Computer Architecture
Lecturel3 Memory Interference
and Quality of Service (Il

Prof. Onur Mutlu
ETH Z¢ri ch
Fall 2017

2 November 2017

Summary of Yesterday

Shared vs. private resources in multi-core systems
Memory interference and the QoS problem

Memory scheduling

Agenda foil oday

Memory scheduling wrap-up

Other approaches to mitigate and control memory
Interference

¢ Source Throttling
¢ Data Mapping
¢ Thread Scheduling

Multi-Core Cache Management

Quick Summary Papers

A "Parallelism -Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Svst ems

A "The Blacklisting Memory Scheduler: Achieving High
Performance and Fairness at Low Cost"

A "Staged Memory Scheduling: Achieving High
Performance and Scalability in Heterogeneous Systems 0

A "Parallel Application Memory Schedulingo

A "Reducing Memory Interference in Multicore Systems
via Application -Aware Memory Channel Partitioning"

SAFARI 4

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
https://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf

Predictable Performance:
Strong Memory Service Guaranre

Goal: Predictable Performance in Complex Sy

Shared Cache HWA HWA

v\
DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

A Heterogeneous agents: CPUs, GPUs, and HWAs
A Main memory interference between CPUs, GPUs, HWAs

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance?

SAFARI 6

Strong Memory Service Guarantees

Goal: Satisfy performance/SLA requirementsin the
presence of shared main memory, heterogeneous agents,
and hybrid memory/storage

Approach:

¢ Develop technigues/models to accurately estimate the
performance loss of an application/agent in the presence of
resource sharing

¢ Develop mechanisms (hardware and software) to enable the
resource partitioning/prioritization needed to achieve the
required performance levels for all applications

¢ All the while providing high system performance

Subramaniane t @ISE:,Providing Performance Predictability and Improving Fairness
in Shared Main Memory Systems 0 HZBRTA

Subr amani arhe Applicatar Slowdowin Mode] 6 MI2Q1R.O
SAFARI

Predictable Performance Readings ()

A Eiman Ebrahimi, ChangJoo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High -
Performance Fairness Substrate for Multi -Core Memory
Systems”

Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010.
Slides (pdf)

Fairness via Source Throttling: A Configurable and High-Performance
Fairness Substrate for Multi-Core Memory Systems

Eiman Ebrahimif Chang Joo Leef Onur Mutlu§ Yale N. Pattj

fDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University
{ebrahimi, cjlee, patt} @ece.utexas.edu onur@cmu.edu

SAFARI 8

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf

Predictable Performance Readihjs (

A Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, BerJaiyen,
and Onur Mutlu,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High -
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

MISE: Providing Performance Predictability and Improving Fairness
in Shared Main Memory Systems

Lavanya Subramanian =~ Vivek Seshadri ~ Yoongu Kim Ben Jaiyen =~ Onur Mutlu

Carnegie Mellon University

SAFARI 9

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

Predictable Performance Readilbs (

A Lavanya Subramanian, Vivek Seshadri Arnab Ghosh Samira Khan, and
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter - Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster

(pptx) (pdf)]
[Source Codd

The Application Slowdown Model: Quantifying and Controlling the Impact
of Inter-Application Interference at Shared Caches and Main Memory

Lavanya Subramanian*§ Vivek Seshadri* Arnab Ghosh*1
Samira Khan* Onur Mutlu*

*Carnegie Mellon University §Intel Labs 'IIT Kanpur *University of Virginia

10

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

MISE:
Providing Performance Predictability
In Shared Main Memory Systems

Lavanya Subramanian , Vivek Seshadri
Yoongu Kim, Ben Jaiyen, Onur Mutlu

SAFARI Carnegie Mellon

11

Unpredictable Application Slowdowns

Slowdown
o = N w AN (@) (@)}

Slowdown
o = N w D (@) (@)}

eslie3d (core Q gcc (core 1) eslie3d (core Q mcf (core 1)

An applicationodos perf
which application it iIs running with

SAFARI 12

Need for Predictable Performance

Our Goal: Predictable performance
In the presence of memory interference

SAFARI

13

Outline

1. Estimate Slowdown

2. Control Slowdown

SAFARI

14

Outline

1. Estimate Slowdown
¢ Key Observations
G

G
G

2. Control Slowdown

G
G

SAFARI

15

Slowdown: Definition

Performane aone
Performane shared

Slowdown=

SAFARI

16

Key Observatioi

For a memory bound application,
Performance” Memory request service rate

e
% 00 ==0Mmnetpp
e V7 Harder
5038 W _ 7
CTJ @i e U AW L\AIGHS
SIOWdOVVB]: — 1= - i7, 4 cores
(SiFTequ R0 @idth: 8.5 GBIs
c_;cs 04 - ~
B 0-3 I I I I I I ElaSy
Z 0.3 04 05 06 07 08 09 1

NormalizedRequestService Rate

SAFARI 17

Key Observatiod

Request Service Rate,, .. (RSR,,,.) Of an application can be
estimated by giving the application highest priority in
accessing memory

Highest priority A Little interference
(almost as if the application were run alone)

SAFARI 18

Key Observatiod

1. Run alone

Ti its Service order
Request Buffer State ime_units

Main
Memory

2. Run with another application

3
Main
l- - Memory
|
|
|
|
|
|

Tima units Service order

Request Buffer State

Main
Memory

_ 3
| |-
1

3. Run with another application: highe:st priority

Time< units ! Service order

Request Buffer State

Main
Memory

_ 3 2 1
] e [I
Memory

SAFARI 19

Memory Interference-induced Slowdown Estimation
(MISE) model for memory bound applications

RequesEerviceRateaone (RSRuone)
Req uesservic anteShareo(RS Féhare)

Slowdown=

SAFARI 20

Key Observatiof3

A Memory-bound application
- Compute Phase

Memory Phase

e
interference fime
e I
interference

—>time

Memory phase slowdown dominates overall slowdown

SAFARI 21

Key Observatio

Memory Interference-induced Slowdown Estimation
(MISE) model for non-memory bound applications

RS RAIone

Slowdown=(1-a) +a
RSF%harec

SAFARI 22

Outline

1. Estimate Slowdown
¢ Key Observations

¢ Implementation

¢ MISE Model: Putting it All Together
¢ Evaluating the Model

2. Control Slowdown

¢ Providing Soft S
¢ Minimizing Maxi

owdown Guarantees

mum Slowdown

SAFARI

23

Interval Based Operation
Interval Interval

A A

(Y AN
—_—mnm—— > time

5

Measure RSR; g @ Measure RSR;, . jeq @
Estimate RSR,, Estimate RSRy,.

v v

Estimate Estimate
slowdown slowdown

SAFARI 24

MeasurindgRSR,.....anda

Request Service Rateg; g (RSRhared
¢ Per-core counter to track number of requests serviced
¢ At the end of each interval, measure

Numberof RequestServicec

RSRshare=
IntervalLength

Memory Phase Fraction &)
¢ Count number of stall cycles at the core
¢ Compute fraction of cycles stalled for memory

SAFARI

25

Estimating Request Service Rate(RSR .0

Divide each interval into shorter epochs

At the beginning of each epoch

C h/ilgrfrezrtyp Oﬁ%}f;ep%r&rgc{lﬁ;%l{/ é)l%éﬁglgﬁephcatlon as the
How: Periodically give each application
At esRefian ints iR 19 eRelbanpispligeatimriey

Numberof Request®uring High Priority Epochs
Numberof CyclesApplication Given High Priority

RS Ruione =

SAFARI 26

Inaccuracy In EstimatiitsR ;e
Reqwgﬁgbﬁé} application %%hd,g@estggr\i,ggwder

CStgtﬁ”ﬁE

TERGeS

Memory

Request Buffer

State

Main
Memory

Request Buffer

State

Main
Memory

SAFARI

sonr ihte.rfe?encel

Time< units Service order

Main
Memory

3 2 1

Main
Memory

Main
Memory

Time< units Service order
3 . 2 1
Time< units Service order

3 2 1

Interference Cycles

Main
Memory

- High Priority

27

Accounting for Interference RSR,, .. Estimation

Solution: Determine and remove interference cycles from
RSR,,.. calculation

Numberof Request®uring High Priority Epochs
Numberof CyclesApplication Given High Priority<InterfereceCycleS

RSRuione =

A cycle is an interference cycle if

¢ a request from the highest priority application is
waiting in the request buffer and

canother applicationodos reg

SAFARI 28

Outline

1. Estimate Slowdown
¢ Key Observations
¢ Implementation
¢ MISE Model: Putting it All Together
¢ Evaluating the Model

2. Control Slowdown
¢ Providing Soft Slowdown Guarantees
¢ Minimizing Maximum Slowdown

SAFARI

29

MISE Model: Putting it All Together

Interval Interval

A A

(Y AN
—_—mnm—— > time

5

A Measure RSRy . @ | A Measure RSRyaeq @
A Estimate RSRy . A Estimate RSRy, e

4 4
Estimate Estimate

slowdown slowdown

SAFARI 30

Outline

1. Estimate Slowdown
¢ Key Observations
¢ Implementation
¢ MISE Model: Putting it All Together
¢ Evaluating the Model

2. Control Slowdown
¢ Providing Soft Slowdown Guarantees
¢ Minimizing Maximum Slowdown

SAFARI

31

Previous Work on Slowdown Estimatior

Previous work on slowdown estimation

c STFM (Stall Time Fair Memory) Scheduling[Mutiu+ , MT @R
¢ FST (Fairness via Source Throttling) [Ebrahimi+, A SPAQOS
¢ Per-thread Cycle Accounting [Du Bois+, HIPEACA.3]

Basic Idea:

/ Hard
Slowdow m@ﬂm@

Stall Time Shared\

Easy

Count number of cycles application receives interference

SAFARI 32

Two Major Advantages of MISE Over STFM

A Advantage 1.

¢ STFM estimates alone performancewnhile an
application is receiving interference A Hard

¢ MISE estimates alone performancewnhile giving an
application the highest priority A Easier

A Advantage 2:

¢ STFM does not take into account compute phase for
non-memory-bound applications

¢ MISE accounts for compute phaseA Better accuracy

SAFARI 33

Methodology

Configuration of our simulated system
¢ 4 cores

¢ 1 channel, 8 banks/channel

¢ DDR3 1066 DRAM

¢ 512 KB private cache/core

Workloads

¢ SPEC CPRD06
¢ 300 multi programmed workloads

SAFARI

34

Quantitative Comparison

o
o b

Slowdown
N
o1 N ol w

=

SPEC CP12006 application

leslie3d
0 20 40 60 80 100
Million Cycles

—Actual

SAFARI

35

Comparison to STFM

~)
Average error of MISE: 8.2%

o Average error of STEM:. 29.4% /

- (across 300 workloads) A

g /

SAFARI

36

Outline

1. Estimate Slowdown
¢ Key Observations
¢ Implementation
¢ MISE Model: Putting it All Together
¢ Evaluating the Model

2. Control Slowdown
¢ Providing Soft Slowdown Guarantees
¢ Minimizing Maximum Slowdown

SAFARI

37

Providing o0Softod

A Goal

1. Ensure QoS-critical applications meet a prescribed
slowdown bound

2. Maximize system performance for other applications

i Basic ldea

¢ Allocate just enough bandwidth to QoS-critical
application

¢ Assignremaining bandwidth to other applications

SAFARI

38

(N

MISE-QoS Mechanism to Provide SQibS

A Assign an initial bandwidth allocation to QoScritical application

A Estimate slowdown of QoScritical application using the MISE
model

A After every N intervals
¢ If slowdown > bound B +/ - [, increase bandwidth allocation

¢ If slowdown < bound B +/ - [, decrease bandwidth allocatior

A When slowdown bound not met for N intervals

¢ Notify the OS so it can migrate/de -schedule jobs

SAFARI 39

Methodology

Each application (25 applications in total) considered the
QoScritical application

Run with 12 sets of co-runners of different memory
Intensities

Total of 300 multiprogrammed workloads
Each workload run with 10 slowdown bound values

Baseline memory scheduling mechanism
¢ Always prioritize QoScritical application
[lyer+, SIGMETRICS2007]
¢ Ot her applicationsod requests

[Zuravleff +, US Patent 1997, Rixner+, ISCA 2000]

SAFARI 40

A Look at One Workload

Slgwdown Baund 314 44

3 g own r%&j()und =2
7/

1/ LR L

MISE Is effective In

1. meeting the slowdown bound for the QoS
critical application

2. Improving performance of non-QoS-critical

applications
Qesliead hmmer lbm W
QoS-critical non -QoS-critical

SAFARI

41

Effectiveness of MISE In EnforciQpS

Across 3000 data points

Predicted Predicted
Not Met

QoS Bound

Met

QoS Bound
Not Met

MISE-QoS correctly predicts whether or not
the bound is met for 95.7% of workloads

SAFARI 42

Performance of NeQoSCritical Applications

1.4
1.2 -

Q.

)

o 1 .

% m AlwaysPrioritize

(%0-8 . = MISE-Qo0S-10/1

©0.6 - = MISE-Q0S-10/3

S 0 ® MISE-Q0S-10/5

e = MISE-Q0S-10/7

Loz - = MISE-Q0S-10/9

Q i

When slowdown bound is 10/3
MISEQoS improves system performance by 10%

SAFARI 43

Outline

1. Estimate Slowdown
¢ Key Observations

¢ Implementation

¢ MISE Model: Putting it All Together
¢ Evaluating the Model

2. Control Slowdown

¢ Providing Soft S
¢ Minimizing Maxi

owdown Guarantees

mum Slowdown

SAFARI

44

Other Results in the Paper

Sensitivity to model parameters
¢ Robust across different values of model parameters

Comparison of STFM and MISE models in enforcing soft
slowdown guarantees

¢ MISE significantly more effective in enforcing guarantees

Minimizing maximum slowdown
¢ MISE improves fairness across several system configurations

SAFARI 45

Summary

A

Uncontrolled memory interference slows down
applications unpredictably

Goal: Estimate and control slowdowns

Key contribution
¢ MISE: An accurate slowdown estimation model
¢ Average error of MISE: 8.2%

Key ldea

¢ Request Service Rate is a proxy for performance

¢ Request Service Rate,,,. estimated by giving an application highest
priority in accessing memory

Leverage slowdown estimates to control slowdowns

¢ Providing soft slowdown guarantees

¢ Minimizing maximum slowdown

SAFARI 46

MISE: Pros and Cons

Upsides:
¢ Simple new insight to estimate slowdown

¢ Much more accurate slowdown estimations than prior
techniques (STFM, FST)

¢ Enables a number of QoS mechanisms that can use slowdown
estimates to satisfy performance requirements

Downsides:
¢ Slowdown estimation is not perfect - there are still errors

c Does not take into account caches and other shared resources
In slowdown estimation

SAFARI ar

More on MISE

A Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, BerJaiyen,
and Onur Mutlu,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High -
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

MISE: Providing Performance Predictability and Improving Fairness
in Shared Main Memory Systems

Lavanya Subramanian =~ Vivek Seshadri ~ Yoongu Kim Ben Jaiyen =~ Onur Mutlu

Carnegie Mellon University

SAFARI 48

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

Handling Memory Interference
In Multithreaded Applications

Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin,
Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Parallel Application Memory Scheduling”
Proceedings of the 44th International Symposium on Microarchitecture (MICRO),
Porto Alegre, Brazil, December 2011. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx

Multithreaded (Parallel) Applications

Threads in a multi-threaded application can be inter-
dependent

¢ As opposed to threads from different applications

Such threads can synchronize with each other

¢ Locks, barriers, pipeline stages, condition variables,
semaphores, &

Some threads can be on the critical path of execution due
to synchronization; some threads are not

Even within a thread, some
the critical path of execution; some are not

50

Critical Sections

Enforce mutually exclusive access to shared data

Only one thread can be executing it at a time

Contended critical sections make threads wait A threads
causing serialization can be on the critical path

Each thread:
loop {

Compute N T1 o 5 e -

lock(A) e T ::3 SERERN
Update shared data T2 INj

unlock(A) C | | | e

51

Barriers

Synchronization point
Threads have to wait until all threads reach the barrier
Last thread arriving at the barrier is on the critical path

Each thread: ldle barrier
loop1 { T1 ¢

Compute -
} T2 ¢
barrier
loop2 { I I —=-

Compute ' time
}

52

Stages of Pipelined Programs

A Loop iterations are statically divided into code segments called stages
A Threads execute stages on different cores
A Thread executing the slowest stage is on the critical path

loop {
Computel| A

Compute2 | B

Compute3| C

}

Handling Interference in Parallel Application

Threads in a multithreaded application are inter-dependent

Some threads can be on the critical path of execution due
to synchronization; some threads are not

How do we schedule requests of inter-dependent threads
to maximize multithreaded application performance?

ldea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non -limiter threads
to reduce memory interference among them [Ebrahimi+, M| CTIRO6

Hardware/software cooperative limiter thread estimation:
Thread executing the most contended critical section
Thread executing the slowest pipeline stage
Thread that is falling behind the most in reaching a barrier

PAMS Micro2011 Talk 54

//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/ebrahimi_micro2011_talk.pptx

Prioritizing Requests froomiter Threads

Non-Critical Section Critical Section 1 mmmmm 5 o |

Waiting for Sync == = Critical Section 2 m=== Critical Path

or Lock
Barrier
Thread A =] i S —
Thread B — —i—_ — —
Thread C - Iy ——
Thread D—m— e —————————= == (s = — —
ije

ELimiter Thread IdentificatioE‘ qBarr{er
|
Thread A o o ———F ! Most Contended

Thread B - .ﬁ:-_ —_ 653.53 g Critical Section: s
Thread G — - {CYCleS [Limiter Thread:B]
Thread D= = = = — -

55

Parallel App Mem Scheduling: Pros and Co

Upsides:
¢ Improves the performance of multi -threaded applications
c Provides a mechanism for esti:

¢ Opens a path for slowdown estimation for multi -threaded
applications

Downsides:

¢ What if there are multiple multi -threaded applications running
together?

¢ Limiter thread estimation can become complex

56

More on PAMS

A Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, ChangJoo
Lee, Onur Mutlu, and Yale N. Patt,
"Parallel Application Memory Scheduling"
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011. Slides (pptx)

Parallel Application Memory Scheduling

Eiman Ebrahimi+ Rustam Miftakhutdinovi Chris Fallin§
Chang Joo Lee; José A. Joaot Onur Mutlu§ Yale N. Patt;

tDepartment of Electrical and Computer Engineering
The University of Texas at Austin
{ebrahimi, rustam, joao, patt}@ece.utexas.edu

§Carnegie Mellon University iIntel Corporation
{cfallin,onur } @cmu.edu chang.joo.lee@intel.com

57

http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx

Other Ways of
Handling Memory Interference

Fundamental Interference Control Techniqu

A Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

59

Designing QoAware Memory Systems: Approact

Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

¢ QoSaware memory controllers

¢ QoSaware interconnects

¢ QoSaware caches

Dumb resources: Keep each resource freefor-all, but
reduce/control interference by injection control or data

mapping

QoSaware data mapping to memory controllers

¢ QoSaware thread scheduling to cores

60

Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via
Application -Aware Memory Channel _Par ti ti oni ngo
44th International Symposium on Microarchitecture (MICRQO),
Porto Alegre, Brazil, December 2011. Slides (pptx)

MCP Micro2011 Talk

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/subramanian_micro11_talk.pptx

Observation: Modern Systems Have Multiple Chan

q:D Memory Channel 0 Memory
Controller

QZD Memory Channel 1 Memory
Controller

A new degree of freedom
Mapping data across multiple channels

: e . " 62
Muralidhara et al., iMemory Channel Partitioning, 0 MI1ICR OO

Data Mapping in Current Systems

Core
Red /I@ Memory
App Controller

2

Blue <}:D Memory
Controller

App

Page

Memor

Core

Cormm o wemory

Causesi nt erference bet ween

: e . " 63
Muralidhara et al., iMemory Channel Partitioning, 0 MI1ICR OO

Partitioning Channels Between Applicatio

Core
Red /I@ Memory
App Controller

2

Blue <}:D Memory
Controller

App

Page

Memor

Core

=D
G u—

Ellminatest nt er f erence bet ween

: e . " 64
Muralidhara et al., iMemory Channel Partitioning, 0 MI1ICR OO

Overview:. Memory Channel Partitioning (MC

A Goal
¢ Eliminate harmful interference between applications

A Basic Idea

¢ Map the data of badly-interfering applications to different
channels

A Key Principles
¢ Separate low and high memory-intensity applications
¢ Separate low and high row-buffer locality applications

Muralidhara et al., iMemory Channel Partitioning, 06 MI1CR OO 65

Key Insightl: Separate by Memory Intensi

Map data of low and high memory -intensity applications
to different channels

66

Key Insight2: Separate by ReBuffer Locality

Map data of low and high row -buffer locality applications
to different channels

67

Memory Channel Partitioning (MCP) Mechanis

/ Hardware
1. Profile applications

2. Classifyapplications into groups

3. Partition channels between application groups
4. Assign a preferred channelto each application
5. Allocate application pagesto preferred channel

N

System
Software

Muralidhara et al., iMemory Channel Partitioning, 06 MI1CR OO 68

Interval Based Operation

Current AInterval Next AInterval

| \f \
—_——

time
1. Profile applications 5. Enforce channel preferences
4

2. Classify applications into groups
3. Partition channels between groups
4. Assign preferred channel to applications

69

Observations

A Applications with very low memory-intensity rarely
access memory
A Dedicating channels to them results in precious
memory bandwidth waste

A They have the most potential to keep their cores busy
A We would really like to prioritize them

A They interfere minimally with other applications
A Prioritizing them does not hurt others

70

Integrated Memory Partitioning and Scheduling (IMP

A Always prioritize very low memory-intensity
applications in the memory scheduler

A Use memory channel partitioning to mitigate
Interference between other applications

Muralidhara et al., iMemory Channel Partitioning, 06 MI1CR OO 1

Hardware Cost

Memory Channel Partitioning (MCP)

¢ Only profiling counters in hardware

¢ No modifications to memory scheduling logic

¢ 1.5 KB storage cost for a 24-core, 4-channel system

Integrated Memory Partitioning and Scheduling (IMPS)
¢ A single bit per request
¢ Scheduler prioritizes based on this single bit

Muralidhara et al., iMemory Channel Partitioning, 06 MI1CR OO 2

Performance of Channel Partitioning

Averaged over 240 workloads

1.15

(D)

5980

c 11 A A m FRFCF!
g E l L m ATLAS
N 2 1.05
e ® = TCM
cec 1
Z % m MCP

>0.95 -

N m IMPS

0.9

Better system performance than the best previous scheduler
at lower hardware cost

73

Combining Multiple Interference Control Techni

Combined interference control techniques can mitigate
iInterference much more than a single technique alone can
do

The key challenge is:
¢ Deciding what technique to apply when

¢ Partitioning work appropriately between software and
hardware

74

MCP and IMPS: Pros and Cons

Upsides:

¢
¢
¢

Keeps the memory scheduling hardware simple
Combines multiple interference reduction techniques

Can provide performance isolation across applications mapped
to different channels

General idea of partitioning can be extended to smaller
granularities in the memory hierarchy: banks, subarrays, etc.

Downsides:
¢ Reacting is difficult if workload changes behavior after

profiling

¢ Overhead of moving pages between channels restricts benefits

75

More on Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu,
Mahmut Kandemir, and Thomas Moscibroda,

"Reducing Memory Interference in Multicore Systems via
Application -Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011. Slides (pptx)

Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning

Sai Prashanth Muralidhara Lavanya Subramanian Onur Mutlu
Pennsylvania State University Carnegie Mellon University Carnegie Mellon University

smuralid@cse.psu.edu Isubrama@ece.cmu.edu onur@cmu.edu

Mahmut Kandemir Thomas Moscibroda
Pennsylvania State University Microsoft Research Asia
kandemir@cse.psu.edu moscitho@microsoft.com

76

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx

Fundamental Interference Control Techniqu

A Goal: to reduce/control inter -thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

77

Fairness via Source Throttling

Eiman Ebrahimi, ChangJoo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Confiqurable and High -Performance

Fairness Substrate for Multi___ -Core Memory Systems"
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS),

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)

EST ASPLOR010 Talk

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/ebrahimi_asplos10_talk.pdf

Many Shared Resources

Shared Memory
Resources

.- Chip Boundary

SAFARI 79

The Problem with

Independent interference control mechanisms In
caches, interconnect, and memory can contradict
each other

Explicitly coordinating mechanisms for different
resources requires complex implementation

How do we enable fair sharing of the entire
memory system by controlling interference in a
coordinated manner?

SAFARI 80

C

Source Throttling: A Fairness Substrate

Key idea: Manage inter-thread interference at the cores
(sources), not at the shared resources

Dynamically estimate unfairnessin the memory system
Feed back this information into a controller

Throttl e coreso0O mecondngly acces

¢ Whom to throttle and by how much depends on performance
target (throughput, fairness, per -thread QoS etc)

¢ E.qg., if unfairness > system -software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

Ebr ahi miFairmdss vaa Saurce Thirotting 0 A SIBL OBQAQAZ S 6

81

Fairness via Source Throttling (FST)

Two components (interval-based)

Run-time unfairness evaluation (in hardware)

¢ Dynamically estimates the unfairness (application slowdowns)
In the memory system

¢ Estimates which application is slowing down which other

Dynamic request throttling (hardware or software)

¢ Adjusts how aggressively each core makes requests to the
shared resources

¢ Throttles down request rates of cores causing unfairness
Limit miss buffers, limit injection rate

82

Fairness via Source Throttling (F&I9r ugs

Interval 1 Interval 2 Interval 3

Tim)e
Co ok
Slowdown
Estimation
EST e e
Unfairness Estimate
Runtim ’ .
Un?aitrneess Appslowes! ’ Dynamic
. App-interfering Request Throttling
Evaluation ’
1- Estimating system unfairness If (Unfairness Estimate >Target)
2- Find app. with the highest {
slowdown (App -slowest) 1-Throttle down App -interfering
3- Find app. causing most (limit injection rate and parallelism)
interference for App -slowest 2-Throttle up App -slowest
(App -interfering) }

Dynamic Request Throttling

Goal: Adjust how aggressively each core makes requests to
the shared memory system

Mechanisms:

¢ Miss Status Holding Register (MSHR) quota

Controls the number of concurrent requests accessing shared
resources from each application

¢ Request injection frequency

Controls how often memory requests are issued to the last level
cache from the MSHRs

84

Dynamic Request Throttling

Throttling level assigned to each core determines both

MSHR quotaand request injection rate

Total # of
MSHRs: 12§

Throttling level MSHR quota Request Injection
Rate
100% 128 Every cycle
50% 64 Every other cycle
25% 32 Once every 4 cycles
— 10% 12 Once every 10
cycles
2% 6 Once every 20
cycles
4% 5 Once every 25
cycles
3% 3 Once every 30

~n/~lac

85

System Software Support

Different fairness objectives can be configured by
system software

¢ Keep maximum slowdown in check
Estimated Max Slowdown < Target Max Slowdown

¢ Keep slowdown of particular applications in check to achieve a
particular performance target

Estimated Slowdown(i) < Target Slowdown(i)

Support for thread priorities

¢ Weighted Slowdown(i) =
Estimated Slowdown(i) x Weight(i)

SAFARI 86

Source Throttling Results: Takeaways

Source throttling alone provides better performance than a
combination of Asmarto memor

¢ Decisions made at the memory scheduler and the cache
sometimes contradict each other

Nei ther source throttling al
provides the best performance

Combined approachesare even more powerful
¢ Source throttling and resource-based interference control

SAFARI 81

Source Throttling: Ups and Downs

Advantages

+ Core/request throttling is easy to implement: no need to
change the memory scheduling algorithm

+ Can be a general way of handling shared resource
contention

+ Can reduce overall load/contention in the memory system

Disadvantages
- Requires slowdown estimations A difficult to estimate
- Thresholds can become difficult to optimize
A throughput loss due to too much throttling
A can be difficult t