

Computer Architecture
Lecture 2: Fundamentals,

Memory Hierarchy, Caches

Prof. Onur Mutlu
ETH Zurich
Fall 2017

21 September 2017

Agenda for Today
n  Finish up logistics from last lecture

n  Why study computer architecture?

n  Some fundamental concepts

n  Memory hierarchy

n  Caches

2

Takeaway From Lecture 1

Breaking the abstraction layers
(between components and

transformation hierarchy levels)

and knowing what is underneath

enables you to understand and
solve problems

3

Review: Major High-Level Goals of This Course

n  Understand the principles
n  Understand the precedents

n  Based on such understanding:
q  Enable you to evaluate tradeoffs of different designs and ideas
q  Enable you to develop principled designs
q  Enable you to develop novel, out-of-the-box designs

n  The focus is on:
q  Principles, precedents, and how to use them for new designs

n  In Computer Architecture

4

A Note on Hardware vs. Software

n  This course might seem like it is only “Computer Hardware”

n  However, you will be much more capable if you master both
hardware and software (and the interface between them)
q  Can develop better software if you understand the hardware
q  Can design better hardware if you understand the software
q  Can design a better computing system if you understand both

n  This course covers the HW/SW interface and microarchitecture
q  We will focus on tradeoffs and how they affect software

5

What Do I Expect From You?
n  Required background: Digital circuits course, programming, an

open mind willing to take in many exciting concepts.

n  Learn the material thoroughly
q  attend lectures, do the readings, do the exercises, do the labs

n  Work hard: this will be a hard, but fun & informative course
n  Ask questions, take notes, participate
n  Perform the assigned readings
n  Come to class, participate
n  Start early
n  If you want feedback, come to office hours

n  Remember “Chance favors the prepared mind.” (Pasteur)
6

What Do I Expect From You?
n  How you prepare and manage your time is very important

n  There will be many lab and homework assignments
q  They will take time
q  Start early, work hard

n  This will be a heavy course
q  However, you will learn a lot of fascinating topics and

understand how a computing platform works
q  And, it will hopefully change how you look at and think about

designs around you

7

How Will You Be Evaluated?

n  Project assignments: 35%
n  Midterm exam: 25%
n  Final exam: 25%
n  Homeworks: 15%

n  More on this later

8

What Will You Learn
n  Computer Architecture: The science and art of

designing, selecting, and interconnecting hardware
components and designing the hardware/software interface
to create a computing system that meets functional,
performance, energy consumption, cost, and other specific
goals.

n  Traditional definition: “The term architecture is used
here to describe the attributes of a system as seen by the
programmer, i.e., the conceptual structure and functional
behavior as distinct from the organization of the dataflow
and controls, the logic design, and the physical
implementation.” Gene Amdahl, IBM Journal of R&D, April
1964

9

Computer Architecture in Levels of Transformation

n  Read: Patt, “Requirements, Bottlenecks, and Good Fortune: Agents for
Microprocessor Evolution,” Proceedings of the IEEE 2001.

10

Microarchitecture

ISA (Architecture)

Program/Language

Algorithm

Problem

Logic
 Circuits

Runtime System
(VM, OS, MM)

Electrons

Levels of Transformation, Revisited

11

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

n  A user-centric view: computer designed for users

n  The entire stack should be optimized for user

Logic
 Circuits
Electrons

What Will You Learn?
n  Fundamental principles and tradeoffs in designing the

hardware/software interface and major components of a
modern programmable microprocessor
q  Focus on state-of-the-art (and some recent research and trends)
q  Trade-offs and how to make them

n  How to design, implement, and evaluate a functional modern
processor
q  Semester-long lab assignments
q  A combination of RTL implementation and higher-level simulation
q  Focus is functionality first (then, on “how to do even better”)

n  How to think critically and broadly
n  How to work efficiently

12

Course Goals
n  Goal 1: To familiarize those interested in computer system

design with both fundamental operation principles and design
tradeoffs of processor, memory, and platform architectures in
today’s systems.
q  Strong emphasis on fundamentals, design tradeoffs, key

current/future issues
q  Strong emphasis on looking backward, forward, up and down

n  Goal 2: To provide the necessary background and experience to
design, implement, and evaluate a modern processor by
performing hands-on RTL and C-level implementation.
q  Strong emphasis on functionality, hands-on design &

implementation, and efficiency.
q  Strong emphasis on making things work, realizing ideas

13

Course Website

n  http://safari.ethz.ch/architecture

n  All slides, lecture videos, readings, assignments to be
posted

n  Plus other useful information for the course

n  Check frequently for announcements and due dates

14

Homework 0
n  Due Sep 27

q  https://safari.ethz.ch/farm/architecture_fs17/doku.php?
id=homeworks

n  Information about yourself

n  All future grading is predicated on homework 0

15

Heads Up
n  We will have a few required review assignments

q  Due likely end of next week

n  HW1 will be out early next week
q  Due in ~2 weeks

n  Lab 1 will be out mid next week
q  Due in ~2 weeks

n  Check the website. Will also be announced in lecture

16

Why Study Computer
Architecture?

17

What is Computer Architecture?

n  The science and art of designing, selecting, and
interconnecting hardware components and designing the
hardware/software interface to create a computing system
that meets functional, performance, energy consumption,
cost, and other specific goals.

n  We will soon distinguish between the terms architecture,
and microarchitecture.
q  Actually, we have, in Digital Circuits course

18

An Enabler: Moore’s Law

19

Moore, “Cramming more components onto integrated circuits,”
Electronics Magazine, 1965. Component counts double every other year

Image source: Intel

20

Number of transistors on an integrated circuit doubles ~ every two years

Image source: Wikipedia

Recommended Reading
n  Moore, “Cramming more components onto integrated

circuits,” Electronics Magazine, 1965.

n  Only 3 pages

n  A quote:
 “With unit cost falling as the number of components per

circuit rises, by 1975 economics may dictate squeezing as
many as 65 000 components on a single silicon chip.”

n  Another quote:
 “Will it be possible to remove the heat generated by tens of

thousands of components in a single silicon chip?”
21

What Do We Use These Transistors for?
n  Your readings for this week should give you an idea…

n  Required
q  Patt, “Requirements, Bottlenecks, and Good Fortune: Agents for

Microprocessor Evolution,” Proceedings of the IEEE 2001.

n  Required for Review as part of HW 1
q  Moscibroda and Mutlu, “Memory Performance Attacks: Denial of

Memory Service in Multi-Core Systems,” USENIX Security 2007.
q  Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA

2012.
q  Kim+, “Flipping Bits in Memory Without Accessing Them: An

Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

22

Why Study Computer Architecture?
n  Enable better systems: make computers faster, cheaper,

smaller, more reliable, …
q  By exploiting advances and changes in underlying technology/circuits

n  Enable new applications
q  Life-like 3D visualization 20 years ago? Virtual reality?
q  Self-driving cars?
q  Personalized genomics? Personalized medicine?

n  Enable better solutions to problems
q  Software innovation is built on trends and changes in computer architecture

n  > 50% performance improvement per year has enabled this innovation

n  Understand why computers work the way they do
23

Computer Architecture Today (I)
n  Today is a very exciting time to study computer architecture

n  Industry is in a large paradigm shift (to multi-core and
beyond) – many different potential system designs possible

n  Many difficult problems motivating and caused by the shift
q  Power/energy constraints à heterogeneity?
q  Complexity of design à multi-core and heterogeneity?
q  Difficulties in technology scaling à new technologies?
q  Memory wall/gap à processing in memory?
q  Reliability wall/issues à new technologies?
q  Programmability wall/problem
q  Huge hunger for data and new data-intensive applications

n  No clear, definitive answers to these problems
24

Computer Architecture Today (II)
n  These problems affect all parts of the computing stack – if

we do not change the way we design systems

n  No clear, definitive answers to these problems
25

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

Logic
 Circuits
Electrons

Many new demands
from the top
(Look Up)

Many new issues
at the bottom
(Look Down)

Fast changing
demands and
personalities
of users
(Look Up)

Computer Architecture Today (III)
n  Computing landscape is very different from 10-20 years ago
n  Both UP (software and humanity trends) and DOWN

(technologies and their issues), FORWARD and BACKWARD,
and the resulting requirements and constraints

26

General	Purpose	GPUs	

Heterogeneous
Processors and

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Every component and its
interfaces, as well as
entire system designs
are being re-examined

Computer Architecture Today (IV)
n  You can revolutionize the way computers are built, if you

understand both the hardware and the software (and
change each accordingly)

n  You can invent new paradigms for computation,
communication, and storage

n  Recommended book: Thomas Kuhn, “The Structure of
Scientific Revolutions” (1962)
q  Pre-paradigm science: no clear consensus in the field
q  Normal science: dominant theory used to explain/improve

things (business as usual); exceptions considered anomalies
q  Revolutionary science: underlying assumptions re-examined

27

Computer Architecture Today (IV)
n  You can revolutionize the way computers are built, if you

understand both the hardware and the software (and
change each accordingly)

n  You can invent new paradigms for computation,
communication, and storage

n  Recommended book: Thomas Kuhn, “The Structure of
Scientific Revolutions” (1962)
q  Pre-paradigm science: no clear consensus in the field
q  Normal science: dominant theory used to explain/improve

things (business as usual); exceptions considered anomalies
q  Revolutionary science: underlying assumptions re-examined

28

… but, first …
n  Let’s understand the fundamentals…

n  You can change the world only if you understand it well
enough…
q  Especially the past and present dominant paradigms
q  And, their advantages and shortcomings – tradeoffs
q  And, what remains fundamental across generations
q  And, what techniques you can use and develop to solve

problems

29

Fundamental Concepts

30

What is A Computer?
n  Three key components

n  Computation
n  Communication
n  Storage (memory)

31

What is A Computer?
n  We will cover all three components

32

Memory	
(program	
and	data)	

I/O	

Processing	
	
	
	
	
	

control	
(sequencing)	

datapath	

The Von Neumann Model/Architecture
n  Also called stored program computer (instructions in

memory). Two key properties:

n  Stored program
q  Instructions stored in a linear memory array
q  Memory is unified between instructions and data

n  The interpretation of a stored value depends on the control
signals

n  Sequential instruction processing
q  One instruction processed (fetched, executed, and completed) at a

time
q  Program counter (instruction pointer) identifies the current instr.
q  Program counter is advanced sequentially except for control transfer

instructions

33

When is a value interpreted as an instruction?

The Von Neumann Model/Architecture
n  Recommended readings

q  Burks, Goldstein, von Neumann, “Preliminary discussion of
the logical design of an electronic computing instrument,”
1946.

q  Patt and Patel book, Chapter 4, “The von Neumann Model”

n  Stored program

n  Sequential instruction processing

34

The Von Neumann Model (of a Computer)

35

CONTROL UNIT

IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT OUTPUT

The Von Neumann Model (of a Computer)
n  Q: Is this the only way that a computer can operate?

n  A: No.
n  Qualified Answer: No, but it has been the dominant way

q  i.e., the dominant paradigm for computing
q  for N decades

36

The Dataflow Model (of a Computer)
n  Von Neumann model: An instruction is fetched and

executed in control flow order
q  As specified by the instruction pointer
q  Sequential unless explicit control flow instruction

n  Dataflow model: An instruction is fetched and executed in
data flow order
q  i.e., when its operands are ready
q  i.e., there is no instruction pointer
q  Instruction ordering specified by data flow dependence

n  Each instruction specifies “who” should receive the result
n  An instruction can “fire” whenever all operands are received

q  Potentially many instructions can execute at the same time
n  Inherently more parallel

37

Von Neumann vs Dataflow
n  Consider a Von Neumann program

q  What is the significance of the program order?
q  What is the significance of the storage locations?

n  Which model is more natural to you as a programmer?
38

v	<=	a	+	b;				
w	<=	b	*	2;	
x	<=	v	-	w	
y	<=	v	+	w	
z	<=	x	*	y	

+	 *2	

-	 +	

*	

a	 b	

z	

Sequential

Dataflow

More on Data Flow
n  In a data flow machine, a program consists of data flow

nodes
q  A data flow node fires (fetched and executed) when all it

inputs are ready
n  i.e. when all inputs have tokens

n  Data flow node and its ISA representation

39

Data Flow Nodes

40

An Example Data Flow Program

41

OUT

ISA-level Tradeoff: Instruction Pointer

n  Do we need an instruction pointer in the ISA?
q  Yes: Control-driven, sequential execution

n  An instruction is executed when the IP points to it
n  IP automatically changes sequentially (except for control flow

instructions)

q  No: Data-driven, parallel execution
n  An instruction is executed when all its operand values are

available (data flow)

n  Tradeoffs: MANY high-level ones
q  Ease of programming (for average programmers)?
q  Ease of compilation?
q  Performance: Extraction of parallelism?
q  Hardware complexity?

42

ISA vs. Microarchitecture Level Tradeoff
n  A similar tradeoff (control vs. data-driven execution) can be

made at the microarchitecture level

n  ISA: Specifies how the programmer sees instructions to be
executed
q  Programmer sees a sequential, control-flow execution order vs.
q  Programmer sees a data-flow execution order

n  Microarchitecture: How the underlying implementation
actually executes instructions
q  Microarchitecture can execute instructions in any order as long

as it obeys the semantics specified by the ISA when making the
instruction results visible to software
n  Programmer should see the order specified by the ISA

43

Let’s Get Back to the Von Neumann Model

n  But, if you want to learn more about dataflow…

n  Dennis and Misunas, “A preliminary architecture for a basic
data-flow processor,” ISCA 1974.

n  Gurd et al., “The Manchester prototype dataflow
computer,” CACM 1985.

n  A later lecture or course

n  If you are really impatient:
q  http://www.youtube.com/watch?v=D2uue7izU2c
q  http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?

media=onur-740-fall13-module5.2.1-dataflow-part1.ppt

44

The Von-Neumann Model
n  All major instruction set architectures today use this model

q  x86, ARM, MIPS, SPARC, Alpha, POWER

n  Underneath (at the microarchitecture level), the execution
model of almost all implementations (or, microarchitectures)
is very different
q  Pipelined instruction execution: Intel 80486 uarch
q  Multiple instructions at a time: Intel Pentium uarch
q  Out-of-order execution: Intel Pentium Pro uarch
q  Separate instruction and data caches

n  But, what happens underneath that is not consistent with
the von Neumann model is not exposed to software
q  Difference between ISA and microarchitecture

45

What is Computer Architecture?
n  ISA+implementation definition: The science and art of

designing, selecting, and interconnecting hardware
components and designing the hardware/software interface
to create a computing system that meets functional,
performance, energy consumption, cost, and other specific
goals.

n  Traditional (ISA-only) definition: “The term
architecture is used here to describe the attributes of a
system as seen by the programmer, i.e., the conceptual
structure and functional behavior as distinct from the
organization of the dataflow and controls, the logic design,
and the physical implementation.” Gene Amdahl, IBM
Journal of R&D, April 1964

46

ISA vs. Microarchitecture

n  ISA
q  Agreed upon interface between software

and hardware
n  SW/compiler assumes, HW promises

q  What the software writer needs to know
to write and debug system/user programs

n  Microarchitecture
q  Specific implementation of an ISA
q  Not visible to the software

n  Microprocessor
q  ISA, uarch, circuits
q  “Architecture” = ISA + microarchitecture

47

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

ISA vs. Microarchitecture
n  What is part of ISA vs. Uarch?

q  Gas pedal: interface for “acceleration”
q  Internals of the engine: implement “acceleration”

n  Implementation (uarch) can be various as long as it
satisfies the specification (ISA)
q  Add instruction vs. Adder implementation

n  Bit serial, ripple carry, carry lookahead adders are all part of
microarchitecture

q  x86 ISA has many implementations: 286, 386, 486, Pentium,
Pentium Pro, Pentium 4, Core, …

n  Microarchitecture usually changes faster than ISA
q  Few ISAs (x86, ARM, SPARC, MIPS, Alpha) but many uarchs
q  Why?

48

ISA
n  Instructions

q  Opcodes, Addressing Modes, Data Types
q  Instruction Types and Formats
q  Registers, Condition Codes

n  Memory
q  Address space, Addressability, Alignment
q  Virtual memory management

n  Call, Interrupt/Exception Handling
n  Access Control, Priority/Privilege
n  I/O: memory-mapped vs. instr.
n  Task/thread Management
n  Power and Thermal Management
n  Multi-threading support, Multiprocessor support

49

Microarchitecture
n  Implementation of the ISA under specific design constraints

and goals
n  Anything done in hardware without exposure to software

q  Pipelining
q  In-order versus out-of-order instruction execution
q  Memory access scheduling policy
q  Speculative execution
q  Superscalar processing (multiple instruction issue?)
q  Clock gating
q  Caching? Levels, size, associativity, replacement policy
q  Prefetching?
q  Voltage/frequency scaling?
q  Error correction?

50

Property of ISA vs. Uarch?
n  ADD instruction’s opcode
n  Number of general purpose registers
n  Number of ports to the register file
n  Number of cycles to execute the MUL instruction
n  Whether or not the machine employs pipelined instruction

execution

n  Remember
q  Microarchitecture: Implementation of the ISA under specific

design constraints and goals

51

Design Point
n  A set of design considerations and their importance

q  leads to tradeoffs in both ISA and uarch

n  Considerations
q  Cost
q  Performance
q  Maximum power consumption
q  Energy consumption (battery life)
q  Availability
q  Reliability and Correctness
q  Time to Market

n  Design point determined by the “Problem” space
(application space), the intended users/market

52

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

Application Space
n  Dream, and they will appear…

53

Tradeoffs: Soul of Computer Architecture

n  ISA-level tradeoffs

n  Microarchitecture-level tradeoffs

n  System and Task-level tradeoffs
q  How to divide the labor between hardware and software

n  Computer architecture is the science and art of making the
appropriate trade-offs to meet a design point
q  Why art?

54

Why Is It (Somewhat) Art?

55

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

n  We do not (fully) know the future (applications, users, market)

Logic
 Circuits
Electrons

New demands
from the top
(Look Up)

New issues and
capabilities
at the bottom
(Look Down)

New demands and
personalities of users
(Look Up)

Why Is It (Somewhat) Art?

56

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

n  And, the future is not constant (it changes)!

Logic
 Circuits
Electrons

Changing demands
at the top
(Look Up and Forward)

Changing issues and
capabilities
at the bottom
(Look Down and Forward)

Changing demands and
personalities of users
(Look Up and Forward)

How Can We Adapt to the Future
n  This is part of the task of a good computer architect

n  Many options (bag of tricks)
q  Keen insight and good design
q  Good use of fundamentals and principles

n  Efficient design
n  Heterogeneity
n  Reconfigurability
n  …

q  Good use of the underlying technology
q  …

57

We Covered a Lot of This in
Digital Circuits & Computer Architecture

One Slide Overview of Digital Circuits SS17
n  Logic Design, Verilog, FPGAs

n  ISA (MIPS)

n  Single-cycle Microarchitectures

n  Multi-cycle and Microprogrammed Microarchitectures

n  Pipelining

n  Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

n  Out-of-Order Execution

n  Other Execution Paradigms

n  Memory and Caches (very brief)
59

Covered Concurrent Execution Paradigms

n  Pipelining
n  Out-of-order execution
n  Dataflow (at the ISA level)
n  Superscalar Execution
n  VLIW
n  SIMD Processing (Vector and array processors, GPUs)
n  Decoupled Access Execute
n  Systolic Arrays

60

Digital Circuits Materials for Review (I)
n  All Digital Circuits Lecture Videos Are Online:

q  https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-
IXWTT7xoNYpst5-zdZQ6y

n  All Slides and Assignments Are Online:
q  http://www.syssec.ethz.ch/education/Digitaltechnik_17.html

61

Digital Circuits Materials for Review (II)
n  Particularly useful and relevant lectures for this course

n  Pipelining (Lecture 15)
q  https://youtu.be/vBGVRURaxl8

n  Dependence handling (Lecture 16)
q  https://youtu.be/B7bTbBRVdxA

n  Pipelining Issues (Lecture 17)
q  https://youtu.be/C5ViR0dGlLI

n  Out-of-order execution (Lecture 18)
q  https://youtu.be/R5G05HstI3A

62

This Course
n  We will have more emphasis on

q  The memory system
q  Multiprocessing & multithreading
q  Parallel processing paradigms

n  We will likely dig deeper on some Digital Circuits concepts
(as time permits)
q  ISA
q  Branch handling
q  …

63

Tentative Agenda (Upcoming Lectures)
n  The memory hierarchy
n  Caches, caches, more caches (high locality, high bandwidth)
n  Virtualizing the memory hierarchy
n  Main memory: DRAM
n  Main memory control, scheduling, interference, management
n  Memory latency tolerance and prefetching techniques
n  Non-volatile memory & emerging technoogies

n  Multiprocessors
n  Coherence and consistency
n  Interconnection networks
n  Multi-core issues
n  Multithreading

64

Optional Readings for Today & Next Week
n  Memory Hierarchy and Caches

n  Cache chapters from P&H: 5.1-5.3

n  Memory/cache chapters from Hamacher+: 8.1-8.7

n  An early cache paper by Maurice Wilkes
q  Wilkes, “Slave Memories and Dynamic Storage Allocation,”

IEEE Trans. On Electronic Computers, 1965.

65

Memory (Programmer’s View)

66

Abstraction: Virtual vs. Physical Memory
n  Programmer sees virtual memory

q  Can assume the memory is “infinite”

n  Reality: Physical memory size is much smaller than what
the programmer assumes

n  The system (system software + hardware, cooperatively)
maps virtual memory addresses to physical memory
q  The system automatically manages the physical memory

space transparently to the programmer

+ Programmer does not need to know the physical size of memory
nor manage it à A small physical memory can appear as a huge
one to the programmer à Life is easier for the programmer

-- More complex system software and architecture

A classic example of the programmer/(micro)architect tradeoff

67

(Physical) Memory System
n  You need a larger level of storage to manage a small

amount of physical memory automatically
à Physical memory has a backing store: disk

n  We will first start with the physical memory system

n  For now, ignore the virtualàphysical indirection

n  We will get back to it when the needs of virtual memory
start complicating the design of physical memory…

68

Idealism

69

Instruction
Supply

Pipeline
(Instruction
execution)

Data
Supply

- Zero latency access

- Infinite capacity

- Zero cost

- Perfect control flow

-  No pipeline stalls

- Perfect data flow
 (reg/memory dependencies)

-  Zero-cycle interconnect
 (operand communication)

-  Enough functional units

-  Zero latency compute

-  Zero latency access

-  Infinite capacity

- Infinite bandwidth

-  Zero cost

The Memory Hierarchy

Memory in a Modern System

71

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3

L2 C
A

C
H

E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S

DRAM MEMORY
CONTROLLER

Ideal Memory
n  Zero access time (latency)
n  Infinite capacity
n  Zero cost
n  Infinite bandwidth (to support multiple accesses in parallel)

72

The Problem
n  Ideal memory’s requirements oppose each other

n  Bigger is slower
q  Bigger à Takes longer to determine the location

n  Faster is more expensive
q  Memory technology: SRAM vs. DRAM vs. Disk vs. Tape

n  Higher bandwidth is more expensive
q  Need more banks, more ports, higher frequency, or faster

technology

73

Memory Technology: DRAM
n  Dynamic random access memory
n  Capacitor charge state indicates stored value

q  Whether the capacitor is charged or discharged indicates
storage of 1 or 0

q  1 capacitor
q  1 access transistor

n  Capacitor leaks through the RC path
q  DRAM cell loses charge over time
q  DRAM cell needs to be refreshed

74

row enable

_b
itl

in
e

n  Static random access memory
n  Two cross coupled inverters store a single bit

q  Feedback path enables the stored value to persist in the “cell”
q  4 transistors for storage
q  2 transistors for access

Memory Technology: SRAM

75

row select

bi
tli

ne

_b
itl

in
e

Memory Bank Organization and Operation
n  Read access sequence:

 1. Decode row address
& drive word-lines

 2. Selected bits drive
bit-lines
 • Entire row read

 3. Amplify row data

 4. Decode column

address & select subset
of row

 • Send to output

 5. Precharge bit-lines
 • For next access

76

SRAM (Static Random Access Memory)

77

bit-cell array

2n row x 2m-col

(n≈m to minimize
overall latency)

sense amp and mux
2m diff pairs

2n n

m

1

row select
bi

tli
ne

_b
itl

in
e

n+m

 Read Sequence
1. address decode
2. drive row select
3. selected bit-cells drive bitlines
 (entire row is read together)

4. differential sensing and column select
 (data is ready)
5. precharge all bitlines
 (for next read or write)

 Access latency dominated by steps 2 and 3
 Cycling time dominated by steps 2, 3 and 5

-  step 2 proportional to 2m

-  step 3 and 5 proportional to 2n

DRAM (Dynamic Random Access Memory)

78

row enable

_b
itl

in
e

bit-cell array

2n row x 2m-col

(n≈m to minimize
overall latency)

sense amp and mux
2m

2n n

m

1

RAS

CAS
A DRAM die comprises
of multiple such arrays

Bits stored as charges on node
capacitance (non-restorative)

-  bit cell loses charge when read
-  bit cell loses charge over time

Read Sequence
1~3 same as SRAM
4. a “flip-flopping” sense amp

amplifies and regenerates the
bitline, data bit is mux’ed out

5. precharge all bitlines

Destructive reads
Charge loss over time
Refresh: A DRAM controller must
periodically read each row within
the allowed refresh time (10s of
ms) such that charge is restored

DRAM vs. SRAM
n  DRAM

q  Slower access (capacitor)
q  Higher density (1T 1C cell)
q  Lower cost
q  Requires refresh (power, performance, circuitry)
q  Manufacturing requires putting capacitor and logic together

n  SRAM
q  Faster access (no capacitor)
q  Lower density (6T cell)
q  Higher cost
q  No need for refresh
q  Manufacturing compatible with logic process (no capacitor)

79

The Problem
n  Bigger is slower

q  SRAM, 512 Bytes, sub-nanosec
q  SRAM, KByte~MByte, ~nanosec
q  DRAM, Gigabyte, ~50 nanosec
q  Hard Disk, Terabyte, ~10 millisec

n  Faster is more expensive (dollars and chip area)
q  SRAM, < 10$ per Megabyte
q  DRAM, < 1$ per Megabyte
q  Hard Disk < 1$ per Gigabyte
q  These sample values (circa ~2011) scale with time

n  Other technologies have their place as well
q  Flash memory, PC-RAM, MRAM, RRAM (not mature yet)

80

Why Memory Hierarchy?
n  We want both fast and large

n  But we cannot achieve both with a single level of memory

n  Idea: Have multiple levels of storage (progressively bigger
and slower as the levels are farther from the processor)
and ensure most of the data the processor needs is kept in
the fast(er) level(s)

81

The Memory Hierarchy

82

fast	
small	

big	but	slow	

move	what	you	use	here	

backup	
everything	
here	

With	good	locality	of	
reference,	memory	
appears	as	fast	as	
and	as	large	as			

fa
st
er
	p
er
	b
yt
e	

ch
ea
pe

r	p
er
	b
yt
e	

Memory Hierarchy
n  Fundamental tradeoff

q  Fast memory: small
q  Large memory: slow

n  Idea: Memory hierarchy

n  Latency, cost, size,
 bandwidth

83

CPU
Main

Memory
(DRAM)

RF

Cache

Hard Disk

Locality
n  One’s recent past is a very good predictor of his/her near

future.

n  Temporal Locality: If you just did something, it is very
likely that you will do the same thing again soon
q  since you are here today, there is a good chance you will be

here again and again regularly

n  Spatial Locality: If you did something, it is very likely you
will do something similar/related (in space)
q  every time I find you in this room, you are probably sitting

close to the same people

84

Memory Locality
n  A “typical” program has a lot of locality in memory

references
q  typical programs are composed of “loops”

n  Temporal: A program tends to reference the same memory
location many times and all within a small window of time

n  Spatial: A program tends to reference a cluster of memory
locations at a time
q  most notable examples:

n  1. instruction memory references
n  2. array/data structure references

85

Caching Basics: Exploit Temporal Locality
n  Idea: Store recently accessed data in automatically

managed fast memory (called cache)
n  Anticipation: the data will be accessed again soon

n  Temporal locality principle
q  Recently accessed data will be again accessed in the near

future
q  This is what Maurice Wilkes had in mind:

n  Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.

n  “The use is discussed of a fast core memory of, say 32000 words
as a slave to a slower core memory of, say, one million words in
such a way that in practical cases the effective access time is
nearer that of the fast memory than that of the slow memory.”

86

Caching Basics: Exploit Spatial Locality
n  Idea: Store addresses adjacent to the recently accessed

one in automatically managed fast memory
q  Logically divide memory into equal size blocks
q  Fetch to cache the accessed block in its entirety

n  Anticipation: nearby data will be accessed soon

n  Spatial locality principle
q  Nearby data in memory will be accessed in the near future

n  E.g., sequential instruction access, array traversal

q  This is what IBM 360/85 implemented
n  16 Kbyte cache with 64 byte blocks
n  Liptay, “Structural aspects of the System/360 Model 85 II: the

cache,” IBM Systems Journal, 1968.

87

The Bookshelf Analogy
n  Book in your hand
n  Desk
n  Bookshelf
n  Boxes at home
n  Boxes in storage

n  Recently-used books tend to stay on desk
q  Comp Arch books, books for classes you are currently taking
q  Until the desk gets full

n  Adjacent books in the shelf needed around the same time
q  If I have organized/categorized my books well in the shelf

88

Caching in a Pipelined Design
n  The cache needs to be tightly integrated into the pipeline

q  Ideally, access in 1-cycle so that dependent operations do not
stall

n  High frequency pipeline à Cannot make the cache large
q  But, we want a large cache AND a pipelined design

n  Idea: Cache hierarchy

89

CPU

Main
Memory
(DRAM)

RF
Level1
Cache

Level 2
Cache

A Note on Manual vs. Automatic Management

n  Manual: Programmer manages data movement across levels
-- too painful for programmers on substantial programs
q  “core” vs “drum” memory in the 50’s
q  still done in some embedded processors (on-chip scratch pad
SRAM in lieu of a cache) and GPUs (called “shared memory”)

n  Automatic: Hardware manages data movement across levels,
transparently to the programmer
++ programmer’s life is easier
q  the average programmer doesn’t need to know about it

n  You don’t need to know how big the cache is and how it works to
write a “correct” program! (What if you want a “fast” program?)

90

Automatic Management in Memory Hierarchy

n  Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965.

n  “By a slave memory I mean one which automatically
accumulates to itself words that come from a slower main
memory, and keeps them available for subsequent use
without it being necessary for the penalty of main memory
access to be incurred again.”

91

Historical Aside: Other Cache Papers
n  Fotheringham, “Dynamic Storage Allocation in the Atlas

Computer, Including an Automatic Use of a Backing Store,”
CACM 1961.
q  http://dl.acm.org/citation.cfm?id=366800

n  Bloom, Cohen, Porter, “Considerations in the Design of a
Computer with High Logic-to-Memory Speed Ratio,” AIEE
Gigacycle Computing Systems Winter Meeting, Jan. 1962.

92

A Modern Memory Hierarchy

93

Register	File	
32	words,	sub-nsec	

	
	

L1	cache	
~32	KB,	~nsec	

	
	

L2	cache	
512	KB	~	1MB,	many	nsec	

	
	

L3	cache,		
.....	
	
	

Main	memory	(DRAM),		
GB,	~100	nsec	

	
	

Swap	Disk	
100	GB,	~10	msec	

manual/compiler	
register	spilling	

automaWc	
demand		
paging	

AutomaWc	
HW	cache	
management	

Memory	
AbstracWon	

Hierarchical Latency Analysis
n  For a given memory hierarchy level i it has a technology-intrinsic

access time of ti, The perceived access time Ti is longer than ti
n  Except for the outer-most hierarchy, when looking for a given

address there is
q  a chance (hit-rate hi) you “hit” and access time is ti
q  a chance (miss-rate mi) you “miss” and access time ti +Ti+1

q  hi + mi = 1
n  Thus

 Ti = hi·ti + mi·(ti + Ti+1)

 Ti = ti + mi ·Ti+1

hi and mi are defined to be the hit-rate
and miss-rate of just the references that missed at Li-1

94

Hierarchy Design Considerations
n  Recursive latency equation

 Ti = ti + mi ·Ti+1
n  The goal: achieve desired T1 within allowed cost
n  Ti ≈ ti is desirable

n  Keep mi low
q  increasing capacity Ci lowers mi, but beware of increasing ti
q  lower mi by smarter management (replacement::anticipate what you

don’t need, prefetching::anticipate what you will need)

n  Keep Ti+1 low
q  faster lower hierarchies, but beware of increasing cost
q  introduce intermediate hierarchies as a compromise

95

n  90nm P4, 3.6 GHz
n  L1 D-cache

q  C1 = 16K
q  t1 = 4 cyc int / 9 cycle fp

n  L2 D-cache
q  C2 =1024 KB
q  t2 = 18 cyc int / 18 cyc fp

n  Main memory
q  t3 = ~ 50ns or 180 cyc

n  Notice
q  best case latency is not 1
q  worst case access latencies are into 500+ cycles

if m1=0.1, m2=0.1
 T1=7.6, T2=36

if m1=0.01, m2=0.01
 T1=4.2, T2=19.8

 if m1=0.05, m2=0.01
 T1=5.00, T2=19.8

if m1=0.01, m2=0.50
 T1=5.08, T2=108

Intel Pentium 4 Example

Cache Basics and Operation

Cache
n  Generically, any structure that “memoizes” frequently used

results to avoid repeating the long-latency operations
required to reproduce the results from scratch, e.g. a web
cache

n  Most commonly in the on-die context: an automatically-
managed memory hierarchy based on SRAM
q  memoize in SRAM the most frequently accessed DRAM

memory locations to avoid repeatedly paying for the DRAM
access latency

98

Caching Basics
n  Block (line): Unit of storage in the cache

q  Memory is logically divided into cache blocks that map to
locations in the cache

n  On a reference:
q  HIT: If in cache, use cached data instead of accessing memory
q  MISS: If not in cache, bring block into cache

n  Maybe have to kick something else out to do it

n  Some important cache design decisions
q  Placement: where and how to place/find a block in cache?
q  Replacement: what data to remove to make room in cache?
q  Granularity of management: large or small blocks? Subblocks?
q  Write policy: what do we do about writes?
q  Instructions/data: do we treat them separately?

99

Cache Abstraction and Metrics

n  Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses)
n  Average memory access time (AMAT)

 = (hit-rate * hit-latency) + (miss-rate * miss-latency)
n  Aside: Can reducing AMAT reduce performance?

100

Address
Tag Store

(is the address
in the cache?

+ bookkeeping)

Data Store

(stores
memory
blocks)

Hit/miss? Data

A Basic Hardware Cache Design
n  We will start with a basic hardware cache design

n  Then, we will examine a multitude of ideas to make it
better

101

Blocks and Addressing the Cache
n  Memory is logically divided into fixed-size blocks

n  Each block maps to a location in the cache, determined by
the index bits in the address
q  used to index into the tag and data stores

n  Cache access:
1) index into the tag and data stores with index bits in address
2) check valid bit in tag store
3) compare tag bits in address with the stored tag in tag store

n  If a block is in the cache (cache hit), the stored tag should be
valid and match the tag of the block

102

8-bit address

tag index byte in block

3 bits 3 bits 2b

Direct-Mapped Cache: Placement and Access

n  Assume byte-addressable memory:
256 bytes, 8-byte blocks à 32 blocks

n  Assume cache: 64 bytes, 8 blocks
q  Direct-mapped: A block can go to only one location

q  Addresses with same index contend for the same location
n  Cause conflict misses

103

Tag store Data store

Address

tag index byte in block

3 bits 3 bits 2b

V tag

=? MUX
byte in block

Hit? Data

Direct-Mapped Caches
n  Direct-mapped cache: Two blocks in memory that map to

the same index in the cache cannot be present in the cache
at the same time
q  One index à one entry

n  Can lead to 0% hit rate if more than one block accessed in
an interleaved manner map to the same index
q  Assume addresses A and B have the same index bits but

different tag bits
q  A, B, A, B, A, B, A, B, … à conflict in the cache index
q  All accesses are conflict misses

104

n  Addresses 0 and 8 always conflict in direct mapped cache
n  Instead of having one column of 8, have 2 columns of 4 blocks

Set Associativity

105

Tag store Data store

V tag

=?

V tag

=?

Address
tag index byte in block

3 bits 2 bits 3b

Logic

MUX

MUX
byte in block

Key idea: Associative memory within the set
+ Accommodates conflicts better (fewer conflict misses)
-- More complex, slower access, larger tag store

SET

Hit?

Higher Associativity
n  4-way

+ Likelihood of conflict misses even lower
-- More tag comparators and wider data mux; larger tags

106

Tag store

Data store

=? =? =? =?

MUX

MUX
byte in block

Logic Hit?

Full Associativity
n  Fully associative cache

q  A block can be placed in any cache location

107

Tag store

Data store

=? =? =? =? =? =? =? =?

MUX

MUX
byte in block

Logic

Hit?

Associativity (and Tradeoffs)
n  Degree of associativity: How many blocks can map to the

same index (or set)?

n  Higher associativity
++ Higher hit rate
-- Slower cache access time (hit latency and data access latency)
-- More expensive hardware (more comparators)

n  Diminishing returns from higher
associativity

108
associativity

hit rate

Computer Architecture
Lecture 2: Fundamentals,

Memory Hierarchy, Caches

Prof. Onur Mutlu
ETH Zurich
Fall 2017

21 September 2017

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

Issues in Set-Associative Caches
n  Think of each block in a set having a “priority”

q  Indicating how important it is to keep the block in the cache

n  Key issue: How do you determine/adjust block priorities?
n  There are three key decisions in a set:

q  Insertion, promotion, eviction (replacement)

n  Insertion: What happens to priorities on a cache fill?
q  Where to insert the incoming block, whether or not to insert the block

n  Promotion: What happens to priorities on a cache hit?
q  Whether and how to change block priority

n  Eviction/replacement: What happens to priorities on a cache
miss?
q  Which block to evict and how to adjust priorities

111

Eviction/Replacement Policy
n  Which block in the set to replace on a cache miss?

q  Any invalid block first
q  If all are valid, consult the replacement policy

n  Random
n  FIFO
n  Least recently used (how to implement?)
n  Not most recently used
n  Least frequently used?
n  Least costly to re-fetch?

q  Why would memory accesses have different cost?

n  Hybrid replacement policies
n  Optimal replacement policy?

112

Implementing LRU
n  Idea: Evict the least recently accessed block
n  Problem: Need to keep track of access ordering of blocks

n  Question: 2-way set associative cache:
q  What do you need to implement LRU perfectly?

n  Question: 4-way set associative cache:
q  What do you need to implement LRU perfectly?
q  How many different orderings possible for the 4 blocks in the

set?
q  How many bits needed to encode the LRU order of a block?
q  What is the logic needed to determine the LRU victim?

113

Approximations of LRU
n  Most modern processors do not implement “true LRU” (also

called “perfect LRU”) in highly-associative caches

n  Why?
q  True LRU is complex
q  LRU is an approximation to predict locality anyway (i.e., not

the best possible cache management policy)

n  Examples:
q  Not MRU (not most recently used)
q  Hierarchical LRU: divide the N-way set into M “groups”, track

the MRU group and the MRU way in each group
q  Victim-NextVictim Replacement: Only keep track of the victim

and the next victim
114

Hierarchical LRU (not MRU)
n  Divide a set into multiple groups
n  Keep track of only the MRU group
n  Keep track of only the MRU block in each group

n  On replacement, select victim as:
q  A not-MRU block in one of the not-MRU groups (randomly pick

one of such blocks/groups)

115

Hierarchical LRU (not MRU): Questions
n  16-way cache
n  2 8-way groups

n  What is an access pattern that performs worse than true
LRU?

n  What is an access pattern that performs better than true
LRU?

116

Victim/Next-Victim Policy
n  Only 2 blocks’ status tracked in each set:

q  victim (V), next victim (NV)
q  all other blocks denoted as (O) – Ordinary block

n  On a cache miss
q  Replace V
q  Demote NV to V
q  Randomly pick an O block as NV

n  On a cache hit to V
q  Demote NV to V
q  Randomly pick an O block as NV
q  Turn V to O

117

Victim/Next-Victim Policy (II)
n  On a cache hit to NV

q  Randomly pick an O block as NV
q  Turn NV to O

n  On a cache hit to O
q  Do nothing

118

Victim/Next-Victim Example

119

Cache Replacement Policy: LRU or Random
n  LRU vs. Random: Which one is better?

q  Example: 4-way cache, cyclic references to A, B, C, D, E
n  0% hit rate with LRU policy

n  Set thrashing: When the “program working set” in a set is
larger than set associativity
q  Random replacement policy is better when thrashing occurs

n  In practice:
q  Depends on workload
q  Average hit rate of LRU and Random are similar

n  Best of both Worlds: Hybrid of LRU and Random
q  How to choose between the two? Set sampling

n  See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

120

What Is the Optimal Replacement Policy?
n  Belady’s OPT

q  Replace the block that is going to be referenced furthest in the
future by the program

q  Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966.

q  How do we implement this? Simulate?

n  Is this optimal for minimizing miss rate?
n  Is this optimal for minimizing execution time?

q  No. Cache miss latency/cost varies from block to block!
q  Two reasons: Remote vs. local caches and miss overlapping
q  Qureshi et al. “A Case for MLP-Aware Cache Replacement,“

ISCA 2006.

121

Aside: Cache versus Page Replacement
n  Physical memory (DRAM) is a cache for disk

q  Usually managed by system software via the virtual memory
subsystem

n  Page replacement is similar to cache replacement
n  Page table is the “tag store” for physical memory data store

n  What is the difference?

q  Required speed of access to cache vs. physical memory
q  Number of blocks in a cache vs. physical memory
q  “Tolerable” amount of time to find a replacement candidate

(disk versus memory access latency)
q  Role of hardware versus software

122

What’s In A Tag Store Entry?
n  Valid bit
n  Tag
n  Replacement policy bits

n  Dirty bit?
q  Write back vs. write through caches

123

Handling Writes (I)
n  When do we write the modified data in a cache to the next level?

n  Write through: At the time the write happens
n  Write back: When the block is evicted

q  Write-back
+ Can combine multiple writes to the same block before eviction

q  Potentially saves bandwidth between cache levels + saves energy

 -- Need a bit in the tag store indicating the block is “dirty/modified”

q  Write-through
+ Simpler
+ All levels are up to date. Consistency: Simpler cache coherence because

no need to check lower-level caches
-- More bandwidth intensive; no combining of writes

124

Handling Writes (II)
n  Do we allocate a cache block on a write miss?

q  Allocate on write miss: Yes
q  No-allocate on write miss: No

n  Allocate on write miss
+ Can combine writes instead of writing each of them

individually to next level
+ Simpler because write misses can be treated the same way as

read misses
-- Requires (?) transfer of the whole cache block

n  No-allocate
+ Conserves cache space if locality of writes is low (potentially

better cache hit rate)
125

Handling Writes (III)
n  What if the processor writes to an entire block over a small

amount of time?

n  Is there any need to bring the block into the cache from
memory in the first place?

n  Ditto for a portion of the block, i.e., subblock
q  E.g., 4 bytes out of 64 bytes

126

Sectored Caches
n  Idea: Divide a block into subblocks (or sectors)

q  Have separate valid and dirty bits for each sector
q  When is this useful? (Think writes…)

++ No need to transfer the entire cache block into the cache
 (A write simply validates and updates a subblock)

++ More freedom in transferring subblocks into the cache (a
cache block does not need to be in the cache fully)
 (How many subblocks do you transfer on a read?)

-- More complex design
-- May not exploit spatial locality fully when used for reads

127

tag subblock v subblock v subblock v d d d

Instruction vs. Data Caches
n  Separate or Unified?

n  Unified:
+ Dynamic sharing of cache space: no overprovisioning that

might happen with static partitioning (i.e., split I and D
caches)

-- Instructions and data can thrash each other (i.e., no
guaranteed space for either)

-- I and D are accessed in different places in the pipeline. Where
do we place the unified cache for fast access?

n  First level caches are almost always split
q  Mainly for the last reason above

n  Second and higher levels are almost always unified
128

Multi-level Caching in a Pipelined Design
n  First-level caches (instruction and data)

q  Decisions very much affected by cycle time
q  Small, lower associativity
q  Tag store and data store accessed in parallel

n  Second-level caches
q  Decisions need to balance hit rate and access latency
q  Usually large and highly associative; latency not as important
q  Tag store and data store accessed serially

n  Serial vs. Parallel access of levels
q  Serial: Second level cache accessed only if first-level misses
q  Second level does not see the same accesses as the first

n  First level acts as a filter (filters some temporal and spatial locality)
n  Management policies are therefore different

129

Cache Performance

Cache Parameters vs. Miss/Hit Rate
n  Cache size

n  Block size

n  Associativity

n  Replacement policy
n  Insertion/Placement policy

131

Cache Size
n  Cache size: total data (not including tag) capacity

q  bigger can exploit temporal locality better
q  not ALWAYS better

n  Too large a cache adversely affects hit and miss latency
q  smaller is faster => bigger is slower
q  access time may degrade critical path

n  Too small a cache
q  doesn’t exploit temporal locality well
q  useful data replaced often

n  Working set: the whole set of data
the executing application references
q  Within a time interval

132

hit rate

cache size

“working set”
 size

Block Size
n  Block size is the data that is associated with an address tag

q  not necessarily the unit of transfer between hierarchies
n  Sub-blocking: A block divided into multiple pieces (each with V bit)

q  Can improve “write” performance

n  Too small blocks
q  don’t exploit spatial locality well
q  have larger tag overhead

n  Too large blocks
q  too few total # of blocks à less

temporal locality exploitation
q  waste of cache space and bandwidth/energy
 if spatial locality is not high

133

hit rate

block
size

Large Blocks: Critical-Word and Subblocking
n  Large cache blocks can take a long time to fill into the cache

q  fill cache line critical word first
q  restart cache access before complete fill

n  Large cache blocks can waste bus bandwidth

q  divide a block into subblocks
q  associate separate valid bits for each subblock
q  When is this useful?

134

tag subblock v subblock v subblock v d d d

Associativity
n  How many blocks can map to the same index (or set)?

n  Larger associativity
q  lower miss rate (reduced conflicts)
q  higher hit latency and area cost (plus diminishing returns)

n  Smaller associativity
q  lower cost
q  lower hit latency

n  Especially important for L1 caches

n  Power of 2 associativity required?

135

associativity

hit rate

Classification of Cache Misses
n  Compulsory miss

q  first reference to an address (block) always results in a miss
q  subsequent references should hit unless the cache block is

displaced for the reasons below

n  Capacity miss
q  cache is too small to hold everything needed
q  defined as the misses that would occur even in a fully-associative

cache (with optimal replacement) of the same capacity

n  Conflict miss
q  defined as any miss that is neither a compulsory nor a capacity

miss

136

How to Reduce Each Miss Type
n  Compulsory

q  Caching cannot help
q  Prefetching can

n  Conflict
q  More associativity
q  Other ways to get more associativity without making the

cache associative
n  Victim cache
n  Better, randomized indexing
n  Software hints?

n  Capacity
q  Utilize cache space better: keep blocks that will be referenced
q  Software management: divide working set such that each

“phase” fits in cache
137

How to Improve Cache Performance
n  Three fundamental goals

n  Reducing miss rate
q  Caveat: reducing miss rate can reduce performance if more

costly-to-refetch blocks are evicted

n  Reducing miss latency or miss cost

n  Reducing hit latency or hit cost

138

Improving Basic Cache Performance
n  Reducing miss rate

q  More associativity
q  Alternatives/enhancements to associativity

n  Victim caches, hashing, pseudo-associativity, skewed associativity
q  Better replacement/insertion policies
q  Software approaches

n  Reducing miss latency/cost
q  Multi-level caches
q  Critical word first
q  Subblocking/sectoring
q  Better replacement/insertion policies
q  Non-blocking caches (multiple cache misses in parallel)
q  Multiple accesses per cycle
q  Software approaches

139

Cheap Ways of Reducing Conflict Misses
n  Instead of building highly-associative caches:

n  Victim Caches
n  Hashed/randomized Index Functions
n  Pseudo Associativity
n  Skewed Associative Caches
n  …

140

Victim Cache: Reducing Conflict Misses

n  Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

n  Idea: Use a small fully-associative buffer (victim cache) to
store recently evicted blocks
+ Can avoid ping ponging of cache blocks mapped to the same set (if two

cache blocks continuously accessed in nearby time conflict with each
other)

-- Increases miss latency if accessed serially with L2; adds complexity

141

Direct
Mapped
Cache

Next Level
Cache

Victim
cache

Hashing and Pseudo-Associativity
n  Hashing: Use better “randomizing” index functions

+ can reduce conflict misses
n  by distributing the accessed memory blocks more evenly to sets
n  Example of conflicting accesses: strided access pattern where

stride value equals number of sets in cache

-- More complex to implement: can lengthen critical path

n  Pseudo-associativity (Poor Man’s associative cache)
q  Serial lookup: On a miss, use a different index function and

access cache again
q  Given a direct-mapped array with K cache blocks

n  Implement K/N sets
n  Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]},

{1,Addr[lg(K/N)-1: 0]}, … , {N-1,Addr[lg(K/N)-1: 0]}

142

Skewed Associative Caches
n  Idea: Reduce conflict misses by using different index

functions for each cache way

n  Seznec, “A Case for Two-Way Skewed-Associative Caches,”

ISCA 1993.

143

Skewed Associative Caches (I)
n  Basic 2-way associative cache structure

144

Way 0 Way 1

Tag Index Byte in Block

Same index function
for each way

=? =?

Skewed Associative Caches (II)
n  Skewed associative caches

q  Each bank has a different index function

145

Way 0 Way 1

 tag index byte in block

f0

same index
same set

same index
redistributed to
different sets

=? =?

Skewed Associative Caches (III)
n  Idea: Reduce conflict misses by using different index

functions for each cache way

n  Benefit: indices are more randomized (memory blocks are

better distributed across sets)
q  Less likely two blocks have same index (esp. with strided access)

n  Reduced conflict misses

n  Cost: additional latency of hash function

n  Seznec, “A Case for Two-Way Skewed-Associative Caches,” ISCA 1993.

146

Software Approaches for Higher Hit Rate
n  Restructuring data access patterns
n  Restructuring data layout

n  Loop interchange
n  Data structure separation/merging
n  Blocking
n  …

147

Restructuring Data Access Patterns (I)
n  Idea: Restructure data layout or data access patterns
n  Example: If column-major

q  x[i+1,j] follows x[i,j] in memory
q  x[i,j+1] is far away from x[i,j]

n  This is called loop interchange
n  Other optimizations can also increase hit rate

q  Loop fusion, array merging, …
n  What if multiple arrays? Unknown array size at compile time?

148

Poor code
for i = 1, rows
 for j = 1, columns
 sum = sum + x[i,j]

Better code
for j = 1, columns
 for i = 1, rows
 sum = sum + x[i,j]

Restructuring Data Access Patterns (II)
n  Blocking

q  Divide loops operating on arrays into computation chunks so
that each chunk can hold its data in the cache

q  Avoids cache conflicts between different chunks of
computation

q  Essentially: Divide the working set so that each piece fits in
the cache

n  But, there are still self-conflicts in a block
1. there can be conflicts among different arrays
2. array sizes may be unknown at compile/programming time

149

Restructuring Data Layout (I)
n  Pointer based traversal

(e.g., of a linked list)
n  Assume a huge linked

list (1M nodes) and
unique keys

n  Why does the code on
the left have poor cache
hit rate?
q  “Other fields” occupy

most of the cache line
even though rarely
accessed!

150

struct Node {
 struct Node* node;
 int key;
 char [256] name;
 char [256] school;
}

while (node) {
 if (nodeàkey == input-key) {
 // access other fields of node
 }
 node = nodeànext;
}

Restructuring Data Layout (II)
n  Idea: separate frequently-

used fields of a data
structure and pack them
into a separate data
structure

n  Who should do this?
q  Programmer
q  Compiler

n  Profiling vs. dynamic

q  Hardware?
q  Who can determine what

is frequently used?

151

struct Node {
 struct Node* node;
 int key;
 struct Node-data* node-data;
}

struct Node-data {
 char [256] name;
 char [256] school;
}

while (node) {
 if (nodeàkey == input-key) {
 // access nodeànode-data
 }
 node = nodeànext;
}

Improving Basic Cache Performance
n  Reducing miss rate

q  More associativity
q  Alternatives/enhancements to associativity

n  Victim caches, hashing, pseudo-associativity, skewed associativity
q  Better replacement/insertion policies
q  Software approaches

n  Reducing miss latency/cost
q  Multi-level caches
q  Critical word first
q  Subblocking/sectoring
q  Better replacement/insertion policies
q  Non-blocking caches (multiple cache misses in parallel)
q  Multiple accesses per cycle
q  Software approaches

152

Miss Latency/Cost
n  What is miss latency or miss cost affected by?

q  Where does the miss get serviced from?
n  Local vs. remote memory
n  What level of cache in the hierarchy?
n  Row hit versus row miss
n  Queueing delays in the memory controller and the interconnect
n  …

q  How much does the miss stall the processor?
n  Is it overlapped with other latencies?
n  Is the data immediately needed?
n  …

153

Memory Level Parallelism (MLP)

q  Memory Level Parallelism (MLP) means generating and
servicing multiple memory accesses in parallel [Glew’98]

q  Several techniques to improve MLP (e.g., out-of-order execution)

q  MLP varies. Some misses are isolated and some parallel

 How does this affect cache replacement?

time

A
B

C

isolated miss parallel miss

Traditional Cache Replacement Policies

q  Traditional cache replacement policies try to reduce miss
count

q  Implicit assumption: Reducing miss count reduces memory-

related stall time

q  Misses with varying cost/MLP breaks this assumption!

q  Eliminating an isolated miss helps performance more than

eliminating a parallel miss
q  Eliminating a higher-latency miss could help performance

more than eliminating a lower-latency miss

155

Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1.  Minimizes miss count (Belady’s OPT)
2.  Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

An Example

Fewest Misses = Best Performance

P3 P2 P1 P4

H H H H M H H H M Hit/Miss
Misses=4
Stalls=4

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

Time stall
Belady’s OPT replacement

M M

MLP-Aware replacement

Hit/Miss

P3 P2 S1 P4 P3 P2 P1 P4 P3 P2 S2 P4 P3 P2 S3 P4 S1 S2 S3 P1 P3 P2 S3 P4 S1 S2 S3 P4

H H H

S1 S2 S3 P4

H M M M H M M M
Time stall Misses=6

Stalls=2

Saved
cycles

Cache

MLP-Aware Cache Replacement
n  How do we incorporate MLP into replacement decisions?

n  Qureshi et al., “A Case for MLP-Aware Cache
Replacement,” ISCA 2006.
q  Reading for review

158

Other Recommended Cache Papers (I)

n  Qureshi et al., “Adaptive Insertion Policies for High
Performance Caching,” ISCA 2007.

159

Other Recommended Cache Papers (II)

n  Seshadri et al., “The Evicted-Address Filter: A Unified
Mechanism to Address Both Cache Pollution and
Thrashing,” PACT 2012.

160

Enabling Multiple Outstanding Misses

Handling Multiple Outstanding Accesses
n  Question: If the processor can generate multiple cache

accesses, can the later accesses be handled while a
previous miss is outstanding?

n  Goal: Enable cache access when there is a pending miss

n  Goal: Enable multiple misses in parallel
q  Memory-level parallelism (MLP)

n  Solution: Non-blocking or lockup-free caches
q  Kroft, “Lockup-Free Instruction Fetch/Prefetch Cache

Organization," ISCA 1981.

162

Handling Multiple Outstanding Accesses
n  Idea: Keep track of the status/data of misses that are being

handled in Miss Status Handling Registers (MSHRs)

q  A cache access checks MSHRs to see if a miss to the same
block is already pending.
n  If pending, a new request is not generated
n  If pending and the needed data available, data forwarded to later

load

q  Requires buffering of outstanding miss requests

163

Miss Status Handling Register
n  Also called “miss buffer”
n  Keeps track of

q  Outstanding cache misses
q  Pending load/store accesses that refer to the missing cache

block

n  Fields of a single MSHR entry
q  Valid bit
q  Cache block address (to match incoming accesses)
q  Control/status bits (prefetch, issued to memory, which

subblocks have arrived, etc)
q  Data for each subblock
q  For each pending load/store

n  Valid, type, data size, byte in block, destination register or store
buffer entry address

164

Miss Status Handling Register Entry

165

MSHR Operation
n  On a cache miss:

q  Search MSHRs for a pending access to the same block
n  Found: Allocate a load/store entry in the same MSHR entry
n  Not found: Allocate a new MSHR
n  No free entry: stall

n  When a subblock returns from the next level in memory
q  Check which loads/stores waiting for it

n  Forward data to the load/store unit
n  Deallocate load/store entry in the MSHR entry

q  Write subblock in cache or MSHR
q  If last subblock, dellaocate MSHR (after writing the block in

cache)

166

Non-Blocking Cache Implementation
n  When to access the MSHRs?

q  In parallel with the cache?
q  After cache access is complete?

n  MSHRs need not be on the critical path of hit requests
q  Which one below is the common case?

n  Cache miss, MSHR hit
n  Cache hit

167

Enabling High Bandwidth Memories

Multiple Instructions per Cycle
n  Can generate multiple cache/memory accesses per cycle
n  How do we ensure the cache/memory can handle multiple

accesses in the same clock cycle?

n  Solutions:
q  true multi-porting
q  virtual multi-porting (time sharing a port)
q  multiple cache copies
q  banking (interleaving)

169

Handling Multiple Accesses per Cycle (I)
n  True multiporting

q  Each memory cell has multiple read or write ports
+ Truly concurrent accesses (no conflicts on read accesses)
-- Expensive in terms of latency, power, area
q  What about read and write to the same location at the same

time?
n  Peripheral logic needs to handle this

170

Peripheral Logic for True Multiporting

171

Peripheral Logic for True Multiporting

172

Handling Multiple Accesses per Cycle (II)
n  Virtual multiporting

q  Time-share a single port
q  Each access needs to be (significantly) shorter than clock cycle
q  Used in Alpha 21264
q  Is this scalable?

173

Cache
Copy 1

Handling Multiple Accesses per Cycle (III)
n  Multiple cache copies

q  Stores update both caches
q  Loads proceed in parallel

n  Used in Alpha 21164

n  Scalability?
q  Store operations cause a

bottleneck
q  Area proportional to “ports”

174

Port 1
Load

Store

Port 1
Data

Cache
Copy 2 Port 2

Load

Port 2
Data

Handling Multiple Accesses per Cycle (III)
n  Banking (Interleaving)

q  Bits in address determines which bank an address maps to
n  Address space partitioned into separate banks
n  Which bits to use for “bank address”?

+ No increase in data store area
-- Cannot satisfy multiple accesses
 to the same bank
-- Crossbar interconnect in input/output

n  Bank conflicts
q  Two accesses are to the same bank
q  How can these be reduced?

n  Hardware? Software?

175

Bank 0:
Even

addresses

Bank 1:
Odd

addresses

General Principle: Interleaving
n  Interleaving (banking)

q  Problem: a single monolithic memory array takes long to
access and does not enable multiple accesses in parallel

q  Goal: Reduce the latency of memory array access and enable
multiple accesses in parallel

q  Idea: Divide the array into multiple banks that can be
accessed independently (in the same cycle or in consecutive
cycles)
n  Each bank is smaller than the entire memory storage
n  Accesses to different banks can be overlapped

q  A Key Issue: How do you map data to different banks? (i.e.,
how do you interleave data across banks?)

176

Further Readings on Caching and MLP
n  Required: Qureshi et al., “A Case for MLP-Aware Cache

Replacement,” ISCA 2006.

n  One Pager: Glew, “MLP Yes! ILP No!,” ASPLOS Wild and
Crazy Ideas Session, 1998.

n  Mutlu et al., “Runahead Execution: An Effective Alternative
to Large Instruction Windows,” IEEE Micro 2003.

177

Multi-Core Issues in Caching

Caches in Multi-Core Systems
n  Cache efficiency becomes even more important in a multi-

core/multi-threaded system
q  Memory bandwidth is at premium
q  Cache space is a limited resource

n  How do we design the caches in a multi-core system?

n  Many decisions
q  Shared vs. private caches
q  How to maximize performance of the entire system?
q  How to provide QoS to different threads in a shared cache?
q  Should cache management algorithms be aware of threads?
q  How should space be allocated to threads in a shared cache?

179

Private vs. Shared Caches
n  Private cache: Cache belongs to one core (a shared block can be in

multiple caches)
n  Shared cache: Cache is shared by multiple cores

180

CORE 0 CORE 1 CORE 2 CORE 3

 L2
CACHE

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

 L2
CACHE

CORE 0 CORE 1 CORE 2 CORE 3

DRAM MEMORY CONTROLLER

 L2
CACHE

Resource Sharing Concept and Advantages
n  Idea: Instead of dedicating a hardware resource to a

hardware context, allow multiple contexts to use it
q  Example resources: functional units, pipeline, caches, buses,

memory
n  Why?

+ Resource sharing improves utilization/efficiency à throughput
q  When a resource is left idle by one thread, another thread can

use it; no need to replicate shared data
+ Reduces communication latency

q  For example, shared data kept in the same cache in
multithreaded processors

+ Compatible with the shared memory model

181

Resource Sharing Disadvantages
n  Resource sharing results in contention for resources

q  When the resource is not idle, another thread cannot use it
q  If space is occupied by one thread, another thread needs to re-

occupy it

- Sometimes reduces each or some thread’s performance
 - Thread performance can be worse than when it is run alone

- Eliminates performance isolation à inconsistent performance
across runs

 - Thread performance depends on co-executing threads
- Uncontrolled (free-for-all) sharing degrades QoS
 - Causes unfairness, starvation

Need to efficiently and fairly utilize shared resources
182

Private vs. Shared Caches
n  Private cache: Cache belongs to one core (a shared block can be in

multiple caches)
n  Shared cache: Cache is shared by multiple cores

183

CORE 0 CORE 1 CORE 2 CORE 3

 L2
CACHE

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

 L2
CACHE

CORE 0 CORE 1 CORE 2 CORE 3

DRAM MEMORY CONTROLLER

 L2
CACHE

Shared Caches Between Cores
n  Advantages:

q  High effective capacity
q  Dynamic partitioning of available cache space

n  No fragmentation due to static partitioning
q  Easier to maintain coherence (a cache block is in a single location)
q  Shared data and locks do not ping pong between caches

n  Disadvantages
q  Slower access
q  Cores incur conflict misses due to other cores’ accesses

n  Misses due to inter-core interference
n  Some cores can destroy the hit rate of other cores

q  Guaranteeing a minimum level of service (or fairness) to each core is harder
(how much space, how much bandwidth?)

184

Shared Caches: How to Share?
n  Free-for-all sharing

q  Placement/replacement policies are the same as a single core
system (usually LRU or pseudo-LRU)

q  Not thread/application aware
q  An incoming block evicts a block regardless of which threads

the blocks belong to

n  Problems
q  Inefficient utilization of cache: LRU is not the best policy
q  A cache-unfriendly application can destroy the performance of

a cache friendly application
q  Not all applications benefit equally from the same amount of

cache: free-for-all might prioritize those that do not benefit
q  Reduced performance, reduced fairness

185

Example: Utility Based Shared Cache Partitioning
n  Goal: Maximize system throughput
n  Observation: Not all threads/applications benefit equally from

caching à simple LRU replacement not good for system
throughput

n  Idea: Allocate more cache space to applications that obtain the
most benefit from more space

n  The high-level idea can be applied to other shared resources as
well.

n  Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches,” MICRO 2006.

n  Suh et al., “A New Memory Monitoring Scheme for Memory-
Aware Scheduling and Partitioning,” HPCA 2002.

186

The Multi-Core System: A Shared Resource View

187

Shared Memory

S
h

a
red

 M
em

o
ry

Shared Memory

S
h

a
red

 M
em

o
ry

Core 1 Core 2 Core 3

Core 4 Core 5 Core 6

Core 9Core 8Core 7

Shared L3 Cache

Shared L3 Cache

S
h

a
red

 L
3
 C

a
ch

e

S
h

a
red

 L
3
 C

a
ch

e

Shared
L2 Cache

Shared
L2 Cache

Shared
L2 Cache

Shared
L2 Cache

Shared
L2 Cache

Shared
L2 Cache

Shared
L2 Cache

Shared
L2 Cache

Shared
L2 Cache

Shared

Shared

Interconnect

Memory
Control

Shared
Memory
Control

Shared
Memory
Control

Shared
Memory
Control

Shared
Storage

Need for QoS and Shared Resource Mgmt.
n  Why is unpredictable performance (or lack of QoS) bad?

n  Makes programmer’s life difficult
q  An optimized program can get low performance (and

performance varies widely depending on co-runners)

n  Causes discomfort to user
q  An important program can starve
q  Examples from shared software resources

n  Makes system management difficult
q  How do we enforce a Service Level Agreement when hardware

resources are sharing is uncontrollable?

188

Resource Sharing vs. Partitioning
n  Sharing improves throughput

q  Better utilization of space

n  Partitioning provides performance isolation (predictable
performance)
q  Dedicated space

n  Can we get the benefits of both?

n  Idea: Design shared resources such that they are efficiently
utilized, controllable and partitionable
q  No wasted resource + QoS mechanisms for threads

189

Shared Hardware Resources
n  Memory subsystem (in both multithreaded and multi-core

systems)
q  Non-private caches
q  Interconnects
q  Memory controllers, buses, banks

n  I/O subsystem (in both multithreaded and multi-core
systems)
q  I/O, DMA controllers
q  Ethernet controllers

n  Processor (in multithreaded systems)
q  Pipeline resources
q  L1 caches

190

Computer Architecture
Lecture 2: Fundamentals,

Memory Hierarchy, Caches

Prof. Onur Mutlu
ETH Zurich
Fall 2017

21 September 2017

