
Computer Architecture
Lecture 15:

Multi-Core Cache Management

Prof. Onur Mutlu
ETH Zürich
Fall 2017

15 November 2017

Summary of Last Two Weeks
n Approaches to mitigate and control memory interference,

provide QoS
q Request Scheduling
q Source Throttling
q Data Mapping
q Thread Scheduling

n Programming Heterogeneous Systems

n Discussion

2

Today
n Shared Cache Management

n Making Caching More Effective

3

Before That…
n Let’s take a broader view of what we have done so far

q https://safari.ethz.ch/architecture/doku.php

n 14 lectures
q All cutting edge yet fundamental topics
q All research areas, ongoing

n 2 labs

n 3 homeworks

n Many readings (hopefully)

4

Any Feedback or Thoughts/Ideas
n Please email me directly

q omutlu@gmail.com

n I am always interested in:
q Any type of feedback about the course
q Suggestions for better learning on your part
q Any ideas you might have on any related topic

n If you want to do research in any of the covered topics or
any topic in Comp Arch, HW/SW Interaction & related areas
q We have many projects and a great environment to perform

top-notch research
q So, talk with me (email, in-person, WhatsApp, etc.)

5

Multi-Core Caching Issues

6

Multi-Core Issues in Caching
n Multi-core

q More pressure on the memory/cache hierarchy à cache efficiency a
lot more important

q Private versus shared caching
q Providing fairness/QoS in shared multi-core caches
q How to handle shared data between cores
q How to organize/connect caches:

n Non-uniform cache access and cache interconnect design

n Placement/insertion
q Identifying what is most profitable to insert into cache
q Minimizing dead/useless blocks

n Replacement
q Cost-aware: which block is most profitable to keep?

7

Cache Coherence
n Basic question: If multiple processors cache the same

block, how do they ensure they all see a consistent state?

8

P1 P2

x

Interconnection Network

Main Memory

1000

The Cache Coherence Problem

9

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

1000

1000

The Cache Coherence Problem

10

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

ld r2, x

1000

1000 1000

The Cache Coherence Problem

11

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

1000

10002000

The Cache Coherence Problem

12

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

1000

10002000

ld r5, x

Should NOT
load 1000

Cache Coherence: Whose Responsibility?
n Software

q Can the programmer ensure coherence if caches are invisible to
software?

q What if the ISA provided the following instruction?
n FLUSH-LOCAL A: Flushes/invalidates the cache block containing address A from a

processor’s local cache
n When does the programmer need to FLUSH-LOCAL an address?

q What if the ISA provided the following instruction?
n FLUSH-GLOBAL A: Flushes/invalidates the cache block containing address A from all

other processors’ caches
n When does the programmer need to FLUSH-GLOBAL an address?

n Hardware
q Simplifies software’s job
q One idea: Invalidate all other copies of block A when a processor writes

to it
13

Snoopy Cache Coherence
n Caches “snoop” (observe) each other’s write/read

operations
n A simple protocol:

14

n Write-through, no-
write-allocate
cache

n Actions: PrRd,
PrWr, BusRd,
BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--

Multi-core Issues in Caching
n How does the cache hierarchy change in a multi-core system?
n Private cache: Cache belongs to one core (a shared block can be in

multiple caches)
n Shared cache: Cache is shared by multiple cores

15

CORE 0 CORE 1 CORE 2 CORE 3

L2
CACHE

L2
CACHE

L2
CACHE

DRAM MEMORY CONTROLLER

L2
CACHE

CORE 0 CORE 1 CORE 2 CORE 3

DRAM MEMORY CONTROLLER

L2
CACHE

Shared Caches Between Cores
n Advantages:

q High effective capacity
q Dynamic partitioning of available cache space

n No fragmentation due to static partitioning
q Easier to maintain coherence (a cache block is in a single location)
q Shared data and locks do not ping pong between caches

n Disadvantages
q Slower access
q Cores incur conflict misses due to other cores’ accesses

n Misses due to inter-core interference
n Some cores can destroy the hit rate of other cores

q Guaranteeing a minimum level of service (or fairness) to each core is harder
(how much space, how much bandwidth?)

16

Shared Caches: How to Share?
n Free-for-all sharing

q Placement/replacement policies are the same as a single core
system (usually LRU or pseudo-LRU)

q Not thread/application aware
q An incoming block evicts a block regardless of which threads

the blocks belong to

n Problems
q Inefficient utilization of cache: LRU is not the best policy
q A cache-unfriendly application can destroy the performance of

a cache-friendly application
q Not all applications benefit equally from the same amount of

cache: free-for-all might prioritize those that do not benefit
q Reduced performance, reduced fairness

17

Handling Shared Caches
n Controlled cache sharing

q Approach 1: Design shared caches but control the amount of
cache allocated to different cores

q Approach 2: Design “private” caches but spill/receive data
from one cache to another

n More efficient cache utilization
q Minimize the wasted cache space

n by keeping out useless blocks
n by keeping in cache blocks that have maximum benefit
n by minimizing redundant data

18

Controlled Cache Sharing: Examples
n Utility based cache partitioning

q Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-
Performance, Runtime Mechanism to Partition Shared Caches,” MICRO
2006.

q Suh et al., “A New Memory Monitoring Scheme for Memory-Aware
Scheduling and Partitioning,” HPCA 2002.

n Fair cache partitioning
q Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor

Architecture,” PACT 2004.

n Shared/private mixed cache mechanisms
q Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in

CMPs,” HPCA 2009.
q Hardavellas et al., “Reactive NUCA: Near-Optimal Block Placement and

Replication in Distributed Caches,” ISCA 2009.
19

Efficient Cache Utilization: Examples
n Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA

2005.

n Qureshi et al., “Adaptive Insertion Policies for High Performance
Caching,” ISCA 2007.

n Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to
Address both Cache Pollution and Thrashing,” PACT 2012.

n Pekhimenko et al., “Base-Delta-Immediate Compression: Practical
Data Compression for On-Chip Caches,” PACT 2012.

20

Controlled Shared Caching

21

Hardware-Based Cache
Partitioning

22

Utility Based Shared Cache Partitioning
n Goal: Maximize system throughput
n Observation: Not all threads/applications benefit equally from

caching à simple LRU replacement not good for system
throughput

n Idea: Allocate more cache space to applications that obtain the
most benefit from more space

n The high-level idea can be applied to other shared resources as
well.

n Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches,” MICRO 2006.

n Suh et al., “A New Memory Monitoring Scheme for Memory-
Aware Scheduling and Partitioning,” HPCA 2002.

23

Marginal Utility of a Cache Way

24

Utility Ua
b = Misses with a ways – Misses with b ways

Low Utility
High Utility

Saturating Utility

Num ways from 16-way 1MB L2

M
is

se
s

pe
r 1

00
0

in
st

ru
ct

io
ns

Utility Based Shared Cache Partitioning Motivation

25

Num ways from 16-way 1MB L2

M
is

se
s

pe
r 1

00
0

in
st

ru
ct

io
ns

 (M
PK

I) equake
vpr

LRU

UTIL
Improve performance by giving more cache to
the application that benefits more from cache

Utility Based Cache Partitioning (III)

26

Three components:

q Utility Monitors (UMON) per core

q Partitioning Algorithm (PA)

q Replacement support to enforce partitions

I$

D$
Core1

I$

D$
Core2Shared

L2 cache

Main Memory

UMON1 UMON2PA

1. Utility Monitors
q For each core, simulate LRU policy using a separate tag

store called ATD (auxiliary tag directory/store)
q Hit counters in ATD to count hits per recency position
q LRU is a stack algorithm: hit counts è utility

E.g. hits(2 ways) = H0+H1

27

MTD (Main Tag Store)

Set B

Set E

Set G

Set A

Set C
Set D

Set F

Set H

ATD
Set B

Set E

Set G

Set A

Set C
Set D

Set F

Set H

++ + +
(MRU)H0 H1 H2…H15(LRU)

Utility Monitors

28

Dynamic Set Sampling
q Extra tags incur hardware and power overhead
q Dynamic Set Sampling reduces overhead [Qureshi, ISCA’06]
q 32 sets sufficient (analytical bounds)
q Storage < 2kB/UMON

29

MTD

ATD Set B

Set E

Set G

Set A

Set C
Set D

Set F

Set H

++++
(MRU)H0 H1 H2…H15(LRU)

Set B

Set E

Set G

Set A

Set C
Set D

Set F

Set H

Set B

Set E

Set G

Set A

Set C
Set D

Set F

Set H

Set B
Set E
Set G

UMON (Dynamic
Set Sampling)

Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 2005.

2. Partitioning Algorithm
q Evaluate all possible partitions and select the best

q With a ways to core1 and (16-a) ways to core2:
Hitscore1 = (H0 + H1 + … + Ha-1) ---- from UMON1
Hitscore2 = (H0 + H1 + … + H16-a-1) ---- from UMON2

q Select a that maximizes (Hitscore1 + Hitscore2)

q Partitioning done once every N million cycles

30

3. Enforcing Partitions: Way Partitioning

31

Way partitioning support: [Suh+ HPCA’02, Iyer ICS’04]
1. Each line has core-id bits

2. On a miss, count ways_occupied in set by miss-causing app

ways_occupied < ways_given

Yes No

Victim is the LRU line
from other app

Victim is the LRU line
from miss-causing app

Performance Metrics
n Three metrics for performance:

1. Weighted Speedup (default metric)
è perf = IPC1/SingleIPC1 + IPC2/SingleIPC2
è correlates with system throughput [Eyerman+, IEEE Micro’08]

2. Throughput
è perf = IPC1 + IPC2
è can be unfair to low-IPC application

3. Hmean-fairness
è perf = hmean(IPC1/SingleIPC1, IPC2/SingleIPC2)
è balances fairness and performance

32

Weighted Speedup Results for UCP

33

IPC Results for UCP

34

UCP improves average throughput by 17%

Any Problems with UCP So Far?
- Scalability to many cores

n Time complexity of partitioning low for two cores
(number of possible partitions ≈ number of ways)

n Possible partitions increase exponentially with cores

n For a 32-way cache, possible partitions:
q 4 cores à 6545
q 8 cores à 15.4 million

n Problem NP hard à need scalable partitioning algorithm

35

Greedy Algorithm [Stone+ ToC’92]
n Goal: Minimize overall number of misses
n Greedy Algorithm (GA) allocates 1 block to the app that has

the max utility for one block. Repeat till all blocks allocated
n Provides optimal partitioning when utility curves are convex

n Pathological behavior
for non-convex curves
q Lookahead of only 1 block

36Stone et al., “Optimal Partitioning of Cache Memory,” IEEE ToC 1992.

Problem with Greedy Algorithm

n Problem: GA considers benefit only from the immediate
block. Hence, it fails to exploit large gains from looking ahead

37

0

10
20

30

40

50
60

70

80
90

100

0 1 2 3 4 5 6 7 8

A
B

In each iteration, the
utility for 1 block:

U(A) = 10 misses
U(B) = 0 misses

Blocks assigned

M
is

se
s

All blocks assigned to
A, even if B has same
miss reduction with
fewer blocks

Lookahead Algorithm
n Marginal Utility (MU) = Utility per cache resource

q MUa
b = Ua

b/(b-a)

n GA considers MU for 1 block.
n LA (Lookahead Algorithm) considers MU for all possible

allocations

n Select the app that has the max value for MU.
Allocate it as many blocks required to get max MU

n Repeat until all blocks are assigned

38

Lookahead Algorithm Example

39

Time complexity ≈ ways2/2 (512 ops for 32-ways)

0

10
20

30

40

50
60

70

80
90

100

0 1 2 3 4 5 6 7 8

A
B

Iteration 1:
MU(A) = 10/1 block
MU(B) = 80/3 blocks

B gets 3 blocks

Result: A gets 5 blocks and B gets 3 blocks (Optimal)

Next five iterations:
MU(A) = 10/1 block
MU(B) = 0

A gets 1 blockBlocks assigned

M
is

se
s

UCP Results

40

Four cores sharing a 2MB 32-way L2

Mix2
(swm-glg-mesa-prl)

Mix3
(mcf-applu-art-vrtx)

Mix4
(mcf-art-eqk-wupw)

Mix1
(gap-applu-apsi-gzp)

LA performs similar to EvalAll, with low time-complexity

LRU
UCP(Greedy)
UCP(Lookahead)
UCP(EvalAll)

Utility Based Cache Partitioning
n Advantages over LRU

+ Improves system throughput
+ Better utilizes the shared cache

n Disadvantages
- Fairness, QoS?

n Limitations
- Scalability: Partitioning limited to ways. What if you have

numWays < numApps?
- Scalability: How is utility computed in a distributed cache?
- What if past behavior is not a good predictor of utility?

41

Fair Shared Cache Partitioning
n Goal: Equalize the slowdowns of multiple threads sharing

the cache
n Idea: Dynamically estimate slowdowns due to sharing and

assign cache blocks to balance slowdowns
q Approximate slowdown with change in miss rate

q Kim et al., “Fair Cache Sharing and Partitioning in a Chip
Multiprocessor Architecture,” PACT 2004.

42

Dynamic Fair Caching Algorithm

43

P1:

P2:

P1:

P2:

Target Partition

MissRate alone

P1:

P2:

MissRate shared

Repartitioning
interval

44

Dynamic Fair Caching Algorithm

1st Interval P1:20%

P2: 5%

MissRate alone

Repartitioning
interval

P1:

P2:

MissRate shared
P1:20%

P2:15%

MissRate shared

P1:256KB

P2:256KB

Target Partition

45

Dynamic Fair Caching Algorithm

Repartition!

Evaluate
Slowdown
P1: 20% / 20%
P2: 15% / 5%

P1:20%

P2: 5%

MissRate alone

Repartitioning
interval

P1:20%

P2:15%

MissRate shared

P1:256KB

P2:256KB

Target Partition
P1:192KB

P2:320KB

Target Partition

Partition
granularity:
64KB

46

Dynamic Fair Caching Algorithm

2nd Interval P1:20%

P2: 5%

MissRate alone

Repartitioning
interval

P1:20%

P2:15%

MissRate shared
P1:20%

P2:15%

MissRate shared
P1:20%

P2:10%

MissRate shared

P1:192KB

P2:320KB

Target Partition

47

Dynamic Fair Caching Algorithm

Repartition!

Evaluate
Slowdown
P1: 20% / 20%
P2: 10% / 5%

P1:20%

P2: 5%

MissRate alone

Repartitioning
interval

P1:20%

P2:15%

MissRate shared
P1:20%

P2:10%

MissRate shared

P1:192KB

P2:320KB

Target Partition
P1:128KB

P2:384KB

Target Partition

48

Dynamic Fair Caching Algorithm

3rd Interval P1:20%

P2: 5%

MissRate alone

Repartitioning
interval

P1:20%

P2:10%

MissRate shared

P1:128KB

P2:384KB

Target Partition

P1:20%

P2:10%

MissRate shared
P1:25%

P2: 9%

MissRate shared

49

Dynamic Fair Caching Algorithm

Repartition! Do Rollback if:
P2: Δ<Trollback
Δ=MRold-MRnew

P1:20%

P2: 5%

MissRate alone

Repartitioning
interval

P1:20%

P2:10%

MissRate shared
P1:25%

P2: 9%

MissRate shared

P1:128KB

P2:384KB

Target Partition
P1:192KB

P2:320KB

Target Partition

Advantages/Disadvantages of the Approach
n Advantages

+ Reduced starvation
+ Better average throughput
+ Block granularity partitioning

n Disadvantages and Limitations
- Alone miss rate estimation can be incorrect
- Scalable to many cores?
- Is this the best (or a good) fairness metric?
- Does this provide performance isolation in cache?

50

Software-Based Shared Cache
Partitioning

51

Software-Based Shared Cache Management
n Assume no hardware support (demand based cache sharing, i.e.

LRU replacement)
n How can the OS best utilize the cache?

n Cache sharing aware thread scheduling
q Schedule workloads that “play nicely” together in the cache

n E.g., working sets together fit in the cache
n Requires static/dynamic profiling of application behavior
n Fedorova et al., “Improving Performance Isolation on Chip

Multiprocessors via an Operating System Scheduler,” PACT 2007.

n Cache sharing aware page coloring
q Dynamically monitor miss rate over an interval and change

virtual to physical mapping to minimize miss rate
n Try out different partitions

52

OS Based Cache Partitioning
n Lin et al., “Gaining Insights into Multi-Core Cache Partitioning: Bridging

the Gap between Simulation and Real Systems,” HPCA 2008.
n Cho and Jin, “Managing Distributed, Shared L2 Caches through OS-

Level Page Allocation,” MICRO 2006.

n Static cache partitioning
q Predetermines the number of cache blocks allocated to each

program at the beginning of its execution
q Divides shared cache to multiple regions and partitions cache

regions through OS page address mapping
n Dynamic cache partitioning

q Adjusts cache quota among processes dynamically
q Page re-coloring
q Dynamically changes processes’ cache usage through OS page

address re-mapping
53

Page Coloring
n Physical memory divided into colors
n Colors map to different cache sets
n Cache partitioning

q Ensure two threads are allocated
pages of different colors

54

Thread A

Thread B

Cache
Way-1 Way-n…………

Memory page

Page Coloring

virtual page numberVirtual address page offset

physical page numberPhysical address Page offset

Address translation

Cache tag Block offsetSet indexCache address

Physically indexed cache

page color bits

… …

OS control

=

•Physically indexed caches are divided into multiple regions (colors).
•All cache lines in a physical page are cached in one of those regions (colors).

OS can control the page color of a virtual page through address mapping
(by selecting a physical page with a specific value in its page color bits).

Static Cache Partitioning using Page Coloring

… …...

……
…

……
…

Physically indexed cache

…
……

……
…

Physical pages are grouped to page bins
according to their page color1

2
3
4

…

i+2

i
i+1

…
Process 1

1
2
3
4

…

i+2

i
i+1

…
Process 2

OS address m
apping

Shared cache is partitioned between two processes through address mapping.

Cost: Main memory space needs to be partitioned, too.

Allocated color

Dynamic Cache Partitioning via Page Re-Coloring

page color table

……

N - 1

0

1

2

3

n Page re-coloring:
q Allocate page in new color
q Copy memory contents
q Free old page

Allocated colors

� Pages of a process are organized into linked lists
by their colors.

� Memory allocation guarantees that pages are
evenly distributed into all the lists (colors) to
avoid hot points.

Dynamic Partitioning in a Dual-Core System

Init: Partition the cache as (8:8)

Run current partition (P0:P1) for one epoch

finished

Try one epoch for each of the two neighboring
partitions: (P0 – 1: P1+1) and (P0 + 1: P1-1)

Choose next partitioning with best policy
metrics measurement (e.g., cache miss rate)

No

Yes
Exit

Experimental Environment

n Dell PowerEdge1950
q Two-way SMP, Intel dual-core Xeon 5160
q Shared 4MB L2 cache, 16-way
q 8GB Fully Buffered DIMM

n Red Hat Enterprise Linux 4.0
q 2.6.20.3 kernel
q Performance counter tools from HP (Pfmon)
q Divide L2 cache into 16 colors

Performance – Static & Dynamic

� Aim to minimize combined miss rate
� For RG-type, and some RY-type:

� Static partitioning outperforms dynamic partitioning

� For RR- and RY-type, and some RY-type
� Dynamic partitioning outperforms static partitioning

Lin et al., “Gaining Insights into Multi-Core Cache Partitioning: Bridging the Gap
between Simulation and Real Systems,” HPCA 2008.

Software vs. Hardware Cache Management
n Software advantages

+ No need to change hardware
+ Easier to upgrade/change algorithm (not burned into hardware)

n Disadvantages
- Large granularity of partitioning (page-based versus way/block)
- Limited page colors à reduced performance per application

(limited physical memory space!), reduced flexibility
- Changing partition size has high overhead à page mapping

changes
- Adaptivity is slow: hardware can adapt every cycle (possibly)
- Not enough information may be exposed to software (e.g.,

number of misses due to inter-thread conflict)

61

Private/Shared Caching

62

Private/Shared Caching
n Goal: Achieve the benefits of private caches (low latency,

performance isolation) while sharing cache capacity across
cores

n Example: Adaptive spill/receive caching

n Idea: Start with a private cache design (for performance
isolation), but dynamically steal space from other cores that
do not need all their private caches
q Some caches can spill their data to other cores’ caches

dynamically

n Qureshi, “Adaptive Spill-Receive for Robust High-
Performance Caching in CMPs,” HPCA 2009.

63

Revisiting Private Caches on Multi-Core

Private caches avoid the need for shared interconnect
++ fast latency, tiled design, performance isolation

Core A
I$ D$

CACHE A

Core B
I$ D$

CACHE B

Core C
I$ D$

CACHE C

Core D
I$ D$

CACHE D
Memory

Problem: When one core needs more cache and other core
has spare cache, private-cache based systems cannot share capacity

Cache Line Spilling – Cooperative Caching

Spill evicted line from one cache to neighbor cache
- Co-operative caching (CC) [Chang+ ISCA’06]

Problem with CC:
1. Performance depends on the parameter (spill probability)
2. All caches spill as well as receive è Limited improvement

Cache A Cache B Cache C Cache D

Spill

Goal: Robust High-Performance Capacity Sharing with Negligible Overhead

Chang and Sohi, “Cooperative Caching for Chip Multiprocessors,” ISCA 2006.

Spill-Receive Architecture

Each Cache is either a Spiller or Receiver but not both
- Lines from spiller cache are spilled to one of the receivers
- Evicted lines from receiver cache are discarded

What is the best N-bit binary string that maximizes the performance of Spill
Receive Architecture è Dynamic Spill Receive (DSR)

Cache A Cache B Cache C Cache D

Spill

S/R =1
(Spiller cache)

S/R =0
(Receiver cache)

S/R =1
(Spiller cache)

S/R =0
(Receiver cache)

Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in CMPs,” HPCA 2009.

67

Spiller-sets

Follower Sets

Receiver-sets

Dynamic Spill-Receive via “Set Dueling”

Divide the cache in three:
– Spiller sets
– Receiver sets
– Follower sets (winner of spiller,

receiver)

n-bit PSEL counter
misses to spiller-sets: PSEL--
misses to receiver-set: PSEL++

MSB of PSEL decides policy for
Follower sets:
– MSB = 0, Use spill
– MSB = 1, Use receive

PSEL
-

miss

+
miss

MSB = 0?
YES No

Use Recv Use spill

monitor è choose è apply
(using a single counter)

68

Dynamic Spill-Receive Architecture

Cache A Cache B Cache C Cache D
Set X

Set Y

AlwaysSpill

AlwaysRecv

-

+

Miss in Set X
in any cache
Miss in Set Y
in any cache

PSEL B PSEL C PSEL DPSEL A

Decides policy for all sets of Cache A (except X and Y)

Each cache learns whether it should act as a spiller or receiver

69

Experimental Setup

q Baseline Study:
n 4-core CMP with in-order cores
n Private Cache Hierarchy: 16KB L1, 1MB L2
n 10 cycle latency for local hits, 40 cycles for remote hits

q Benchmarks:
n 6 benchmarks that have extra cache: “Givers” (G)
n 6 benchmarks that benefit from more cache: “Takers” (T)
n All 4-thread combinations of 12 benchmarks: 495 total

Five types of workloads: G4T0 G3T1 G2T2 G1T3 G0T4

70

Results for Weighted Speedup

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Gmean-G4T0 Gmean-G3T1 Gmean-G2T2 Gmean-G1T3 Gmean-G0T4 Avg (All 495)

W
ei
gh

te
d
 S

pe
ed

up

Shared (LRU)
Baseline(NoSpill)
DSR
CC(Best)

On average, DSR improves weighted speedup by 13%

Distributed Caches

71

Caching for Parallel Applications

72

core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

Data placement determines performance
Goal: place data on chip close to where they are used

cache
slice

Handling Shared Data in Private Caches
n Shared data and locks ping-pong between processors if

caches are private
-- Increases latency to fetch shared data/locks
-- Reduces cache efficiency (many invalid blocks)
-- Scalability problem: maintaining coherence across a large

number of private caches is costly

n How to do better?
q Idea: Store shared data and locks only in one special core’s

cache. Divert all critical section execution to that core/cache.
n Essentially, a specialized core for processing critical sections
n Suleman et al., “Accelerating Critical Section Execution with

Asymmetric Multi-Core Architectures,” ASPLOS 2009.

73

Non-Uniform Cache Access
n Problem: Large caches take a long time to access
n Wire delay

q Closeby blocks can be accessed faster, but furthest blocks determine
the worst-case access time

n Idea: Variable latency access time in a single cache
n Partition cache into pieces

q Each piece has different latency
q Which piece does an address map to?

n Static: based on bits in address
n Dynamic: any address can map to any piece

q How to locate an address?
q Replacement and placement policies?

n Kim et al., “An adaptive, non-uniform cache structure for wire-delay
dominated on-chip caches,” ASPLOS 2002.

74

Multi-Core Cache Efficiency: Bandwidth Filters

n Caches act as a filter that reduce memory bandwidth
requirement
q Cache hit: No need to access memory
q This is in addition to the latency reduction benefit of caching
q GPUs use caches to reduce memory BW requirements

n Efficient utilization of cache space becomes more important
with multi-core
q Memory bandwidth is more valuable

n Pin count not increasing as fast as # of transistors
q 10%/year vs. 2x every 2 years

q More cores put more pressure on the memory bandwidth

n How to make the bandwidth filtering effect of caches better?
75

Efficient Cache Utilization

76

Efficient Cache Utilization: Examples
n Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA

2005.

n Qureshi et al., “Adaptive Insertion Policies for High Performance
Caching,” ISCA 2007.

n Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to
Address both Cache Pollution and Thrashing,” PACT 2012.

n Pekhimenko et al., “Base-Delta-Immediate Compression: Practical
Data Compression for On-Chip Caches,” PACT 2012.

77

Revisiting Cache Placement (Insertion)
n Is inserting a fetched/prefetched block into the cache

(hierarchy) always a good idea?
q No allocate on write: does not allocate a block on write miss
q How about reads?

n Allocating on a read miss
-- Evicts another potentially useful cache block
+ Incoming block potentially more useful

n Ideally:
q we would like to place those blocks whose caching would be

most useful in the future
q we certainly do not want to cache never-to-be-used blocks

78

Revisiting Cache Placement (Insertion)
n Ideas:

q Hardware predicts blocks that are not going to be used
n Tyson et al., “A Modified Approach to Data Cache Management,”

MICRO 1995.
n Lai et al., “Dead Block Prediction,” ISCA 2001.

q Software (programmer/compiler) marks instructions that touch
data that is not going to be reused
n How does software determine this?

n Streaming versus non-streaming accesses
q If a program is streaming through data, reuse likely occurs only

for a limited period of time
q If such instructions are marked by the software, the hardware

can store them temporarily in a smaller buffer (L0 cache) instead
of the cache

79

Reuse at L2 Cache Level

80

DoA Blocks: Blocks unused between insertion and eviction

For the 1MB 16-way L2, 60% of lines are DoA
è Ineffective use of cache space

(%
) D

oA
 L

in
es

Why Dead on Arrival Blocks?

81

q Streaming data è Never reused. L2 caches don’t help.

q Working set of application greater than cache size

Solution: if working set > cache size, retain some working set

art

M
is

se
s

pe
r 1

00
0

in
st

ru
ct

io
ns

Cache size in MB

mcf

M
is

se
s

pe
r 1

00
0

in
st

ru
ct

io
ns

Cache size in MB

Cache Insertion Policies: MRU vs. LRU

82

a b c d e f g h
MRU LRU

i a b c d e f g

Reference to ‘i’ with traditional LRU policy:

a b c d e f g i

Reference to ‘i’ with LIP (LRU Insertion Policy):

Choose victim. Do NOT promote to MRU

Lines do not enter non-LRU positions unless reused

Other Insertion Policies: Bimodal Insertion

83

if (rand() < e)
Insert at MRU position;

else
Insert at LRU position;

LIP does not age older lines

Infrequently insert lines in MRU position

Let e = Bimodal throttle parameter

For small e , BIP retains thrashing protection of LIP
while responding to changes in working set

Analysis with Circular Reference Model

84

For small e , BIP retains thrashing protection of LIP
while adapting to changes in working set

Policy (a1 a2 a3 … aT)N (b1 b2 b3 … bT)N

LRU 0 0
OPT (K-1)/T (K-1)/T
LIP (K-1)/T 0

BIP (small e) ≈ (K-1)/T ≈ (K-1)/T

Reference stream has T blocks and repeats N times.
Cache has K blocks (K<T and N>>T)

Cache hit rates of two consecutive reference streams:

Analysis with Circular Reference Model

85

LIP and BIP Performance vs. LRU

86

Changes to insertion policy increases misses for
LRU-friendly workloads

LIP BIP(e=1/32)

(%
) R

ed
uc

tio
n

in
 L

2
M

PK
I

Dynamic Insertion Policy (DIP)
n Qureshi et al., “Adaptive Insertion Policies for High-

Performance Caching,” ISCA 2007.

87

Two types of workloads: LRU-friendly or BIP-friendly

DIP can be implemented by:

1. Monitor both policies (LRU and BIP)

2. Choose the best-performing policy

3. Apply the best policy to the cache

Need a cost-effective implementation è Set Sampling

Dynamic Insertion Policy Miss Rate

88

DIP (32 dedicated sets)BIP

(%
) R

ed
uc

tio
n

in
 L

2
M

PK
I

DIP vs. Other Policies

n Qureshi et al., “Adaptive Insertion Policies for High-
Performance Caching,” ISCA 2007.

89

0

5

10

15

20

25

30

35

 (LRU+RND) (LRU+LFU) (LRU+MRU) DIP OPT Double

%
 R

ed
uc

ti
on

 i
n

av
er

ag
e

M
PK

I

DIP OPT Double(2MB)(LRU+RND) (LRU+LFU) (LRU+MRU)

Efficient Cache Utilization: Examples
n Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA

2005.

n Qureshi et al., “Adaptive Insertion Policies for High Performance
Caching,” ISCA 2007.

n Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to
Address both Cache Pollution and Thrashing,” PACT 2012.

n Pekhimenko et al., “Base-Delta-Immediate Compression: Practical
Data Compression for On-Chip Caches,” PACT 2012.

90

The Evicted-Address Filter

Vivek Seshadri, Onur Mutlu, Michael A. Kozuch, and Todd C. Mowry,
"The Evicted-Address Filter: A Unified Mechanism to Address Both

Cache Pollution and Thrashing"
Proceedings of the 21st ACM International Conference on Parallel

Architectures and Compilation Techniques (PACT), Minneapolis, MN,
September 2012. Slides (pptx)

91

Cache	Utilization	is	Important

Core Last-Level	
Cache Memory

Core Core

Core Core

Increasing	contention

Effective	cache	utilization	is	important

Large	latency

92

Reuse	Behavior	of	Cache	Blocks

A B C A B C S T U V W X Y A B C

Different	blocks	have	different	reuse	behavior

Access	Sequence:

High-reuse	block Low-reuse	block

Z

Ideal	Cache A B C

93

Cache	Pollution

H G F E D C B AS H G F E D C BT S H G F E D CU T S H G F E D
MRU LRU

LRU	Policy

Idea:	Predict	reuse	behavior	of	missed	blocks.	Insert	
low-reuse	blocks	at	LRU	position.

H G F E D C B ASTU
MRU LRU

AB AC B A

AS AT S A

Cache

Problem:	Low-reuse	blocks	evict	high-reuse	blocks

94

Cache	Thrashing

H G F E D C B AI H G F E D C BJ I H G F E D CK J I H G F E D

MRU LRU

LRU	Policy A B C D E F G H I J KAB AC B A

Idea:	Insert	at	MRU	position	with	a	very	low	
probability (Bimodal	insertion	policy)

Cache

H G F E D C B AIJK
MRU LRU

AI AJ I A
A	fraction	of	
working	set	
stays	in	cache

Cache

Problem:	High-reuse	blocks	evict	each	other

95Qureshi+,	“Adaptive	insertion	policies	for	high	performance	caching,”	ISCA	2007.

Handling	Pollution	and	Thrashing
Need	to	address	both	pollution	and	thrashing	
concurrently

Cache	Thrashing
Need	to	control	the	number	of	blocks	inserted	with	
high	priority	into	the	cache

Cache	Pollution
Need	to	distinguish	high-reuse	blocks	from	low-
reuse	blocks

96

Reuse	Prediction

Miss Missed-block
High	reuse

Low	reuse

?

Keep	track	of	the	reuse	behavior	of	every	cache	
block	in	the	system

Impractical
1. High	storage	overhead
2. Look-up	latency

97

Approaches	to	Reuse	Prediction
Use	program	counter	or	memory	region	information.

BA TS

PC	1 PC	2

BA TS

PC	1 PC	2 PC	1

PC	2

C C

U U

1.	Group	Blocks 2.	Learn	group	
behavior 3.	Predict	reuse

1. Same	group	→ same	reuse	behavior
2. No	control	over	number	of	high-reuse	blocks

98

Per-block	Reuse	Prediction
Use	recency	of	eviction	to	predict	reuse

A
Time

Time	of	eviction

A

Accessed	soon	
after	eviction

S
Time

S

Accessed	long	time	
after	eviction

99

Evicted-Address	Filter	(EAF)

Cache

EAF
(Addresses	of	recently	evicted	blocks)

Evicted-block	address

Miss Missed-block	address

In	EAF?Yes No
MRU LRU

High	Reuse	 Low	Reuse	

100

Naïve	Implementation:	Full	Address	Tags

EAF

1. Large	storage	overhead
2. Associative	lookups	– High	energy	

Recently	
evicted	address

Need	not	be	
100%	accurate

?

101

Low-Cost	Implementation:	Bloom	Filter

EAF

Implement	EAF	using	a	Bloom	Filter
Low	storage	overhead	+	energy

Need	not	be	
100%	accurate

?

102

Bloom Filters (From Lecture 1)

103Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Y

Bloom	Filter
Compact	representation	of	a	set

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

1. Bit	vector
2. Set	of	hash	functions

H1 H2

H1 H2

X

1 11

InsertTest
ZW

Remove

X Y

May	remove	
multiple	addressesClearüû False	positive

104

Inserted	Elements: X Y

EAF	using	a	Bloom	Filter
EAF

Insert

Test

Evicted-block	
address

Remove
FIFO	address	

Missed-block	address

Bloom	Filter

Remove
If	present

when	full

Clear

ü û

ü

û1

2
when	full

Bloom-filter	EAF:	4x	reduction	in	storage	overhead,	
1.47%	compared	to	cache	size 105

EAF-Cache:	Final	Design

Cache
Bloom	Filter

Counter

1

2

3

Cache	eviction

Cache	miss

Counter	reaches	max

Insert address	into	filter
Increment counter

Test if	address	is	present	in	filter
Yes,	insert	at	MRU. No,	insert	with	BIP

Clear filter	and	counter

106

EAF:	Advantages

Cache
Bloom	Filter

Counter

1. Simple	to	implement

2. Easy	to	design	and	verify

3. Works	with	other	techniques	(replacement	policy)

Cache	eviction

Cache	miss

107

EAF	Performance	– Summary

0%

5%

10%

15%

20%

25%

1-Core 2-Core 4-Core

Pe
rf
or
m
an

ce
	Im

pr
ov
em

en
t	o

ve
r	L
RU TA-DIP TA-DRRIP RTB MCT

SHIP EAF D-EAF

108

Comparison	with	Prior	Works
Addressing	Cache	Pollution

- No	control	on	number	of	blocks	inserted	with	high	
priority	⟹	Thrashing

Run-time	Bypassing	(RTB)	– Johnson+	ISCA’97
- Memory	region	based	reuse	prediction

Single-usage	Block	Prediction	(SU)	– Piquet+	ACSAC’07
Signature-based	Hit	Prediction	(SHIP)	– Wu+	MICRO’11
- Program	counter	based	reuse	prediction

Miss	Classification	Table	(MCT)	– Collins+	MICRO’99
- One	most	recently	evicted	block

109

Comparison	with	Prior	Works
Addressing	Cache	Thrashing

- No	mechanism	to	filter	low-reuse	blocks	⟹	Pollution

TA-DIP	– Qureshi+	ISCA’07,	Jaleel+	PACT’08
TA-DRRIP	– Jaleel+	ISCA’10
- Use	set	dueling	to	determine	thrashing	applications

110

-10%

0%

10%

20%

30%

40%

50%

60%
W
ei
gh
te
d	
Sp

ee
du

p	
Im

pr
ov
em

en
t	o

ve
r	

LR
U

Workload	Number	(135	workloads)

LRU

EAF

SHIP

D-EAF

4-Core:	Performance

111

Effect	of	Cache	Size

0%

5%

10%

15%

20%

25%

1MB 2MB 4MB 8MB 2MB 4MB 8MB 16MB

2-Core 4-Core

W
ei
gh
te
d	
Sp

ee
du

p	
Im

pr
ov
em

en
t	

ov
er
	L
RU

SHIP EAF D-EAF

112

Effect	of	EAF	Size

0%

5%

10%

15%

20%

25%

30%

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6W
ei
gh
te
d	
Sp
ee
du

p	
	Im

pr
ov
em

en
t	O

ve
r	L
RU

#	Addresses	in	EAF	/	#	Blocks	in	Cache

1	Core 2	Core 4	Core

113

Other	Results	in	Paper

• EAF	orthogonal	to	replacement	policies
– LRU,	RRIP	– Jaleel+	ISCA’10

• Performance	improvement	of	EAF	increases	with	
increasing	memory	latency

• EAF	performs	well	on	four	different	metrics
– Performance	and	fairness

• Alternative	EAF-based	designs	perform	comparably	
– Segmented	EAF
– Decoupled-clear	EAF

114

More on Evicted Address Filter Cache
n Vivek Seshadri, Onur Mutlu, Michael A. Kozuch, and Todd C. Mowry,

"The Evicted-Address Filter: A Unified Mechanism to Address
Both Cache Pollution and Thrashing"
Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques (PACT), Minneapolis, MN,
September 2012. Slides (pptx) Source Code

115

Efficient Cache Utilization: Examples
n Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA

2005.

n Qureshi et al., “Adaptive Insertion Policies for High Performance
Caching,” ISCA 2007.

n Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to
Address both Cache Pollution and Thrashing,” PACT 2012.

n Pekhimenko et al., “Base-Delta-Immediate Compression: Practical
Data Compression for On-Chip Caches,” PACT 2012.

116

Cache Compression

117

Motivation	for	Cache	Compression
Significant	redundancy	in	data:

118

0x00000000

How	can	we	exploit	this	redundancy?
–Cache	compression	 helps
–Provides	effect	of	a	larger	cache	without	
making	it	physically	larger

0x0000000B 0x00000003 0x00000004 …

Background	on	Cache	Compression

• Key	requirements:
– Fast (low	decompression	latency)
– Simple (avoid	complex	hardware	changes)
– Effective (good	compression	ratio)

119

CPU
L2	

Cache
UncompressedCompressedDecompressionUncompressed

L1	
Cache

Hit

Summary	of	Major	Works

120

Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero ü ü û

Summary	of	Major	Works

121

Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero ü ü û
Frequent	Value û û ü

Summary	of	Major	Works

122

Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero ü ü û
Frequent	Value û û ü
Frequent	Pattern û û/ü ü

Summary	of	Major	Works

123

Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero ü ü û
Frequent	Value û û ü
Frequent	Pattern û û/ü ü
BΔI ü ü ü

Base-Delta-Immediate
Cache Compression

Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Philip B. Gibbons,
Michael A. Kozuch, and Todd C. Mowry,

"Base-Delta-Immediate Compression: Practical Data Compression
for On-Chip Caches"

Proceedings of the 21st ACM International Conference on Parallel
Architectures and Compilation Techniques (PACT), Minneapolis, MN,

September 2012. Slides (pptx)
124

Executive	Summary
• Off-chip	memory	latency	is	high

– Large	caches	can	help,	but	at	significant	cost	
• Compressing	data	in	cache	enables	larger	cache	at	low	
cost

• Problem:	Decompression	is	on	the	execution	critical	path	
• Goal:	Design	a	new	compression	scheme	that	has	
1.	low	decompression	latency,		2.	low	cost,	3.	high	compression	ratio		

• Observation:Many	cache	lines	have	low	dynamic	range	
data

• Key	Idea:	Encode	cachelines as	a	base	+	multiple	differences
• Solution:	Base-Delta-Immediate	compression	with	low	
decompression	latency	and	high	compression	ratio	
– Outperforms	three	state-of-the-art	compression	mechanisms	

125

Key	Data	Patterns	in	Real	Applications

126

0x00000000 0x00000000 0x00000000 0x00000000 …

0x000000FF 0x000000FF 0x000000FF 0x000000FF …

0x00000000 0x0000000B 0x00000003 0x00000004 …

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 …

Zero	Values:	initialization,		sparse	matrices,	NULL	pointers

Repeated	Values:	common	initial	values,	adjacent	pixels

Narrow	Values:	small	values	stored	in	a	big	data	type

Other	Patterns:	pointers	to	the	same	memory	region

How	Common	Are	These	Patterns?

0%

20%

40%

60%

80%

100%
lib
qu

an
tu
m
	

lb
m
	

m
cf
	

tp
ch
17
	

sje
ng
	

om
ne
tp
p	

tp
ch
2	

sp
hi
nx
3	

xa
la
nc
bm

k	
bz
ip
2	

tp
ch
6	

le
sli
e3
d	

ap
ac
he

	
gr
om

ac
s	

as
ta
r	

go
bm

k	
so
pl
ex
	

gc
c	

hm
m
er
	

w
rf
	

h2
64
re
f	

ze
us
m
p	

ca
ct
us
AD

M
	

Ge
m
sF
DT

D	

Av
er
ag
e

Ca
ch
e	
Co

ve
ra
ge
	(%

)

Zero
Repeated	Values
Other	Patterns

127

SPEC2006,	databases,	web	workloads,	2MB	L2	cache
“Other	Patterns”	include	Narrow	Values

43%	of	the	cache	lines	belong	to	key	patterns

Key	Data	Patterns	in	Real	Applications

128

0x00000000 0x00000000 0x00000000 0x00000000 …

0x000000FF 0x000000FF 0x000000FF 0x000000FF …

0x00000000 0x0000000B 0x00000003 0x00000004 …

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 …

Zero	Values:	initialization,		sparse	matrices,	NULL	pointers

Repeated	Values:	common	initial	values,	adjacent	pixels

Narrow	Values:	small	values	stored	in	a	big	data	type

Other	Patterns:	pointers	to	the	same	memory	region

Low	Dynamic	Range:

Differences	between	values	are	significantly	
smaller	than	the	values	themselves

32-byte	Uncompressed	Cache	Line

Key	Idea:	Base+Delta (B+Δ)	Encoding

129

0xC04039C0 0xC04039C8 0xC04039D0 … 0xC04039F8

4	bytes

0xC04039C0
Base

0x00

1	byte

0x08

1	byte

0x10

1	byte

… 0x38 12-byte	
Compressed	Cache	Line

20	bytes	savedü Fast	Decompression:	
vector	addition

ü Simple	Hardware:	
arithmetic	and	comparison

ü Effective:	good	compression	ratio

Can	We	Do	Better?

• Uncompressible	cache	line	(with	a	single	base):	

• Key	idea:	
Use	more	bases,	e.g.,	two	instead	of	one

• Pro:	
– More	cache	lines	can	be	compressed

• Cons:
– Unclear	how	to	find	these	bases	efficiently
– Higher	overhead	(due	to	additional	bases)

130

0x00000000 0x09A40178 0x0000000B 0x09A4A838 …

B+Δ with	Multiple	Arbitrary	Bases

131

1

1.2

1.4

1.6

1.8

2

2.2

GeoMean

Co
m
pr
es
sio

n	
Ra

tio
1 2 3 4 8 10 16

ü 2	bases	– the	best	option	based	on	evaluations

How	to	Find	Two	Bases	Efficiently?
1. First	base	- first	element	in	the	cache	line

2. Second	base	- implicit	base	of	0

Advantages	over	2	arbitrary	bases:
– Better	compression	ratio
– Simpler	compression	logic

132

ü Base+Delta part

ü Immediate	part

Base-Delta-Immediate	(BΔI) Compression

B+Δ (with	two	arbitrary	bases) vs.	BΔI

133

1
1.2
1.4
1.6
1.8
2

2.2
lb
m
	

w
rf
	

hm
m
er
	

sp
hi
nx
3	

tp
ch
17

	
lib
qu

an
tu
m
	

le
sli
e3
d	

gr
om

ac
s	

sje
ng
	

m
cf
	

h2
64

re
f	

tp
ch
2	

om
ne

tp
p	

ap
ac
he

	
bz
ip
2	

xa
la
nc
bm

k	
as
ta
r	

tp
ch
6	

ca
ct
us
AD

M
	

gc
c	

so
pl
ex
	

go
bm

k	
ze
us
m
p	

Ge
m
sF
DT

D	

Ge
oM

ea
nCo

m
pr
es
sio

n	
Ra

tio B+Δ	(2	bases) BΔI

Average	compression	ratio	is	close,	but	BΔI is	simpler

BΔI	Cache	Compression	Implementation

• Decompressor Design
– Low	latency

• Compressor	Design
– Low	cost	and	complexity

• BΔI	Cache	Organization
– Modest	complexity

134

Δ0B0

BΔI	Decompressor Design

135

Δ1 Δ2 Δ3

Compressed	Cache	Line

V0 V1 V2 V3

+ +

Uncompressed	Cache	Line

+ +

B0 Δ0

B0 B0 B0 B0

Δ1 Δ2 Δ3

V0
V1 V2 V3

Vector	addition

BΔI	Compressor	Design

136

32-byte	Uncompressed	Cache	Line

8-byte	B0
1-byte	Δ

CU

8-byte	B0
2-byte	Δ

CU

8-byte	B0
4-byte	Δ

CU

4-byte	B0
1-byte	Δ

CU

4-byte	B0
2-byte	Δ

CU

2-byte	B0
1-byte	Δ

CU

Zero
CU

Rep.
Values
CU

Compression	Selection	Logic	(based	on	compr.	size)

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

Compression	Flag	
&	Compressed	
Cache	Line

CFlag &
CCL

Compressed	Cache	Line

BΔI	Compression	Unit:	8-byte	B0 1-byte	Δ

137

32-byte	Uncompressed	Cache	Line

V0 V1 V2 V3

8	bytes

- - - -

B0=
V0

V0 B0				 B0				 B0				 B0				

V0 V1 V2 V3

Δ0 Δ1 Δ2 Δ3

Within	1-byte	
range?

Within	1-byte	
range?

Within	1-byte	
range?

Within	1-byte	
range?

Is	every	element	within	1-byte	range?

Δ0B0 Δ1 Δ2 Δ3B0 Δ0 Δ1 Δ2 Δ3

Yes No

BΔI	Cache	Organization

138

Tag0 Tag1

… …

… …

Tag	Storage:
Set0

Set1

Way0 Way1

Data0

…

…

Set0

Set1

Way0 Way1

…

Data1

…

32	bytesData	Storage:
Conventional 2-way	cache	with	32-byte	cache	lines

BΔI: 4-way	cache	with	8-byte	segmented	data

Tag0 Tag1

… …

… …

Tag	Storage:

Way0 Way1 Way2 Way3

… …

Tag2 Tag3

… …

Set0

Set1

üTwice	as	many	tags

üC	- Compr.	encoding	bitsC

Set0

Set1

… … … … … … … …

S0S0 S1 S2 S3 S4 S5 S6 S7

… … … … … … … …

8	bytes

üTags	map	to	multiple	adjacent	segments2.3%	overhead	for	2	MB	cache

Qualitative	Comparison	with	Prior	Work
• Zero-based	designs

– ZCA	[Dusser+,	ICS’09]:	zero-content	augmented	cache
– ZVC	[Islam+,	PACT’09]:	zero-value	cancelling
– Limited	applicability	(only	zero	values)

• FVC [Yang+,	MICRO’00]:	frequent	value	compression
– High	decompression	latency	and	complexity

• Pattern-based	compression	designs
– FPC	[Alameldeen+,	ISCA’04]:	frequent	pattern	compression

• High	decompression	latency	(5	cycles)	and	complexity
– C-pack	[Chen+,	T-VLSI	Systems’10]:	practical	implementation	of	
FPC-like	algorithm

• High	decompression	latency	(8	cycles)

139

Cache	Compression	Ratios

BΔI	achieves	the	highest	compression	ratio

140

1
1.2
1.4
1.6
1.8
2

2.2
lb
m
	

w
rf
	

hm
m
er
	

sp
hi
nx
3	

tp
ch
17

	
lib
qu

an
tu
m
	

le
sli
e3
d	

gr
om

ac
s	

sje
ng
	

m
cf
	

h2
64

re
f	

tp
ch
2	

om
ne

tp
p	

ap
ac
he

	
bz
ip
2	

xa
la
nc
bm

k	
as
ta
r	

tp
ch
6	

ca
ct
us
AD

M
	

gc
c	

so
pl
ex
	

go
bm

k	
ze
us
m
p	

Ge
m
sF
DT

D	

Ge
oM

ea
nCo
m
pr
es
sio

n	
Ra

tio ZCA FVC	 FPC BΔI
1.53

SPEC2006,	databases,	web	workloads,	2MB	L2

Single-Core:	IPC	and	MPKI

141

0.9
1

1.1
1.2
1.3
1.4
1.5

N
or
m
al
ize

d	
IP
C

L2	cache	size

Baseline	(no	compr.)
BΔI

8.1%
5.2%

5.1%
4.9%

5.6%
3.6%

0
0.2
0.4
0.6
0.8
1

N
or
m
al
ize

d	
M
PK

I	
L2	cache	size

Baseline	(no	compr.)
BΔI
16%

24%
21%

13%
19%14%

BΔI	achieves	the	performance	of	a	2X-size	cache
Performance	improves	due	to	the	decrease	in	MPKI

Multi-Core	Workloads
• Application	classification	based	on	

Compressibility:	effective	cache	size	increase
(Low	Compr.	(LC)	<	1.40,	High	Compr.	(HC)	>=	1.40)

Sensitivity:	performance	gain	with	more	cache	
(Low	Sens.	(LS)	<	1.10,	High	Sens.	(HS)	>=	1.10;	512kB	->	2MB)

• Three	classes	of	applications:
– LCLS,	HCLS,	HCHS,		no	LCHS applications

• For	2-core	- randommixes	of	each	possible	class	pairs		
(20	each,	120	total	workloads)

142

Multi-Core:	Weighted	Speedup

BΔI	performance	improvement	is	the	highest	(9.5%)

4.5%
3.4% 4.3%

10.9%

16.5%
18.0%

9.5%

0.95

1.00

1.05

1.10

1.15

1.20

LCLS	- LCLS LCLS	- HCLS HCLS	- HCLS LCLS	- HCHS HCLS	- HCHS HCHS	- HCHS

Low	Sensitivity High	Sensitivity GeoMean

N
or
m
al
ize

d	
W
ei
gh
te
d	
Sp
ee
du

p ZCA FVC FPC BΔI

If	at	least	one	application	is	sensitive,	then	the	
performance	improves 143

Other	Results	in	Paper

• IPC	comparison	against	upper	bounds
– BΔI	almost	achieves	performance	of	the	2X-size	cache

• Sensitivity	study	of	having	more	than	2X	tags
– Up	to	1.98	average	compression	ratio

• Effect	on	bandwidth consumption
– 2.31X	decrease	on	average

• Detailed	quantitative	comparison	with	prior	work
• Cost	analysis	of	the	proposed	changes

– 2.3%	L2	cache	area	increase

144

Conclusion
• A	new	Base-Delta-Immediate compression	mechanism	
• Key	insight:	many	cache	lines	can	be	efficiently	
represented	using	base	+	delta	encoding

• Key	properties:
– Low latency	decompression	
– Simple hardware	implementation
– High	compression	ratio with	high	coverage	

• Improves cache	hit	ratio	and	performance of	both	single-
core	and	multi-core	workloads
– Outperforms	state-of-the-art	cache	compression	techniques:	
FVC	and	FPC

145

Readings on Memory Compression (I)
n Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Philip B. Gibbons,

Michael A. Kozuch, and Todd C. Mowry,
"Base-Delta-Immediate Compression: Practical Data
Compression for On-Chip Caches"
Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques (PACT), Minneapolis, MN,
September 2012. Slides (pptx) Source Code

146

Readings on Memory Compression (II)
n Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur

Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"Linearly Compressed Pages: A Low-Complexity, Low-Latency
Main Memory Compression Framework"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning
Session Slides (pptx) (pdf)] Poster (pptx) (pdf)]

147

Readings on Memory Compression (III)
n Gennady Pekhimenko, Tyler Huberty, Rui Cai, Onur Mutlu, Phillip P.

Gibbons, Michael A. Kozuch, and Todd C. Mowry,
"Exploiting Compressed Block Size as an Indicator of Future
Reuse"
Proceedings of the 21st International Symposium on High-Performance
Computer Architecture (HPCA), Bay Area, CA, February 2015.
[Slides (pptx) (pdf)]

148

Readings on Memory Compression (IV)
n Gennady Pekhimenko, Evgeny Bolotin, Nandita Vijaykumar, Onur Mutlu,

Todd C. Mowry, and Stephen W. Keckler,
"A Case for Toggle-Aware Compression for GPU Systems"
Proceedings of the 22nd International Symposium on High-Performance
Computer Architecture (HPCA), Barcelona, Spain, March 2016.
[Slides (pptx) (pdf)]

149

Readings on Memory Compression (VI)
n Nandita Vijaykumar, Gennady Pekhimenko, Adwait Jog, Abhishek

Bhowmick, Rachata Ausavarungnirun, Chita Das, Mahmut Kandemir, Todd
C. Mowry, and Onur Mutlu,
"A Case for Core-Assisted Bottleneck Acceleration in GPUs:
Enabling Flexible Data Compression with Assist Warps"
Proceedings of the 42nd International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

150

Computer Architecture
Lecture 15:

Multi-Core Cache Management

Prof. Onur Mutlu
ETH Zürich
Fall 2017

15 November 2017

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

Predictable Performance Again:
Strong Memory Service Guarantees

153

Remember MISE?
n Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,

and Onur Mutlu,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

154

Extending Slowdown Estimation to Caches
n How do we extend the MISE model to include shared cache

interference?

n Answer: Application Slowdown Model

n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

155

Quantifying	and	Controlling	Impact	of	
Interference	at	Shared	Caches	and	Main	Memory

Lavanya	Subramanian,	Vivek Seshadri,	
Arnab	Ghosh,	Samira	Khan,	Onur Mutlu

156

Application	Slowdown	Model

Shared	Cache	and	Memory	Contention

157

Main
Memory

Shared
Cache

Capacity

CoreCore

CoreCore

Slowdown = Request Service Rate Alone

Request Service Rate Shared

MISE [HPCA’13]

Cache	Capacity	Contention

158

Main
Memory

Shared
Cache

Cache	
Access	Rate

Priority

Core

Core

Applications	evict	each	others’	blocks	
from	the	shared	cache

Estimating	Cache	and	Memory	Slowdowns

159

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache	
Service	Rate

Memory	
Service	Rate

Service	Rates	vs.	Access	Rates

160

Request	service	and	access	rates	
are	tightly	coupled	

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache	
Service	Rate

Cache	Access	
Rate

The	Application	Slowdown	Model

161

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Shared

Alone

 Rate Access Cache
 Rate Access CacheSlowdown =

Cache	Access	
Rate

Real	System	Studies:
Cache	Access	Rate	vs.	Slowdown	

162

1
1.2
1.4
1.6
1.8
2

2.2

1 1.2 1.4 1.6 1.8 2 2.2

Sl
ow

do
w
n

Cache	Access	Rate	Ratio

astar
lbm
bzip2

Challenge

How	to	estimate	alone	cache	access	rate?

163

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache	
Access	Rate

Auxiliary
Tag Store

Priority

Auxiliary	Tag	Store

164

Main
Memory

Shared
Cache

Cache	
Access	Rate

Auxiliary
Tag Store

Priority

Core

Core

Still	in	auxiliary	
tag	storeAuxiliary

Tag StoreAuxiliary	tag	store	tracks	such	contention	misses

Accounting	for	Contention	Misses

• Revisiting	alone	memory	request	service	rate

Cycles	serving	contention	misses	should	not	
count	as	high	priority	cycles

165

 CyclesPriority High #
EpochsPriority High During Requests #

nApplicatioan of Rate ServiceRequest Alone

=

Alone	Cache	Access	Rate	Estimation

166

Cycles Contention Cache# - CyclesPriority High #
EpochsPriority High During Requests #

nApplicatioan of Rate Access Cache

Alone =

Cache	Contention	Cycles:	Cycles	spent	serving	contention	misses

Time ServiceMemory Average
 x Misses Contention # Cycles Contention Cache =

From	auxiliary	tag	store
when	given	high	priority

Measured	when	given	
high	priority

Application	Slowdown	Model	(ASM)

167

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache	
Access	Rate

Shared

Alone

 Rate Access Cache
 Rate Access CacheSlowdown =

Previous	Work	on	Slowdown	
Estimation

• Previous	work	on	slowdown	estimation
– STFM (Stall	Time	Fair	Memory)	Scheduling	[Mutlu et	al.,	MICRO	’07]	

– FST (Fairness	via	Source	Throttling)	[Ebrahimi et	al.,	ASPLOS	’10]

– Per-thread	Cycle	Accounting	[Du	Bois	et	al.,	HiPEAC ’13]

• Basic	Idea:

Shared

Alone

 TimeExecution
 TimeExecution Slowdown =

Count	interference	experienced	by	each	request	à Difficult

168

ASM’s	estimates	are	much	more	coarse	grained	à Easier

Model	Accuracy	Results

Average	error	of	ASM’s	slowdown	estimates:	10%	
169

Select	applications

0
20
40
60
80
100
120
140
160

ca
lc
ul
ix

po
vr
ay

to
nt
o

na
m
d

de
al
II

sje
ng

pe
rlb

e…
go
bm

k
xa
la
nc
b…

sp
hi
nx
3

Ge
m
sF
…

om
ne

tp
p

lb
m

le
sli
e3
d

so
pl
ex

m
ilc lib
q

m
cf

N
PB

bt
N
PB

ft
N
PB

is
N
PB

ua

Av
er
ag
e

Sl
ow

do
w
n	
Es
tim

at
io
n	

Er
ro
r	(
in
	%
)

FST PTCA ASM

Leveraging	ASM’s	Slowdown	Estimates

• Slowdown-aware	resource	allocation	for	high	
performance	and	fairness

• Slowdown-aware	resource	allocation	to	bound	
application	slowdowns

• VM	migration	and	admission	control	schemes	
[VEE	’15]

• Fair	billing	schemes	in	a	commodity	cloud

170

Cache	Capacity	Partitioning

171

Main
Memory

Shared
Cache

Cache	
Access	Rate

Core

Core

Goal:	Partition	the	shared	cache	among	
applications	to	mitigate	contention

Cache	Capacity	Partitioning

172

Main
Memory

Core

Core

Way	
2

Set	0
Set	1
Set	2
Set	3
..

Set	N-1

Way	
0

Way	
1

Way	
3

Previous	partitioning	schemes	optimize	for	miss	count
Problem:	Not	aware	of	performance	and	slowdowns

ASM-Cache:	Slowdown-aware	
Cache	Way	Partitioning

• Key	Requirement:	Slowdown	estimates	for	all	
possible	way	partitions

• Extend	ASM	to	estimate	slowdown	for	all	
possible	cache	way	allocations

• Key	Idea:	Allocate	each	way	to	the	application	
whose	slowdown	reduces	the	most

173

Memory	Bandwidth	Partitioning

174

Main
Memory

Shared
Cache

Cache	
Access	Rate

Core

Core

Goal:	Partition	the	main	memory	bandwidth	
among	applications	to	mitigate	contention

ASM-Mem:	Slowdown-aware	
Memory	Bandwidth	Partitioning

• Key	Idea: Allocate	high	priority	proportional	to	
an	application’s	slowdown

• Application	i’s requests	given	highest	priority	
at	the	memory	controller	for	its	fraction

175

å
=

j
j

i
i Slowdown

Slowdown FractionPriority High

Coordinated	Resource	
Allocation	Schemes

176

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache	capacity-aware	
bandwidth	allocation

1.	Employ	ASM-Cache	to	partition	cache	capacity	
2.	Drive	ASM-Mem with	slowdowns	from	ASM-Cache	

Fairness	and	Performance	Results

177

16-core	system	
100	workloads

Significant	fairness	benefits	across	different	channel	counts

4

5

6

7

8

9

10

11

1 2

Fa
irn

es
s	

(L
ow

er
	is
	b
et
te
r)

Number	of	Channels

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2

Pe
rf
or
m
an

ce

Number	of	Channels

FRFCFS-NoPart
FRFCFS+UCP
TCM+UCP
PARBS+UCP
ASM-Cache-Mem

Summary
• Problem:	Uncontrolled	memory	interference	cause	high	

and	unpredictable	application	slowdowns
• Goal:	Quantify	and	control	slowdowns
• Key	Contribution:

– ASM:	An	accurate	slowdown	estimation	model
– Average	error	of	ASM:	10%

• Key	Ideas:
– Shared	cache	access	rate	is	a	proxy	for	performance
– Cache	Access	Rate	Alone can	be	estimated	by	minimizing	memory	

interference	and	quantifying	cache	interference
• Applications	of	Our	Model

– Slowdown-aware	cache	and	memory	management	to	achieve	
high	performance,	fairness	and	performance	guarantees

• Source	Code	Released	in	January	2016
178

More on Application Slowdown Model
n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and

Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

179

Computer Architecture
Lecture 15:

Multi-Core Cache Management

Prof. Onur Mutlu
ETH Zürich
Fall 2017

15 November 2017

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

