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Summary of Yesterday

 Shared vs. private resources in multi-core systems

 Memory interference and the QoS problem

 Memory scheduling
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Agenda for Today

 Memory scheduling wrap-up

 Other approaches to mitigate and control memory 
interference

 Source Throttling

 Data Mapping

 Thread Scheduling

 Multi-Core Cache Management
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Quick Summary Papers

 "Parallelism-Aware Batch Scheduling: Enhancing both 
Performance and Fairness of Shared DRAM Systems”

 "The Blacklisting Memory Scheduler: Achieving High 
Performance and Fairness at Low Cost"

 "Staged Memory Scheduling: Achieving High 
Performance and Scalability in Heterogeneous Systems”

 "Parallel Application Memory Scheduling”

 "Reducing Memory Interference in Multicore Systems 
via Application-Aware Memory Channel Partitioning"
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http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
https://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf


Predictable Performance: 

Strong Memory Service Guarantees
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Goal: Predictable Performance in Complex Systems

 Heterogeneous agents: CPUs, GPUs, and HWAs 

 Main memory interference between CPUs, GPUs, HWAs

6

CPU CPU CPU CPU

Shared Cache

GPU

HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance? 



Strong Memory Service Guarantees

 Goal: Satisfy performance/SLA requirements in the 
presence of shared main memory, heterogeneous agents, 
and hybrid memory/storage

 Approach: 

 Develop techniques/models to accurately estimate the 
performance loss of an application/agent in the presence of 
resource sharing

 Develop mechanisms (hardware and software) to enable the 
resource partitioning/prioritization needed to achieve the 
required performance levels for all applications

 All the while providing high system performance 

 Subramanian et al., “MISE: Providing Performance Predictability and Improving Fairness 
in Shared Main Memory Systems,” HPCA 2013.

 Subramanian et al., “The Application Slowdown Model,” MICRO 2015.
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Predictable Performance Readings (I)

 Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory 
Systems"
Proceedings of the 15th International Conference on 
Architectural Support for Programming Languages and Operating 
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010. 
Slides (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf


Predictable Performance Readings (II)

 Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, 
and Onur Mutlu,
"MISE: Providing Performance Predictability and 
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx


Predictable Performance Readings (III)

 Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and 
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling 
the Impact of Inter-Application Interference at Shared Caches 
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 
(pptx) (pdf)] 
[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim


MISE: 

Providing Performance Predictability 

in Shared Main Memory Systems

Lavanya Subramanian, Vivek Seshadri, 

Yoongu Kim, Ben Jaiyen, Onur Mutlu
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Unpredictable Application Slowdowns
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Need for Predictable Performance

 There is a need for predictable performance

 When multiple applications share resources 

 Especially if some applications require performance 
guarantees

 Example 1: In mobile systems

 Interactive applications run with non-interactive applications

 Need to guarantee performance for interactive applications

 Example 2: In server systems

 Different users’ jobs consolidated onto the same server

 Need to provide bounded slowdowns to critical jobs 
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Our Goal: Predictable performance 
in the presence of memory interference



Outline
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1. Estimate Slowdown

 Key Observations

 Implementation

 MISE Model: Putting it All Together

 Evaluating the Model

2. Control Slowdown



Outline
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1. Estimate Slowdown

 Key Observations

 Implementation

 MISE Model: Putting it All Together

 Evaluating the Model

2. Control Slowdown

 Providing Soft Slowdown Guarantees

 Minimizing Maximum Slowdown



Slowdown: Definition
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Key Observation 1
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Key Observation 2

Request Service Rate Alone (RSRAlone) of an application can be 
estimated by giving the application highest priority in 

accessing memory 

Highest priority  Little interference

(almost as if the application were run alone)
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Key Observation 2
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Memory Interference-induced Slowdown Estimation 
(MISE) model for memory bound applications
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Key Observation 3

 Memory-bound application
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Key Observation 3

 Non-memory-bound application
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Outline
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1. Estimate Slowdown

 Key Observations

 Implementation

 MISE Model: Putting it All Together

 Evaluating the Model

2. Control Slowdown

 Providing Soft Slowdown Guarantees

 Minimizing Maximum Slowdown



Interval Based Operation
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Measuring RSRShared and α

 Request Service Rate Shared (RSRShared)

 Per-core counter to track number of requests serviced

 At the end of each interval, measure

 Memory Phase Fraction (  )

 Count number of stall cycles at the core

 Compute fraction of cycles stalled for memory

Length Interval

Serviced Requests ofNumber 
  RSRShared

a
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Estimating Request Service Rate Alone (RSRAlone)

 Divide each interval into shorter epochs

 At the beginning of each epoch

 Memory controller randomly picks an application as the 
highest priority application

 At the end of an interval, for each application, estimate 

PriorityHigh Given n Applicatio Cycles ofNumber 

EpochsPriority High  During Requests ofNumber 
RSR

           

Alone 
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Goal: Estimate RSRAlone

How: Periodically give each application 
highest priority in accessing memory 



Inaccuracy in Estimating RSRAlone
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Accounting for Interference in RSRAlone Estimation

 Solution: Determine and remove interference cycles from 
RSRAlone calculation

 A cycle is an interference cycle if

 a request from the highest priority application is 
waiting in the request buffer and

 another application’s request was issued previously

28
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Outline
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1. Estimate Slowdown

 Key Observations

 Implementation

 MISE Model: Putting it All Together

 Evaluating the Model

2. Control Slowdown

 Providing Soft Slowdown Guarantees

 Minimizing Maximum Slowdown



MISE Model: Putting it All Together 
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Outline
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1. Estimate Slowdown

 Key Observations

 Implementation

 MISE Model: Putting it All Together

 Evaluating the Model

2. Control Slowdown

 Providing Soft Slowdown Guarantees

 Minimizing Maximum Slowdown



Previous Work on Slowdown Estimation

 Previous work on slowdown estimation

 STFM (Stall Time Fair Memory) Scheduling [Mutlu+, MICRO ‘07] 

 FST (Fairness via Source Throttling) [Ebrahimi+, ASPLOS ‘10]

 Per-thread Cycle Accounting [Du Bois+, HiPEAC ‘13]

 Basic Idea:

32
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Two Major Advantages of MISE Over STFM

 Advantage 1:

 STFM estimates alone performance while an 
application is receiving interference  Hard

 MISE estimates alone performance while giving an 
application the highest priority  Easier

 Advantage 2:

 STFM does not take into account compute phase for 
non-memory-bound applications 

 MISE accounts for compute phase  Better accuracy
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Methodology

 Configuration of our simulated system

 4 cores

 1 channel, 8 banks/channel

 DDR3 1066 DRAM 

 512 KB private cache/core

 Workloads

 SPEC CPU2006 

 300 multi programmed workloads

34



Quantitative Comparison
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Comparison to STFM
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Outline
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1. Estimate Slowdown

 Key Observations

 Implementation

 MISE Model: Putting it All Together

 Evaluating the Model

2. Control Slowdown

 Providing Soft Slowdown Guarantees

 Minimizing Maximum Slowdown



Providing “Soft” Slowdown Guarantees

 Goal

1. Ensure QoS-critical applications meet a prescribed 
slowdown bound

2. Maximize system performance for other applications

 Basic Idea

 Allocate just enough bandwidth to QoS-critical 
application

 Assign remaining bandwidth to other applications
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MISE-QoS: Mechanism to Provide Soft QoS

 Assign an initial bandwidth allocation to QoS-critical application

 Estimate slowdown of QoS-critical application using the MISE 
model

 After every N intervals

 If slowdown > bound B +/- ε, increase bandwidth allocation

 If slowdown < bound B +/- ε, decrease bandwidth allocation

 When slowdown bound not met for N intervals

 Notify the OS so it can migrate/de-schedule jobs
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Methodology

 Each application (25 applications in total) considered the 
QoS-critical application

 Run with 12 sets of co-runners of different memory 
intensities

 Total of 300 multiprogrammed workloads

 Each workload run with 10 slowdown bound values

 Baseline memory scheduling mechanism

 Always prioritize QoS-critical application 

[Iyer+, SIGMETRICS 2007]

 Other applications’ requests scheduled in FRFCFS order

[Zuravleff +, US Patent 1997, Rixner+, ISCA 2000]
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A Look at One Workload
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Effectiveness of MISE in Enforcing QoS

42

Predicted 
Met

Predicted
Not Met

QoS Bound 
Met

78.8% 2.1%

QoS Bound 
Not Met

2.2% 16.9%

Across 3000 data points

MISE-QoS meets the bound for 80.9% of workloads

AlwaysPrioritize meets the bound for 83% of workloads

MISE-QoS correctly predicts whether or not 
the bound is met for 95.7% of workloads



Performance of Non-QoS-Critical Applications
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Outline
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1. Estimate Slowdown

 Key Observations

 Implementation

 MISE Model: Putting it All Together

 Evaluating the Model

2. Control Slowdown

 Providing Soft Slowdown Guarantees

 Minimizing Maximum Slowdown



Other Results in the Paper

 Sensitivity to model parameters

 Robust across different values of model parameters

 Comparison of STFM and MISE models in enforcing soft 
slowdown guarantees

 MISE significantly more effective in enforcing guarantees

 Minimizing maximum slowdown

 MISE improves fairness across several system configurations
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Summary

 Uncontrolled memory interference slows down  
applications unpredictably

 Goal: Estimate and control slowdowns

 Key contribution
 MISE: An accurate slowdown estimation model 

 Average error of MISE: 8.2%

 Key Idea
 Request Service Rate is a proxy for performance

 Request Service Rate Alone estimated by giving an application highest 
priority in accessing memory

 Leverage slowdown estimates to control slowdowns
 Providing soft slowdown guarantees

 Minimizing maximum slowdown
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MISE: Pros and Cons

 Upsides:

 Simple new insight to estimate slowdown

 Much more accurate slowdown estimations than prior 
techniques (STFM, FST)

 Enables a number of QoS mechanisms that can use slowdown 
estimates to satisfy performance requirements

 Downsides:

 Slowdown estimation is not perfect - there are still errors

 Does not take into account caches and other shared resources 
in slowdown estimation
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More on MISE

 Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, 
and Onur Mutlu,
"MISE: Providing Performance Predictability and 
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx


Handling Memory Interference 

In Multithreaded Applications

Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, 
Chang Joo Lee, Onur Mutlu, and Yale N. Patt, 
"Parallel Application Memory Scheduling"

Proceedings of the 44th International Symposium on Microarchitecture (MICRO), 
Porto Alegre, Brazil, December 2011. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx


Multithreaded (Parallel) Applications

 Threads in a multi-threaded application can be inter-
dependent

 As opposed to threads from different applications

 Such threads can synchronize with each other

 Locks, barriers, pipeline stages, condition variables, 
semaphores, …

 Some threads can be on the critical path of execution due 
to synchronization; some threads are not

 Even within a thread, some “code segments” may be on 
the critical path of execution; some are not

50



Critical Sections

 Enforce mutually exclusive access to shared data

 Only one thread can be executing it at a time

 Contended critical sections make threads wait  threads 

causing serialization can be on the critical path

51

Each thread:

loop {

Compute

lock(A)

Update shared data

unlock(A)

}

N

C



Barriers

 Synchronization point

 Threads have to wait until all threads reach the barrier

 Last thread arriving at the barrier is on the critical path

52

Each thread:

loop1 {

Compute

}

barrier

loop2 {

Compute

}



Stages of Pipelined Programs

 Loop iterations are statically divided into code segments called stages

 Threads execute stages on different cores

 Thread executing the slowest stage is on the critical path
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Handling Interference in Parallel Applications

 Threads in a multithreaded application are inter-dependent

 Some threads can be on the critical path of execution due 
to synchronization; some threads are not

 How do we schedule requests of inter-dependent threads 
to maximize multithreaded application performance?

 Idea: Estimate limiter threads likely to be on the critical path and 
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

 Hardware/software cooperative limiter thread estimation:

 Thread executing the most contended critical section

 Thread executing the slowest pipeline stage

 Thread that is falling behind the most in reaching a barrier

54PAMS Micro 2011 Talk

//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/ebrahimi_micro2011_talk.pptx


Prioritizing Requests from Limiter Threads
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Parallel App Mem Scheduling: Pros and Cons

 Upsides:

 Improves the performance of multi-threaded applications

 Provides a mechanism for estimating “limiter threads”

 Opens a path for slowdown estimation for multi-threaded 
applications

 Downsides:

 What if there are multiple multi-threaded applications running 
together?

 Limiter thread estimation can become complex
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More on PAMS

 Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo
Lee, Onur Mutlu, and Yale N. Patt, 
"Parallel Application Memory Scheduling"
Proceedings of the 44th International Symposium on 
Microarchitecture (MICRO), Porto Alegre, Brazil, December 
2011. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx


Other Ways of 

Handling Memory Interference



Fundamental Interference Control Techniques

 Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling

59



Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism

 QoS-aware memory controllers 

 QoS-aware interconnects

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping

 Source throttling to control access to memory system 

 QoS-aware data mapping to memory controllers 

 QoS-aware thread scheduling to cores
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Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda, 

"Reducing Memory Interference in Multicore Systems via 
Application-Aware Memory Channel Partitioning”

44th International Symposium on Microarchitecture (MICRO), 
Porto Alegre, Brazil, December 2011. Slides (pptx)

MCP Micro 2011 Talk

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/subramanian_micro11_talk.pptx


Observation: Modern Systems Have Multiple Channels

A new degree of freedom

Mapping data across multiple channels
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Data Mapping in Current Systems
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Partitioning Channels Between Applications
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Overview: Memory Channel Partitioning (MCP) 

 Goal

 Eliminate harmful interference between applications

 Basic Idea

 Map the data of badly-interfering applications to different 
channels

 Key Principles

 Separate low and high memory-intensity applications

 Separate low and high row-buffer locality applications

65Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.



Key Insight 1: Separate by Memory Intensity

High memory-intensity applications interfere with low 
memory-intensity applications in shared memory channels
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Key Insight 2: Separate by Row-Buffer Locality
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High row-buffer locality applications interfere with low 
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Memory Channel Partitioning (MCP) Mechanism

1. Profile applications

2. Classify applications into groups

3. Partition channels between application groups

4. Assign a preferred channel to each application

5. Allocate application pages to preferred channel

68
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Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.



Interval Based Operation
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time

Current Interval Next Interval

1. Profile applications

2. Classify applications into groups
3. Partition channels between groups
4. Assign preferred channel to applications

5. Enforce channel preferences



Observations

 Applications with very low memory-intensity rarely 
access memory
 Dedicating channels to them results in precious 
memory bandwidth waste

 They have the most potential to keep their cores busy
 We would really like to prioritize them

 They interfere minimally with other applications
 Prioritizing them does not hurt others
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Integrated Memory Partitioning and Scheduling (IMPS)

 Always prioritize very low memory-intensity 
applications in the memory scheduler

 Use memory channel partitioning to mitigate 
interference between other applications

71Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.



Hardware Cost

 Memory Channel Partitioning (MCP)

 Only profiling counters in hardware

 No modifications to memory scheduling logic

 1.5 KB storage cost for a 24-core, 4-channel system

 Integrated Memory Partitioning and Scheduling (IMPS)

 A single bit per request

 Scheduler prioritizes based on this single bit

72Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.



Performance of Channel Partitioning
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Combining Multiple Interference Control Techniques

 Combined interference control techniques can mitigate 
interference much more than a single technique alone can 
do

 The key challenge is:

 Deciding what technique to apply when

 Partitioning work appropriately between software and 
hardware
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MCP and IMPS: Pros and Cons

 Upsides:

 Keeps the memory scheduling hardware simple

 Combines multiple interference reduction techniques

 Can provide performance isolation across applications mapped 
to different channels

 General idea of partitioning can be extended to smaller 
granularities in the memory hierarchy: banks, subarrays, etc. 

 Downsides:

 Reacting is difficult if workload changes behavior after 
profiling

 Overhead of moving pages between channels restricts benefits 
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More on Memory Channel Partitioning

 Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, 
Mahmut Kandemir, and Thomas Moscibroda, 
"Reducing Memory Interference in Multicore Systems via 
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on 
Microarchitecture (MICRO), Porto Alegre, Brazil, December 
2011. Slides (pptx)

76

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx


Fundamental Interference Control Techniques

 Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling
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Fairness via Source Throttling

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-Performance 

Fairness Substrate for Multi-Core Memory Systems"
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)

FST ASPLOS 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/ebrahimi_asplos10_talk.pdf


Many Shared Resources
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The Problem with “Smart Resources”

 Independent interference control mechanisms in 
caches, interconnect, and memory can contradict 
each other

 Explicitly coordinating mechanisms for different 
resources requires complex implementation

 How do we enable fair sharing of the entire 
memory system by controlling interference in a 
coordinated manner?
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Source Throttling: A Fairness Substrate

 Key idea: Manage inter-thread interference at the cores 
(sources), not at the shared resources

 Dynamically estimate unfairness in the memory system 

 Feed back this information into a controller

 Throttle cores’ memory access rates accordingly

 Whom to throttle and by how much depends on performance 
target (throughput, fairness, per-thread QoS, etc)

 E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

 Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12.
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Fairness via Source Throttling (FST)

 Two components (interval-based)

 Run-time unfairness evaluation (in hardware)

 Dynamically estimates the unfairness (application slowdowns) 
in the memory system

 Estimates which application is slowing down which other

 Dynamic request throttling (hardware or software)

 Adjusts how aggressively each core makes requests to the 
shared resources

 Throttles down request rates of cores causing unfairness

 Limit miss buffers, limit injection rate
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Dynamic Request Throttling

 Goal: Adjust how aggressively each core makes requests to 
the shared memory system 

 Mechanisms:

 Miss Status Holding Register (MSHR) quota

 Controls the number of concurrent requests accessing shared 
resources from each application

 Request injection frequency

 Controls how often memory requests are issued to the last level 
cache from the MSHRs
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Dynamic Request Throttling

 Throttling level assigned to each core determines both 
MSHR quota and request injection rate
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Throttling level MSHR quota Request Injection 

Rate

100% 128 Every cycle

50% 64 Every other cycle

25% 32 Once every 4 cycles

10% 12 Once every 10 

cycles

5% 6 Once every 20 

cycles

4% 5 Once every 25 

cycles

3% 3 Once every 30 

cycles

Total # of

MSHRs: 128



System Software Support

 Different fairness objectives can be configured by       
system software

 Keep maximum slowdown in check

 Estimated Max Slowdown < Target Max Slowdown

 Keep slowdown of particular applications in check to achieve a 
particular performance target

 Estimated Slowdown(i) < Target Slowdown(i)

 Support for thread priorities

 Weighted Slowdown(i) = 
Estimated Slowdown(i) x Weight(i)
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Source Throttling Results: Takeaways

 Source throttling alone provides better performance than a 
combination of “smart” memory scheduling and fair caching

 Decisions made at the memory scheduler and the cache 
sometimes contradict each other

 Neither source throttling alone nor “smart resources” alone 
provides the best performance

 Combined approaches are even more powerful 

 Source throttling and resource-based interference control
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Source Throttling: Ups and Downs

 Advantages

+ Core/request throttling is easy to implement: no need to 
change the memory scheduling algorithm

+ Can be a general way of handling shared resource 
contention

+ Can reduce overall load/contention in the memory system

 Disadvantages

- Requires slowdown estimations  difficult to estimate

- Thresholds can become difficult to optimize 

 throughput loss due to too much throttling

 can be difficult to find an overall-good configuration
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More on Source Throttling (I)

 Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory 
Systems"
Proceedings of the 15th International Conference on 
Architectural Support for Programming Languages and Operating 
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010. 
Slides (pdf)
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More on Source Throttling (II)

 Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,
"HAT: Heterogeneous Adaptive Throttling for On-Chip 
Networks"
Proceedings of the 24th International Symposium on Computer 
Architecture and High Performance Computing (SBAC-PAD), New 
York, NY, October 2012. Slides (pptx) (pdf)
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More on Source Throttling (III)

 George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu, 
and Srinivasan Seshan,
"On-Chip Networks from a Networking Perspective: 
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM Conference
(SIGCOMM), Helsinki, Finland, August 2012. Slides (pptx)
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Fundamental Interference Control Techniques

 Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling

Idea: Pick threads that do not badly interfere with each 
other to be scheduled together on cores sharing the memory 
system
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Application-to-Core Mapping to Reduce Interference

 Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory 
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance 
Computer Architecture (HPCA), Shenzhen, China, February 2013. 
Slides (pptx)

 Key ideas:

 Cluster threads to memory controllers (to reduce across chip interference)

 Isolate interference-sensitive (low-intensity) applications in a separate 
cluster (to reduce interference from high-intensity applications)

 Place applications that benefit from memory bandwidth closer to the 
controller
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Multi-Core to Many-Core

Multi-Core Many-Core
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Many-Core On-Chip Communication
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Problem: Spatial Task Scheduling

Applications Cores

How to map applications to cores?
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Challenges in Spatial Task Scheduling

Applications Cores

How to reduce destructive interference between applications? 

How to reduce communication distance? 
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How to prioritize applications to improve throughput? 



Application-to-Core Mapping
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Step 1 — Clustering
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Step 1 — Clustering

Improved Locality
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Reduced Interference
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System Performance
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System performance improves by 17%



Network Power
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More on App-to-Core Mapping

 Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory 
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance 
Computer Architecture (HPCA), Shenzhen, China, February 2013. 
Slides (pptx)
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Interference-Aware Thread Scheduling

 An example from scheduling in compute clusters (data 
centers)

 Data centers can be running virtual machines
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Virtualized Cluster
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Conventional DRM Policies
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Microarchitecture-level Interference
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Microarchitecture Unawareness
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Impact on Performance
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Impact on Performance
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A-DRM: Architecture-aware DRM

• Goal: Take into account microarchitecture-level 
shared resource interference
– Shared cache capacity

– Shared memory bandwidth

• Key Idea: 

– Monitor and detect microarchitecture-level shared 
resource interference

– Balance microarchitecture-level resource usage across 
cluster to minimize memory interference while 
maximizing system performance
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A-DRM: Architecture-aware DRM
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More on Architecture-Aware DRM
 Hui Wang, Canturk Isci, Lavanya Subramanian, Jongmoo Choi, 

Depei Qian, and Onur Mutlu,
"A-DRM: Architecture-aware Distributed Resource 
Management of Virtualized Clusters"
Proceedings of the 11th ACM SIGPLAN/SIGOPS International 
Conference on Virtual Execution Environments (VEE), Istanbul, 
Turkey, March 2015. 
[Slides (pptx) (pdf)] 
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Interference-Aware Thread Scheduling

 Advantages

+ Can eliminate/minimize interference by scheduling “symbiotic 
applications” together (as opposed to just managing the 
interference)

+ Less intrusive to hardware (less need to modify the hardware 
resources)

 Disadvantages and Limitations

-- High overhead to migrate threads and data between cores and 
machines

-- Does not work (well) if all threads are similar and they 
interfere 
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Summary: Fundamental Interference Control Techniques

 Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling

Best is to combine all. How would you do that?
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Summary: Memory QoS Approaches and Techniques

 Approaches: Smart vs. dumb resources

 Smart resources: QoS-aware memory scheduling

 Dumb resources: Source throttling; channel partitioning

 Both approaches are effective in reducing interference

 No single best approach for all workloads

 Techniques: Request/thread scheduling, source throttling, 
memory partitioning

 All approaches are effective in reducing interference

 Can be applied at different levels: hardware vs. software

 No single best technique for all workloads

 Combined approaches and techniques are the most powerful

 Integrated Memory Channel Partitioning and Scheduling [MICRO’11]

116MCP Micro 2011 Talk

//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/subramanian_micro11_talk.pptx


Summary: Memory Interference and QoS

 QoS-unaware memory 

uncontrollable and unpredictable system

 Providing QoS awareness improves performance, 
predictability, fairness, and utilization of the memory system

 Discussed many new techniques to:

 Minimize memory interference

 Provide predictable performance

 Many new research ideas needed for integrated techniques 
and closing the interaction with software
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What Did We Not Cover?

 Prefetch-aware shared resource management

 DRAM-controller-cache co-design

 Cache interference management

 Interconnect interference management

 Write-read scheduling

 …
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Some Other Ideas … 
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Decoupled DMA w/ Dual-Port DRAM

[PACT 2015]
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Isolating CPU and IO Traffic by 
Leveraging a Dual-Data-Port DRAM

Donghyuk Lee

Lavanya Subramanian, Rachata Ausavarungnirun, 
Jongmoo Choi, Onur Mutlu

Decoupled Direct Memory Access
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Main memory connects processor and IO devices   
as an intermediate layer
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Executive Summary
• Problem

– CPU and IO accesses contend for the shared memory channel

• Our Approach: Decoupled Direct Memory Access (DDMA)
– Design new DRAM architecture with two independent data ports
Dual-Data-Port DRAM

– Connect one port to CPU and the other port to IO devices
Decouple CPU and IO accesses

• Application
– Communication between compute units (e.g., CPU – GPU)
– In-memory communication (e.g., bulk in-memory copy/init.)
– Memory-storage communication (e.g., page fault, IO prefetch)

• Result
– Significant performance improvement (20% in 2 ch. & 2 rank system) 
– CPU pin count reduction (4.5%)
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Outline

1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach

1. Problem
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Integrating IO interface on the processor chip     
leads to high area cost

Processor Pin Count
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others

memory
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Problem 2: High Cost for IO Interfaces
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Shared Memory Channel

• Memory channel contention for IO access 
and CPU access

• High area cost for integrating IO interfaces 
on processor chip
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4. Applications for DDMA 
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Our Approach
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Our Approach
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Problem: Single Data Port
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DDP-DRAM Memory System
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Three Data Transfer Modes

• CPU Access: Access through CPU channel
– DRAM read/write with CPU port selection

• IO Access: Access through IO channel
– DRAM read/write with IO port selection

• Port Bypass: Direct transfer between channels
– DRAM access with port bypass selection
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2. IO Access Mode
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3. Port Bypass Mode
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Three Applications for DDMA

• Communication b/w Compute Units
– CPU-GPU communication

• In-Memory Communication and Initialization
– Bulk page copy/initialization

• Communication b/w Memory and Storage
– Serving page fault/file read & write
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Outline

1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach
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Evaluation Methods
• System

– Processor: 4 – 16 cores

– LLC: 16-way associative, 512KB private cache-slice/core

– Memory: 1 – 4 ranks and 1 – 4 channels

• Workloads
– Memory intensive:                                                           

SPEC CPU2006, TPC, stream (31 benchmarks)

– CPU-GPU communication intensive:                                                                                
polybench (8 benchmarks)

– In-memory communication intensive:                           
apache, bootup, compiler, filecopy, mysql, fork, 
shell, memcached (8 in total)
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Performance on Various Systems
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More on Decoupled DMA

 Donghyuk Lee, Lavanya Subramanian, Rachata
Ausavarungnirun, Jongmoo Choi, and Onur Mutlu,
"Decoupled Direct Memory Access: Isolating CPU and 
IO Traffic by Leveraging a Dual-Data-Port DRAM"
Proceedings of the 24th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), San 
Francisco, CA, USA, October 2015. 
[Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/decoupled-dma_pact15.pdf
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https://users.ece.cmu.edu/~omutlu/pub/decoupled-dma_donghyuk_pact15-talk.pptx
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We did not cover the following slides in lecture. 

These are for your preparation for the next lecture. 



Multi-Core Caching Issues
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Multi-core Issues in Caching

 How does the cache hierarchy change in a multi-core system?

 Private cache: Cache belongs to one core (a shared block can be in 
multiple caches)

 Shared cache: Cache is shared by multiple cores
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Shared Caches Between Cores

 Advantages:
 High effective capacity

 Dynamic partitioning of available cache space

 No fragmentation due to static partitioning

 Easier to maintain coherence (a cache block is in a single location)

 Shared data and locks do not ping pong between caches

 Disadvantages
 Slower access

 Cores incur conflict misses due to other cores’ accesses

 Misses due to inter-core interference

 Some cores can destroy the hit rate of other cores

 Guaranteeing a minimum level of service (or fairness) to each core is harder 
(how much space, how much bandwidth?)
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Shared Caches: How to Share?

 Free-for-all sharing

 Placement/replacement policies are the same as a single core 
system (usually LRU or pseudo-LRU)

 Not thread/application aware

 An incoming block evicts a block regardless of which threads 
the blocks belong to

 Problems

 Inefficient utilization of cache: LRU is not the best policy

 A cache-unfriendly application can destroy the performance of 
a cache friendly application

 Not all applications benefit equally from the same amount of 
cache: free-for-all might prioritize those that do not benefit

 Reduced performance, reduced fairness
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Handling Shared Caches

 Controlled cache sharing

 Approach 1: Design shared caches but control the amount of 
cache allocated to different cores

 Approach 2: Design “private” caches but spill/receive data 
from one cache to another  

 More efficient cache utilization

 Minimize the wasted cache space 

 by keeping out useless blocks

 by keeping in cache blocks that have maximum benefit

 by minimizing redundant data
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Controlled Cache Sharing: Examples

 Utility based cache partitioning
 Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-

Performance, Runtime Mechanism to Partition Shared Caches,” MICRO 
2006.

 Suh et al., “A New Memory Monitoring Scheme for Memory-Aware 
Scheduling and Partitioning,” HPCA 2002.

 Fair cache partitioning
 Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor 

Architecture,” PACT 2004.

 Shared/private mixed cache mechanisms
 Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in 

CMPs,” HPCA 2009.

 Hardavellas et al., “Reactive NUCA: Near-Optimal Block Placement and 
Replication in Distributed Caches,” ISCA 2009.
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Efficient Cache Utilization: Examples

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 
2005.

 Qureshi et al., “Adaptive Insertion Policies for High Performance 
Caching,” ISCA 2007.

 Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to 
Address both Cache Pollution and Thrashing,” PACT 2012.

 Pekhimenko et al., “Base-Delta-Immediate Compression: Practical 
Data Compression for On-Chip Caches,” PACT 2012. 
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Controlled Shared Caching
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Hardware-Based Cache 

Partitioning

165



Utility Based Shared Cache Partitioning
 Goal: Maximize system throughput

 Observation: Not all threads/applications benefit equally from 
caching  simple LRU replacement not good for system 

throughput

 Idea: Allocate more cache space to applications that obtain the 
most benefit from more space

 The high-level idea can be applied to other shared resources as 
well.

 Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition 
Shared Caches,” MICRO 2006.

 Suh et al., “A New Memory Monitoring Scheme for Memory-
Aware Scheduling and Partitioning,” HPCA 2002.
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Marginal Utility of a Cache Way
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Utility Based Shared Cache Partitioning Motivation
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Utility Based Cache Partitioning (III)
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Three components:

 Utility Monitors (UMON) per core

 Partitioning Algorithm (PA)

 Replacement support to enforce partitions

I$

D$
Core1

I$

D$
Core2

Shared
L2 cache

Main Memory

UMON1 UMON2PA



1. Utility Monitors

 For each core, simulate LRU policy using a separate tag 
store called ATD (auxiliary tag directory/store) 

 Hit counters in ATD to count hits per recency position

 LRU is a stack algorithm: hit counts  utility 

E.g. hits(2 ways) = H0+H1
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MTD (Main Tag Store)

Set B
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Set H

++ + +
(MRU)H0 H1 H2…H15(LRU)



Utility Monitors
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Dynamic Set Sampling

 Extra tags incur hardware and power overhead

 Dynamic Set Sampling reduces overhead [Qureshi, ISCA’06]   

 32 sets sufficient (analytical bounds)

 Storage < 2kB/UMON
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Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 2005.



2. Partitioning Algorithm

 Evaluate all possible partitions and select the best

 With a ways to core1 and (16-a) ways to core2:  

Hitscore1 = (H0 + H1 + … + Ha-1)     ---- from UMON1                
Hitscore2 = (H0 + H1 + … + H16-a-1) ---- from UMON2            

 Select a that maximizes (Hitscore1 + Hitscore2) 

 Partitioning done once every 5 million cycles  
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3. Enforcing Partitions: Way Partitioning
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Way partitioning support: [Suh+ HPCA’02, Iyer ICS’04] 

1. Each line has core-id bits

2. On a miss, count ways_occupied in set by miss-causing app

ways_occupied < ways_given

Yes No

Victim is the LRU line 

from other app 

Victim is the LRU line 

from miss-causing app



Performance Metrics

 Three metrics for performance:

1. Weighted Speedup (default metric)
 perf =  IPC1/SingleIPC1 + IPC2/SingleIPC2
 correlates with reduction in execution time 

2. Throughput 
 perf = IPC1 + IPC2
 can be unfair to low-IPC application

3. Hmean-fairness
 perf =  hmean(IPC1/SingleIPC1, IPC2/SingleIPC2)  

 balances fairness and performance
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Weighted Speedup Results for UCP

176



IPC Results for UCP
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UCP improves average throughput by 17% 



Any Problems with UCP So Far?

- Scalability to many cores

- Non-convex curves?

 Time complexity of partitioning low for two cores
(number of possible partitions ≈ number of ways)

 Possible partitions increase exponentially with cores   

 For a 32-way cache, possible partitions:

 4 cores  6545   

 8 cores  15.4 million 

 Problem NP hard  need scalable partitioning algorithm 
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Greedy Algorithm  [Stone+ ToC ’92]

 Greedy Algorithm (GA) allocates 1 block to the app that has 
the max utility for one block. Repeat till all blocks allocated

 Optimal partitioning when utility curves are convex

 Pathological behavior                                                     
for non-convex curves 

179Stone et al., “Optimal Partitioning of Cache Memory,” IEEE ToC 1992.



Problem with Greedy Algorithm

 Problem:  GA considers benefit only from the immediate 
block. Hence, it fails to exploit large gains from looking ahead

180

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

A

B

In each iteration, the 

utility for 1 block:

U(A) = 10 misses         

U(B) = 0 misses

Blocks assigned

M
is

s
e
s

All blocks assigned to 

A, even if B has same 

miss reduction with  

fewer blocks



Lookahead Algorithm

 Marginal Utility (MU) = Utility per cache resource 
 MUa

b =  Ua
b/(b-a)

 GA considers MU for 1 block.  

 LA (Lookahead Algorithm) considers MU for all possible 
allocations

 Select the app that has the max value for MU.  
Allocate it as many blocks required to get max MU

 Repeat until all blocks are assigned
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Lookahead Algorithm Example
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Time complexity ≈ ways2/2 (512 ops for 32-ways) 
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UCP Results
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Four cores sharing a 2MB 32-way L2
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Utility Based Cache Partitioning

 Advantages over LRU

+ Improves system throughput 

+ Better utilizes the shared cache

 Disadvantages

- Fairness, QoS?

 Limitations

- Scalability: Partitioning limited to ways. What if you have 
numWays < numApps?

- Scalability: How is utility computed in a distributed cache?

- What if past behavior is not a good predictor of utility?
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Fair Shared Cache Partitioning

 Goal: Equalize the slowdowns of multiple threads sharing 
the cache

 Idea: Dynamically estimate slowdowns due to sharing and 
assign cache blocks to balance slowdowns

 Approximate slowdown with change in miss rate 

 Kim et al., “Fair Cache Sharing and Partitioning in a Chip 
Multiprocessor Architecture,” PACT 2004.
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Dynamic Fair Caching Algorithm
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Dynamic Fair Caching Algorithm
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Dynamic Fair Caching Algorithm

Repartition!

Evaluate 
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Dynamic Fair Caching Algorithm
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Dynamic Fair Caching Algorithm
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Dynamic Fair Caching Algorithm
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Dynamic Fair Caching Algorithm

Repartition! Do Rollback if:
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Δ=MRold-MRnew

P1:20%

P2: 5%

MissRate alone

Repartitioning

interval

P1:20%

P2:10%

MissRate shared

P1:25%

P2: 9%

MissRate shared

P1:128KB

P2:384KB

Target Partition

P1:192KB

P2:320KB

Target Partition



Advantages/Disadvantages of the Approach

 Advantages

+ Reduced starvation

+ Better average throughput

+ Block granularity partitioning 

 Disadvantages and Limitations

- Alone miss rate estimation can be incorrect

- Scalable to many cores?

- Is this the best (or a good) fairness metric?

- Does this provide performance isolation in cache?
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Software-Based Shared Cache 

Partitioning
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Software-Based Shared Cache Management

 Assume no hardware support (demand based cache sharing, i.e. 
LRU replacement)

 How can the OS best utilize the cache?

 Cache sharing aware thread scheduling

 Schedule workloads that “play nicely” together in the cache

 E.g., working sets together fit in the cache

 Requires static/dynamic profiling of application behavior

 Fedorova et al., “Improving Performance Isolation on Chip 
Multiprocessors via an Operating System Scheduler,” PACT 2007.

 Cache sharing aware page coloring

 Dynamically monitor miss rate over an interval and change 
virtual to physical mapping to minimize miss rate

 Try out different partitions
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OS Based Cache Partitioning

 Lin et al., “Gaining Insights into Multi-Core Cache Partitioning: Bridging 
the Gap between Simulation and Real Systems,” HPCA 2008.

 Cho and Jin, “Managing Distributed, Shared L2 Caches through OS-
Level Page Allocation,” MICRO 2006.

 Static cache partitioning

 Predetermines the amount of cache blocks allocated to each 
program at the beginning of its execution

 Divides shared cache to multiple regions and partitions cache 
regions through OS page address mapping

 Dynamic cache partitioning

 Adjusts cache quota among processes dynamically 

 Page re-coloring

 Dynamically changes processes’ cache usage through OS page 
address re-mapping
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Page Coloring

 Physical memory divided into colors

 Colors map to different cache sets

 Cache partitioning

 Ensure two threads are allocated 

pages of different colors
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Thread A

Thread B

Cache

Way-1 Way-n…………

Memory page



Page Coloring

virtual page numberVirtual address page offset

physical page numberPhysical address Page offset

Address translation

Cache tag Block offsetSet indexCache address

Physically indexed cache

page color bits

… …

OS control

=

•Physically indexed caches are divided into multiple regions (colors).
•All cache lines in a physical page are cached in one of those regions (colors).

OS can control the page color of a virtual page through address mapping 
(by selecting a physical page with a specific value in its page color bits).



Static Cache Partitioning using Page Coloring
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Dynamic Cache Partitioning via Page Re-Coloring

page color table 
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 Page re-coloring:

 Allocate page in new color
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 Free old page
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 Pages of a process are organized into linked lists 

by their colors.

 Memory allocation guarantees that pages are 

evenly distributed into all the lists (colors) to 

avoid hot points.



Dynamic Partitioning in a Dual-Core System

Init: Partition the cache as (8:8)

Run current partition (P0:P1) for one epoch

finished

Try one epoch for each of the two neighboring
partitions: (P0 – 1: P1+1) and (P0 + 1: P1-1)

Choose next partitioning with best policy 
metrics measurement (e.g., cache miss rate)

No

Yes
Exit



Experimental Environment

 Dell PowerEdge1950

 Two-way SMP, Intel dual-core Xeon 5160

 Shared 4MB L2 cache, 16-way

 8GB Fully Buffered DIMM

 Red Hat Enterprise Linux 4.0

 2.6.20.3 kernel

 Performance counter tools from HP (Pfmon)

 Divide L2 cache into 16 colors



Performance – Static & Dynamic

 Aim to minimize combined miss rate

 For RG-type, and some RY-type:

 Static partitioning outperforms dynamic partitioning

 For RR- and RY-type, and some RY-type

 Dynamic partitioning outperforms static partitioning



Software vs. Hardware Cache Management

 Software advantages

+ No need to change hardware

+ Easier to upgrade/change algorithm (not burned into hardware)

 Disadvantages

- Large granularity of partitioning (page-based versus way/block)

- Limited page colors  reduced performance per application 

(limited physical memory space!), reduced flexibility

- Changing partition size has high overhead  page mapping 

changes

- Adaptivity is slow: hardware can adapt every cycle (possibly)

- Not enough information exposed to software (e.g., number of 
misses due to inter-thread conflict)
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Private/Shared Caching
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Private/Shared Caching

 Example: Adaptive spill/receive caching

 Goal: Achieve the benefits of private caches (low latency, 
performance isolation) while sharing cache capacity across 
cores

 Idea: Start with a private cache design (for performance 
isolation), but dynamically steal space from other cores that 
do not need all their private caches

 Some caches can spill their data to other cores’ caches 
dynamically

 Qureshi, “Adaptive Spill-Receive for Robust High-
Performance Caching in CMPs,” HPCA 2009.
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Revisiting Private Caches on CMP

Private caches avoid the need for shared interconnect

++ fast latency, tiled design, performance isolation

Core A
I$ D$

CACHE A

Core B
I$ D$

CACHE B

Core C
I$ D$

CACHE C

Core D
I$ D$

CACHE D

Memory

Problem: When one core needs more cache and other core 

has spare cache, private-cache CMPs cannot share capacity 



Cache Line Spilling 

Spill evicted line from one cache to neighbor cache

- Co-operative caching (CC)  [ Chang+ ISCA’06]

Problem with CC: 

1. Performance depends on the parameter (spill probability)

2. All caches spill as well as receive  Limited improvement 

Cache A Cache B Cache C Cache D

Spill

Goal:  Robust High-Performance Capacity Sharing with Negligible Overhead

Chang and Sohi, “Cooperative Caching for Chip Multiprocessors,” ISCA 2006.



Spill-Receive Architecture

Each Cache is either a Spiller or Receiver but not both

- Lines from spiller cache are spilled to one of the receivers

- Evicted lines from receiver cache are discarded  

What is the best N-bit binary string that maximizes the performance of Spill 

Receive Architecture  Dynamic Spill Receive (DSR)

Cache A Cache B Cache C Cache D

Spill

S/R =1 

(Spiller cache)
S/R =0 

(Receiver cache)

S/R =1

(Spiller cache)

S/R =0 

(Receiver cache)

Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in CMPs,” HPCA 2009.
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Spiller-sets

Follower Sets

Receiver-sets

Dynamic Spill-Receive via “Set Dueling”

Divide the cache in three:

– Spiller sets

– Receiver sets

– Follower sets (winner of spiller, 
receiver) 

n-bit PSEL counter 

misses to spiller-sets: PSEL--

misses to receiver-set: PSEL++

MSB of PSEL decides policy for 
Follower sets:

– MSB = 0, Use spill

– MSB = 1, Use receive

PSEL
-

miss

+
miss

MSB = 0?

YES No

Use Recv Use spill

monitor  choose  apply
(using a single counter)
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Dynamic Spill-Receive Architecture 

Cache A Cache B Cache C Cache D

Set X

Set Y

AlwaysSpill

AlwaysRecv

-

+

Miss in Set X 

in any cache

Miss in Set Y 

in any cache

PSEL B PSEL C PSEL DPSEL A

Decides policy for all sets of Cache A (except X and Y)

Each cache learns whether it should act as a spiller or receiver
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Experimental Setup

 Baseline Study:

 4-core CMP with in-order cores

 Private Cache Hierarchy: 16KB L1, 1MB L2

 10 cycle latency for local hits, 40 cycles for remote hits 

 Benchmarks:

 6 benchmarks that have extra cache: “Givers” (G) 

 6 benchmarks that benefit from more cache: “Takers” (T)

 All 4-thread combinations of 12 benchmarks: 495 total  

Five types of workloads: G4T0 G3T1 G2T2 G1T3 G0T4
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Results for Weighted Speedup
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On average, DSR improves weighted speedup by 13% 



Distributed Caches
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Caching for Parallel Applications
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core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

Data placement determines performance

Goal: place data on chip close to where they are used

cache

slice



Efficient Cache Utilization
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Efficient Cache Utilization: Examples

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 
2005.

 Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to 
Address both Cache Pollution and Thrashing,” PACT 2012.

 Pekhimenko et al., “Base-Delta-Immediate Compression: Practical 
Data Compression for On-Chip Caches,” PACT 2012. 
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The Evicted-Address Filter

Vivek Seshadri, Onur Mutlu, Michael A. Kozuch, and Todd C. Mowry,
"The Evicted-Address Filter: A Unified Mechanism to Address Both 

Cache Pollution and Thrashing"
Proceedings of the 21st ACM International Conference on Parallel 

Architectures and Compilation Techniques (PACT), Minneapolis, MN, 
September 2012. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/eaf-cache_pact12.pdf
http://www.pactconf.org/
http://users.ece.cmu.edu/~omutlu/pub/seshadri_pact12_talk.pptx


Cache Utilization is Important

Core
Last-Level 

Cache
Memory

Core Core

Core Core

Increasing contention

Effective cache utilization is important

Large latency
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Reuse Behavior of Cache Blocks

A B C A B C S T U V W X Y A B C

Different blocks have different reuse behavior

Access Sequence:

High-reuse block Low-reuse block

Z

Ideal Cache A B C . . . . .
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Cache Pollution

H G F E D C B AS H G F E D C BT S H G F E D CU T S H G F E D

MRU LRU

LRU Policy

Idea: Predict reuse behavior of missed blocks. Insert 
low-reuse blocks at LRU position.

H G F E D C B ASTU

MRU LRU

AB AC B A

AS AT S A

Cache

Problem: Low-reuse blocks evict high-reuse blocks
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Cache Thrashing

H G F E D C B AI H G F E D C BJ I H G F E D CK J I H G F E D

MRU LRU

LRU Policy A B C D E F G H I J KAB AC B A

Idea: Insert at MRU position with a very low 
probability (Bimodal insertion policy)

Cache

H G F E D C B AIJK

MRU LRU

AI AJ I A
A fraction of 
working set 
stays in cache

Cache

Problem: High-reuse blocks evict each other

222
Qureshi+, “Adaptive insertion policies for high performance caching,” ISCA 2007.



Handling Pollution and Thrashing

Need to address both pollution and thrashing 
concurrently

Cache Thrashing

Need to control the number of blocks inserted with 
high priority into the cache

Cache Pollution

Need to distinguish high-reuse blocks from low-
reuse blocks
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Reuse Prediction

Miss Missed-block

High reuse

Low reuse

?

Keep track of the reuse behavior of every cache 
block in the system

Impractical
1. High storage overhead
2. Look-up latency
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Approaches to Reuse Prediction

Use program counter or memory region information.

BA TS

PC 1 PC 2

BA TS

PC 1 PC 2 PC 1

PC 2

C C

U U

1. Group Blocks
2. Learn group 

behavior
3. Predict reuse

1. Same group → same reuse behavior
2. No control over number of high-reuse blocks
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Per-block Reuse Prediction

Use recency of eviction to predict reuse

A

Time

Time of eviction

A

Accessed soon 
after eviction

S

Time

S

Accessed long time 
after eviction

226



Evicted-Address Filter (EAF)

Cache

EAF
(Addresses of recently evicted blocks)

Evicted-block address

Miss Missed-block address

In EAF?
Yes No

MRU LRU

High Reuse Low Reuse 
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Naïve Implementation: Full Address Tags

EAF

1. Large storage overhead

2. Associative lookups – High energy 

Recently 
evicted address

Need not be 
100% accurate

?

228



Low-Cost Implementation: Bloom Filter

EAF

Implement EAF using a Bloom Filter
Low storage overhead + energy

Need not be 
100% accurate

?
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Y

Bloom Filter

Compact representation of a set

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

1. Bit vector

2. Set of hash functions

H1 H2

H1 H2

X

1 11

InsertTest

ZW

Remove

X Y

May remove 
multiple addressesClear False positive
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EAF using a Bloom Filter

EAF

Insert

Test

Evicted-block 
address

Remove
FIFO address 

Missed-block address

Bloom Filter

Remove
If present

when full

Clear

 



1

2
when full

Bloom-filter EAF: 4x reduction in storage overhead, 
1.47% compared to cache size 231



EAF-Cache: Final Design

Cache
Bloom Filter

Counter

1

2

3

Cache eviction

Cache miss

Counter reaches max

Insert address into filter
Increment counter

Test if address is present in filter
Yes, insert at MRU. No, insert with BIP

Clear filter and counter
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EAF: Advantages

Cache
Bloom Filter

Counter

1. Simple to implement

2. Easy to design and verify

3. Works with other techniques (replacement policy)

Cache eviction

Cache miss
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EAF Performance – Summary

0%

5%

10%
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More on Evicted Address Filter Cache

 Vivek Seshadri, Onur Mutlu, Michael A. Kozuch, and Todd C. Mowry,
"The Evicted-Address Filter: A Unified Mechanism to Address 
Both Cache Pollution and Thrashing"
Proceedings of the 21st International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Minneapolis, MN, 
September 2012. Slides (pptx) Source Code

235

https://people.inf.ethz.ch/omutlu/pub/eaf-cache_pact12.pdf
http://www.pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/seshadri_pact12_talk.pptx
https://github.com/CMU-SAFARI/memsim


Cache Compression
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Motivation for Cache Compression
Significant redundancy in data:

237

0x00000000

How can we exploit this redundancy?

– Cache compression helps

– Provides effect of a larger cache without 
making it physically larger

0x0000000B 0x00000003 0x00000004 …



Background on Cache Compression

• Key requirements:
– Fast (low decompression latency)

– Simple (avoid complex hardware changes)

– Effective (good compression ratio)
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CPU
L2 

Cache
Uncompressed

CompressedDecompressionUncompressed

L1 
Cache

Hit



Summary of Major Works
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Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero
  



Summary of Major Works
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Summary of Major Works
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Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero
  

Frequent Value
  

Frequent Pattern
 / 



Summary of Major Works
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Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero
  

Frequent Value
  

Frequent Pattern
 / 

BΔI
  



Base-Delta-Immediate 

Cache Compression

Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Philip B. Gibbons, 

Michael A. Kozuch, and Todd C. Mowry,
"Base-Delta-Immediate Compression: Practical Data Compression 

for On-Chip Caches"
Proceedings of the 21st ACM International Conference on Parallel 

Architectures and Compilation Techniques (PACT), Minneapolis, MN, 
September 2012. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/bdi-compression_pact12.pdf
http://www.pactconf.org/
http://users.ece.cmu.edu/~omutlu/pub/pekhimenko_pact12_talk.pptx


Executive Summary
• Off-chip memory latency is high

– Large caches can help, but at significant cost 

• Compressing data in cache enables larger cache at low 
cost

• Problem: Decompression is on the execution critical path 
• Goal: Design a new compression scheme that has 

1. low decompression latency,  2. low cost, 3. high compression ratio  

• Observation: Many cache lines have low dynamic range 
data

• Key Idea: Encode cachelines as a base + multiple differences
• Solution: Base-Delta-Immediate compression with low 

decompression latency and high compression ratio 
– Outperforms three state-of-the-art compression mechanisms 
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Key Data Patterns in Real Applications
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0x00000000 0x00000000 0x00000000 0x00000000 …

0x000000FF 0x000000FF 0x000000FF 0x000000FF …

0x00000000 0x0000000B 0x00000003 0x00000004 …

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 …

Zero Values: initialization,  sparse matrices, NULL pointers

Repeated Values: common initial values, adjacent pixels

Narrow Values: small values stored in a big data type

Other Patterns: pointers to the same memory region



How Common Are These Patterns?
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SPEC2006, databases, web workloads, 2MB L2 cache
“Other Patterns” include Narrow Values

43% of the cache lines belong to key patterns



Key Data Patterns in Real Applications
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0x00000000 0x00000000 0x00000000 0x00000000 …

0x000000FF 0x000000FF 0x000000FF 0x000000FF …

0x00000000 0x0000000B 0x00000003 0x00000004 …

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 …

Zero Values: initialization,  sparse matrices, NULL pointers

Repeated Values: common initial values, adjacent pixels

Narrow Values: small values stored in a big data type

Other Patterns: pointers to the same memory region

Low Dynamic Range:

Differences between values are significantly 
smaller than the values themselves



32-byte Uncompressed Cache Line

Key Idea: Base+Delta (B+Δ) Encoding
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0xC04039C0 0xC04039C8 0xC04039D0 … 0xC04039F8

4 bytes

0xC04039C0

Base

0x00

1 byte

0x08

1 byte

0x10

1 byte

… 0x38
12-byte 
Compressed Cache Line

20 bytes saved
 Fast Decompression: 

vector addition

 Simple Hardware: 
arithmetic and comparison

 Effective: good compression ratio



Can We Do Better?

• Uncompressible cache line (with a single base): 

• Key idea: 
Use more bases, e.g., two instead of one

• Pro: 
– More cache lines can be compressed

• Cons:
– Unclear how to find these bases efficiently
– Higher overhead (due to additional bases)
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0x00000000 0x09A40178 0x0000000B 0x09A4A838 …



B+Δ with Multiple Arbitrary Bases
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1 2 3 4 8 10 16

 2 bases – the best option based on evaluations



How to Find Two Bases Efficiently?
1. First base - first element in the cache line

2. Second base - implicit base of 0

Advantages over 2 arbitrary bases:

– Better compression ratio

– Simpler compression logic
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 Base+Delta part

 Immediate part

Base-Delta-Immediate (BΔI) Compression



B+Δ (with two arbitrary bases) vs. BΔI
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Average compression ratio is close, but BΔI is simpler



BΔI Cache Compression Implementation

• Decompressor Design

– Low latency

• Compressor Design

– Low cost and complexity

• BΔI Cache Organization

– Modest complexity
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Δ0B0

BΔI Decompressor Design
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Δ1 Δ2 Δ3

Compressed Cache Line

V0 V1 V2 V3

+ +

Uncompressed Cache Line

+ +

B0 Δ0

B0 B0 B0 B0

Δ1 Δ2 Δ3

V0
V1 V2 V3

Vector addition



BΔI Compressor Design
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32-byte Uncompressed Cache Line

8-byte B0

1-byte Δ
CU

8-byte B0

2-byte Δ
CU

8-byte B0

4-byte Δ
CU

4-byte B0

1-byte Δ
CU

4-byte B0

2-byte Δ
CU

2-byte B0

1-byte Δ
CU

Zero
CU

Rep.
Values

CU

Compression Selection Logic (based on compr. size)

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

Compression Flag 
& Compressed 

Cache Line

CFlag &
CCL

Compressed Cache Line



BΔI Compression Unit: 8-byte B0 1-byte Δ
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32-byte Uncompressed Cache Line

V0 V1 V2 V3

8 bytes

- - - -

B0=

V0

V0 B0    B0    B0    B0    

V0 V1 V2 V3

Δ0 Δ1 Δ2 Δ3

Within 1-byte 
range?

Within 1-byte 
range?

Within 1-byte 
range?

Within 1-byte 
range?

Is every element within 1-byte range?

Δ0B0 Δ1 Δ2 Δ3B0 Δ0 Δ1 Δ2 Δ3

Yes No



BΔI Cache Organization
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Tag0 Tag1

… …

… …

Tag Storage:

Set0

Set1

Way0 Way1

Data0

…

…

Set0

Set1

Way0 Way1

…

Data1

…

32 bytesData Storage:
Conventional 2-way cache with 32-byte cache lines

BΔI: 4-way cache with 8-byte segmented data

Tag0 Tag1

… …

… …

Tag Storage:

Way0 Way1 Way2 Way3

… …

Tag2 Tag3

… …

Set0

Set1

Twice as many tags

C - Compr. encoding bitsC

Set0

Set1

… … … … … … … …

S0S0 S1 S2 S3 S4 S5 S6 S7

… … … … … … … …

8 bytes

Tags map to multiple adjacent segments2.3% overhead for 2 MB cache



Qualitative Comparison with Prior Work

• Zero-based designs
– ZCA [Dusser+, ICS’09]: zero-content augmented cache

– ZVC [Islam+, PACT’09]: zero-value cancelling

– Limited applicability (only zero values)

• FVC [Yang+, MICRO’00]: frequent value compression
– High decompression latency and complexity

• Pattern-based compression designs
– FPC [Alameldeen+, ISCA’04]: frequent pattern compression

• High decompression latency (5 cycles) and complexity

– C-pack [Chen+, T-VLSI Systems’10]: practical implementation of 
FPC-like algorithm

• High decompression latency (8 cycles)
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Cache Compression Ratios

BΔI achieves the highest compression ratio
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SPEC2006, databases, web workloads, 2MB L2



Single-Core: IPC and MPKI
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Multi-Core Workloads
• Application classification based on 

Compressibility: effective cache size increase

(Low Compr. (LC) < 1.40, High Compr. (HC) >= 1.40)

Sensitivity: performance gain with more cache 

(Low Sens. (LS) < 1.10, High Sens. (HS) >= 1.10; 512kB -> 2MB)

• Three classes of applications:

– LCLS, HCLS, HCHS,  no LCHS applications

• For 2-core - random mixes of each possible class pairs  
(20 each, 120 total workloads)
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Multi-Core: Weighted Speedup

BΔI performance improvement is the highest (9.5%)
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If at least one application is sensitive, then the 
performance improves 262



Other Results in Paper

• IPC comparison against upper bounds

– BΔI almost achieves performance of the 2X-size cache

• Sensitivity study of having more than 2X tags

– Up to 1.98 average compression ratio

• Effect on bandwidth consumption

– 2.31X decrease on average

• Detailed quantitative comparison with prior work

• Cost analysis of the proposed changes

– 2.3% L2 cache area increase
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Conclusion
• A new Base-Delta-Immediate compression mechanism 

• Key insight: many cache lines can be efficiently 
represented using base + delta encoding

• Key properties:

– Low latency decompression 

– Simple hardware implementation

– High compression ratio with high coverage 

• Improves cache hit ratio and performance of both single-
core and multi-core workloads

– Outperforms state-of-the-art cache compression techniques: 
FVC and FPC
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Readings on Memory Compression (I)

 Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Philip B. Gibbons, 
Michael A. Kozuch, and Todd C. Mowry,
"Base-Delta-Immediate Compression: Practical Data 
Compression for On-Chip Caches"
Proceedings of the 21st International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Minneapolis, MN, 
September 2012. Slides (pptx) Source Code
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http://users.ece.cmu.edu/~omutlu/pub/bdi-compression_pact12.pdf
http://www.pactconf.org/
http://users.ece.cmu.edu/~omutlu/pub/pekhimenko_pact12_talk.pptx
http://www.ece.cmu.edu/~safari/tools/compression.c


Readings on Memory Compression (II)

 Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur 
Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"Linearly Compressed Pages: A Low-Complexity, Low-Latency 
Main Memory Compression Framework"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning 
Session Slides (pptx) (pdf)] Poster (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_pekhimenko_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_pekhimenko_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_pekhimenko_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_pekhimenko_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_pekhimenko_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_pekhimenko_micro13-poster.pdf


Readings on Memory Compression (III)
 Gennady Pekhimenko, Tyler Huberty, Rui Cai, Onur Mutlu, Phillip P. 

Gibbons, Michael A. Kozuch, and Todd C. Mowry,
"Exploiting Compressed Block Size as an Indicator of Future 
Reuse"
Proceedings of the 21st International Symposium on High-Performance 
Computer Architecture (HPCA), Bay Area, CA, February 2015. 
[Slides (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/compression-aware-cache-management_hpca15.pdf
http://darksilicon.org/hpca/
http://users.ece.cmu.edu/~omutlu/pub/compression-aware-cache-management_gennady-hpca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/compression-aware-cache-management_gennady-hpca15-talk.pdf


Readings on Memory Compression (IV)
 Gennady Pekhimenko, Evgeny Bolotin, Nandita Vijaykumar, Onur Mutlu, 

Todd C. Mowry, and Stephen W. Keckler,
"A Case for Toggle-Aware Compression for GPU Systems"
Proceedings of the 22nd International Symposium on High-Performance 
Computer Architecture (HPCA), Barcelona, Spain, March 2016. 
[Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/toggle-aware-compression-for-GPUs_hpca16.pdf
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/toggle-aware-compression-for-GPUs_pekhimenko-hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/toggle-aware-compression-for-GPUs_pekhimenko-hpca16-talk.pdf


Readings on Memory Compression (V)
 Nandita Vijaykumar, Gennady Pekhimenko, Adwait Jog, Abhishek 

Bhowmick, Rachata Ausavarungnirun, Chita Das, Mahmut Kandemir, Todd 
C. Mowry, and Onur Mutlu,
"A Case for Core-Assisted Bottleneck Acceleration in GPUs: 
Enabling Flexible Data Compression with Assist Warps"
Proceedings of the 42nd International Symposium on Computer 
Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/caba-gpu-assist-warps_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/caba-gpu-assist-warps_isca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/caba-gpu-assist-warps_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/caba-gpu-assist-warps_isca15-lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/caba-gpu-assist-warps_isca15-lightning-talk.pdf


Predictable Performance Again: 

Strong Memory Service Guarantees
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Remember MISE?

 Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, 
and Onur Mutlu,
"MISE: Providing Performance Predictability and 
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)
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Extending Slowdown Estimation to Caches

 How do we extend the MISE model to include shared cache 
interference?

 Answer: Application Slowdown Model

 Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and 
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling 
the Impact of Inter-Application Interference at Shared Caches 
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 
(pptx) (pdf)] 
[Source Code]
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https://github.com/CMU-SAFARI/ASMSim


Quantifying and Controlling Impact of 
Interference at Shared Caches and Main Memory

Lavanya Subramanian, Vivek Seshadri, 

Arnab Ghosh, Samira Khan, Onur Mutlu
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Application Slowdown Model



Shared Cache and Memory Contention
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Cache Capacity Contention
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Estimating Cache and Memory Slowdowns
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Service Rates vs. Access Rates
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Request service and access rates 
are tightly coupled 
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The Application Slowdown Model
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Real System Studies:
Cache Access Rate vs. Slowdown 
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Challenge

How to estimate alone cache access rate?
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Auxiliary Tag Store
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Accounting for Contention Misses

• Revisiting alone memory request service rate

Cycles serving contention misses should not 

count as high priority cycles
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 CyclesPriority High  #

EpochsPriority High  During Requests #

nApplicatioan  of Rate ServiceRequest  Alone

           





Alone Cache Access Rate Estimation
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Cycles Contention Cache# - CyclesPriority High  #

EpochsPriority High  During Requests #

nApplicatioan  of  Rate Access Cache                  

           

Alone 

Cache Contention Cycles: Cycles spent serving contention misses

Time ServiceMemory  Average                                            

 x Misses Contention #  Cycles Contention Cache 

From auxiliary tag store
when given high priority

Measured when given 
high priority



Application Slowdown Model (ASM)
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Previous Work on Slowdown 
Estimation

• Previous work on slowdown estimation
– STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ’07] 

– FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ’10]

– Per-thread Cycle Accounting [Du Bois et al., HiPEAC ’13]

• Basic Idea:

Shared

Alone

 TimeExecution 

 TimeExecution 
 Slowdown 

Count interference experienced by each request  Difficult
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ASM’s estimates are much more coarse grained  Easier



Model Accuracy Results

Average error of ASM’s slowdown estimates: 10% 
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Leveraging ASM’s Slowdown Estimates

• Slowdown-aware resource allocation for high 
performance and fairness

• Slowdown-aware resource allocation to bound 
application slowdowns

• VM migration and admission control schemes 
[VEE ’15]

• Fair billing schemes in a commodity cloud
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Cache Capacity Partitioning
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Cache Capacity Partitioning
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ASM-Cache: Slowdown-aware 
Cache Way Partitioning

• Key Requirement: Slowdown estimates for all 
possible way partitions

• Extend ASM to estimate slowdown for all 
possible cache way allocations

• Key Idea: Allocate each way to the application 
whose slowdown reduces the most
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Memory Bandwidth Partitioning
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among applications to mitigate contention



ASM-Mem: Slowdown-aware 
Memory Bandwidth Partitioning

• Key Idea: Allocate high priority proportional to 
an application’s slowdown

• Application i’s requests given highest priority 
at the memory controller for its fraction
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Coordinated Resource 
Allocation Schemes
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Fairness and Performance Results
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Summary

• Problem: Uncontrolled memory interference cause high 
and unpredictable application slowdowns

• Goal: Quantify and control slowdowns
• Key Contribution:

– ASM: An accurate slowdown estimation model
– Average error of ASM: 10%

• Key Ideas:
– Shared cache access rate is a proxy for performance
– Cache Access Rate Alone can be estimated by minimizing memory 

interference and quantifying cache interference

• Applications of Our Model
– Slowdown-aware cache and memory management to achieve 

high performance, fairness and performance guarantees

• Source Code Released in January 2016
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More on Application Slowdown Model

 Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and 
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling 
the Impact of Inter-Application Interference at Shared Caches 
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 
(pptx) (pdf)] 
[Source Code] 
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