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Summary of Last Two Weeks
n Approaches to mitigate and control memory interference, 

provide QoS
q Request Scheduling
q Source Throttling
q Data Mapping
q Thread Scheduling

n Programming Heterogeneous Systems

n Discussion
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Today
n Shared Cache Management

n Making Caching More Effective
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Before That…
n Let’s take a broader view of what we have done so far

q https://safari.ethz.ch/architecture/doku.php

n 14 lectures
q All cutting edge yet fundamental topics
q All research areas, ongoing

n 2 labs

n 3 homeworks

n Many readings (hopefully)
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Any Feedback or Thoughts/Ideas
n Please email me directly

q omutlu@gmail.com

n I am always interested in:
q Any type of feedback about the course
q Suggestions for better learning on your part
q Any ideas you might have on any related topic

n If you want to do research in any of the covered topics or 
any topic in Comp Arch, HW/SW Interaction & related areas
q We have many projects and a great environment to perform 

top-notch research
q So, talk with me (email, in-person, WhatsApp, etc.)
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Multi-Core Caching Issues
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Multi-Core Issues in Caching
n Multi-core

q More pressure on the memory/cache hierarchy à cache efficiency a 
lot more important

q Private versus shared caching
q Providing fairness/QoS in shared multi-core caches
q How to handle shared data between cores
q How to organize/connect caches:

n Non-uniform cache access and cache interconnect design

n Placement/insertion
q Identifying what is most profitable to insert into cache
q Minimizing dead/useless blocks

n Replacement
q Cost-aware: which block is most profitable to keep?
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Cache Coherence 
n Basic question: If multiple processors cache the same 

block, how do they ensure they all see a consistent state?
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The Cache Coherence Problem

9

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

1000

1000



The Cache Coherence Problem
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The Cache Coherence Problem
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The Cache Coherence Problem
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Cache Coherence: Whose Responsibility?
n Software

q Can the programmer ensure coherence if caches are invisible to 
software?

q What if the ISA provided the following instruction?
n FLUSH-LOCAL A: Flushes/invalidates the cache block containing address A from a 

processor’s local cache
n When does the programmer need to FLUSH-LOCAL an address?

q What if the ISA provided the following instruction?
n FLUSH-GLOBAL A: Flushes/invalidates the cache block containing address A from all 

other processors’ caches
n When does the programmer need to FLUSH-GLOBAL an address?

n Hardware
q Simplifies software’s job
q One idea: Invalidate all other copies of block A when a processor writes 

to it
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Snoopy Cache Coherence
n Caches “snoop” (observe) each other’s write/read 

operations
n A simple protocol:
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n Write-through, no-
write-allocate 
cache

n Actions: PrRd, 
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Multi-core Issues in Caching
n How does the cache hierarchy change in a multi-core system?
n Private cache: Cache belongs to one core (a shared block can be in 

multiple caches)
n Shared cache: Cache is shared by multiple cores
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Shared Caches Between Cores
n Advantages:

q High effective capacity
q Dynamic partitioning of available cache space

n No fragmentation due to static partitioning
q Easier to maintain coherence (a cache block is in a single location)
q Shared data and locks do not ping pong between caches

n Disadvantages
q Slower access
q Cores incur conflict misses due to other cores’ accesses

n Misses due to inter-core interference
n Some cores can destroy the hit rate of other cores

q Guaranteeing a minimum level of service (or fairness) to each core is harder 
(how much space, how much bandwidth?)
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Shared Caches: How to Share?
n Free-for-all sharing

q Placement/replacement policies are the same as a single core 
system (usually LRU or pseudo-LRU)

q Not thread/application aware
q An incoming block evicts a block regardless of which threads 

the blocks belong to

n Problems
q Inefficient utilization of cache: LRU is not the best policy
q A cache-unfriendly application can destroy the performance of 

a cache-friendly application
q Not all applications benefit equally from the same amount of 

cache: free-for-all might prioritize those that do not benefit
q Reduced performance, reduced fairness
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Handling Shared Caches
n Controlled cache sharing

q Approach 1: Design shared caches but control the amount of 
cache allocated to different cores

q Approach 2: Design “private” caches but spill/receive data 
from one cache to another  

n More efficient cache utilization
q Minimize the wasted cache space 

n by keeping out useless blocks
n by keeping in cache blocks that have maximum benefit
n by minimizing redundant data
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Controlled Cache Sharing: Examples
n Utility based cache partitioning

q Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-
Performance, Runtime Mechanism to Partition Shared Caches,” MICRO 
2006.

q Suh et al., “A New Memory Monitoring Scheme for Memory-Aware 
Scheduling and Partitioning,” HPCA 2002.

n Fair cache partitioning
q Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor 

Architecture,” PACT 2004.

n Shared/private mixed cache mechanisms
q Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in 

CMPs,” HPCA 2009.
q Hardavellas et al., “Reactive NUCA: Near-Optimal Block Placement and 

Replication in Distributed Caches,” ISCA 2009.
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Efficient Cache Utilization: Examples
n Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 

2005.

n Qureshi et al., “Adaptive Insertion Policies for High Performance 
Caching,” ISCA 2007.

n Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to 
Address both Cache Pollution and Thrashing,” PACT 2012.

n Pekhimenko et al., “Base-Delta-Immediate Compression: Practical 
Data Compression for On-Chip Caches,” PACT 2012. 
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Controlled Shared Caching

21



Hardware-Based Cache 
Partitioning
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Utility Based Shared Cache Partitioning
n Goal: Maximize system throughput
n Observation: Not all threads/applications benefit equally from 

caching à simple LRU replacement not good for system 
throughput

n Idea: Allocate more cache space to applications that obtain the 
most benefit from more space

n The high-level idea can be applied to other shared resources as 
well.

n Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition 
Shared Caches,” MICRO 2006.

n Suh et al., “A New Memory Monitoring Scheme for Memory-
Aware Scheduling and Partitioning,” HPCA 2002.
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Marginal Utility of a Cache Way
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Utility Based Shared Cache Partitioning Motivation

25

Num ways from 16-way 1MB L2

M
is

se
s 

pe
r 1

00
0 

in
st

ru
ct

io
ns

 (M
PK

I) equake
vpr

LRU

UTIL
Improve performance by giving more cache to 
the application that benefits more from cache



Utility Based Cache Partitioning (III)
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Three components:

q Utility Monitors (UMON) per core

q Partitioning Algorithm (PA)

q Replacement support to enforce partitions
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1. Utility Monitors
q For each core, simulate LRU policy using a separate tag 

store called ATD (auxiliary tag directory/store) 
q Hit counters in ATD to count hits per recency position
q LRU is a stack algorithm: hit counts è utility 

E.g. hits(2 ways) = H0+H1
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Utility Monitors
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Dynamic Set Sampling
q Extra tags incur hardware and power overhead
q Dynamic Set Sampling reduces overhead [Qureshi, ISCA’06]   
q 32 sets sufficient (analytical bounds)
q Storage < 2kB/UMON
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2. Partitioning Algorithm
q Evaluate all possible partitions and select the best

q With a ways to core1 and (16-a) ways to core2:  
Hitscore1 = (H0 + H1 + … + Ha-1)     ---- from UMON1                
Hitscore2 = (H0 + H1 + … + H16-a-1) ---- from UMON2            

q Select a that maximizes (Hitscore1 + Hitscore2) 

q Partitioning done once every N million cycles  
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3. Enforcing Partitions: Way Partitioning
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Way partitioning support: [Suh+ HPCA’02, Iyer ICS’04] 
1. Each line has core-id bits

2. On a miss, count ways_occupied in set by miss-causing app

ways_occupied < ways_given

Yes No

Victim is the LRU line 
from other app 

Victim is the LRU line 
from miss-causing app



Performance Metrics
n Three metrics for performance:

1. Weighted Speedup (default metric)
è perf =  IPC1/SingleIPC1 + IPC2/SingleIPC2
è correlates with system throughput [Eyerman+, IEEE Micro’08]

2. Throughput 
è perf = IPC1 + IPC2
è can be unfair to low-IPC application

3. Hmean-fairness
è perf =  hmean(IPC1/SingleIPC1, IPC2/SingleIPC2)  
è balances fairness and performance
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Weighted Speedup Results for UCP
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IPC Results for UCP
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UCP improves average throughput by 17% 



Any Problems with UCP So Far?
- Scalability to many cores

n Time complexity of partitioning low for two cores
(number of possible partitions ≈ number of ways)

n Possible partitions increase exponentially with cores   

n For a 32-way cache, possible partitions:
q 4 cores à 6545   
q 8 cores à 15.4 million 

n Problem NP hard à need scalable partitioning algorithm 
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Greedy Algorithm  [Stone+ ToC’92]
n Goal: Minimize overall number of misses
n Greedy Algorithm (GA) allocates 1 block to the app that has 

the max utility for one block. Repeat till all blocks allocated
n Provides optimal partitioning when utility curves are convex

n Pathological behavior                                                     
for non-convex curves 
q Lookahead of only 1 block

36Stone et al., “Optimal Partitioning of Cache Memory,” IEEE ToC 1992.



Problem with Greedy Algorithm

n Problem:  GA considers benefit only from the immediate 
block. Hence, it fails to exploit large gains from looking ahead
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Lookahead Algorithm
n Marginal Utility (MU) = Utility per cache resource 

q MUa
b =  Ua

b/(b-a)

n GA considers MU for 1 block.  
n LA (Lookahead Algorithm) considers MU for all possible 

allocations

n Select the app that has the max value for MU.  
Allocate it as many blocks required to get max MU

n Repeat until all blocks are assigned

38



Lookahead Algorithm Example
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UCP Results
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Utility Based Cache Partitioning
n Advantages over LRU

+ Improves system throughput 
+ Better utilizes the shared cache

n Disadvantages
- Fairness, QoS?

n Limitations
- Scalability: Partitioning limited to ways. What if you have 

numWays < numApps?
- Scalability: How is utility computed in a distributed cache?
- What if past behavior is not a good predictor of utility?
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Fair Shared Cache Partitioning
n Goal: Equalize the slowdowns of multiple threads sharing 

the cache
n Idea: Dynamically estimate slowdowns due to sharing and 

assign cache blocks to balance slowdowns
q Approximate slowdown with change in miss rate 

q Kim et al., “Fair Cache Sharing and Partitioning in a Chip 
Multiprocessor Architecture,” PACT 2004.
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Dynamic Fair Caching Algorithm
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Dynamic Fair Caching Algorithm
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Dynamic Fair Caching Algorithm
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Dynamic Fair Caching Algorithm
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Dynamic Fair Caching Algorithm
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Dynamic Fair Caching Algorithm
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Advantages/Disadvantages of the Approach
n Advantages

+ Reduced starvation
+ Better average throughput
+ Block granularity partitioning 

n Disadvantages and Limitations
- Alone miss rate estimation can be incorrect
- Scalable to many cores?
- Is this the best (or a good) fairness metric?
- Does this provide performance isolation in cache?
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Software-Based Shared Cache 
Partitioning
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Software-Based Shared Cache Management
n Assume no hardware support (demand based cache sharing, i.e. 

LRU replacement)
n How can the OS best utilize the cache?

n Cache sharing aware thread scheduling
q Schedule workloads that “play nicely” together in the cache

n E.g., working sets together fit in the cache
n Requires static/dynamic profiling of application behavior
n Fedorova et al., “Improving Performance Isolation on Chip 

Multiprocessors via an Operating System Scheduler,” PACT 2007.

n Cache sharing aware page coloring
q Dynamically monitor miss rate over an interval and change 

virtual to physical mapping to minimize miss rate
n Try out different partitions
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OS Based Cache Partitioning
n Lin et al., “Gaining Insights into Multi-Core Cache Partitioning: Bridging 

the Gap between Simulation and Real Systems,” HPCA 2008.
n Cho and Jin, “Managing Distributed, Shared L2 Caches through OS-

Level Page Allocation,” MICRO 2006.

n Static cache partitioning
q Predetermines the number of cache blocks allocated to each 

program at the beginning of its execution
q Divides shared cache to multiple regions and partitions cache 

regions through OS page address mapping
n Dynamic cache partitioning

q Adjusts cache quota among processes dynamically 
q Page re-coloring
q Dynamically changes processes’ cache usage through OS page 

address re-mapping
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Page Coloring
n Physical memory divided into colors
n Colors map to different cache sets
n Cache partitioning

q Ensure two threads are allocated 
pages of different colors
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Page Coloring

virtual page numberVirtual address page offset

physical page numberPhysical address Page offset

Address translation

Cache tag Block offsetSet indexCache address

Physically indexed cache

page color bits

… …

OS control

=

•Physically indexed caches are divided into multiple regions (colors).
•All cache lines in a physical page are cached in one of those regions (colors).

OS can control the page color of a virtual page through address mapping 
(by selecting a physical page with a specific value in its page color bits).



Static Cache Partitioning using Page Coloring
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Allocated color

Dynamic Cache Partitioning via Page Re-Coloring

page color table 

……

N - 1

0

1

2

3

n Page re-coloring:
q Allocate page in new color
q Copy memory contents
q Free old page

Allocated colors

� Pages of a process are organized into linked lists 
by their colors.

� Memory allocation guarantees that pages are 
evenly distributed into all the lists (colors) to 
avoid hot points.



Dynamic Partitioning in a Dual-Core System

Init: Partition the cache as (8:8)

Run current partition (P0:P1) for one epoch

finished

Try one epoch for each of the two neighboring
partitions: (P0 – 1: P1+1) and (P0 + 1: P1-1)

Choose next partitioning with best policy 
metrics measurement (e.g., cache miss rate)

No

Yes
Exit



Experimental Environment

n Dell PowerEdge1950
q Two-way SMP, Intel dual-core Xeon 5160
q Shared 4MB L2 cache, 16-way
q 8GB Fully Buffered DIMM

n Red Hat Enterprise Linux 4.0
q 2.6.20.3 kernel
q Performance counter tools from HP (Pfmon)
q Divide L2 cache into 16 colors



Performance – Static & Dynamic

� Aim to minimize combined miss rate
� For RG-type, and some RY-type:

� Static partitioning outperforms dynamic partitioning

� For RR- and RY-type, and some RY-type
� Dynamic partitioning outperforms static partitioning

Lin et al., “Gaining Insights into Multi-Core Cache Partitioning: Bridging the Gap 
between Simulation and Real Systems,” HPCA 2008.



Software vs. Hardware Cache Management
n Software advantages

+ No need to change hardware
+ Easier to upgrade/change algorithm (not burned into hardware)

n Disadvantages
- Large granularity of partitioning (page-based versus way/block)
- Limited page colors à reduced performance per application 

(limited physical memory space!), reduced flexibility
- Changing partition size has high overhead à page mapping 

changes
- Adaptivity is slow: hardware can adapt every cycle (possibly)
- Not enough information may be exposed to software (e.g., 

number of misses due to inter-thread conflict)
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Private/Shared Caching
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Private/Shared Caching
n Goal: Achieve the benefits of private caches (low latency, 

performance isolation) while sharing cache capacity across 
cores

n Example: Adaptive spill/receive caching

n Idea: Start with a private cache design (for performance 
isolation), but dynamically steal space from other cores that 
do not need all their private caches
q Some caches can spill their data to other cores’ caches 

dynamically

n Qureshi, “Adaptive Spill-Receive for Robust High-
Performance Caching in CMPs,” HPCA 2009.

63



Revisiting Private Caches on Multi-Core

Private caches avoid the need for shared interconnect
++ fast latency, tiled design, performance isolation

Core A
I$ D$

CACHE A

Core B
I$ D$

CACHE B

Core C
I$ D$

CACHE C

Core D
I$ D$

CACHE D
Memory

Problem: When one core needs more cache and other core 
has spare cache, private-cache based systems cannot share capacity 



Cache Line Spilling – Cooperative Caching 

Spill evicted line from one cache to neighbor cache
- Co-operative caching (CC)  [ Chang+ ISCA’06]

Problem with CC: 
1. Performance depends on the parameter (spill probability)
2. All caches spill as well as receive è Limited improvement 

Cache A Cache B Cache C Cache D

Spill

Goal:  Robust High-Performance Capacity Sharing with Negligible Overhead

Chang and Sohi, “Cooperative Caching for Chip Multiprocessors,” ISCA 2006.



Spill-Receive Architecture

Each Cache is either a Spiller or Receiver but not both
- Lines from spiller cache are spilled to one of the receivers
- Evicted lines from receiver cache are discarded  

What is the best N-bit binary string that maximizes the performance of Spill 
Receive Architecture è Dynamic Spill Receive (DSR)

Cache A Cache B Cache C Cache D

Spill

S/R =1 
(Spiller cache)

S/R =0 
(Receiver cache)

S/R =1
(Spiller cache)

S/R =0 
(Receiver cache)

Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in CMPs,” HPCA 2009.
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Spiller-sets

Follower Sets

Receiver-sets

Dynamic Spill-Receive via “Set Dueling”

Divide the cache in three:
– Spiller sets
– Receiver sets
– Follower sets (winner of spiller, 

receiver) 

n-bit PSEL counter 
misses to spiller-sets: PSEL--
misses to receiver-set: PSEL++

MSB of PSEL decides policy for 
Follower sets:
– MSB = 0, Use spill
– MSB = 1, Use receive

PSEL
-

miss

+
miss

MSB = 0?
YES No

Use Recv Use spill

monitor è choose è apply
(using a single counter)
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Dynamic Spill-Receive Architecture 

Cache A Cache B Cache C Cache D
Set X

Set Y

AlwaysSpill

AlwaysRecv

-

+

Miss in Set X 
in any cache
Miss in Set Y 
in any cache

PSEL B PSEL C PSEL DPSEL A

Decides policy for all sets of Cache A (except X and Y)

Each cache learns whether it should act as a spiller or receiver
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Experimental Setup

q Baseline Study:
n 4-core CMP with in-order cores
n Private Cache Hierarchy: 16KB L1, 1MB L2
n 10 cycle latency for local hits, 40 cycles for remote hits 

q Benchmarks:
n 6 benchmarks that have extra cache: “Givers” (G) 
n 6 benchmarks that benefit from more cache: “Takers” (T)
n All 4-thread combinations of 12 benchmarks: 495 total  

Five types of workloads: G4T0 G3T1 G2T2 G1T3 G0T4
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Results for Weighted Speedup
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Distributed Caches
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Caching for Parallel Applications
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Handling Shared Data in Private Caches
n Shared data and locks ping-pong between processors if 

caches are private
-- Increases latency to fetch shared data/locks
-- Reduces cache efficiency (many invalid blocks)
-- Scalability problem: maintaining coherence across a large 

number of private caches is costly

n How to do better?
q Idea: Store shared data and locks only in one special core’s 

cache. Divert all critical section execution to that core/cache.
n Essentially, a specialized core for processing critical sections 
n Suleman et al., “Accelerating Critical Section Execution with 

Asymmetric Multi-Core Architectures,” ASPLOS 2009.
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Non-Uniform Cache Access
n Problem: Large caches take a long time to access
n Wire delay

q Closeby blocks can be accessed faster, but furthest blocks determine 
the worst-case access time

n Idea: Variable latency access time in a single cache
n Partition cache into pieces

q Each piece has different latency
q Which piece does an address map to?

n Static: based on bits in address
n Dynamic: any address can map to any piece

q How to locate an address?
q Replacement and placement policies?

n Kim et al., “An adaptive, non-uniform cache structure for wire-delay 
dominated on-chip caches,” ASPLOS 2002.
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Multi-Core Cache Efficiency: Bandwidth Filters

n Caches act as a filter that reduce memory bandwidth 
requirement
q Cache hit: No need to access memory
q This is in addition to the latency reduction benefit of caching
q GPUs use caches to reduce memory BW requirements

n Efficient utilization of cache space becomes more important 
with multi-core
q Memory bandwidth is more valuable

n Pin count not increasing as fast as # of transistors
q 10%/year vs. 2x every 2 years

q More cores put more pressure on the memory bandwidth

n How to make the bandwidth filtering effect of caches better?
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Efficient Cache Utilization
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Efficient Cache Utilization: Examples
n Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 

2005.

n Qureshi et al., “Adaptive Insertion Policies for High Performance 
Caching,” ISCA 2007.

n Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to 
Address both Cache Pollution and Thrashing,” PACT 2012.

n Pekhimenko et al., “Base-Delta-Immediate Compression: Practical 
Data Compression for On-Chip Caches,” PACT 2012. 
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Revisiting Cache Placement (Insertion)
n Is inserting a fetched/prefetched block into the cache 

(hierarchy) always a good idea?
q No allocate on write: does not allocate a block on write miss
q How about reads?

n Allocating on a read miss
-- Evicts another potentially useful cache block
+ Incoming block potentially more useful

n Ideally:
q we would like to place those blocks whose caching would be 

most useful in the future
q we certainly do not want to cache never-to-be-used blocks
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Revisiting Cache Placement (Insertion)
n Ideas:

q Hardware predicts blocks that are not going to be used
n Tyson et al., “A Modified Approach to Data Cache Management,” 

MICRO 1995.
n Lai et al., “Dead Block Prediction,” ISCA 2001.

q Software (programmer/compiler) marks instructions that touch 
data that is not going to be reused
n How does software determine this?

n Streaming versus non-streaming accesses
q If a program is streaming through data, reuse likely occurs only 

for a limited period of time
q If such instructions are marked by the software, the hardware 

can store them temporarily in a smaller buffer (L0 cache) instead 
of the cache
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Reuse at L2 Cache Level

80

DoA Blocks: Blocks unused between insertion and eviction

For the 1MB 16-way L2, 60% of lines are DoA 
è Ineffective use of cache space
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Why Dead on Arrival Blocks?

81

q Streaming data è Never reused. L2 caches don’t help.

q Working set of application greater than cache size

Solution: if working set > cache size, retain some working set
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Cache Insertion Policies: MRU vs. LRU

82

a b c d e f g h
MRU LRU

i a b c d e f g

Reference to ‘i’ with traditional LRU policy:

a b c d e f g i

Reference to ‘i’ with LIP (LRU Insertion Policy):

Choose victim. Do NOT promote to MRU

Lines do not enter non-LRU positions unless reused 



Other Insertion Policies: Bimodal Insertion

83

if  ( rand() < e ) 
Insert at MRU position;

else
Insert at LRU position; 

LIP does not age older lines 

Infrequently insert lines in MRU position 

Let e = Bimodal throttle parameter 

For small e , BIP retains thrashing protection of LIP 
while responding to changes in working set



Analysis with Circular Reference Model

84

For small e , BIP retains thrashing protection of LIP 
while adapting to changes in working set

Policy (a1 a2 a3 … aT)N (b1 b2 b3 … bT)N

LRU 0 0
OPT (K-1)/T (K-1)/T
LIP (K-1)/T 0

BIP (small e) ≈ (K-1)/T ≈ (K-1)/T

Reference stream has T blocks and repeats N times. 
Cache has K blocks (K<T and N>>T)

Cache hit rates of two consecutive reference streams:



Analysis with Circular Reference Model
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LIP and BIP Performance vs. LRU

86

Changes to insertion policy increases misses for 
LRU-friendly workloads

LIP BIP(e=1/32)
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Dynamic Insertion Policy (DIP)
n Qureshi et al., “Adaptive Insertion Policies for High-

Performance Caching,” ISCA 2007.

87

Two types of workloads: LRU-friendly or BIP-friendly 

DIP can be implemented by:

1. Monitor both policies (LRU and BIP)

2. Choose the best-performing policy

3. Apply the best policy to the cache

Need a cost-effective implementation è Set Sampling



Dynamic Insertion Policy Miss Rate
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DIP vs. Other Policies

n Qureshi et al., “Adaptive Insertion Policies for High-
Performance Caching,” ISCA 2007.
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Efficient Cache Utilization: Examples
n Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 

2005.

n Qureshi et al., “Adaptive Insertion Policies for High Performance 
Caching,” ISCA 2007.

n Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to 
Address both Cache Pollution and Thrashing,” PACT 2012.

n Pekhimenko et al., “Base-Delta-Immediate Compression: Practical 
Data Compression for On-Chip Caches,” PACT 2012. 

90



The Evicted-Address Filter

Vivek Seshadri, Onur Mutlu, Michael A. Kozuch, and Todd C. Mowry,
"The Evicted-Address Filter: A Unified Mechanism to Address Both 

Cache Pollution and Thrashing"
Proceedings of the 21st ACM International Conference on Parallel 

Architectures and Compilation Techniques (PACT), Minneapolis, MN, 
September 2012. Slides (pptx)
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Cache	Utilization	is	Important

Core Last-Level	
Cache Memory

Core Core

Core Core

Increasing	contention

Effective	cache	utilization	is	important

Large	latency
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Reuse	Behavior	of	Cache	Blocks

A B C A B C S T U V W X Y A B C

Different	blocks	have	different	reuse	behavior

Access	Sequence:

High-reuse	block Low-reuse	block

Z

Ideal	Cache A B C . . . . .
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Cache	Pollution

H G F E D C B AS H G F E D C BT S H G F E D CU T S H G F E D
MRU LRU

LRU	Policy

Idea:	Predict	reuse	behavior	of	missed	blocks.	Insert	
low-reuse	blocks	at	LRU	position.

H G F E D C B ASTU
MRU LRU

AB AC B A

AS AT S A

Cache

Problem:	Low-reuse	blocks	evict	high-reuse	blocks
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Cache	Thrashing

H G F E D C B AI H G F E D C BJ I H G F E D CK J I H G F E D

MRU LRU

LRU	Policy A B C D E F G H I J KAB AC B A

Idea:	Insert	at	MRU	position	with	a	very	low	
probability (Bimodal	insertion	policy)

Cache

H G F E D C B AIJK
MRU LRU

AI AJ I A
A	fraction	of	
working	set	
stays	in	cache

Cache

Problem:	High-reuse	blocks	evict	each	other

95Qureshi+,	“Adaptive	insertion	policies	for	high	performance	caching,”	ISCA	2007.



Handling	Pollution	and	Thrashing
Need	to	address	both	pollution	and	thrashing	
concurrently

Cache	Thrashing
Need	to	control	the	number	of	blocks	inserted	with	
high	priority	into	the	cache

Cache	Pollution
Need	to	distinguish	high-reuse	blocks	from	low-
reuse	blocks
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Reuse	Prediction

Miss Missed-block
High	reuse

Low	reuse

?

Keep	track	of	the	reuse	behavior	of	every	cache	
block	in	the	system

Impractical
1. High	storage	overhead
2. Look-up	latency
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Approaches	to	Reuse	Prediction
Use	program	counter	or	memory	region	information.

BA TS

PC	1 PC	2

BA TS

PC	1 PC	2 PC	1

PC	2

C C

U U

1.	Group	Blocks 2.	Learn	group	
behavior 3.	Predict	reuse

1. Same	group	→ same	reuse	behavior
2. No	control	over	number	of	high-reuse	blocks
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Per-block	Reuse	Prediction
Use	recency	of	eviction	to	predict	reuse

A
Time

Time	of	eviction

A

Accessed	soon	
after	eviction

S
Time

S

Accessed	long	time	
after	eviction
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Evicted-Address	Filter	(EAF)

Cache

EAF
(Addresses	of	recently	evicted	blocks)

Evicted-block	address

Miss Missed-block	address

In	EAF?Yes No
MRU LRU

High	Reuse	 Low	Reuse	
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Naïve	Implementation:	Full	Address	Tags

EAF

1. Large	storage	overhead
2. Associative	lookups	– High	energy	

Recently	
evicted	address

Need	not	be	
100%	accurate

?
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Low-Cost	Implementation:	Bloom	Filter

EAF

Implement	EAF	using	a	Bloom	Filter
Low	storage	overhead	+	energy

Need	not	be	
100%	accurate

?
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Bloom Filters (From Lecture 1)

103Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.



Y

Bloom	Filter
Compact	representation	of	a	set

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

1. Bit	vector
2. Set	of	hash	functions

H1 H2

H1 H2

X

1 11

InsertTest
ZW

Remove

X Y

May	remove	
multiple	addressesClearüû False	positive

104

Inserted	Elements: X Y



EAF	using	a	Bloom	Filter
EAF

Insert

Test

Evicted-block	
address

Remove
FIFO	address	

Missed-block	address

Bloom	Filter

Remove
If	present

when	full

Clear

ü û

ü

û1

2
when	full

Bloom-filter	EAF:	4x	reduction	in	storage	overhead,	
1.47%	compared	to	cache	size 105



EAF-Cache:	Final	Design

Cache
Bloom	Filter

Counter

1

2

3

Cache	eviction

Cache	miss

Counter	reaches	max

Insert address	into	filter
Increment counter

Test if	address	is	present	in	filter
Yes,	insert	at	MRU. No,	insert	with	BIP

Clear filter	and	counter
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EAF:	Advantages

Cache
Bloom	Filter

Counter

1. Simple	to	implement

2. Easy	to	design	and	verify

3. Works	with	other	techniques	(replacement	policy)

Cache	eviction

Cache	miss

107



EAF	Performance	– Summary
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Comparison	with	Prior	Works
Addressing	Cache	Pollution

- No	control	on	number	of	blocks	inserted	with	high	
priority	⟹	Thrashing

Run-time	Bypassing	(RTB)	– Johnson+	ISCA’97
- Memory	region	based	reuse	prediction

Single-usage	Block	Prediction	(SU)	– Piquet+	ACSAC’07
Signature-based	Hit	Prediction	(SHIP)	– Wu+	MICRO’11
- Program	counter	based	reuse	prediction

Miss	Classification	Table	(MCT)	– Collins+	MICRO’99
- One	most	recently	evicted	block
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Comparison	with	Prior	Works
Addressing	Cache	Thrashing

- No	mechanism	to	filter	low-reuse	blocks	⟹	Pollution

TA-DIP	– Qureshi+	ISCA’07,	Jaleel+	PACT’08
TA-DRRIP	– Jaleel+	ISCA’10
- Use	set	dueling	to	determine	thrashing	applications
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Effect	of	Cache	Size
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Effect	of	EAF	Size
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Other	Results	in	Paper

• EAF	orthogonal	to	replacement	policies
– LRU,	RRIP	– Jaleel+	ISCA’10

• Performance	improvement	of	EAF	increases	with	
increasing	memory	latency

• EAF	performs	well	on	four	different	metrics
– Performance	and	fairness

• Alternative	EAF-based	designs	perform	comparably	
– Segmented	EAF
– Decoupled-clear	EAF
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More on Evicted Address Filter Cache
n Vivek Seshadri, Onur Mutlu, Michael A. Kozuch, and Todd C. Mowry,

"The Evicted-Address Filter: A Unified Mechanism to Address 
Both Cache Pollution and Thrashing"
Proceedings of the 21st International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Minneapolis, MN, 
September 2012. Slides (pptx) Source Code
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Efficient Cache Utilization: Examples
n Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 

2005.

n Qureshi et al., “Adaptive Insertion Policies for High Performance 
Caching,” ISCA 2007.

n Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to 
Address both Cache Pollution and Thrashing,” PACT 2012.

n Pekhimenko et al., “Base-Delta-Immediate Compression: Practical 
Data Compression for On-Chip Caches,” PACT 2012. 
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Cache Compression
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Motivation	for	Cache	Compression
Significant	redundancy	in	data:

118

0x00000000

How	can	we	exploit	this	redundancy?
–Cache	compression	 helps
–Provides	effect	of	a	larger	cache	without	
making	it	physically	larger

0x0000000B 0x00000003 0x00000004 …



Background	on	Cache	Compression

• Key	requirements:
– Fast (low	decompression	latency)
– Simple (avoid	complex	hardware	changes)
– Effective (good	compression	ratio)

119

CPU
L2	

Cache
UncompressedCompressedDecompressionUncompressed

L1	
Cache

Hit



Summary	of	Major	Works
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Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero ü ü û



Summary	of	Major	Works
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Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero ü ü û
Frequent	Value û û ü



Summary	of	Major	Works
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Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero ü ü û
Frequent	Value û û ü
Frequent	Pattern û û/ü ü



Summary	of	Major	Works
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Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero ü ü û
Frequent	Value û û ü
Frequent	Pattern û û/ü ü
BΔI ü ü ü



Base-Delta-Immediate 
Cache Compression

Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Philip B. Gibbons, 
Michael A. Kozuch, and Todd C. Mowry,

"Base-Delta-Immediate Compression: Practical Data Compression 
for On-Chip Caches"

Proceedings of the 21st ACM International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Minneapolis, MN, 

September 2012. Slides (pptx)
124



Executive	Summary
• Off-chip	memory	latency	is	high

– Large	caches	can	help,	but	at	significant	cost	
• Compressing	data	in	cache	enables	larger	cache	at	low	
cost

• Problem:	Decompression	is	on	the	execution	critical	path	
• Goal:	Design	a	new	compression	scheme	that	has	
1.	low	decompression	latency,		2.	low	cost,	3.	high	compression	ratio		

• Observation:Many	cache	lines	have	low	dynamic	range	
data

• Key	Idea:	Encode	cachelines as	a	base	+	multiple	differences
• Solution:	Base-Delta-Immediate	compression	with	low	
decompression	latency	and	high	compression	ratio	
– Outperforms	three	state-of-the-art	compression	mechanisms	
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Key	Data	Patterns	in	Real	Applications

126

0x00000000 0x00000000 0x00000000 0x00000000 …

0x000000FF 0x000000FF 0x000000FF 0x000000FF …

0x00000000 0x0000000B 0x00000003 0x00000004 …

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 …

Zero	Values:	initialization,		sparse	matrices,	NULL	pointers

Repeated	Values:	common	initial	values,	adjacent	pixels

Narrow	Values:	small	values	stored	in	a	big	data	type

Other	Patterns:	pointers	to	the	same	memory	region



How	Common	Are	These	Patterns?

0% 

20% 

40% 

60% 

80% 

100% 
lib
qu

an
tu
m
	

lb
m
	 

m
cf
	 

tp
ch
17
	 

sje
ng
	

om
ne
tp
p	

tp
ch
2	
 

sp
hi
nx
3	

xa
la
nc
bm

k	
bz
ip
2	
 

tp
ch
6	
 

le
sli
e3
d	

ap
ac
he

	
gr
om

ac
s	

as
ta
r	

go
bm

k	
so
pl
ex
	

gc
c	
 

hm
m
er
	

w
rf
	

h2
64
re
f	 

ze
us
m
p	

ca
ct
us
AD

M
	

Ge
m
sF
DT

D	

Av
er
ag
e

Ca
ch
e	
Co

ve
ra
ge
	(%

)

Zero
Repeated	Values
Other	Patterns

127

SPEC2006,	databases,	web	workloads,	2MB	L2	cache
“Other	Patterns”	include	Narrow	Values

43%	of	the	cache	lines	belong	to	key	patterns



Key	Data	Patterns	in	Real	Applications

128

0x00000000 0x00000000 0x00000000 0x00000000 …

0x000000FF 0x000000FF 0x000000FF 0x000000FF …

0x00000000 0x0000000B 0x00000003 0x00000004 …

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 …

Zero	Values:	initialization,		sparse	matrices,	NULL	pointers

Repeated	Values:	common	initial	values,	adjacent	pixels

Narrow	Values:	small	values	stored	in	a	big	data	type

Other	Patterns:	pointers	to	the	same	memory	region

Low	Dynamic	Range:

Differences	between	values	are	significantly	
smaller	than	the	values	themselves



32-byte	Uncompressed	Cache	Line

Key	Idea:	Base+Delta (B+Δ)	Encoding

129

0xC04039C0 0xC04039C8 0xC04039D0 … 0xC04039F8

4	bytes

0xC04039C0
Base

0x00

1	byte

0x08

1	byte

0x10

1	byte

… 0x38 12-byte	
Compressed	Cache	Line

20	bytes	savedü Fast	Decompression:	
vector	addition

ü Simple	Hardware:	
arithmetic	and	comparison

ü Effective:	good	compression	ratio



Can	We	Do	Better?

• Uncompressible	cache	line	(with	a	single	base):	

• Key	idea:	
Use	more	bases,	e.g.,	two	instead	of	one

• Pro:	
– More	cache	lines	can	be	compressed

• Cons:
– Unclear	how	to	find	these	bases	efficiently
– Higher	overhead	(due	to	additional	bases)
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0x00000000 0x09A40178 0x0000000B 0x09A4A838 …



B+Δ with	Multiple	Arbitrary	Bases
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1
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ü 2	bases	– the	best	option	based	on	evaluations



How	to	Find	Two	Bases	Efficiently?
1. First	base	- first	element	in	the	cache	line

2. Second	base	- implicit	base	of	0

Advantages	over	2	arbitrary	bases:
– Better	compression	ratio
– Simpler	compression	logic

132

ü Base+Delta part

ü Immediate	part

Base-Delta-Immediate	(BΔI) Compression



B+Δ (with	two	arbitrary	bases) vs.	BΔI
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BΔI	Cache	Compression	Implementation

• Decompressor Design
– Low	latency

• Compressor	Design
– Low	cost	and	complexity

• BΔI	Cache	Organization
– Modest	complexity
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Δ0B0

BΔI	Decompressor Design
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Δ1 Δ2 Δ3

Compressed	Cache	Line

V0 V1 V2 V3

+ +

Uncompressed	Cache	Line

+ +

B0 Δ0

B0 B0 B0 B0

Δ1 Δ2 Δ3

V0
V1 V2 V3

Vector	addition



BΔI	Compressor	Design
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32-byte	Uncompressed	Cache	Line

8-byte	B0
1-byte	Δ

CU

8-byte	B0
2-byte	Δ

CU

8-byte	B0
4-byte	Δ

CU

4-byte	B0
1-byte	Δ

CU

4-byte	B0
2-byte	Δ

CU

2-byte	B0
1-byte	Δ

CU

Zero
CU

Rep.
Values
CU

Compression	Selection	Logic	(based	on	compr.	size)

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

Compression	Flag	
&	Compressed	
Cache	Line

CFlag &
CCL

Compressed	Cache	Line



BΔI	Compression	Unit:	8-byte	B0 1-byte	Δ
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32-byte	Uncompressed	Cache	Line

V0 V1 V2 V3

8	bytes

- - - -

B0=
V0

V0 B0				 B0				 B0				 B0				

V0 V1 V2 V3

Δ0 Δ1 Δ2 Δ3

Within	1-byte	
range?

Within	1-byte	
range?

Within	1-byte	
range?

Within	1-byte	
range?

Is	every	element	within	1-byte	range?

Δ0B0 Δ1 Δ2 Δ3B0 Δ0 Δ1 Δ2 Δ3

Yes No



BΔI	Cache	Organization

138

Tag0 Tag1

… …

… …

Tag	Storage:
Set0

Set1

Way0 Way1

Data0

…

…

Set0

Set1

Way0 Way1

…

Data1

…

32	bytesData	Storage:
Conventional 2-way	cache	with	32-byte	cache	lines

BΔI: 4-way	cache	with	8-byte	segmented	data

Tag0 Tag1

… …

… …

Tag	Storage:

Way0 Way1 Way2 Way3

… …

Tag2 Tag3

… …

Set0

Set1

üTwice	as	many	tags

üC	- Compr.	encoding	bitsC

Set0

Set1

… … … … … … … …

S0S0 S1 S2 S3 S4 S5 S6 S7

… … … … … … … …

8	bytes

üTags	map	to	multiple	adjacent	segments2.3%	overhead	for	2	MB	cache



Qualitative	Comparison	with	Prior	Work
• Zero-based	designs

– ZCA	[Dusser+,	ICS’09]:	zero-content	augmented	cache
– ZVC	[Islam+,	PACT’09]:	zero-value	cancelling
– Limited	applicability	(only	zero	values)

• FVC [Yang+,	MICRO’00]:	frequent	value	compression
– High	decompression	latency	and	complexity

• Pattern-based	compression	designs
– FPC	[Alameldeen+,	ISCA’04]:	frequent	pattern	compression

• High	decompression	latency	(5	cycles)	and	complexity
– C-pack	[Chen+,	T-VLSI	Systems’10]:	practical	implementation	of	
FPC-like	algorithm

• High	decompression	latency	(8	cycles)
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Cache	Compression	Ratios

BΔI	achieves	the	highest	compression	ratio
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Single-Core:	IPC	and	MPKI
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Multi-Core	Workloads
• Application	classification	based	on	

Compressibility:	effective	cache	size	increase
(Low	Compr.	(LC)	<	1.40,	High	Compr.	(HC)	>=	1.40)

Sensitivity:	performance	gain	with	more	cache	
(Low	Sens.	(LS)	<	1.10,	High	Sens.	(HS)	>=	1.10;	512kB	->	2MB)

• Three	classes	of	applications:
– LCLS,	HCLS,	HCHS,		no	LCHS applications

• For	2-core	- randommixes	of	each	possible	class	pairs		
(20	each,	120	total	workloads)
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Multi-Core:	Weighted	Speedup

BΔI	performance	improvement	is	the	highest	(9.5%)
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Other	Results	in	Paper

• IPC	comparison	against	upper	bounds
– BΔI	almost	achieves	performance	of	the	2X-size	cache

• Sensitivity	study	of	having	more	than	2X	tags
– Up	to	1.98	average	compression	ratio

• Effect	on	bandwidth consumption
– 2.31X	decrease	on	average

• Detailed	quantitative	comparison	with	prior	work
• Cost	analysis	of	the	proposed	changes

– 2.3%	L2	cache	area	increase
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Conclusion
• A	new	Base-Delta-Immediate compression	mechanism	
• Key	insight:	many	cache	lines	can	be	efficiently	
represented	using	base	+	delta	encoding

• Key	properties:
– Low latency	decompression	
– Simple hardware	implementation
– High	compression	ratio with	high	coverage	

• Improves cache	hit	ratio	and	performance of	both	single-
core	and	multi-core	workloads
– Outperforms	state-of-the-art	cache	compression	techniques:	
FVC	and	FPC
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Readings on Memory Compression (I)
n Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Philip B. Gibbons, 

Michael A. Kozuch, and Todd C. Mowry,
"Base-Delta-Immediate Compression: Practical Data 
Compression for On-Chip Caches"
Proceedings of the 21st International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Minneapolis, MN, 
September 2012. Slides (pptx) Source Code
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Readings on Memory Compression (II)
n Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur 

Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"Linearly Compressed Pages: A Low-Complexity, Low-Latency 
Main Memory Compression Framework"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning 
Session Slides (pptx) (pdf)] Poster (pptx) (pdf)] 
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Readings on Memory Compression (III)
n Gennady Pekhimenko, Tyler Huberty, Rui Cai, Onur Mutlu, Phillip P. 

Gibbons, Michael A. Kozuch, and Todd C. Mowry,
"Exploiting Compressed Block Size as an Indicator of Future 
Reuse"
Proceedings of the 21st International Symposium on High-Performance 
Computer Architecture (HPCA), Bay Area, CA, February 2015. 
[Slides (pptx) (pdf)] 
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Readings on Memory Compression (IV)
n Gennady Pekhimenko, Evgeny Bolotin, Nandita Vijaykumar, Onur Mutlu, 

Todd C. Mowry, and Stephen W. Keckler,
"A Case for Toggle-Aware Compression for GPU Systems"
Proceedings of the 22nd International Symposium on High-Performance 
Computer Architecture (HPCA), Barcelona, Spain, March 2016. 
[Slides (pptx) (pdf)] 
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Readings on Memory Compression (VI)
n Nandita Vijaykumar, Gennady Pekhimenko, Adwait Jog, Abhishek 

Bhowmick, Rachata Ausavarungnirun, Chita Das, Mahmut Kandemir, Todd 
C. Mowry, and Onur Mutlu,
"A Case for Core-Assisted Bottleneck Acceleration in GPUs: 
Enabling Flexible Data Compression with Assist Warps"
Proceedings of the 42nd International Symposium on Computer 
Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] 
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We did not cover the following slides in lecture. 
These are for your preparation for the next lecture. 



Predictable Performance Again: 
Strong Memory Service Guarantees
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Remember MISE?
n Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, 

and Onur Mutlu,
"MISE: Providing Performance Predictability and 
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)
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Extending Slowdown Estimation to Caches
n How do we extend the MISE model to include shared cache 

interference?

n Answer: Application Slowdown Model

n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and 
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling 
the Impact of Inter-Application Interference at Shared Caches 
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 
(pptx) (pdf)] 
[Source Code]
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Quantifying	and	Controlling	Impact	of	
Interference	at	Shared	Caches	and	Main	Memory

Lavanya	Subramanian,	Vivek Seshadri,	
Arnab	Ghosh,	Samira	Khan,	Onur Mutlu
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Application	Slowdown	Model



Shared	Cache	and	Memory	Contention
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Cache	Capacity	Contention
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Estimating	Cache	and	Memory	Slowdowns
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Service	Rates	vs.	Access	Rates
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The	Application	Slowdown	Model
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Real	System	Studies:
Cache	Access	Rate	vs.	Slowdown	
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Challenge

How	to	estimate	alone	cache	access	rate?
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Auxiliary	Tag	Store
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Accounting	for	Contention	Misses

• Revisiting	alone	memory	request	service	rate

Cycles	serving	contention	misses	should	not	
count	as	high	priority	cycles
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 CyclesPriority High  #
EpochsPriority High  During Requests #

nApplicatioan  of Rate ServiceRequest  Alone
           

=



Alone	Cache	Access	Rate	Estimation
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Cycles Contention Cache# - CyclesPriority High  #
EpochsPriority High  During Requests #

nApplicatioan  of  Rate Access Cache                  
           

Alone =

Cache	Contention	Cycles:	Cycles	spent	serving	contention	misses

Time ServiceMemory  Average                                            
 x Misses Contention #  Cycles Contention Cache =

From	auxiliary	tag	store
when	given	high	priority

Measured	when	given	
high	priority



Application	Slowdown	Model	(ASM)
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Previous	Work	on	Slowdown	
Estimation

• Previous	work	on	slowdown	estimation
– STFM (Stall	Time	Fair	Memory)	Scheduling	[Mutlu et	al.,	MICRO	’07]	

– FST (Fairness	via	Source	Throttling)	[Ebrahimi et	al.,	ASPLOS	’10]

– Per-thread	Cycle	Accounting	[Du	Bois	et	al.,	HiPEAC ’13]

• Basic	Idea:

Shared

Alone

 TimeExecution 
 TimeExecution  Slowdown =

Count	interference	experienced	by	each	request	à Difficult
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ASM’s	estimates	are	much	more	coarse	grained	à Easier



Model	Accuracy	Results

Average	error	of	ASM’s	slowdown	estimates:	10%	
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Leveraging	ASM’s	Slowdown	Estimates

• Slowdown-aware	resource	allocation	for	high	
performance	and	fairness

• Slowdown-aware	resource	allocation	to	bound	
application	slowdowns

• VM	migration	and	admission	control	schemes	
[VEE	’15]

• Fair	billing	schemes	in	a	commodity	cloud
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Cache	Capacity	Partitioning
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Cache	Capacity	Partitioning
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ASM-Cache:	Slowdown-aware	
Cache	Way	Partitioning

• Key	Requirement:	Slowdown	estimates	for	all	
possible	way	partitions

• Extend	ASM	to	estimate	slowdown	for	all	
possible	cache	way	allocations

• Key	Idea:	Allocate	each	way	to	the	application	
whose	slowdown	reduces	the	most
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Memory	Bandwidth	Partitioning
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ASM-Mem:	Slowdown-aware	
Memory	Bandwidth	Partitioning

• Key	Idea: Allocate	high	priority	proportional	to	
an	application’s	slowdown

• Application	i’s requests	given	highest	priority	
at	the	memory	controller	for	its	fraction
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Coordinated	Resource	
Allocation	Schemes
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Fairness	and	Performance	Results
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Significant	fairness	benefits	across	different	channel	counts
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Summary
• Problem:	Uncontrolled	memory	interference	cause	high	

and	unpredictable	application	slowdowns
• Goal:	Quantify	and	control	slowdowns
• Key	Contribution:

– ASM:	An	accurate	slowdown	estimation	model
– Average	error	of	ASM:	10%

• Key	Ideas:
– Shared	cache	access	rate	is	a	proxy	for	performance
– Cache	Access	Rate	Alone can	be	estimated	by	minimizing	memory	

interference	and	quantifying	cache	interference
• Applications	of	Our	Model

– Slowdown-aware	cache	and	memory	management	to	achieve	
high	performance,	fairness	and	performance	guarantees

• Source	Code	Released	in	January	2016
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More on Application Slowdown Model
n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and 

Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling 
the Impact of Inter-Application Interference at Shared Caches 
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 
(pptx) (pdf)] 
[Source Code] 
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We did not cover the following slides in lecture. 
These are for your preparation for the next lecture. 


