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Summary of Last Week’s Lectures

Shared Cache Management
Making Caching More Effective
Heterogeneous Multi-Core Systems

Bottleneck Acceleration



Today

Quick Heterogeneous Systems Wrap-Up
Memory Latency Tolerance

Prefetching



Asymmetry via Frequency Boosting




Recall: How to Achieve Asymmetry

Static
o Type and power of cores fixed at design time

o Two approaches to design “faster cores”:

High frequency

Build a more complex, powerful core with entirely different uarch
o Is static asymmetry natural? (chip-wide variations in frequency)

Dynamic

a Type and power of cores change dynamically

o Two approaches to dynamically create “faster cores”:
Boost frequency dynamically (limited power budget)

Combine small cores to enable a more complex, powerful core
Is there a third, fourth, fifth approach?



Asymmetry via Boosting of Frequency

Static

o Due to process variations, cores might have different
frequency

o Simply hardwire/design cores to have different frequencies

Dynamic

o Annavaram et al., “Mitigating Amdahl’ s Law Through EPI
Throttling,” ISCA 2005.

o Dynamic voltage and frequency scaling



EPI Throttling

Goal: Minimize execution time of parallel programs while
keeping power within a fixed budget

For best scalar and throughput performance, vary energy
expended per instruction (EPI) based on available
parallelism

o P = EPI «IPS

o P = fixed power budget

o EPI = energy per instruction

o IPS = aggregate instructions retired per second

Idea: For a fixed power budget
o Run sequential phases on high-EPI processor
o Run parallel phases on multiple low-EPI processors



EPI Throttling via DVES

DVFS: Dynamic voltage frequency scaling

In phases of low thread parallelism
o Run a few cores at high supply voltage and high frequency

In phases of high thread parallelism
a2 Run many cores at low supply voltage and low frequency



Possible EPI Throttling Techniques

Grochowski et al., “Best of both Latency and Throughput,”
ICCD 2004.

Mobod | EPlRange | Time o e P

Volta.ge /frequency 1:2to 1: 4 100us (ramp Vcec) Lower voltage and frequency
etticcores 1:4 to 1:6 10us (migrate 256KB | Migrate threads from large
L2 cache) cores to small cores

Variable-size core 1:1 to 1:2 1us (fill 32KB L1 Reduce capacity of processor
cache) resources

Speculation control 1:1 to 1:1.4 10ns (pipeline Reduce amount of
latency) speculation




Boosting Frequency of a Small Core vs. Large Core

Frequency boosting implemented on Intel Nehalem, IBM
POWER7

Advantages of Boosting Frequency

+ Very simple to implement; no need to design a new core
+ Parallel throughput does not degrade when TLP is high
+ Preserves locality of boosted thread

Disadvantages
- Does not improve performance if thread is memory bound

- Does not reduce Cycles per Instruction (remember the
performance equation?)

- Changing frequency/voltage can take longer than switching to a

large core
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Memory Latency Tolerance




Readings on Memory Latency Tolerance

Required

o Mutlu et al., "Runahead Execution: An Alternative to Very
Large Instruction Windows for Out-of-order Processors,” HPCA
2003.

o Srinath et al., "Feedback directed prefetching”, HPCA 2007.

Optional

o Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks
2006.

o Mutlu et al., "Address-Value Delta (AVD) Prediction,” MICRO
2005.

o Armstrong et al., "“Wrong Path Events,” MICRO 2004.
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Remember: Latency Tolerance

An out-of-order execution processor tolerates latency of
multi-cycle operations by executing independent
instructions concurrently

o It does so by buffering instructions in reservation stations and
reorder buffer

o Instruction window: Hardware resources needed to buffer all
decoded but not yet retired/committed instructions

What if an instruction takes 500 cycles?

o How large of an instruction window do we need to continue
decoding?

o How many cycles of latency can OoO tolerate?
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Stalls due to Long-Latency Instructions

When a long-latency instruction is not complete,
it blocks instruction retirement.

o Because we need to maintain precise exceptions

Incoming instructions fill the instruction window (reorder
buffer, reservation stations).

Once the window is full, processor cannot place new
instructions into the window.

o This is called a full-window stall.

A full-window stall prevents the processor from making
progress in the execution of the program.
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Full-window Stall Example

8-entry instruction window:

Oldest HOVAPRSSIRSHN I REII L2 Miss! Takes 100s of cycles.
BEQ R1, RO, target
ADD R2 €< R2, 8
LOAD R3 < mem[R2]

Independent of the L2 miss,
MUL R4 < R4, R3 executed out of program order,

ADD R4 < R4, R5 but cannot be retired.
STOR mem[R2] < R4
ADD R2 < R2, 64

Younger instructions cannot be executed
LOAD R2 < mem|R2] because there is no space in the instruction window.

The processor stalls until the L2 Miss is serviced.

= Long-latency cache misses are responsible for
most full-window stalls.
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Cache Misses Responsible for Many Stalls
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The Memory lLatency Problem

Problem: Memory latency is long

And, it is not very easy to reduce it...

o We looked at methods for reducing DRAM latency
Lee et al. “Tiered-Latency DRAM,” HPCA 2013.
Lee et al., "Adaptive-Latency DRAM,” HPCA 2015.

And, even if we reduce memory latency, it is still long
o Remember the fundamental capacity-latency tradeoff
o Contention for memory increases latencies
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How Do We Tolerate Stalls Due to Memory?

Two major approaches
o Reduce/eliminate stalls
o Tolerate the effect of a stall when it happens

Four fundamental techniques to achieve these
o Caching

o Prefetching

o Multithreading

o Out-of-order execution

Many techniques have been developed to make these four
fundamental techniques more effective in tolerating
memory latency

18



Memory Latency Tolerance Techniques

Caching [initially by Bloom+, 1962 and later Wilkes, 1965]
o Widely used, simple, effective, but inefficient, passive
o Not all applications/phases exhibit temporal or spatial locality

Prefetching [initially in IBM 360/91, 1967]
o Works well for regular memory access patterns

o Prefetching irregular access patterns is difficult, inaccurate, and hardware-
intensive

Multithreading [initially in CDC 6600, 1964]
o Works well if there are multiple threads

o Improving single thread performance using multithreading hardware is an
ongoing research effort

Out-of-order execution [initially by Tomasulo, 1967]

o Tolerates irregular cache misses that cannot be prefetched

o Requires extensive hardware resources for tolerating long latencies
o Runahead execution alleviates this problem (as we will see today)
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Runahead Execution




Small Windows: Full-window Stalls

8-entry instruction window:

Oldest HOVAPRSSIRSHN I REII L2 Miss! Takes 100s of cycles.
BEQ R1, RO, target
ADD R2 €< R2, 8
LOAD R3 < mem[R2]

Independent of the L2 miss,
MUL R4 < R4, R3 executed out of program order,

ADD R4 < R4, R5 but cannot be retired.
STOR mem[R2] < R4
ADD R2 < R2, 64

Younger instructions cannot be executed
LOAD R2 < mem|R2] because there is no space in the instruction window.

The processor stalls until the L2 Miss is serviced.

= Long-latency cache misses are responsible for most
full-window stalls.
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Impact ot Long-Latency Cache Misses
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Impact ot Long-lLatency Cache Misses
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The Problem

Out-of-order execution requires large instruction windows
to tolerate today’s main memory latencies.

As main memory latency increases, instruction window size
should also increase to fully tolerate the memory latency.

Building a large instruction window is a challenging task
if we would like to achieve

a Low power/energy consumption (tag matching logic, Id/st
buffers)

a Short cycle time (access, wakeup/select latencies)
a Low design and verification complexity
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Eftticient Scaling of Instruction Window Size

= One of the major research issues in out of order execution

= How to achieve the benefits of a large window with a small
one (or in a simpler way)?

= How do we efficiently tolerate memory latency with the
machinery of out-of-order execution (and a small
instruction window)?
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Memory Level Parallelism (MLP)

Idea: Find and service multiple cache misses in parallel so
that the processor stalls only once for all misses

isolated miss y parallel miss

B ¥

A ~ //
C v

, time

o Enables latency tolerance: overlaps latency of different misses

How to generate multiple misses?
a Out-of-order execution, multithreading, prefetching, runahead
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Runahead Execution (I)

A technigue to obtain the memory-level parallelism benefits
of a large instruction window

When the oldest instruction is a long-latency cache miss:
o Checkpoint architectural state and enter runahead mode

In runahead mode:

a Speculatively pre-execute instructions

a The purpose of pre-execution is to generate prefetches

o L2-miss dependent instructions are marked INV and dropped
Runahead mode ends when the original miss returns

o Checkpoint is restored and normal execution resumes

Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.
27



Perfoct Caches: Runahead Example
Load 1 Hit Load 2 Hit

ol G T

Small Window:
Load 1 Miss Load 2 Miss

Miss 1 Miss 2

Runahead:
Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Hit

' :  Saved Cycles
Miss 1




Benefits of Runahead Execution

Instead of stalling during an L2 cache miss:

Pre-executed loads and stores independent of L2-miss
instructions generate very accurate data prefetches:

o For both regular and irregular access patterns

Instructions on the predicted program path are prefetched
into the instruction/trace cache and L2.

Hardware prefetcher and branch predictor tables are trained
using future access information.



Runahead Execution Mechanism

Entry into runahead mode
o Checkpoint architectural register state

Instruction processing in runahead mode

Exit from runahead mode
o Restore architectural register state from checkpoint



Instruction Processing in Runahead Mode

Load 1 Miss

h

Miss 1

Runahead mode processing is the same as
normal instruction processing, EXCEPT:

= It is purely speculative: Architectural (software-visible)
register/memory state is NOT updated in runahead mode.

= L2-miss dependent instructions are identified and treated
specially.
o They are quickly removed from the instruction window.
o Their results are not trusted.




L.2-Miss Dependent Instructions

Load 1 Miss

Miss 1

= Two types of results produced: INV and VALID

= INV = Dependent on an L2 miss

= INV results are marked using INV bits in the register file and
store buffer.

= INV values are not used for prefetching/branch resolution.




Removal of Instructions from Window

Load 1 Miss

h

Miss 1

= Oldest instruction is examined for pseudo-retirement
o An INV instruction is removed from window immediately.
o A VALID instruction is removed when it completes execution.

s Pseudo-retired instructions free their allocated resources.
o This allows the processing of later instructions.

s Pseudo-retired stores communicate their data to
dependent loads.




Store/lL.oad Handling in Runahead Mode

Load 1 Miss

Miss 1

= A pseudo-retired store writes its data and INV status to a
dedicated memory, called runahead cache.

= Purpose: Data communication through memory in runahead mode.
= A dependent load reads its data from the runahead cache.

= Does not need to be always correct > Size of runahead cache is
very small.




Branch Handling in Runahead Mode

Load 1 Miss

h

Miss 1

= INV branches cannot be resolved.

o A mispredicted INV branch causes the processor to stay on the wrong
program path until the end of runahead execution.

= VALID branches are resolved and initiate recovery if mispredicted.




A Runahead Processor Diagram

Mutlu+, “Runahead Execution,”
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Runahead Execution Pros and Cons

Advantages:
+ Very accurate prefetches for data/instructions (all cache levels)
+ Follows the program path
+ Simple to implement, most of the hardware is already built in
+ Versus other pre-execution based prefetching mechanisms (as we will see):

+ Uses the same thread context as main thread, no waste of context
+ No need to construct a pre-execution thread

Disadvantages/Limitations:

-- Extra executed instructions

-- Limited by branch prediction accuracy

-- Cannot prefetch dependent cache misses

-- Effectiveness limited by available “memory-level parallelism” (MLP)

-- Prefetch distance (how far ahead to prefetch) limited by memory latency

Implemented in IBM POWERG6, Sun “Rock”
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Performance of Runahead Execution
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Runahead Execution vs. Large Windows

Micro-operations Per Cycle
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Runahead vs. A (Real) Large Window

When is one beneficial, when is the other?
Pros and cons of each

Which can tolerate floating-point operation latencies better?
Which leads to less wasted execution?

40



Runahead on In-order vs. Out-of-order
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Effect of Runahead in Sun ROCK

= Shailender Chaudhry talk, Aug 2008.
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Generalizing the Idea

= Runahead on different long-latency operations?
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More on Runahead Execution

= Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA ), pages 129-140, Anaheim, CA, February
2003. Slides (pdf)

Runahead Execution: An Alternative to Very Large
Instruction Windows for Qut-of-order Processors

Onur Mutlu § Jared Stark ¥ Chris Wilkerson I Yale N. Patt §

§ECE Department TMicroprocessor Research IDesktop Platforms Group
The University of Texas at Austin Intel Labs Intel Corporation
{onur,patt} @ece.utexas.edu jared.w.stark @intel.com chris.wilkerson @intel.com
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More on Runahead Execution (Short)

= Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Effective Alternative to Large
Instruction Windows"

IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS), Vol. 23, No. 6, pages 20-25,
November/December 2003.

RUNAHEAD EXECUTION:
AN EFFECTIVE ALTERNATIVE TO
LARGE INSTRUCTION WINDOWS
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Runahead Enhancements




Readings

Required
o Mutlu et al., "Runahead Execution”, HPCA 2003, Top Picks 2003.

Recommended

o Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks
2006.

o Mutlu et al., "Address-Value Delta (AVD) Prediction,” MICRO
2005.

o Armstrong et al., "Wrong Path Events,” MICRO 2004.
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Limitations of the Baseline Runahead Mechanism

= Energy Inefficiency

o A large number of instructions are speculatively executed
a Efficient Runahead Execution [ISCA’ 05, IEEE Micro Top Picks’ 06]

= Ineffectiveness for pointer-intensive applications
o Runahead cannot parallelize dependent L2 cache misses
o Address-Value Delta (AVD) Prediction [MICRO’ 05]

= Irresolvable branch mispredictions in runahead mode
o Cannot recover from a mispredicted L2-miss dependent branch
a Wrong Path Events [MICRO’ 04]




The Eftticiency Problem
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Causes of Inefficiency

Short runahead periods
Overlapping runahead periods
Useless runahead periods

Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top
Picks 2006.



Short Runahead Periods

= Processor can initiate runahead mode due to an already in-flight L2
miss generated by

o the prefetcher, wrong-path, or a previous runahead period

Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Miss

complrowes] W | W

Miss 1 E:

= Short periods
o are less likely to generate useful L2 misses
o have high overhead due to the flush penalty at runahead exit




Overlapping Runahead Periods

Two runahead periods that execute the same instructions

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

Compute OVERLAP I OVERLAP | ]

Miss 1 [EEEss:

Second period is inefficient



Useless Runahead Periods

Periods that do not result in prefetches for normal mode

Load 1 Miss Load 1 Hit
Compute Runahead J
Miss 1 B

They exist due to the lack of memory-level parallelism
Mechanism to eliminate useless periods:
a Predict if a period will generate useful L2 misses

o Estimate a period to be useful if it generated an L2 miss that
cannot be captured by the instruction window

Useless period predictors are trained based on this estimation



Overall Impact on Executed Instructions
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Overall Impact on IPC
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More on Efficient Runahead Execution

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Techniques for Efficient Processing in Runahead Execution
Engines”
Proceedings of the 32nd International Symposium on Computer
Architecture (ISCA), pages 370-381, Madison, WI, June 2005. Slides
(ppt) Slides (pdf)

Techniques for Efficient Processing in Runahead Execution Engines

Onur Mutlu Hyesoon Kim Yale N. Patt

Department of Electrical and Computer Engineering
University of Texas at Austin
{onur,hyesoon,patt } @ece.utexas.edu
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More on Efficient Runahead Execution

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Efficient Runahead Execution: Power-Efficient Memory Latency
Tolerance"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS), Vol. 26, No. 1, pages 10-20,

January/February 2006.

EFFICIENT RUNAHEAD EXECUTION:
POWER-EFFICIENT
MEMORY LATENCY TOLERANCE

57



Taking Advantage ot Pure Speculation

Runahead mode is purely speculative

The goal is to find and generate cache misses that would
otherwise stall execution later on

How do we achieve this goal most efficiently and with the
highest benefit?

Idea: Find and execute only those instructions that will lead
to cache misses (that cannot already be captured by the
instruction window)

How?
58



Limitations of the Baseline Runahead Mechanism

= Energy Inefficiency

o A large number of instructions are speculatively executed
a Efficient Runahead Execution [ISCA’ 05, IEEE Micro Top Picks’ 06]

= Ineffectiveness for pointer-intensive applications
o Runahead cannot parallelize dependent L2 cache misses
o Address-Value Delta (AVD) Prediction [MICRO’ 05]

= Irresolvable branch mispredictions in runahead mode
o Cannot recover from a mispredicted L2-miss dependent branch
a Wrong Path Events [MICRO’ 04]




The Problem: Dependent Cache Misses

Runahead: Load 2 is dependent on Load 1

@not Compute lts Addres)

e

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

= Runahead execution cannot parallelize dependent misses
o wasted opportunity to improve performance
o wasted energy (useless pre-execution)

= Runahead performance would improve by 25% if this
limitation were ideally overcome




Parallelizing Dependent Cache Misses

Idea: Enable the parallelization of dependent L2 cache
misses in runahead mode with a low-cost mechanism

How: Predict the values of L2-miss address (pointer)
loads

= Address load: loads an address into its destination register,
which is later used to calculate the address of another load

= as opposed to data load

Read:

o Mutlu et al., "Address-Value Delta (AVD) Prediction,” MICRO
2005.




Parallelizing Dependent Cache Misses

@not Compute Its AddresE

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

@e Predicted Can Compute Its Address> |

Load T Miss Load 2Miss Load 1 Hit Load 2 Hit Saved Speculative
: Instructions

- Saved Cycles
Miss 1 E




AVD Prediction IMICRO’ 05]

Address-value delta (AVD) of a load instruction defined as:

AVD

= Effective Address of Load — Data Value of Load

For some address loads, AVD is stable

An AVD predictor keeps track of the AVDs of address loads

When a load is an L2 miss in runahead mode, AVD
predictor is consulted

If the predictor returns a stable (confident) AVD for that

load, t

he value of the load is predicted

Prec

icted Value = Effective Address — Predicted AVD



Why Do Stable AVDs Occur?

Regularity in the way data structures are
o allocated in memory AND
a traversed

Two types of loads can have stable AVDs

o Traversal address loads
Produce addresses consumed by address loads

o Leaf address loads
Produce addresses consumed by data loads



Traversal Address I.oads

Regularly-allocated linked list: A traversal address load loads the

pointer to next node:

A node = node->next
,/A+k AVD = Effective Addr — Data Value
/" \ /7~ \
Effective Addr | DAta Value AVD\
A*2K A A+k &
A+3K A+k A+2k -k
A+2k A+3k -k
\_/

Striding Stable AVD
data value




Leaf Address L.oads

Sorted dictionary in parser: Dictionary looked up for an input word.
Nodes point to strings (words)

String and node allocated consecutively A leaf address load loads the pointer to

the string of each node:

lookup (node, input) { //...
ptr_str = node->string;

m = check match(ptr_str, input);
A /...

B+k
B AVD = Effective Addr — Data Value
D+k CS Evk \G+k Effective Addr | Data Vaiue /AVD \
A+k A k
5 0 85 3 S R A
F+k F K

No stride! Stable AVD

lA+k




Identifying Address L.oads in Hardware

Insight:

o If the AVD is too large, the value that is loaded is likely not an
address

Only keep track of loads that satisfy:
-MaxAVD = AVD = +MaxAVD

This identification mechanism eliminates many loads from
consideration for prediction

o No need to value- predict the loads that will not generate
addresses

o Enables the predictor to be small

AVD Prediction 67



An Implementable AVD Predictor

Set-associative prediction table

Prediction table entry consists of

o Tag (Program Counter of the load)

o Last AVD seen for the load

o Confidence counter for the recorded AVD

Updated when an address load is retired in normal mode
Accessed when a load misses in L2 cache in runahead mode

Recovery-free: No need to recover the state of the processor
or the predictor on misprediction

o Runahead mode is purely speculative
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AVD Update Logic

Effective Address Data Value

computed AYD = Effective Addt — Data Value
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AVD Prediction Logic

Predicted? ! ¥ pedicted vilse

(not INV?) = Effective Addr— AVD

LAY

="
| ]
Tag Ceonf | AVD
Program Counter of Effective Address of
L2—miss Load L2—miss Load

AVD Prediction
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More on AVD Prediction

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: Increasing the
Effectiveness of Runahead Execution by Exploiting Reqular
Memory Allocation Patterns”
Proceedings of the 38th International Symposium on

Microarchitecture (MICRO), pages 233-244, Barcelona, Spain, November
2005. Slides (ppt)Slides (pdf)

Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of Runahead
Execution by Exploiting Regular Memory Allocation Patterns

Onur Mutlu Hyesoon Kim Yale N. Patt

Department of Electrical and Computer Engineering
University of Texas at Austin
{onur,hyesoon,patt } @ece.utexas.edu
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More on AVD Prediction (1)

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: A Hardware Technique
for Efficiently Parallelizing Dependent Cache Misses"

IEEE Transactions on Computers (TC), Vol. 55, No. 12, pages 1491-1508,
December 2006.

Address-Value Delta (AVD) Prediction:
A Hardware Technique for Efficiently
Parallelizing Dependent Cache Misses

Onur Mutlu, Member, IEEE, Hyesoon Kim, Student Member, IEEE, and
Yale N. Patt, Fellow, IEEE
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Wrong Path Events




An Observation and A Question

* In an out-of-order processor, some
Instructions are executed on the
mispredicted path (wrong-path instructions).

* |s the behavior of wrong-path instructions
different from the behavior of correct-path
Instructions?

— If so, we can use the difference in behavior for
early misprediction detection and recovery.



What is a Wrong Path Event?

An instance of illegal or unusual behavior
that is more likely to occur on the wrong
path than on the correct path.

Wrong Path Event = WPE
Probability (wrong path | WPE) ~ 1



Why Does a WPE Occur?

* A wrong-path instruction may be executed
before the mispredicted branch is
executed.

— Because the mispredicted branch may be
dependent on a long-latency instruction.

* The wrong-path instruction may consume
a data value that is not properly initialized.
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WPE Example from eon:
NULL pointer dereference

: for (inti=0; i< length(); i++) {

structure *ptr = arrayl|i];
iIf (ptr->x) {
[/ --.



Beginning of the loop

Array boundary
1=0
v
Array of pointers
to structs x8ABCDO | xEFF8BO x0 x0
............ } }

1 : for (inti=0; i< length(); i++) {
2 : structure *ptr = array[i];
3: if (ptr->x) {

4 : /] ..

5 : }

6

I




First iteration

Array boundary

i=0
ptr = x8BABCDO
v
Array of pointers
to structs x8ABCDO | xEFF8BO x0

: for (inti=0; i< length(); i++) {
structure *ptr = array[il;
if (ptr->x) {
// ...
bs

A 1 A W N B
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First iteration

Array boundary

=0
ptr = x8ABCDO
v
Array of pointers
o structs x8ABCDO | xEFF8BO X0
*ptr
............ }

1 : for (inti=0; i< length(); i++) {
2 : structure *ptr = array[i];
3: if (ptr->x) {
4 : // ...
5: ¥
6

I




Loop branch correctly predicted

Array boundary
=1
v
Array of pointers
to structs x8ABCDO | xEFF8BO x0 x0
............ }

: for (inti=0; i< length(); i++) {
arrayl[i];




Second iteration

Array boundary

=1
ptr = xEFF8BO

v

Array of pointers

to structs x0

: for (inti=0; i< length(); i++) {

1

2 :
3:
4 :
5:
6 :

structure *ptr = array[i];
if (ptr->x) {

// ...
b




Second iteration

Array boundary

=1
ptr = xEFF8BO

v

Array of pointers

to structs x0

*ptr

: for (inti=0; i< length(); i++) {
structure *ptr = array[i];
if (ptr->x) {
/] ...
b

A U b W N =
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Loop exit branch mispredicted

Array boundary
| =2
v
Array of pointers
to structs x0 x0
2 )

r (inti HA
structure *p ylil;
if (ptr->x) {
/7. ..
b




Third iteration on wrong path

Array boundary
| =2
v ptr=0
Array of pointers
to structs x0
2 )




Wrong Path Event

Array boundary

Array of pointers
to structs

: for (inti=0; i< length(); i++) {
sructure oty = arayCl NULL pointer dereference!
// ...

}

a U1 A W N B

I




Types of WPEs

* Due to memory instructions
— NULL pointer dereference
— Write to read-only page
— Unaligned access (illegal in the Alpha ISA)
— Access to an address out of segment range
— Data access to code segment
— Multiple concurrent TLB misses



Types of WPEs (continued)

 Due to control-flow instructions

— Misprediction under misprediction

* |f three branches are executed and resolved as mispredicts
while there are older unresolved branches in the processor, it
is almost certain that one of the older unresolved branches is
mispredicted.

— Return address stack underflow
— Unaligned instruction fetch address (illegal in Alpha)

 Due to arithmetic instructions

— Some arithmetic exceptions
» e.g. Divide by zero



Two Empirical Questions

1. How often do WPEs occur?

2. When do WPEs occur on the wrong path?



More on Wrong Path Events

= David N. Armstrong, Hyesoon Kim, Onur Mutlu, and Yale N. Patt,
"Wrong Path Events: Exploiting Unusual and Illegal Program
Behavior for Early Misprediction Detection and Recovery"”
Proceeedings of the 37th International Symposium on
Microarchitecture (MICRO), pages 119-128, Portland, OR, December
2004. Slides (pdf)Slides (ppt)

Wrong Path Events: Exploiting Unusual and Illegal Program Behavior for Early
Misprediction Detection and Recovery

David N. Armstrong Hyesoon Kim Onur Mutlu Yale N. Patt

Department of Electrical and Computer Engineering
The University of Texas at Austin
{dna,hyesoon,onur,patt} @ece.utexas.edu
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Why Is This Important?

= A modern processor spends significant amount of time
fetching/executing instructions on the wrong path

100

95 == % (cycles on wrong path / total cycles) - -
90 % (fetched wrong path insts / all fetched insts) —
85 == % (exec wrong path non-mem insts / all exec insts) [
32 ra % (exec wrong path mem insts / all exec insts) T

70

—

N 65

-~ 60

%

8o 554

,2 50 —

S 45 —

£ 40 - —

& 359 -
30 —
251 -
20 1 —
; E
10
'y 4 !J !J

I | 4. | | | |

0- \ 1 |
gzip vpr gcc  mef crafty parser eon perlbmk gap vortex bzip2 twolf amean

Fig. 1. Percentage of fetch cycles spent on the wrong path, percentage
of instructions fetched on the wrong path, and percentage of instructions
(memory and nonmemory) executed on the wrong path in the baseline
processor for SPEC 2000 integer benchmarks.




A Lot of Time Spent on The Wrong Path

= A runahead processor, much more so...

100

.
0-

95 == % (cycles on wrong path / all execution cycles) —
90 ' % (fetched wrong path insts / all fetched insts) —
85 == % (exec wrong path non-mem insts / all exec insts) [
gg ra % (exec wrong path mem insts / all exec insts)
70
~ 65
S
S 60
g;n 551
— 50 e Jr—
e I[]
@ 451 —
2 L
B 354 . . —
3() ] . —
25 = . e
2() - .
|5 1 .
lO - .
. | | | | | | | |

\NNNNN

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf amean

Fig. 20. Percentage of total cycles spent on the wrong path, percentage
of instructions fetched on the wrong path, and percentage of instructions
~ (memory and nonmemory) executed on the wrong path in the runahead

processor.



Is Wrong-Path |

4 WRONG PATH: TO MODEL OR NOT TO MODEL

In this section, we measure the error in IPC if wrong-path
memory references are not simulated. We also evaluate the
overall effect of wrong-path memory references on the IPC
(retired Instructions Per Cycle) performance of a processor.

1.

How important is it to correctly model wrong-path
memory references? What is the error in the
predicted performance if wrong-path references are
not modeled?

Do wrong-path memory references affect perfor-
mance positively or negatively? What is the relative
significance on performance of prefetching, band-
width consumption, and pollution caused by wrong-
path references?

What kind of code structures lead to the positive
effects of wrong-path memory references?

How do wrong-path memory references affect the
performance of a runahead execution processor [7],
[18] which implements an aggressive form of
speculative execution?

Hxecution Useless/Useful / Harmful?
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Wrong Path Is Often Usetul tor Performance

== 250-cycle memory latency |
== 500-cycle memory latency
= | 000-cycle memory latency

Percent IPC Error (%)

gzip vpr gcc  mef crafty parser eon perlbmk gap vortex bzip2 twolf hmean

Fig. 7. Error in the IPC of the baseline processor with a stream
prefetcher for three different memory latencies if wrong-path memory
references are not simulated.
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More So In Runahead Execution

120
110 == wrong-path references correctly modeled
105 == wrong-path references not modeled

o

2

95
90
85

75
70
65
60

50
45
40
33
30
25
20
15
10 —

wn

IPC Improvement due to Runahead Execution (%)

o
|

1 I
gzip vpr gee  mef crafty parser eon perlbmk gap vortex bzip2 twolf hmean

Fig. 19. IPC improvement of adding runahead execution to the baseline
processor if wrong-path memory references are or are not modeled.
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Why 1s Wrong Path Usetul? (T)

= Control-independence: e.g., wrong-path execution of future
loop iterations

1 : arc_t *arc; // array of arc_t structures

2 : /] initialize arc (arc =...)

3z

4. for (;arc < stop_arcs; arc += size) {

J 3 if (arc—>ident > 0) { // frequently mispredicted br.
6: // function calls and

- // operations on the structure pointed to by arc

8 : IF s

9. }

s 3

Fig. 16. An example from mcf showing wrong-path prefetching for later
loop iterations.
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Why 1s Wrong Path Usetul? (II)

l1: 1=min;r=max;

2: cut=perm| (long)( (I14r) /2 ) ]—>abs_cost;
x, 1%

4: do{

i while( perm[1]—>abs_cost > cut )
6 : l++;

T while( cut > perm[r]—>abs_cost )
8: r——;

. ¥

10: if(l<r) {

11: xchange = perm[l];

12: perm[l] = perm[r];

13: perm[r] = xchange;

14: }

15: if(l<=r1){

16: l++; r——;

- }

18: } while(l1<=r);

Fig. 17. An example from mcf showing wrong-path prefetching between

different loops.




Why 1s Wrong Path Usetul? (I11)

= Same data used in different control flow paths

o0 ON DN B W -

9 .

10:
11:
12:
13:
14:
15:
16:
17:

node_t *node;
// initialize node
)

while (node) {

if (node—>orientation == UP) { // mispredicted branch
node—>potential = node—>basic_arc—>cost
+ node—>pred—>potential;
} else { /* == DOWN #*/
node—>potential = node—>pred—>potential
— node—>basic_arc—>cost;
/...
}
// control-flow independent point (re—convergent point)
node = node—>child;

}

Fig. 18. An example from mcf showing wrong-path prefetching in
control-flow hammocks.
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More on Wrong Path Execution (I)

Onur Mutlu, Hyesoon Kim, David N. Armstrong, and Yale N. Patt,
"Understanding the Effects of Wrong-Path Memory References on
Processor Performance”

Proceedings of the 3rd Workshop on Memory Performance

Issues (WMPI), pages 56-64, Munchen, Germany, June 2004. Slides

(pdf)

Understanding The Effects of Wrong-Path Memory
References on Processor Performance

Onur Mutlu Hyesoon Kim David N. Armstrong Yale N. Patt

Department of Electrical and Computer Engineering
The University of Texas at Austin
{onur,hyesoon,dna,patt} @ece.utexas.edu
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More on Wrong Path Execution (II)

= Onur Mutlu, Hyesoon Kim, David N. Armstrong, and Yale N. Patt,
"An Analysis of the Performance Impact of Wrong-Path Memory
References on Out-of-Order and Runahead Execution Processors"”

IEEE Transactions on Computers (TC), Vol. 54, No. 12, pages 1556-1571,
December 2005.

An Analysis of the Performance Impact of
Wrong-Path Memory References on Out-of-
Order and Runahead Execution Processors

Onur Mutlu, Student Member, IEEE, Hyesoon Kim, Student Member, IEEE,
David N. Armstrong, and Yale N. Patt, Fellow, IEEE
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What If ...

The system learned from wrong-path execution and used
that learning for better execution of the program/system?

An open research problem...
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Computer Architecture
Lecture 17:
Latency Tolerance and Pretetching

Prof. Onur Mutlu
ETH Zirich
Fall 2017
22 November 2017



We did not cover the following slides in lecture.
These are for your preparation for the next lecture.




Prefetching




Outline of Pretetching Lecture(s)

Why prefetch? Why could/does it work?
The four questions

o What (to prefetch), when, where, how
Software prefetching

Hardware prefetching algorithms
Execution-based prefetching

Prefetching performance
o Coverage, accuracy, timeliness
o Bandwidth consumption, cache pollution

Prefetcher throttling
Issues in multi-core (if we get to it)
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Readingsin Prefetching

= Required:

a Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch Buffers,”
ISCA 1990.

o Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA
1997.

= Recommended:

o Mowry et al., “Design and Evaluation of a Compiler Algorithm for
Prefetching,” ASPLOS 1992.

o Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers”,
HPCA 2007.

a Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.
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Prefetching

Idea: Fetch the data before it is needed (i.e. pre-fetch) by
the program

Why?
o Memory latency is high. If we can prefetch accurately and
early enough we can reduce/eliminate that latency.

o Can eliminate compulsory cache misses
o Can it eliminate all cache misses? Capacity, conflict?

Involves predicting which address will be needed in the
future

o Works if programs have predictable miss address patterns
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Pretetching and Correctness

Does a misprediction in prefetching affect correctness?

No, prefetched data at a “mispredicted” address is simply
not used

There is no need for state recovery
o In contrast to branch misprediction or value misprediction
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Basics

In modern systems, prefetching is usually done in cache
block granularity

Prefetching is a technique that can reduce both
o Miss rate
o Miss latency

Prefetching can be done by
o hardware

o compiler

0 programmer
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How a HW Prefetcher Fits in the Memory System

I-Cache fills |-Cache fills
|I-Cache - |I-Cache
l—(?ache D-Cache D-Cache fills I-Qache D-Cache D-Cache fills
misses misses
D-Cache misses and D-Cache misses and
' write backs Prefeiches write backs
L2 Request Queue Prefetch Req Queue |[-------- ~ L2 Request Queue
| T
T eaeaeesessse—-
1 H 1
i ! :
L2-Cache hits + E L2-Cache hits
Hardware !
L2 Cache Stream |e-------=-----d L2 Cache Lo.Cache 1
. 2 o o
 L2-Cache fill | Prefetcher [ L2 demand ccesses achs ks
T
' | : -
L2 misses and @ write backs 1.2 demand misses L2 misses and | write backs
Y . create streams
Bus Request Queue ‘ ‘ L2 Fill Queue Bus Request Queue L2 Fill Queue
'}
| On-(;hip On-Chip
Bus ] Bus :
) -’ N e e e e e e e e e ’
Off-Chip f Off-Chip
A

Memory Controller

Memory Controller

—

DRAM Memory Banks

i

—  —

DRAM Memory Banks
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Prefetching: The Four Questions

What
o What addresses to prefetch

When
o When to initiate a prefetch request

Where
o Where to place the prefetched data

How
o Software, hardware, execution-based, cooperative
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Challenges in Pretetching: What

What addresses to prefetch

o Prefetching useless data wastes resources
Memory bandwidth
Cache or prefetch buffer space
Energy consumption

These could all be utilized by demand requests or more accurate
prefetch requests

o Accurate prediction of addresses to prefetch is important
Prefetch accuracy = used prefetches / sent prefetches

How do we know what to prefetch

o Predict based on past access patterns

o Use the compiler’ s knowledge of data structures

Prefetching algorithm determines what to prefetch
113



Challenges 1in Pretetching: When

When to initiate a prefetch request

o Prefetching too early

Prefetched data might not be used before it is evicted from
storage

o Prefetching too late
Might not hide the whole memory latency

When a data item is prefetched affects the timeliness of the
prefetcher

Prefetcher can be made more timely by

o Making it more aggressive: try to stay far ahead of the
processor’ s access stream (hardware)

a Moving the prefetch instructions earlier in the code (software)
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Challenges in Pretetching: Where (I)

Where to place the prefetched data
o In cache
+ Simple design, no need for separate buffers
-- Can evict useful demand data = cache pollution
o In a separate prefetch buffer
+ Demand data protected from prefetches = no cache pollution
-- More complex memory system design
- Where to place the prefetch buffer
- When to access the prefetch buffer (parallel vs. serial with cache)
- When to move the data from the prefetch buffer to cache
- How to size the prefetch buffer
- Keeping the prefetch buffer coherent

Many modern systems place prefetched data into the cache
o Intel Pentium 4, Core2’ s, AMD systems, IBM POWER4,5,6, ...
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Challenges 1in Pretetching: Where (1I)

Which level of cache to prefetch into?
o Memory to L2, memory to L1. Advantages/disadvantages?
o L2 to L1? (a separate prefetcher between levels)

Where to place the prefetched data in the cache?

o Do we treat prefetched blocks the same as demand-fetched
blocks?

o Prefetched blocks are not known to be needed
With LRU, a demand block is placed into the MRU position

Do we skew the replacement policy such that it favors the
demand-fetched blocks?

o E.qg., place all prefetches into the LRU position in a way?
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Challenges 1n Pretetching: Where (I11)

Where to place the hardware prefetcher in the memory
hierarchy?

o In other words, what access patterns does the prefetcher see?
o L1 hits and misses

o L1 misses only

o L2 misses only

Seeing a more complete access pattern:
+ Potentially better accuracy and coverage in prefetching

-- Prefetcher needs to examine more requests (bandwidth
intensive, more ports into the prefetcher?)
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Challenges in Pretetching: How

Software prefetching

o ISA provides prefetch instructions

o Programmer or compiler inserts prefetch instructions (effort)
o Usually works well only for “regular access patterns”

Hardware prefetching

o Hardware monitors processor accesses

o Memorizes or finds patterns/strides

o Generates prefetch addresses automatically

Execution-based prefetchers
o A “thread” is executed to prefetch data for the main program
o Can be generated by either software/programmer or hardware
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Sotftware Prefetching (I)

Idea: Compiler/programmer places prefetch instructions into
appropriate places in code

Mowry et al., “Design and Evaluation of a Compiler Algorithm for
Prefetching,” ASPLOS 1992.

Prefetch instructions prefetch data into caches

Compiler or programmer can insert such instructions into the
program
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X86 PREFETCH Instruction

PREFETCHh—Prefetch Data Into Caches

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
0OF18/1  PREFETCHTO m8 Valid Valid Move data from m8 closer to the
processor using TO hint.
OF18/2  PREFETCHT1 m8 Valid Valid Move data from m8 closer to the
processor using T1 hint.
OF18/3  PREFETCHTZ m8 Valid Valid Move data from m8 closer to the
processor using T2 hint.
OF18/0 PREFETCHNTAm8  Valid Valid Move data from m8 closer to the
processor using NTA hint.

Description

Fetches the line of data from memory that contains the byte specified with the source
operand to a location in the cache hierarchy specified by a locality hint:

microarchitecture * TO (temporal data)—prefetch data into all levels of the cache hierarchy.
dependent < — Pentium |l processor—1st- or 2nd-level cache.
specification — Pentium 4 and Intel Xeon processors—2nd-level cache.

* T1 (temporal data with respect to first level cache)—prefetch data into level 2
cache and higher.

— Pentium lll processor—2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.

* T2 (temporal data with respect to second level cache)—prefetch data into level 2
cache and higher.

different instructions
for different cache
levels

— Pentium lll processor—2nd-level cache.
— Pentium 4 and Intel Xeon processors—2nd-level cache.

NTA (non-temporal data with respect to all cache levels)—prefetch data into non-
temporal cache structure and into a location close to the processor, minimizing
cache pollution.

— Pentium Il processor—1st-level cache

— Pentium 4 and Intel Xeon processors—2nd-level cache 120



Sotftware Prefetching (1)

for (i=0; i<N; i++) { while (p) { while (p) {
__prefetch(a[i+8]); __prefetch(p2>next);  __ prefetch(p—>next->next->next);
__prefetch(b[i+8]); work(p—~>data); work(p—>data);
sum += a[i]*bli]; p = p>next; - next;

} } }

Which one is better?
Can work for very regular array-based access patterns. Issues:

-- Prefetch instructions take up processing/execution bandwidth
o How early to prefetch? Determining this is difficult

-- Prefetch distance depends on hardware implementation (memory latency,
cache size, time between loop iterations) - portability?

-- Going too far back in code reduces accuracy (branches in between)
o Need “special” prefetch instructions in ISA?
Alpha load into register 31 treated as prefetch (r31==0)
PowerPC dcbt (data cache block touch) instruction

-- Not easy to do for pointer-based data structures
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Software Prefetching (I11)

Where should a compiler insert prefetches?

o Prefetch for every load access?
Too bandwidth intensive (both memory and execution bandwidth)

o Profile the code and determine loads that are likely to miss
What if profile input set is not representative?

o How far ahead before the miss should the prefetch be inserted?
Profile and determine probability of use for various prefetch
distances from the miss
0 What if profile input set is not representative?

0 Usually need to insert a prefetch far in advance to cover 100s of cycles
of main memory latency - reduced accuracy
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Hardware Prefetching (I)

Idea: Specialized hardware observes load/store access
patterns and prefetches data based on past access behavior

Tradeoffs:
+ Can be tuned to system implementation
+ Does not waste instruction execution bandwidth
-- More hardware complexity to detect patterns
- Software can be more efficient in some cases
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Next-Line Prefetchers

Simplest form of hardware prefetching: always prefetch next
N cache lines after a demand access (or a demand miss)
o Next-line prefetcher (or next sequential prefetcher)
o Tradeoffs:
+ Simple to implement. No need for sophisticated pattern detection
+ Works well for sequential/streaming access patterns (instructions?)
-- Can waste bandwidth with irregular patterns
-- And, even regular patterns:
- What is the prefetch accuracy if access stride =2 and N = 17

- What if the program is traversing memory from higher to lower
addresses?

- Also prefetch “previous” N cache lines?
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Stride Prefetchers

Two kinds

o Instruction program counter (PC) based
o Cache block address based

Instruction based:

o Baer and Chen, “An effective on-chip preloading scheme to
reduce data access penalty,” SC 1991.

o Idea:

Record the distance between the memory addresses referenced by
a load instruction (i.e. stride of the load) as well as the last address
referenced by the load

Next time the same load instruction is fetched,
prefetch last address + stride
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Instruction Based Stride Prefetching

-~ - Load Inst. Last Address - Last Confidence
Load —_ PC (tag) Referenced | Stride
Inst L P L PP P PP TPTPTPEE FREE PP TPTPTPTPLPLPEPEPRY EETRTRTPTPLPLPRPRPRY
PC A RSN A B
N

What is the problem with this?
o How far can the prefetcher get ahead of the demand access stream?

o Initiating the prefetch when the load is fetched the next time can be
too late

Load will access the data cache soon after it is fetched!
o Solutions:

Use lookahead PC to index the prefetcher table (decouple frontend of
the processor from backend)

Prefetch ahead (last address + N*stride)
Generate multiple prefetches
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Cache-Block Address Based Stride Prefetching

- - Address tag Stride Control/Confidence
Block | [

—
addreSS ................................................................................................

Can detect
o A, A+N, A+2N, A+3N, ...

o Stream buffers are a special case of cache block address
based stride prefetching where N = 1
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Stream Buffers (Jouppi, ISCA 1990)

Each stream buffer holds one stream of
sequentially prefetched cache lines

On a load miss check the head of all
stream buffers for an address match

o if hit, pop the entry from FIFO, update the cache
with data

o if not, allocate a new stream buffer to the new
miss address (may have to replace a stream
buffer following LRU policy)

Stream buffer FIFOs are continuously
topped-off with subsequent cache lines
whenever there is room and the bus is not
busy

Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of

DCache

a Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

I
Memory interface
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Stream Buffer Design

CPU address

l

Compare

Next Address Cache Block Tag
v
Increment
Cache Block Tag
v

Prefetch Address
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Stream Butter Design

From processor To processor
5 tags data Direct mapped cache
> > 4

+ + tag + +
l-a'? a] dala :'a'? al data -? a a ?? a[ dala |
fag {a| dala ag |a| dala Tag |a| dai fag |a] data
1ag |a]|] data fag |[a| dala tag |a[ dala tag ja| dala
tag ja} dala a| dala Tag [a] dala lag ta] dala
\'%

c 'Y L l’
N AR
From next lowar cache

To next iower cache
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Tradeofts in Stride Prefetching

Instruction based stride prefetching vs.
cache block address based stride prefetching

The latter can exploit strides that occur due to the
interaction of multiple instructions

The latter can more easily get further ahead of the
processor access stream

2 No need for lookahead PC

The latter is more hardware intensive

o Usually there are more data addresses to monitor than
Instructions
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Locality Based Prefetchers

In many applications access patterns are not perfectly
strided

o Some patterns look random to closeby addresses
o How do you capture such accesses?

Locality based prefetching

o Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware
Prefetchers®, HPCA 2007.
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Pentium 4 (Like) Prefetcher (Srinath et al., HPCA 2007)

Multiple tracking entries for a range of addresses

Invalid: The tracking entry is not allocated a stream to keep track of. Initially,
all tracking entries are in this state.

Allocated: A demand (i.e. load/store) L2 miss allocates a tracking entry if the
demand miss does not find any existing tracking entry for its cache-block address.

Training: The prefetcher trains the direction (ascending or descending) of the
stream based on the next two L2 misses that occur +/- 16 cache blocks from the
first miss. If the next two accesses in the stream are to ascending (descending)
addresses, the direction of the tracking entry is set to 1 (0) and the entry transitions
to Monitor and Request state.

Monitor and Request: The tracking entry monitors the accesses to a memory
region from a start pointer (address A) to an end pointer (address P). The maximum
distance between the start pointer and the end pointer is determined by Prefetch
Distance, which indicates how far ahead of the demand access stream the
prefetcher can send requests. If there is a demand L2 cache access to a cache block
in the monitored memory region, the prefetcher requests cache blocks [P+1, ...,
P+N] as prefetch requests (assuming the direction of the tracking entry is set to 1).
N is called the Prefetch Degree. After sending the prefetch requests, the tracking
entry starts monitoring the memory region between addresses A+N to P+N (i.e.
effectively it moves the tracked memory region by N cache blocks).
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Limitations of LLocality-Based Prefetchers

Bandwidth intensive T s T
.+ Why? =
o Can be fixed by gﬁ PR I a

Stride detection §

Feedback mechanisms dos

04

02

0

Limited to prefetching closeby addresses
o What about large jumps in addresses accessed?

However, they work very well in real life
o Single-core systems
o Boggs et al., Intel Technology Journal, Feb 2004.
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Prefetcher Pertormance (I)

Accuracy (used prefetches / sent prefetches)
Coverage (prefetched misses / all misses)
Timeliness (on-time prefetches / used prefetches)

Bandwidth consumption

o Memory bandwidth consumed with prefetcher / without
prefetcher

o Good news: Can utilize idle bus bandwidth (if available)

Cache pollution

o Extra demand misses due to prefetch placement in cache
o More difficult to quantify but affects performance
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Pretetcher Performance (II)

Prefetcher aggressiveness affects all performance metrics
Aggressiveness dependent on prefetcher type

For most hardware prefetchers:
o Prefetch distance: how far ahead of the demand stream
o Prefetch degree: how many prefetches per demand access

Access Strea

Prefetch Degree

XX+1 «—
btream
123 | t ot

— _Pmax P g Pr_’nax ) g Pma; I:)max
Very Cbftiddle afiridednipAdsicarsseye
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Pretetcher Performance (111)

How do these metrics interact?

Very Aggressive Prefetcher (large prefetch distance & degree)
o Well ahead of the load access stream

o Hides memory access latency better

o More speculative

+ Higher coverage, better timeliness

-- Likely lower accuracy, higher bandwidth and pollution

Very Conservative Prefetcher (small prefetch distance & degree)
o Closer to the load access stream

o Might not hide memory access latency completely

o Reduces potential for cache pollution and bandwidth contention
+ Likely higher accuracy, lower bandwidth, less polluting

-- Likely lower coverage and less timely
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Pretetcher Performance (IV)

Percentage IPC change over No Prefetching
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Pretetcher Pertormance (V)

5.0
| ® No Prefetching

o 40 H m Very Conservative
& H mMiddle-of-the-Road
$ 3.0 W Very Aggressive
= 2.0
=
2
— 1.0

0.0

&

= Srinath et al., "Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers”,
HPCA 2007.
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Feedback-Directed Prefetcher Throttling (I)

Idea:

a Dynamically monitor prefetcher performance metrics

o Throttle the prefetcher aggressiveness up/down based on past
performance

o Change the location prefetches are inserted in cache based on
past performance

E—Iigh Accuracq E\/Ied Accu racﬂ ﬁ_ow Accuracy]

/ \ / \ / \

[Not-Late}[ Late ] [Not-PoII } [Polluting] [Not-PoII] Decrease

[Polluting} Increase [ Late 1 Decrease [Not-Late]
'

Decrease Increase No Change
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Feedback-Directed Prefetcher Throttling (1)

Instructions per Cycle

5.0

ha
(=)

o
o

g
o

—
(=}

0.0

@ No Prefetching

| mVery Aggressive

|| ODynamic Insertion
O0Dynamic Aggressiveness
4 BFDP - Dyn Aggr. and Ins.

(0]

WA
A S Y S S U SR S - S < N I T R RS
K NP ¥ @ K & Q9 > N @ ¥ P Q ® 3 & P
¢° g S R & & O S S

= Srinath et al., “Feedback Directed Prefetching: Improving the

Performance and Bandwidth-Efficiency of Hardware Prefetchers”,
HPCA 2007.
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Feedback-Directed Prefetcher Throttling (11I)

BPKI - Memory Bus Accesses per 1000 retired Instructions

o Includes effects of L2 demand misses as well as pollution
induced misses and prefetches

A measure of bus bandwidth usage

PN
No. Pref. | Very Cons / Mid \\v ry Ag / FDP

IPC 0.85 1.21 1.47 l 1.57 1 1.67

BPKI 8.56 9.34 \10.60// 13.38 \10.88
~—"
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More on Feedback Directed Prefetching

= Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Feedback Directed Prefetching: Improving the Performance and
Bandwidth-Efficiency of Hardware Prefetchers"
Proceedings of the 13th International Symposium on High-Performance

Computer Architecture (HPCA ), pages 63-74, Phoenix, AZ, February
2007. Slides (ppt)

Feedback Directed Prefetching:
Improving the Performance and Bandwidth-Efficiency of Hardware Prefetchers

Santhosh Srinathii Onur Mutlu§ Hyesoon Kimi Yale N. Patti

. _ IDepartment of Electrical and Computer Engineering
TMicrosoft §Microsoft Research

 @mi . @mi ft The University of Texas at Austin
ssrimicrosolt.com OnUETETICIOSOTL.com {santhosh, hyesoon, patt} @ece.utexas.edu
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How to Pretetch More Irregular Access Patterns?

Reqgular patterns: Stride, stream prefetchers do well

More irregular access patterns

o Indirect array accesses

o Linked data structures

o Multiple regular strides (1,2,3,1,2,3,1,2,3,...)
o Random patterns?

a Generalized prefetcher for all patterns?

Correlation based prefetchers

Content-directed prefetchers
Precomputation or execution-based prefetchers
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Address Correlation Based Prefetching (I)

Consider the following history of cache block addresses
ABCDCEACFFEAATBCD,EAB,CD,C

After referencing a particular address (say A or E), are
some addresses more likely to be referenced next

2 A 6 @ 1.0 @
67 5

Markov
Model

6
2
D )= ’ 5 F 5
1.0
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Address Correlation Based Prefetching (1)

Cache
Block™ |

-~

Addr

N

Cache Block Addr

Prefetch

Confidence

Prefetch

Confidence

Idea: Record the likely-next addresses (B, C, D) after seeing an address A
o Next time A is accessed, prefetch B, C, D
o A is said to be correlated with B, C, D

Prefetch up to N next addresses to increase coverage

Prefetch accuracy can be improved by using multiple addresses as key for
the next address: (A, B) = (C)

(A,B) correlated with C

Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 1997.
o Also called “"Markov prefetchers”
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Address Correlation Based Prefetching (111)

Advantages:

o Can cover arbitrary access patterns
Linked data structures
Streaming patterns (though not so efficiently!)

Disadvantages:

o Correlation table needs to be very large for high coverage

Recording every miss address and its subsequent miss addresses
is infeasible

o Can have low timeliness: Lookahead is limited since a prefetch
for the next access/miss is initiated right after previous

o Can consume a lot of memory bandwidth
Especially when Markov model probabilities (correlations) are low

o Cannot reduce compulsory misses
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Content Directed Pretetching (I)

A specialized prefetcher for pointer values

Idea: Identify pointers among all values in a fetched cache
block and issue prefetch requests for them.

o Cooksey et al., “A stateless, content-directed data prefetching
mechanism,” ASPLOS 2002.

+ No need to memorize/record past addresses!
+ Can eliminate compulsory misses (never-seen pointers)
-- Indiscriminately prefetches all pointers in a cache block

How to identify pointer addresses:

o Compare address sized values within cache block with cache
block’ s address = if most-significant few bits match, pointer
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Content Directed Prefetching (1I)

[31:20]

Virtual Address Predictor

'Generate Prefetch

X80022220

L2

DRAM
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Making Content Directed Prefetching Efficient

= Hardware does not have enough information on pointers
= Software does (and can profile to get more information)

= Idea:

o Compiler profiles and provides hints as to which pointer
addresses are likely-useful to prefetch.

o Hardware uses hints to prefetch only likely-useful pointers.

= Ebrahimi et al., “Techniques for Bandwidth-Efficient
Prefetching of Linked Data Structures in Hybrid Prefetching
Systems,” HPCA 20009.
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Shortcomings of CDP — An example

Struct node{

HashLookup(int Key) { int Key; -
int * D1_ptr;
for (node = head ; node -> Key != Key; node = node -> Next; ) ; int * D*2_ptr;
if (node) return node->D1; node * Next;

} }

i \
| " D2 Key » D1
" D2
Key » D1 v
" D2 Key » D1
" D2
Key » D1
" D2

Example from mst
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Shortcomings of CDP — An example

[oz:1€]

Cache Line Addr

Key

D1 ptr

D2 ptr

Next

Key

D1 ptr

D2 ptr

Next

[31:20] l [31:20] [31:20]
—(>

_,®

l [31:20]

l [31:20] [31:20]

[31:20]
_*(%) —(=)

Virtual Address Predictor

l [31:20]

s ‘\\\
> D2 Key » D1
I * D2
Key » D1 v
> D2 Key » D1
* D2
Key . D1
* D2
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Shortcomings of CDP — An example

HashLookup(int Key) {

}

for (node = head ;node -> Key != Key; node = node -> Next; )

if (node) return node -> D1;

N
Key D1 \
| » D2 Key > D1
! D1 | " D2
Key > |
* D2 Key » D1
Key .| D1 " D2
" D2
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Shortcomings of CDP — An example

[oz:1€]

Cache Line Addr

Key | D1 _ptr | D2_ptr | Next Key | D1 _ptr| D2_ptr| Next
‘ [31:20] l[31:20] [31:20] 1[31:201 l [31:20] [31:20] 1[31:201 i[31:20]

_,®

Virtual Address Predictor

i

Key

D1

\ 4 \ 4

'

D2

Key

\ 4 A\ 4

D1

D2

Key

A 4

D1

D2

N

Key

\ 4 \4

D1

Key

D2

A4 \4

D1

D2
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More on Content Directed Pretfetching

= Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Techniques for Bandwidth-Efficient Prefetching of Linked Data
Structures in Hybrid Prefetching Systems"”
Proceedings of the 15th International Symposium on High-Performance
Computer Architecture (HPCA ), pages 7-17, Raleigh, NC, February
2009.Slides (ppt)

Techniques for Bandwidth-Efficient Prefetching of Linked Data Structures in
Hybrid Prefetching Systems

Eiman Ebrahimif Onur Mutlu§ Yale N. Patty

TDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University
{ebrahimi, patt} @ece.utexas.edu onur@cmu.edu
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Hybrid Hardware Pretetchers

Many different access patterns
o Streaming, striding

o Linked data structures

o Localized random

Idea: Use multiple prefetchers to cover all patterns

+ Better prefetch coverage
-- More complexity
-- More bandwidth-intensive

-- Prefetchers start getting in each other’s way (contention,
pollution)

- Need to manage accesses from each prefetcher
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FExecution-based Prefetchers (I)

Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

o Only need to distill pieces that lead to cache misses

Speculative thread: Pre-executed program piece can
be considered a “thread”

Speculative thread can be executed

On a separate processor/core

On a separate hardware thread context (think fine-grained
multithreading)

On the same thread context in idle cycles (during cache misses)
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Execution-based Pretetchers (1I)

How to construct the speculative thread:
o Software based pruning and “spawn” instructions
o Hardware based pruning and “spawn” instructions

o Use the original program (no construction), but
Execute it faster without stalling and correctness constraints

Speculative thread
o Needs to discover misses before the main program
Avoid waiting/stalling and/or compute less

o To get ahead, uses

Perform only address generation computation, branch prediction,
value prediction (to predict “unknown” values)

o Purely speculative so there is no need for recovery of main
program if the speculative thread is incorrect

158



Thread-Based Pre-Execution

= Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

fork

prediction

= Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999.

BRANCH

= Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
speedup 2001.
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Thread-Based Pre-Execution Issues

Where to execute the precomputation thread?
1. Separate core (least contention with main thread)
2. Separate thread context on the same core (more contention)
3. Same core, same context
When the main thread is stalled

When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load
How far ahead?

0 Too early: prefetch might not be needed
0 Too late: prefetch might not be timely

2. When the main thread is stalled

When to terminate the precomputation thread?
1. With pre-inserted CANCEL instructions
2. Based on effectiveness/contention feedback (recall throttling)
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Thread-Based Pre-Execution Issues

= What, when, where, how

a Luk, “Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors,”

ISCA 2001.
o Many issues in software-based pre-execution discussed

Key (a) Multiple Pointer Chains (b) Non-Affine Array Accesses

=3 Main Execution

™ Pre-Execution

L X = Array Elements Accessed

(d) Multiple Control-Flow Paths

-

baz () ,<h(l;(1‘\§

[ W
.
. ey
r//’.‘?“‘()\‘
qux ( ):.\:,‘: !
3 L] 4
S
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An Example

(a) Original Code

register int 1;
register arc_t *arcout;
for(; 1< tnps; ){
/l loop over ‘trips” lists
if (arcout[1] ident != FIXED) {

first_of_sparse _list = arcout + 1;
1
arcin = (arc_t *)first_of_sparse_list

—» tail—» mark;

/I traverse the list starting with
/I the first node just assigned
while (arcin) {

tail = arcin—>tail;

arcin = (are_t *)tail—» mark;
1++, arcout+=3;

}

(b) Code with Pre-Execution

register it 1;
register arc_t *arcout;
for(; 1< tnps: ){
/I loop over ‘trips” lists
if (arcout[1] 1dent != FIXED) {

first_of_sparse_list = arcout + 1;
1
/I invoke a pre-execution starting
// at END_FOR
PreExecute_StarttEND_FOR);
arcin = (arc_t *)first_of_sparse_list

— ta1l—» mark;

/I traverse the list starting with
/I the first node just assigned
while (arcin) {

tail = arcin— tail;

arcin = (arc_t *)tail—»mark;
1
[/ terminate this pre-execution after
/I prefetching the entire list
PreExecute_Stop();
END_FOR:
/I the target address of the pre-
/I execution
1++, arcout+=3;
1
/] terminate this pre-execution if we
/I have passed the end of the for-loop
PreExecute_Stop();

Figure 2. Abstract versions of an important loop nest in the
Spec2000 benchmark mc £. Loads that incur many cache miss-

es are underlined.

The Spec2000 benchmark mcf spends roughly half of its ex-
ecution time in a nested loop which traverses a set of linked list-
s. An abstract version of this loop is shown in Figure 2(a), in
which the for-loop iterates over the lists and the while-loop vis-
its the elements of each list. As we observe from the figure, the
first node of each list is assigned by dereferencing the pointer
first_of _sparse_list, whose value is in fact determined by
arcout, an induction variable of the for-loop. Therefore, even
when we are still working on the current list, the first and the re-
maining nodes on the next list can be loaded speculatively by pre-
executing the next iteration of the for-loop.

Figure 2(b) shows a version of the program with pre-execution
code inserted (shown in boldface). END_FOR is simply a label
to denote the place where arcout gets updated. The new in-
struction PreExecute_Start(END_FOR) initiates a pre-execution
thread, say 7', starting at the PC represented by END_FOR. Right
after the pre-execution begins, 7'’s registers that hold the values
of i and arcout will be updated. Then i’s value is compared
against trips to see if we have reached the end of the for-loop.
If so, thread 1" will exit the for-loop and encounters a PreExe-
cute_Stop(), which will terminate the pre-execution and free up
1T for future use. Otherwise, 7' will continue pre-executing the
body of the for-loop, and hence compute the first node of the next
list automatically. Finally, after traversing the entire list through
the while-loop, the pre-execution will be terminated by another
PreExecute_Stop(). Notice that any PreExecute_Start() instruc-
tions encountered during pre-execution are simply ignored as we
do not allow nested pre-execution in order to keep our design sim-
ple. Similarly, PreExecute_Stop() instructions cannot terminate
the main thread either.
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Example ISA Extensions

I'hread_l D = PreExecute_Start(Stari_C, Maxr_[nsts):
Request for an idle context to start pre-execution at
Start_P(C and stop when Max_[nsts instructions have
been executed: ['hread_l D holds either the identity of
the pre-execution thread or -1 if there is no idle context.

This instruction has effect only if it 1s executed by the main
thread.

PreExecute_Stop(): The thread that executes this instruction
will be self terminated if it 1s a pre-execution thread: no
effect otherwise.

PreExecute_Cancel(/ hread_{ D): Terminate the pre-
execution thread with 1'hread_{ D. This instruction has
effect only if 1t 1s executed by the main thread.

Figure 4. Proposed instruction set extensions to support pre-
execution. (C syntax is used to improve readability.)
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Results on a Multithreaded Processor

100 - 100

load L2-miss stall
load L2-hit stall
other stall

busy

50 |-

Normalized Execution Time

O PX @] PX

PX PX PX
Compress Em3d Equake Mcf Mst Raytrace Twolf

Luk, “Tolerating Memory Latency through Software-Controlled Pre-Execution in
Simultaneous Multithreading Processors,” ISCA 2001.
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Problem Instructions

= Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA
2001.

= Zilles and Sohi, "Understanding the backward slices of performance degrading
instructions,” ISCA 2000.

Figure 2. Example problem instructions from heap insertion
routine in vpr.

struct s_heap **heap; // from [l..heap_size]
int heap_size; // # of slots in the heap
int heap tail; // first unused slot in heap

void add_to_heap (struct s_heap *hptr) {

heap[heap tail] = hptr; branch

1.

2. int ifrom = heap_tail; misprediction
3. int ito = ifrom/2; .
4. heap tail++; / cache miss
5. while ((ito >= 1) &&

6. (heap[ifrom]->cost < heap[ito]=->cost))
7. struct s_heap *temp ptr = heap[ito];
8. heap[ito] = heap[ifrom];

9. heap[ifrom] = temp_ptr;

10. ifrom = ito;

11. ito = ifrom/2;
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Fork Point for Prefetching Thread

Figure 3. The node to heap function, which serves as
the fork point for the slice that covers add to heap.

void node_to heap (..., float cost, ...) {
struct s_heap *hptr; --——— fork point

hptr = alloc_heap data();
hptr->cost = cost;

add_to_heap (hptr);
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Pre-execution Thread Construction

Figure 4. Alpha assembly for the add_to_heap function.

The instructions are annotated with the number of the line in

Figure 2 to which they correspond. The problem instructions

are in bold and the shaded instructions comprise the

un-optimized slice. Figure 5. Slice constructed for example problem instructions.

node_to_heap: . , Much smaller than the original code, the slice contains a loop
--- /* skips ~40 instructions */ that mimics the loop in the original code.

2 lda sl, 252(gp) # &heap_tail

2 1d1 t2, 0(sl) # ifrom = heap_tail ,

1 1ldgq t5, -76(sl) # &heap[0] slice:

3 cmplt t2, 0, t4 # see note 1 ldg $6, 328(gp) # &heap

4 addl  t2, 0xl, t6 # heap_tail +4 2 1d1 $3, 252(gp) # ito = heap_tail
1 s8addg t2, t5, t3 # &heap[heap_tail] slice 1oop:

‘; Szl tg' g‘i;) i;mrehheapgtéil 3,11 sra  $3, Oxl, $3 # ito /= 2

: e o €  ssaddg$3, $6, $16  # &heap[ito]

3 sra t4, 0x1, t4 # ito = ifrom/2 6 ldgq $18, 0($16) # heap[ito]

5 ble t4, return # (ito < 1) 6 1lds sfi1, 4(S18) ¢ heap[ito]->cost
loop: 6 cmptle $f1,5f17,5f321 £ (heap[ito]->cost
[ s8addg t2, t5, a0 # &heap[ifrom] # < cost) PRED

& s8addg t4, t5, t7 # &heap[ito] .

11 cmpltq t4, 0, t9 # see ﬁote br slice_loop

10 move t4, t2 # ifrom = ito .

[ ldg a2, 0(ao0) # heap[ifrom] ## Annotations

6 1ldg a4, 0(t7) # heap[ito] fork: on first instruction of node_ to_heap
11 addl t4, t9, t9 # see note live_in: $f17<cost>' gp

11 sra t9, 0x1, t4 # ito =.ifrom/2 max loop iterations: 4

3 lds sfo, 4(a2) # heap[ifrom]->cost

6 1lds sfi1, 41(aa) ¢ heap[ito]->cost

3 cmptlt $£f0,$f1,$f0 # (heap[ifrom]->cost

6 fbeq $f0, return # < heap[ito]->cost)

8 stg a2, 0(t7) # heap[ito]

] stq a4, 0(ao0) # heap[ifrom]

5 bgt t4, loop # (ito >= 1)

return:

. /* register restore code & return */

note: the divide by 2 operation is implemented by a 3 instruc-
tion sequence described in the strength reduction optimization. 167




Review: Runahead Execution

A simple pre-execution method for prefetching purposes

When the oldest instruction is a long-latency cache miss:
o Checkpoint architectural state and enter runahead mode

In runahead mode:

a Speculatively pre-execute instructions

a The purpose of pre-execution is to generate prefetches

o L2-miss dependent instructions are marked INV and dropped
Runahead mode ends when the original miss returns

o Checkpoint is restored and normal execution resumes

Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.
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Review: Runahead Execution (Mutlu et al., HPCA 2003)

Small Window: _
Load 1 Miss Load 2 Miss
Miss 1 G Miss 2
Runahead:

Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Hit

Saved Cycles
Miss 1
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Runahead as an Execution-based Prefetcher

Idea of an Execution-Based Prefetcher: Pre-execute a piece
of the (pruned) program solely for prefetching data

Idea of Runahead: Pre-execute the main program solely for
prefetching data

Advantages and disadvantages of runahead vs. other
execution-based prefetchers?

Can you make runahead even better by pruning the
program portion executed in runahead mode?
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Taking Advantage ot Pure Speculation

Runahead mode is purely speculative

The goal is to find and generate cache misses that would
otherwise stall execution later on

How do we achieve this goal most efficiently and with the
highest benefit?

Idea: Find and execute only those instructions that will lead
to cache misses (that cannot already be captured by the
instruction window)

How?
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Execution-based Prefetchers: Pros and Cons

+ Can prefetch pretty much any access pattern

+ Can be very low cost (e.g., runahead execution)
+ Especially if it uses the same hardware context
+ Why? The processsor is equipped to execute the program anyway

+ Can be bandwidth-efficient (e.g., runahead execution)

-- Depend on branch prediction and possibly value prediction
accuracy

- Mispredicted branches dependent on missing data throw the thread
off the correct execution path

-- Can be wasteful

-- speculatively execute many instructions
-- can occupy a separate thread context

-- Complexity in deciding when and what to pre-execute
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Multi-Core Issues in Pretetching




Prefetching in Multi-Core (I)

Prefetching shared data
o Coherence misses

Prefetch efficiency is a lot more important
o Bus bandwidth more precious
o Cache space more valuable

One cores’ prefetches interfere with other cores’ requests
o Cache conflicts

o Bus contention

o DRAM bank and row buffer contention
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Prefetching in Multi-Core (II)

Two key issues

o How to prioritize prefetches vs. demands (of different cores)

o How to control the aggressiveness of multiple prefetchers to
achieve high overall performance

Need to coordinate the actions of independent prefetchers
for best system performance

Each prefetcher has different accuracy, coverage, timeliness

SAFARI 175



Some Ideas

Controlling prefetcher aggressiveness

o Feedback directed prefetching [HPCA'07

a | Coordinated control of multiple prefetchers [MICRO'09]
How to prioritize prefetches vs. demands from cores

o Prefetch-aware memory controllers and shared resource
management [MICRO'08, ISCA'11]

Bandwidth efficient prefetching of linked data structures

o Through hardware/software cooperation (software hints)
[HPCA'09]
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Motivation

B Aggressive prefetching improves
memory latency tolerance of
many applications when they run alone

B Prefetching for concurrently-executing
applications on a CMP can lead to

[0 Significant system performance degradation and
bandwidth waste

B Problem: | |
Prefetcher-caused inter-core interference

[1 Prefetches of one application contend with
prefetches and demands of other applications
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Potential Performance

System performance improvement of ideally removing all

prefetcher-caused inter-core interference in shared resources

O)
£ 22 .
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Exact workload combinations can be found in [Ebrahimi et al., MICRO 2009]
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High Interference caused by
Accurate Prefetchers

Legend:

Shared Cache

_______________________________________________________________

Requests !

DRAM Being !

Serviced !

Row c |
< Buffers | [Cto C+8K]|!

. |D to D-I:-8K
Bank O Bank |
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Shortcoming of Local Pretetcher Throttling

Core 0 Core 1 Core 2 Core 3
m Prefetcher
Degree: 2

- Set0 Desfi P | Deafi P Dem 3 |Dem 3
. Set1 |BesfilP |Besfi(P Dem 3 [Dem 3

- Set2 Peeh B |PeehB | Peeh B |PeshB |
[ Local-only prefetcher control techniques }

have no mechanism to detect inter-core interference
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Shortcoming of Local-Only
Prefetcher Control

4-core workload example: Ibm_06 + swim_00 + crafty_00 + bzip2_00

B No Prefetching

O Pref. + No Throttling

m Feedback-Directed Prefetching
1|:| HPAC

o
0

o
o
D

o
H
|

o
N
I

Hspeedup

peedup over Alone Run

Our A|5pro_ach: Use both g/obal and per-core feedback
to determine each prefetcher’' s aggressiveness
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Prefetching in Multi-Core (II)

Ideas for coordinating different prefetchers’ actions

o Utility-based prioritization
Prioritize prefetchers that provide the best marginal utility on
system performance

o Cost-benefit analysis
Compute cost-benefit of each prefetcher to drive prioritization

o Heuristic based methods

Global controller overrides local controller’s throttling decision
based on interference and accuracy of prefetchers

Ebrahimi et al., "Coordinated Management of Multiple Prefetchers
in Multi-Core Systems,” MICRO 20069.
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Hierarchical Prefetcher Throttling

GhohbbcOaintidd . goaie pis or Global control's goal: Keep
Maxinaize deeisions made by | track of and control

o toae! | ey s
8%%{”%&)&%%&%rmance inter-core interference in

shared memory system

Final
. Throttling Decision ;
Pref. i - .
+ | Throttling Decision Accuracy Global
Local / Control

Control _—— |Local

Core j | Throttling Decision

Cache Pollution
Feedback

Shared Cache
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Hierarchical Prefetcher Throttling Example

- High accuracy

- High pollution Memory Controller
- High bandwidth consumed ,

while other cores need bandwidth

~ High BW (i
Eimérce High BWNO (i)

| : Throtitlegideanision i

Pref. i '\  v

; HhAcc oo .| Global

ig i
Local T Coptrol
Control | —  |[Local g
Core i |ThrotiiledJpecision . High Pol (i)

WPOL Filter i || Shared Cache
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HPAC Control Policies

Pol (i) Acc (i) BW (i) BWNO (i) | Interference Class  Action
, I
Others' low |,
Low BW ) BW need )
Consumption ( ' high |
4 Inaccurate prion) Others’ high| , gevere interference throttle
High BW )| BWneed | down
[Causing_ Low Consumption) (Others’ Iow\_>
Pollution BW need
\_ _J
Highly W >
Accurate J
W _ throttle
Inaccurate J » Severe interference down
' N
Causing High Others’ low |,
usi [
BW need
{ Pollution Low BW K‘ 4
1 4 I
Consumption Others’ high|_,
Highly L BW need )
Accurate N
Others’ low |
High BW BW need )
C ti )
onsumption Others’ high| S i torf throttle
BW need evere interference down
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HPAC Evaluation

® No Throttling

B Feedback-Directed Prefetching (FDP)

® Hierarchical Prefetcher Aggressiveness Control (HPAC)]
1 =2

1.05

"115%

0.9 -

Normalized System Performance
Normalized System Unfairness
o
(@)

Normalized to system with no prefetching
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More on Coordinated Prefetcher Control

= Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt,
"Coordinated Control of Multiple Prefetchers in Multi-Core
Systems”
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 316-326, New York, NY, December
2009, Slides (ppt)

Coordinated Control of Multiple Prefetchers
in Multi-Core Systems

Eiman Ebrahimit Onur Mutlu§ Chang Joo Leet Yale N. Patty

TDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University
{ebrahimi, cjlee, patt}@Qece.utexas.edu onur@cmu.edu
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More on Prefetching in Multi-Core (I)

= Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt,
"Prefetch-Aware DRAM Controllers"

Proceedings of the 41st International Symposium on

Microarchitecture (MICRO), pages 200-209, Lake Como, Italy, November
2008. Slides (ppt)

Prefetch-Aware DRAM Controllers

Chang Joo Leet Onur Mutlu§ Veynu Narasiman{ Yale N. Pattf

fDepartment of E.lectr.lcal and Computer l?ngmeenng §Microsoft Research and Carnegie Mellon University
The University of Texas at Austin

: . onur @ { microsoft.com,cmu.edu}
{cjlee, narasima, patt}@ece.utexas.edu
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More on Prefetching in Multi-Core (1)

= Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N. Patt,

"Improving Memory Bank-Level Parallelism in the Presence of
Prefetching"

Proceedings of the 42nd International Symposium on

Microarchitecture (MICRO), pages 327-336, New York, NY, December
2009, Slides (ppt)

Improving Memory Bank-Level Parallelism
in the Presence of Prefetching

Chang Joo Leet Veynu Narasimani Onur Mutlu§ Yale N. Patty

TDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University

{cjlee, narasima, patt}Qece.utexas.edu onur@cmu.edu
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More on Prefetching in Multi-Core (11I)

= Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Prefetch-Aware Shared Resource Management for Multi-Core
Systems”
Proceedings of the 38th International Symposium on Computer
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)

Prefetch-Aware Shared-Resource Management
for Multi-Core Systems

Eiman Ebrahimit Chang Joo Leett Onur Mutlu§ Yale N. Patt;

tHPS Research Group tIntel Corporation §Carnegie Mellon University

The University of Texas at Austin . '
{ebrahimi, patt}@hps.utexas.edu chang.joo.lee@intel.com onur@cmu.edu
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More on Prefetching in Multi-Core (IV)

= Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip P. Gibbons,
Michael A. Kozuch, and Todd C. Mowry,
"Mitigating Prefetcher-Caused Pollution using Informed Caching Policies
for Prefetched Blocks"
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4,
January 2015.
Presented at the 10th HIPEAC Conference, Amsterdam, Netherlands, January
2015.

Slides (pptx) (pdf)]

[Source Code]

Mitigating Prefetcher-Caused Pollution Using Informed Caching
Policies for Prefetched Blocks

VIVEK SESHADRI, SAMIHAN YEDKAR, HONGYI XIN, and ONUR MUTLU,
Carnegie Mellon University

PHILLIP B. GIBBONS and MICHAEL A. KOZUCH, Intel Pittsburgh

TODD C. MOWRY, Carnegie Mellon University
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Prefetching in GPUs

= Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur
Mutlu, Ravishankar Iyer, and Chita R. Das,
"Orchestrated Scheduling and Prefetching for GPGPUs"
Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides

(pdf)

Orchestrated Scheduling and Prefetching for GPGPUs

Adwait Jog" Onur Kayiran®  Asit K. Mishra®  Mahmut T. Kandemirt
Onur Mutlu*  Ravishankar lyers  Chita R. Das
"The Pennsylvania State University * Carnegie Mellon University SIntel Labs
University Park, PA 16802 Pittsburgh, PA 15213 Hillsboro, OR 97124
{adwait, onur, kandemir, das}@cse.psu.edu onur@cmu.edu {asit.k.mishra, ravishankar.iyer}@intel.com
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We did not cover the following slides in
lecture. They are for your benetfit.




More on Runahead Enhancements




Eliminating Short Periods

Mechanism to eliminate short periods:
o Record the number of cycles C an L2-miss has been in flight

o If Cis greater than a threshold T for an L2 miss, disable entry
into runahead mode due to that miss

o T can be determined statically (at design time) or dynamically

T=400 for a minimum main memory latency of 500 cycles
works well
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Eliminating Overlapping Periods

Overlapping periods are not necessarily useless

o The availability of a new data value can result in the
generation of useful L2 misses

But, this does not happen often enough

Mechanism to eliminate overlapping periods:

o Keep track of the number of pseudo-retired instructions R
during a runahead period

o Keep track of the number of fetched instructions N since the
exit from last runahead period

o If N < R, do not enter runahead mode
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Properties ot Traversal-based AVDs

Stable AVDs can be captured with a stride value predictor

Stable AVDs disappear with the re-organization of the data
structure (e.g., sorting)

A S
£ Atk Sorting £ Atk

>
A+2k A Distance between

|
A+3k A+2K nodes NOT constant! 3

Stability of AVDs is dependent on the behavior of the
memory allocator

o Allocation of contiguous, fixed-size chunks is useful
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Properties of Leat-based AVDs

Stab
Stab

e AVDs cannot be captured with a stride value predictor
e AVDs do not disappear with the re-organization of

the ¢

ata structure (e.g., sorting)

lA+k ¢C+k Distance between

node and string
éA Sorting éc still constant! \/
B+k C+k » A+k B+k

Stabi
mem

S & & &

ity of AVDs is dependent on the behavior of the
ory allocator
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An Implementable AVD Predictor

Set-associative prediction table

Prediction table entry consists of

o Tag (Program Counter of the load)

o Last AVD seen for the load

o Confidence counter for the recorded AVD

Updated when an address load is retired in normal mode
Accessed when a load misses in L2 cache in runahead mode

Recovery-free: No need to recover the state of the processor
or the predictor on misprediction

o Runahead mode is purely speculative
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AVD Update Logic

Effective Address Data Value

computed AYD = Effective Addt — Data Value

' l

= <=

'

valid AYD?

|

Confidehce
™| Update/Reset i
Logic ‘|
11
Tag Conf | AYD
ol

PC of Retired Load

I
I
|
I
|
I
|
|
I
I
|
I
I
E —MaxAVD? | | MaxavD?
|
I
I
I
I
I
I
|
I
I
I
|
|
|

AVD Prediction
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AVD Prediction Logic

Predicted? ! ¥ pedicted vilse

(not INV?) = Effective Addr— AVD

LAY

="
| ]
Tag Ceonf | AVD
Program Counter of Effective Address of
L2—miss Load L2—miss Load
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Baseline Processor

Execution-driven Alpha simulator

8-wide superscalar processor

128-entry instruction window, 20-stage pipeline

64 KB, 4-way, 2-cycle L1 data and instruction caches
1 MB, 32-way, 10-cycle unified L2 cache

500-cycle minimum main memory latency

32 DRAM banks, 32-byte wide processor-memory bus (4:1
frequency ratio), 128 outstanding misses

o Detailed memory model

Pointer-intensive benchmarks from Olden and SPEC INTOO
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AVD vs. Stride VP Performance

1.00

HAVD

!

0.98

M stride

0.96

@ hybrid

o
©
X

0.86

0.84 -

Normalized Execution Time (excluding health)
g

0.82 -

0.80 - ‘
16 entries 4096 entries
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