slowdowns to critical jobs 

13

Our Goal: Predictable performance 
in the presence of memory interference



Outline

14

1. Estimate Slowdown

ÇKey Observations

Ç Implementation

ÇMISE Model: Putting it All Together

ÇEvaluating the Model

2. Control Slowdown



Outline

15

1. Estimate Slowdown

ÇKey Observations

Ç Implementation

ÇMISE Model: Putting it All Together

ÇEvaluating the Model

2. Control Slowdown

ÇProviding Soft Slowdown Guarantees

ÇMinimizing Maximum Slowdown



Slowdown: Definition

16

Shared

Alone

 ePerformanc

 ePerformanc
 Slowdown =



Key Observation 1

For a memory bound application,  
Performance ́ Memory request service rate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

Normalized Request Service Rate

omnetpp

mcf

astar

17

Shared

Alone

 Rate ServiceRequest 

 Rate ServiceRequest 
Slowdown=

Shared

Alone

 ePerformanc

 ePerformanc
 Slowdown =

Easy

Harder

Intel Core i7, 4 cores
Mem. Bandwidth: 8.5 GB/s



Key Observation 2

Request Service Rate Alone (RSRAlone) of an application can be 
estimated by giving the application highest priority in 

accessing memory 

Highest priority Ą Little interference

(almost as if the application were run alone)

18



Key Observation 2

19

Request Buffer State

Main 
Memory

1. Run alone
Time units Service order

Main 
Memory

12

Request Buffer State

Main 
Memory

2. Run with another application
Service order

Main 
Memory

123

Request Buffer State

Main 
Memory

3. Run with another application: highest priority
Service order

Main 
Memory

123

Time units

Time units

3



20

Memory Interference-induced Slowdown Estimation 
(MISE) model for memory bound applications

)(RSR  Rate ServiceRequest 

)(RSR  Rate ServiceRequest 
Slowdown

SharedShared

AloneAlone
=



Key Observation 3

Â Memory-bound application

21

No 
interference

Compute Phase

Memory Phase

With 
interference

Memory phase slowdown dominates overall slowdown

time

time

Req

Req

Req Req

Req Req



Key Observation 3

Â Non-memory-bound application

22

time

time

No 
interference

Compute Phase

Memory Phase

With 
interference

Only memory fraction ( ) slows down with interference

aa-1

a

a-1

Shared

Alone

RSR

RSR
a

Shared

Alone

RSR

RSR
  ) - (1 Slowdown aa+=

Memory Interference-induced Slowdown Estimation 
(MISE) model for non-memory bound applications



Outline

23

1. Estimate Slowdown

ÇKey Observations

Ç Implementation

ÇMISE Model: Putting it All Together

ÇEvaluating the Model

2. Control Slowdown

ÇProviding Soft Slowdown Guarantees

ÇMinimizing Maximum Slowdown



Interval Based Operation

24

time

Interval

a

Estimate 

slowdown

Interval

Estimate 

slowdown

Â Measure RSRShared, 

Â Estimate RSRAlone

aÂ Measure RSRShared, 

Â Estimate RSRAlone



Measuring RSRSharedand ǟ

Â Request Service Rate Shared (RSRShared)

Ç Per-core counter to track number of requests serviced

Ç At the end of each interval, measure

Â Memory Phase Fraction (  )

Ç Count number of stall cycles at the core

Ç Compute fraction of cycles stalled for memory

Length Interval

Serviced Requests ofNumber 
  RSRShared=

a

25



Estimating Request Service Rate Alone (RSRAlone)

Â Divide each interval into shorter epochs

Â At the beginning of each epoch

Ç Memory controller randomly picks an application as the 
highest priority application

Â At the end of an interval, for each application, estimate 

PriorityHigh Given n Applicatio Cycles ofNumber 

EpochsPriority High  During Requests ofNumber 
RSR

           

Alone=

26

Goal: Estimate RSRAlone

How: Periodically give each application 
highest priority in accessing memory 



Inaccuracy in Estimating RSRAlone

27

Request Buffer
State

Main 
Memory

Time units Service order

Main 
Memory

123

Â When an application has highest priority

Ç Still experiences some interference

Request Buffer 
State

Main 
Memory

Time units Service order

Main 
Memory

123

Time units Service order

Main 
Memory

123

Interference Cycles

High Priority

Main 
Memory

Time units Service order

Main 
Memory

123

Request Buffer 
State



Accounting for Interference in RSRAloneEstimation

Â Solution: Determine and remove interference cycles from 
RSRAlone calculation

Â A cycle is an interference cycle if

Ç a request from the highest priority application is 
waiting in the request buffer and

Ç another applicationôs request was issued previously

28

Cycles ceInterferen -Priority High Given n Applicatio Cycles ofNumber 

EpochsPriority High  During Requests ofNumber 
RSR

           

Alone=



Outline

29

1. Estimate Slowdown

ÇKey Observations

Ç Implementation

ÇMISE Model: Putting it All Together

ÇEvaluating the Model

2. Control Slowdown

ÇProviding Soft Slowdown Guarantees

ÇMinimizing Maximum Slowdown



MISE Model: Putting it All Together 

30

time

Interval

a

Estimate 

slowdown

Interval

Estimate 

slowdown

Â Measure RSRShared, 

Â Estimate RSRAlone

aÂ Measure RSRShared, 

Â Estimate RSRAlone



Outline

31

1. Estimate Slowdown

ÇKey Observations

Ç Implementation

ÇMISE Model: Putting it All Together

ÇEvaluating the Model

2. Control Slowdown

ÇProviding Soft Slowdown Guarantees

ÇMinimizing Maximum Slowdown



Previous Work on Slowdown Estimation

Â Previous work on slowdown estimation

Ç STFM (Stall Time Fair Memory) Scheduling [Mutlu+, MICRO ó07] 

Ç FST (Fairness via Source Throttling) [Ebrahimi+, ASPLOS ó10]

Ç Per -thread Cycle Accounting [Du Bois+, HiPEACó13]

Â Basic Idea:

32

Shared

Alone

 Time Stall

 Time Stall
 Slowdown =

Hard

Easy

Count number of cycles application receives interference



Two Major Advantages of MISE Over STFM

Â Advantage 1:

Ç STFM estimates alone performance while an 
application is receiving interference Ą Hard

Ç MISE estimates alone performance while giving an 
application the highest priority Ą Easier

Â Advantage 2:

Ç STFM does not take into account compute phase for 
non-memory-bound applications 

Ç MISE accounts for compute phase Ą Better accuracy

33



Methodology

Â Configuration of our simulated system

Ç 4 cores

Ç 1 channel, 8 banks/channel

Ç DDR3 1066 DRAM 

Ç 512 KB private cache/core

Â Workloads

Ç SPEC CPU2006 

Ç 300 multi programmed workloads

34



Quantitative Comparison

35

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

S
lo

w
d

o
w

n

Million Cycles

Actual

STFM

MISE

SPEC CPU 2006 application
leslie3d



Comparison to STFM

36

cactusADM

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

0

1

2

3

4

0 50 100
S

lo
w

d
o

w
n

GemsFDTD

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

soplex

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

wrf

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

calculix

0

1

2

3

4

0 50 100
S

lo
w

d
o

w
n

povray

Average error of MISE: 8.2%
Average error of STFM: 29.4%

(across 300 workloads)



Outline

37

1. Estimate Slowdown

ÇKey Observations

Ç Implementation

ÇMISE Model: Putting it All Together

ÇEvaluating the Model

2. Control Slowdown

ÇProviding Soft Slowdown Guarantees

ÇMinimizing Maximum Slowdown



Providing òSoftó Slowdown Guarantees

Â Goal

1. Ensure QoS-critical applications meet a prescribed 
slowdown bound

2. Maximize system performance for other applications

Â Basic Idea

Ç Allocate just enough bandwidth to QoS-critical 
application

Ç Assign remaining bandwidth to other applications

38



MISE-QoS: Mechanism to Provide Soft QoS

Â Assign an initial bandwidth allocation to QoS-critical application

Â Estimate slowdown of QoS-critical application using the MISE 
model

Â After every N intervals

Ç If slowdown > bound B +/ - ɽ, increase bandwidth allocation

Ç If slowdown < bound B +/ - ɽ, decrease bandwidth allocation

Â When slowdown bound not met for N intervals

Ç Notify the OS so it can migrate/de -schedule jobs

39



Methodology

Â Each application (25 applications in total) considered the 
QoS-critical application

Â Run with 12 sets of co-runners of different memory 
intensities

Â Total of 300 multiprogrammed workloads

Â Each workload run with 10 slowdown bound values

Â Baseline memory scheduling mechanism

Ç Always prioritize QoS-critical application 

[ Iyer+, SIGMETRICS 2007]

Ç Other applicationsô requests scheduled in FRFCFS order

[Zuravleff +, US Patent 1997, Rixner+, ISCA 2000]

40



A Look at One Workload

41

0

0.5

1

1.5

2

2.5

3

leslie3d hmmer lbm omnetpp

S
lo

w
d

o
w

n

AlwaysPrioritize

MISE-QoS-10/1

MISE-QoS-10/3

MISE-QoS-10/5

MISE-QoS-10/7

MISE-QoS-10/9

QoS-critical non -QoS-critical

MISE is effective in 
1. meeting the slowdown bound for the QoS-

critical application 
2. improving performance of non-QoS-critical 

applications

Slowdown Bound = 10 
Slowdown Bound = 3.33 

Slowdown Bound = 2 



Effectiveness of MISE in Enforcing QoS

42

Predicted 
Met

Predicted
Not Met

QoS Bound 
Met

78.8% 2.1%

QoS Bound 
Not Met

2.2% 16.9%

Across 3000 data points

MISE-QoSmeets the bound for 80.9% of workloads

AlwaysPrioritize meets the bound for 83% of workloads

MISE-QoS correctly predicts whether or not 
the bound is met for 95.7% of workloads



Performance of Non-QoS-Critical Applications

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 Avg

H
a

rm
o
n

ic
 S

p
e

e
d

u
p

Number of Memory Intensive Applications

AlwaysPrioritize

MISE-QoS-10/1

MISE-QoS-10/3

MISE-QoS-10/5

MISE-QoS-10/7

MISE-QoS-10/9

43

Higher performance when bound is looseWhen slowdown bound is 10/3 
MISE-QoSimproves system performance by 10%  



Outline

44

1. Estimate Slowdown

ÇKey Observations

Ç Implementation

ÇMISE Model: Putting it All Together

ÇEvaluating the Model

2. Control Slowdown

ÇProviding Soft Slowdown Guarantees

ÇMinimizing Maximum Slowdown



Other Results in the Paper

Â Sensitivity to model parameters

Ç Robust across different values of model parameters

Â Comparison of STFM and MISE models in enforcing soft 
slowdown guarantees

Ç MISE significantly more effective in enforcing guarantees

Â Minimizing maximum slowdown

Ç MISE improves fairness across several system configurations

45



Summary

Â Uncontrolled memory interference slows down  
applications unpredictably

Â Goal: Estimate and control slowdowns

Â Key contribution
Ç MISE: An accurate slowdown estimation model 

Ç Average error of MISE: 8.2%

Â Key Idea
Ç Request Service Rate is a proxy for performance

Ç Request Service Rate Alone estimated by giving an application highest 
priority in accessing memory

Â Leverage slowdown estimates to control slowdowns
Ç Providing soft slowdown guarantees

Ç Minimizing maximum slowdown

46



MISE: Pros and Cons

Â Upsides:

Ç Simple new insight to estimate slowdown

Ç Much more accurate slowdown estimations than prior 
techniques (STFM, FST)

Ç Enables a number of QoS mechanisms that can use slowdown 
estimates to satisfy performance requirements

Â Downsides:

Ç Slowdown estimation is not perfect - there are still errors

Ç Does not take into account caches and other shared resources 
in slowdown estimation

47



More on MISE

Â Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, 
and Onur Mutlu,
"MISE: Providing Performance Predictability and 
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High -
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)

48

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx


Handling Memory Interference 

In Multithreaded Applications

Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, 
Chang Joo Lee, Onur Mutlu, and Yale N. Patt, 
"Parallel Application Memory Scheduling"

Proceedings of the 44th International Symposium on Microarchitecture (MICRO ), 
Porto Alegre, Brazil, December 2011. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx


Multithreaded (Parallel) Applications

Â Threads in a multi-threaded application can be inter-
dependent

Ç As opposed to threads from different applications

Â Such threads can synchronize with each other

Ç Locks, barriers, pipeline stages, condition variables, 
semaphores, é

Â Some threads can be on the critical path of execution due 
to synchronization; some threads are not

Â Even within a thread, some ñcode segmentsò may be on 
the critical path of execution; some are not

50



Critical Sections

Â Enforce mutually exclusive access to shared data

Â Only one thread can be executing it at a time

Â Contended critical sections make threads wait Ą threads 

causing serialization can be on the critical path

51

Each thread:

loop {

Compute

lock(A)

Update shared data

unlock(A)

}

N

C



Barriers

Â Synchronization point

Â Threads have to wait until all threads reach the barrier

Â Last thread arriving at the barrier is on the critical path

52

Each thread:

loop1 {

Compute

}

barrier

loop2 {

Compute

}



Stages of Pipelined Programs

Â Loop iterations are statically divided into code segments called stages

Â Threads execute stages on different cores

Â Thread executing the slowest stage is on the critical path

53

loop {

Compute1

Compute2

Compute3

}

A

B

C

A B C



Handling Interference in Parallel Applications

Â Threads in a multithreaded application are inter -dependent

Â Some threads can be on the critical path of execution due 
to synchronization; some threads are not

Â How do we schedule requests of inter-dependent threads 
to maximize multithreaded application performance?

Â Idea: Estimate limiter threads likely to be on the critical path and 
prioritize their requests; shuffle priorities of non -limiter threads
to reduce memory interference among them [Ebrahimi+, MICROô11]

Â Hardware/software cooperative limiter thread estimation:

Â Thread executing the most contended critical section

Â Thread executing the slowest pipeline stage

Â Thread that is falling behind the most in reaching a barrier

54PAMS Micro 2011 Talk

//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/ebrahimi_micro2011_talk.pptx


Prioritizing Requests from Limiter Threads

55

Critical Section 1 BarrierNon-Critical Section

Waiting for Sync 

or Lock

Thread D

Thread C

Thread B

Thread A

Time

Barrier

Time

Barrier

Thread D

Thread C

Thread B

Thread A

Critical Section 2 Critical Path

Saved

Cycles Limiter Thread: DBCA

Most Contended

Critical Section: 1

Limiter Thread Identification



Parallel App Mem Scheduling: Pros and Cons

Â Upsides:

Ç Improves the performance of multi -threaded applications

Ç Provides a mechanism for estimating ñlimiter threadsò

Ç Opens a path for slowdown estimation for multi -threaded 
applications

Â Downsides:

Ç What if there are multiple multi -threaded applications running 
together?

Ç Limiter thread estimation can become complex

56



More on PAMS

Â Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo
Lee, Onur Mutlu, and Yale N. Patt, 
"Parallel Application Memory Scheduling"
Proceedings of the 44th International Symposium on 
Microarchitecture (MICRO ), Porto Alegre, Brazil, December 
2011. Slides (pptx)

57

http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx


Other Ways of 

Handling Memory Interference



Fundamental Interference Control Techniques

Â Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling

59



Designing QoS-Aware Memory Systems: Approaches

Â Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism

Ç QoS-aware memory controllers 

Ç QoS-aware interconnects

Ç QoS-aware caches

Â Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping

Ç Source throttling to control access to memory system 

Ç QoS-aware data mapping to memory controllers 

Ç QoS-aware thread scheduling to cores

60



Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda, 

"Reducing Memory Interference in Multicore Systems via 
Application -Aware Memory Channel Partitioningò

44th International Symposium on Microarchitecture (MICRO ), 
Porto Alegre, Brazil, December 2011. Slides (pptx)

MCP Micro 2011 Talk

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/subramanian_micro11_talk.pptx


Observation: Modern Systems Have Multiple Channels

A new degree of freedom

Mapping data across multiple channels

62

Channel 0Red 
App

Blue 
App

Memory 
Controller

Memory 
Controller

Channel 1

Memory

Core

Core

Memory

Muralidhara et al., ñMemory Channel Partitioning,ò MICROô11.



Data Mapping in Current Systems

63

Channel 0Red 
App

Blue 
App

Memory 
Controller

Memory 
Controller

Channel 1

Memory

Core

Core

Memory

Causesinterference between applicationsô requests

Page

Muralidhara et al., ñMemory Channel Partitioning,ò MICROô11.



Partitioning Channels Between Applications

64

Channel 0Red 
App

Blue 
App

Memory 
Controller

Memory 
Controller

Channel 1

Memory

Core

Core

Memory

Page

Eliminatesinterference between applicationsô requests

Muralidhara et al., ñMemory Channel Partitioning,ò MICROô11.



Overview: Memory Channel Partitioning (MCP) 

Â Goal

Ç Eliminate harmful interference between applications

Â Basic Idea

Ç Map the data of badly-interfering applications to different 
channels

Â Key Principles

Ç Separate low and high memory-intensity applications

Ç Separate low and high row-buffer locality applications

65Muralidhara et al., ñMemory Channel Partitioning,ò MICROô11.



Key Insight 1: Separate by Memory Intensity

High memory-intensity applications interfere with low 
memory-intensity applications in shared memory channels

66

Map data of low and high memory-intensity applications 
to different channels

12345
Channel 0

Bank 1

Channel 1

Bank 0

Conventional Page Mapping

Red 
App

Blue 
App

Time Units

Core

Core

Bank 1

Bank 0

Channel Partitioning

Red 
App

Blue 
App

Channel 0
Time Units

12345

Channel 1

Core

Core

Bank 1

Bank 0

Bank 1

Bank 0

Saved Cycles

Saved Cycles



Key Insight 2: Separate by Row-Buffer Locality

67

High row-buffer locality applications interfere with low 

row-buffer locality applications in shared memory channels

Conventional Page Mapping

Channel 0

Bank 1

Channel 1

Bank 0R1

R0R2R3R0

R4

Request Buffer 
State

Bank 1

Bank 0

Channel 1

Channel 0

R0R0

Service Order

123456

R2R3

R4

R1

Time 
units

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Channel 0

R0R0

Service Order

123456

R2R3

R4R1

Time 
units

Bank 1

Bank 0

Bank 1

Bank 0

R0

Channel 0

R1

R2R3

R0

R4

Request Buffer 
State

Channel Partitioning

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Saved 
CyclesMap data of low and high row -buffer locality applications 

to different channels



Memory Channel Partitioning (MCP) Mechanism

1. Profile applications

2. Classifyapplications into groups

3. Partition channels between application groups

4. Assign a preferred channel to each application

5. Allocate application pagesto preferred channel

68

Hardware

System 

Software

Muralidhara et al., ñMemory Channel Partitioning,ò MICROô11.



Interval Based Operation

69

time

Current Interval Next Interval

1. Profile applications

2. Classify applications into groups
3. Partition channels between groups
4. Assign preferred channel to applications

5. Enforce channel preferences



Observations

Â Applications with very low memory-intensity rarely 
access memory
Ą Dedicating channels to them results in precious 
memory bandwidth waste

Â They have the most potential to keep their cores busy
Ą We would really like to prioritize them

Â They interfere minimally with other applications
Ą Prioritizing them does not hurt others

70



Integrated Memory Partitioning and Scheduling (IMPS)

Â Always prioritize very low memory-intensity 
applications in the memory scheduler

Â Use memory channel partitioning to mitigate 
interference between other applications

71Muralidhara et al., ñMemory Channel Partitioning,ò MICROô11.



Hardware Cost

Â Memory Channel Partitioning (MCP)

Ç Only profiling counters in hardware

Ç No modifications to memory scheduling logic

Ç 1.5 KB storage cost for a 24-core, 4-channel system

Â Integrated Memory Partitioning and Scheduling (IMPS)

Ç A single bit per request

Ç Scheduler prioritizes based on this single bit

72Muralidhara et al., ñMemory Channel Partitioning,ò MICROô11.



Performance of Channel Partitioning

73

1%

5%

0.9

0.95

1

1.05

1.1

1.15

N
o

rm
a

liz
e

d
 

S
ys

te
m

 P
e

rf
o

rm
a

n
ce

FRFCFS

ATLAS

TCM

MCP

IMPS

7%

11%

Better system performance than the best previous scheduler 
at lower hardware cost 

Averaged over 240 workloads



Combining Multiple Interference Control Techniques

Â Combined interference control techniques can mitigate 
interference much more than a single technique alone can 
do

Â The key challenge is:

Ç Deciding what technique to apply when

Ç Partitioning work appropriately between software and 
hardware

74



MCP and IMPS: Pros and Cons

Â Upsides:

Ç Keeps the memory scheduling hardware simple

Ç Combines multiple interference reduction techniques

Ç Can provide performance isolation across applications mapped 
to different channels

Ç General idea of partitioning can be extended to smaller 
granularities in the memory hierarchy: banks, subarrays, etc. 

Â Downsides:

Ç Reacting is difficult if workload changes behavior after 
profiling

Ç Overhead of moving pages between channels restricts benefits 

75



More on Memory Channel Partitioning

Â Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, 
Mahmut Kandemir, and Thomas Moscibroda, 
"Reducing Memory Interference in Multicore Systems via 
Application -Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on 
Microarchitecture (MICRO ), Porto Alegre, Brazil, December 
2011. Slides (pptx)

76

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx


Fundamental Interference Control Techniques

Â Goal: to reduce/control inter -thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling

77



Fairness via Source Throttling

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High -Performance 

Fairness Substrate for Multi -Core Memory Systems"
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)

FST ASPLOS 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/ebrahimi_asplos10_talk.pdf


Many Shared Resources

Core 0 Core 1 Core 2 Core N

Shared Cache

Memory Controller

DRAM
Bank 0

DRAM
Bank 1

DRAM 
Bank 2

... DRAM 
Bank K

...

Shared Memory
Resources

Chip Boundary
On-chip

Off-chip

79



The Problem with òSmart Resourcesó

Â Independent interference control mechanisms in 
caches, interconnect, and memory can contradict 
each other

Â Explicitly coordinating mechanisms for different 
resources requires complex implementation

Â How do we enable fair sharing of the entire 
memory system by controlling interference in a 
coordinated manner?

80



Source Throttling: A Fairness Substrate

Â Key idea: Manage inter-thread interference at the cores 
(sources), not at the shared resources

Â Dynamically estimate unfairness in the memory system 

Â Feed back this information into a controller

Â Throttle coresô memory access ratesaccordingly

Ç Whom to throttle and by how much depends on performance 
target (throughput, fairness, per -thread QoS, etc)

Ç E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

Â Ebrahimi et al., ñFairness via Source Throttling,ò ASPLOSô10, TOCSô12.

81



Fairness via Source Throttling (FST)

Â Two components (interval-based)

Â Run-time unfairness evaluation (in hardware)

Ç Dynamically estimates the unfairness (application slowdowns) 
in the memory system

Ç Estimates which application is slowing down which other

Â Dynamic request throttling (hardware or software)

Ç Adjusts how aggressively each core makes requests to the 
shared resources

Ç Throttles down request rates of cores causing unfairness

Â Limit miss buffers, limit injection rate

82



83

Runtime 
Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness 
2- Find app. with the highest 
slowdown (App -slowest)
3- Find app. causing most 
interference for App -slowest 
(App - interfering)

if (Unfairness Estimate >Target) 
{
1-Throttle down App - interfering

(limit injection rate and parallelism)

2-Throttle up App -slowest
}

FST

Unfairness Estimate

App-slowest

App-interfering

Ử Ừ Ử ứừ

Slowdown 
Estimation

Time
Interval 1 Interval 2 Interval 3

Runtime 
Unfairness
Evaluation

Dynamic
Request Throttling

Fairness via Source Throttling (FST) [ASPLOSô10]



Dynamic Request Throttling

Â Goal: Adjust how aggressively each core makes requests to 
the shared memory system 

Â Mechanisms:

Ç Miss Status Holding Register (MSHR) quota

Â Controls the number of concurrent requests accessing shared 
resources from each application

Ç Request injection frequency

Â Controls how often memory requests are issued to the last level 
cache from the MSHRs

84



Dynamic Request Throttling

Â Throttling level assigned to each core determines both 
MSHR quota and request injection rate

85

Throttling level MSHR quota Request Injection 

Rate

100% 128 Every cycle

50% 64 Every other cycle

25% 32 Once every 4 cycles

10% 12 Once every 10 

cycles

5% 6 Once every 20 

cycles

4% 5 Once every 25 

cycles

3% 3 Once every 30 

cycles

Total # of

MSHRs: 128



System Software Support

Â Different fairness objectives can be configured by       
system software

Ç Keep maximum slowdown in check

Â Estimated Max Slowdown < Target Max Slowdown

Ç Keep slowdown of particular applications in check to achieve a 
particular performance target

Â Estimated Slowdown(i) < Target Slowdown(i)

Â Support for thread priorities

Ç Weighted Slowdown(i) = 
Estimated Slowdown(i) x Weight(i)

86



Source Throttling Results: Takeaways

Â Source throttling alone provides better performance than a 
combination of ñsmartò memory scheduling and fair caching

Ç Decisions made at the memory scheduler and the cache 
sometimes contradict each other

Â Neither source throttling alone nor ñsmart resourcesò alone 
provides the best performance

Â Combined approaches are even more powerful 

Ç Source throttling and resource-based interference control

87



Source Throttling: Ups and Downs

Â Advantages

+ Core/request throttling is easy to implement: no need to 
change the memory scheduling algorithm

+ Can be a general way of handling shared resource 
contention

+ Can reduce overall load/contention in the memory system

Â Disadvantages

- Requires slowdown estimations Ą difficult to estimate

- Thresholds can become difficult to optimize 

Ą throughput loss due to too much throttling

Ą can be difficult to find an overall -good configuration

88



More on Source Throttling (I)

Â Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High -
Performance Fairness Substrate for Multi -Core Memory 
Systems"
Proceedings of the 15th International Conference on 
Architectural Support for Programming Languages and Operating 
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010. 
Slides (pdf)

89

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf


More on Source Throttling (II)

Â Kevin Chang, RachataAusavarungnirun, Chris Fallin, and Onur Mutlu,
"HAT: Heterogeneous Adaptive Throttling for On -Chip 
Networks"
Proceedings of the 24th International Symposium on Computer 
Architecture and High Performance Computing(SBAC-PAD), New 
York, NY, October 2012. Slides (pptx) (pdf)

90

http://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://www.sbc.org.br/sbac/2012/
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pdf


More on Source Throttling (III)

Â George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu, 
and SrinivasanSeshan,
"On -Chip Networks from a Networking Perspective: 
Congestion and Scalability in Many -core Interconnects"
Proceedings of the 2012 ACM SIGCOMM Conference
(SIGCOMM ), Helsinki, Finland, August 2012. Slides (pptx)

91

http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://conferences.sigcomm.org/sigcomm/2012/
http://users.ece.cmu.edu/~omutlu/pub/nychis_sigcomm12_talk.pptx


Fundamental Interference Control Techniques

Â Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling

Idea: Pick threads that do not badly interfere with each 
other to be scheduled together on cores sharing the memory 
system

92



Application-to-Core Mapping to Reduce Interference

Â Reetuparna Das, RachataAusavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application -to -Core Mapping Policies to Reduce Memory 
System Interference in Multi -Core Systems"
Proceedings of the 19th International Symposium on High -Performance 
Computer Architecture (HPCA), Shenzhen, China, February 2013. 
Slides (pptx)

Â Key ideas:

Ç Cluster threads to memory controllers (to reduce across chip interference)

Ç Isolate interference-sensitive (low-intensity) applications in a separate 
cluster (to reduce interference from high -intensity applications)

Ç Place applications that benefit from memory bandwidth closer to the 
controller

93

http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx


Multi-Core to Many-Core

Multi -Core Many -Core

94



Many-Core On-Chip Communication

95

Memory 
Controller

Shared
Cache Bank$

$

Light

Heavy

Applications



Problem: Spatial Task Scheduling

Applications Cores

How to map applications to cores?

96



Challenges in Spatial Task Scheduling

Applications Cores

How to reduce destructive interference between applications? 

How to reduce communication distance ? 

97

How to prioritize applications to improve throughput? 



Application-to-Core Mapping

98

Clustering

Balancing

Isolation

Radial 
Mapping

Improve Locality
Reduce Interference

Improve Bandwidth 
Utilization

Reduce Interference

Improve Bandwidth
Utilization


