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Summary of Last Lecture
n Interconnection Network Basics
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Today and Tomorrow
n Interconnection Networks Wrap-Up

n Research in Computer Architecture

n Course Logistics
q Final Lab
q Final Exam
q Past Exams and Homeworks

n Discussion session tomorrow
q Exam Questions
q Bring Questions
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Interconnection Networks
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Readings
n Required

q Moscibroda and Mutlu, “A Case for Bufferless Routing in On-Chip 
Networks,” ISCA 2009.

n Recommended
q Das et al., “Application-Aware Prioritization Mechanisms for On-Chip 

Networks,” MICRO 2009.

5



Review: Interconnection Network Performance
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Review: Network Performance Metrics
n Packet latency

n Round trip latency

n Saturation throughput

n Application-level performance: system performance
q Affected by interference among threads/applications
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Buffering and Routing in
On-Chip Networks
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On-Chip	Networks
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© Onur Mutlu, 2009, 2010

On-chip Networks

10

From East

From West

From North

From South

From PE

VC 0

VC Identifier

VC 1 
VC 2 

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Crossbar (5 x 5)

To East

To PE

To West
To North
To South

Input Port with Buffers

Control Logic

Crossbar

R Router

PE Processing Element
(Cores, L2 Banks, Memory Controllers etc)

Routing Unit 
(RC)

VC Allocator
(VA)

Switch 
Allocator (SA)



© Onur Mutlu, 2009, 2010

On-Chip vs. Off-Chip Interconnects
n On-chip advantages

q Low latency between cores
q No pin constraints
q Rich wiring resources
à Very high bandwidth
à Simpler coordination

n On-chip constraints/disadvantages
q 2D substrate limits implementable topologies
q Energy/power consumption a key concern
q Complex algorithms undesirable
q Logic area constrains use of wiring resources
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© Onur Mutlu, 2009, 2010

On-Chip vs. Off-Chip Interconnects (II)
n Cost

q Off-chip: Channels, pins, connectors, cables
q On-chip: Cost is storage and switches (wires are plentiful)
q Leads to networks with many wide channels, few buffers

n Channel characteristics
q On chip short distance à low latency
q On chip RC lines à need repeaters every 1-2mm

n Can put logic in repeaters

n Workloads
q Multi-core cache traffic vs. supercomputer interconnect traffic
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On-Chip vs. Off-Chip Tradeoffs
n George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu, 

and Srinivasan Seshan,
"On-Chip Networks from a Networking Perspective: 
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM 
Conference (SIGCOMM), Helsinki, Finland, August 2012. Slides 
(pptx)

13



• Buffers are necessary for high network throughput

à buffers increase total available bandwidth in network

Buffers in NoC Routers
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• Buffers are necessary for high network throughput

à buffers increase total available bandwidth in network

• Buffers consume significant energy/power
• Dynamic energy when read/write

• Static energy even when not occupied

• Buffers add complexity and latency
• Logic for buffer management

• Virtual channel allocation

• Credit-based flow control 

• Buffers require significant chip area
• E.g., in TRIPS prototype chip, input buffers occupy 75% of 

total on-chip network area [Gratz et al, ICCD’06]

Buffers in NoC Routers



• How much throughput do we lose? 
à How is latency affected? 

• Up to what injection rates can we use bufferless routing?

àAre there realistic scenarios in which NoC is 
operated at injection rates below the threshold? 

• Can we achieve energy reduction?
à If so, how much…?  

• Can we reduce area, complexity, etc…? 

Going Bufferless…? 

Injection Rate
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Answers	in	
our	paper!
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• Always forward all incoming flits to some output port

• If no productive direction is available, send to another 
direction

• à packet is deflected

à Hot-potato routing [Baran’64,  etc]

BLESS: Bufferless Routing

Buffered BLESS

Deflected!
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BLESS: Bufferless Routing

Routing 

VC Arbiter

Switch Arbiter

Flit-Ranking

Port-
Prioritization

arbitration policy

Flit-Ranking 1. Create a ranking over all incoming flits

Port-
Prioritization 2. For a given flit in this ranking, find the best free output-port

Apply to each flit in order of ranking
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• Each flit is routed independently. 
• Oldest-first arbitration   (other policies evaluated in paper)

• Network Topology: 
à Can be applied to most topologies (Mesh, Torus, Hypercube, Trees, …) 

1) #output ports ¸ #input ports      at every router
2) every router is reachable from every other router

• Flow Control & Injection Policy: 
à Completely local, inject whenever input port is free  

• Absence of Deadlocks:  every flit is always moving
• Absence of Livelocks:  with oldest-first ranking

FLIT-BLESS: Flit-Level Routing

Flit-Ranking 1. Oldest-first ranking

Port-
Prioritization

2. Assign flit to productive port, if possible.
Otherwise, assign to non-productive port. 
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Advantages

• No buffers

• Purely local flow control

• Simplicity 
- no credit-flows
- no virtual channels
- simplified router design

• No deadlocks, livelocks

• Adaptivity
- packets are deflected around 
congested areas! 

• Router latency reduction

• Area savings

BLESS:  Advantages & Disadvantages 

Disadvantages
• Increased latency
• Reduced bandwidth
• Increased buffering at 

receiver
• Header information at 

each flit
• Oldest-first arbitration 

complex
• QoS becomes difficult

Impact on energy…? 
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Evaluation – Synthetic Traces

• First, the bad news J

• Uniform random injection

• BLESS has significantly lower
saturation throughput 
compared to buffered 
baseline. 0
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Evaluation – Homogenous Case Study

• milc benchmarks
(moderately intensive)

• Perfect caches!

• Very little performance
degradation with BLESS
(less than 4% in dense
network)

• With router latency 1, 
BLESS can even 
outperform baseline
(by ~10%)

• Significant energy 
improvements 
(almost 40%)
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Evaluation – Homogenous Case Study
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• milc benchmarks
(moderately intensive)

• Perfect caches!

• Very little performance
degradation with BLESS
(less than 4% in dense
network)

• With router latency 1, 
BLESS can even 
outperform baseline
(by ~10%)

• Significant energy 
improvements 
(almost 40%)

Observations: 

1) Injection rates not extremely high
on average

à self-throttling!

2) For bursts and temporary hotspots, 
use network links as buffers!
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• For a very wide range of applications and network settings, 
buffers are not needed in NoC
• Significant energy savings 

(32% even in dense networks and perfect caches)
• Area-savings of 60% 
• Simplified router and network design (flow control, etc…)
• Performance slowdown is minimal (can even increase!)

Ø A strong case for a rethinking of NoC design!  

• Future research:
• Support for quality of service, different traffic classes, energy-

management, etc… 

BLESS Conclusions



Bufferless Routing in NoCs
n Moscibroda and Mutlu, “A Case for Bufferless Routing in On-

Chip Networks,” ISCA 2009.
q https://users.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf
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Issues In Bufferless Deflection Routing
n Livelock

n Resulting Router Complexity

n Performance & Congestion at High Loads

n Quality of Service and Fairness

n Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata
Ausavarungnirun, and Onur Mutlu,
"Bufferless and Minimally-Buffered Deflection Routing"
Invited Book Chapter in Routing Algorithms in Networks-on-Chip, 
pp. 241-275, Springer, 2014.
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Low-Complexity Bufferless Routing
n Chris Fallin, Chris Craik, and Onur Mutlu,

"CHIPPER: A Low-Complexity Bufferless Deflection 
Router"
Proceedings of the 17th International Symposium on High-
Performance Computer Architecture (HPCA), pages 144-155, 
San Antonio, TX, February 2011. Slides (pptx)
An extended version as SAFARI Technical Report, TR-SAFARI-
2010-001, Carnegie Mellon University, December 2010.
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CHIPPER: A Low-complexity
Bufferless Deflection Router

Chris Fallin, Chris Craik, and Onur Mutlu,
"CHIPPER: A Low-Complexity Bufferless Deflection Router"

Proceedings of the 17th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 144-155, San Antonio, TX, February 

2011. Slides (pptx)



Motivation
n Recent work has proposed bufferless deflection routing 

(BLESS [Moscibroda, ISCA 2009])

q Energy savings: ~40% in total NoC energy
q Area reduction: ~40% in total NoC area
q Minimal performance loss: ~4% on average

q Unfortunately: unaddressed complexities in router
è long critical path, large reassembly buffers

n Goal: obtain these benefits while simplifying the router
in order to make bufferless NoCs practical.
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Problems that Bufferless Routers Must Solve
1. Must provide livelock freedom

è A packet should not be deflected forever

2. Must reassemble packets upon arrival

30

Flit: atomic routing unit

0   1   2   3

Packet: one or multiple flits



Local Node

Router

Inject

Deflection
Routing
Logic

Crossbar

A Bufferless Router: A High-Level View
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Complexity in Bufferless Deflection Routers
1. Must provide livelock freedom

Flits are sorted by age, then assigned in age order to 
output ports

è 43% longer critical path than buffered router

2. Must reassemble packets upon arrival

Reassembly buffers must be sized for worst case

è 4KB per node 
(8x8, 64-byte cache block)
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Livelock Freedom in Previous Work
n What stops a flit from deflecting forever?
n All flits are timestamped
n Oldest flits are assigned their desired ports
n Total order among flits

n But what is the cost of this?

34

Flit age forms total order

Guaranteed
progress!

< < <<<

New traffic is lowest priority



Age-Based Priorities are Expensive: Sorting
n Router must sort flits by age: long-latency sort network

q Three comparator stages for 4 flits

35
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Age-Based Priorities Are Expensive: Allocation
n After sorting, flits assigned to output ports in priority order
n Port assignment of younger flits depends on that of older flits

q sequential dependence in the port allocator
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Age-Based Priorities Are Expensive
n Overall, deflection routing logic based on Oldest-First

has a 43% longer critical path than a buffered router

n Question: is there a cheaper way to route while 
guaranteeing livelock-freedom?

37

Port AllocatorPriority Sort



Solution: Golden Packet for Livelock Freedom
n What is really necessary for livelock freedom?

Key Insight: No total order. it is enough to:
1. Pick one flit to prioritize until arrival
2. Ensure any flit is eventually picked
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Flit age forms total order
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“Golden Flit”
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n Only need to properly route the Golden Flit

n First Insight: no need for full sort
n Second Insight: no need for sequential allocation

What Does Golden Flit Routing Require?
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Golden Flit Routing With Two Inputs
n Let’s route the Golden Flit in a two-input router first

n Step 1: pick a “winning” flit: Golden Flit, else random
n Step 2: steer the winning flit to its desired output

and deflect other flit

è Golden Flit is always routed toward its destination
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Golden Flit Routing with Four Inputs
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n Each block makes decisions independently!
n Deflection is a distributed decision
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Permutation Network Operation
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Problem 2: Packet Reassembly
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Reassembly Buffers are Large
n Worst case: every node sends a packet to one receiver
n Why can’t we make reassembly buffers smaller?
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Small Reassembly Buffers Cause Deadlock
n What happens when reassembly buffer is too small?
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Network
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reassembly
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Many Senders
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Remaining flits
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network full



Reserve Space to Avoid Deadlock?
n What if every sender asks permission from the receiver 

before it sends?

è adds additional delay to every request
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Escaping Deadlock with Retransmissions
n Sender is optimistic instead: assume buffer is free

q If not, receiver drops and NACKs; sender retransmits

à no additional delay in best case
à transmit buffering overhead for all packets
à potentially many retransmits
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Solution: Retransmitting Only Once
n Key Idea: Retransmit only when space becomes available.

à Receiver drops packet if full; notes which packet it drops
à When space frees up, receiver reserves space so

retransmit is successful
à Receiver notifies sender to retransmit
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Using MSHRs as Reassembly Buffers
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CHIPPER: Cheap Interconnect Partially-Permuting Router
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àRetransmit-Once
àCache miss buffers

Long critical path:
1. Sort by age
2. Allocate ports sequentially

àGolden Packet
à Permutation Network



CHIPPER: Cheap Interconnect Partially-Permuting Router
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EVALUATION
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Methodology
n Multiprogrammed workloads: CPU2006, server, desktop

q 8x8 (64 cores), 39 homogeneous and 10 mixed sets

n Multithreaded workloads: SPLASH-2, 16 threads
q 4x4 (16 cores), 5 applications

n System configuration
q Buffered baseline: 2-cycle router, 4 VCs/channel, 8 flits/VC
q Bufferless baseline: 2-cycle latency, FLIT-BLESS

q Instruction-trace driven, closed-loop, 128-entry OoO window
q 64KB L1, perfect L2 (stresses interconnect), XOR mapping
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Methodology
n Hardware modeling

q Verilog models for CHIPPER, BLESS, buffered logic
n Synthesized with commercial 65nm library

q ORION for crossbar, buffers and links

n Power
q Static and dynamic power from hardware models
q Based on event counts in cycle-accurate simulations

54



0

0.2

0.4

0.6

0.8

1

lu
c

ch
ol
es
ky

ra
di
x fft lu
n

AV
G

Sp
ee

du
p	
(N
or
m
al
ize

d)

Multithreaded

0

8

16

24

32

40

48

56

64
pe

rlb
en

ch

to
nt
o

gc
c

h2
64
re
f

vp
r

se
ar
ch
.1

M
IX
.5

M
IX
.2

M
IX
.8

M
IX
.0

M
IX
.6

Ge
m
sF
DT

D

st
re
am m
cf

AV
G	
(fu

ll	
se
t)

W
ei
gh
te
d	
Sp
ee
du

p

Multiprogrammed (subset	of	49	total) Buffered
BLESS
CHIPPER

Results: Performance Degradation

55

13.6%
1.8%

3.6% 49.8%

C Minimal loss for low-to-medium-intensity workloads
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Results: Area and Critical Path Reduction
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Conclusions
n Two key issues in bufferless deflection routing

q livelock freedom and packet reassembly

n Bufferless deflection routers were high-complexity and impractical
q Oldest-first prioritization à long critical path in router
q No end-to-end flow control for reassembly à prone to deadlock with 

reasonably-sized reassembly buffers

n CHIPPER is a new, practical bufferless deflection router
q Golden packet prioritization à short critical path in router
q Retransmit-once protocol à deadlock-free packet reassembly
q Cache miss buffers as reassembly buffers à truly bufferless network

n CHIPPER frequency comparable to buffered routers at much lower 
area and power cost, and minimal performance loss 
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More on CHIPPER
n Chris Fallin, Chris Craik, and Onur Mutlu,

"CHIPPER: A Low-Complexity Bufferless Deflection 
Router"
Proceedings of the 17th International Symposium on High-
Performance Computer Architecture (HPCA), pages 144-155, 
San Antonio, TX, February 2011. Slides (pptx)
An extended version as SAFARI Technical Report, TR-SAFARI-
2010-001, Carnegie Mellon University, December 2010.
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Minimally-Buffered Deflection Routing
n Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata

Ausavarungnirun, and Onur Mutlu,
"MinBD: Minimally-Buffered Deflection Routing for Energy-
Efficient Interconnect"
Proceedings of the 6th ACM/IEEE International Symposium on 
Networks on Chip (NOCS), Lyngby, Denmark, May 2012. Slides 
(pptx) (pdf)
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“Bufferless” Hierarchical Rings
n Ausavarungnirun et al., “Design and Evaluation of Hierarchical 

Rings with Deflection Routing,” SBAC-PAD 2014.
q http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-

deflection_sbacpad14.pdf

n Discusses the design and implementation of a mostly-
bufferless hierarchical ring
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“Bufferless” Hierarchical Rings (II)
n Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Chang, 

Greg Nazario, Reetuparna Das, Gabriel Loh, and Onur Mutlu,
"A Case for Hierarchical Rings with Deflection Routing: An 
Energy-Efficient On-Chip Communication Substrate"
Parallel Computing (PARCO), to appear in 2016.
q arXiv.org version, February 2016.
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Summary of Six Years of Research
n Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata

Ausavarungnirun, and Onur Mutlu,
"Bufferless and Minimally-Buffered Deflection Routing"
Invited Book Chapter in Routing Algorithms in Networks-on-Chip, pp. 
241-275, Springer, 2014.
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On-Chip vs. Off-Chip Tradeoffs
n George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu, 

and Srinivasan Seshan,
"On-Chip Networks from a Networking Perspective: 
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM 
Conference (SIGCOMM), Helsinki, Finland, August 2012. Slides 
(pptx)
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Packet Scheduling
n Which packet to choose for a given output port?

q Router needs to prioritize between competing flits
q Which input port?
q Which virtual channel?
q Which application’s packet?

n Common strategies
q Round robin across virtual channels
q Oldest packet first (or an approximation)
q Prioritize some virtual channels over others

n Better policies in a multi-core environment
q Use application characteristics
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Application-Aware Packet Scheduling

Das et al., “Application-Aware Prioritization Mechanisms for On-Chip Networks,”
MICRO 2009.



The Problem: Packet Scheduling
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The Problem: Packet Scheduling
§ Existing scheduling policies 

§ Round Robin
§ Age

§ Problem 1: Local to a router
§ Lead to contradictory decision making between routers: packets 

from one application may be prioritized at one router, to be 
delayed at next. 

§ Problem 2: Application oblivious
§ Treat all applications packets equally
§ But applications are heterogeneous

§ Solution : Application-aware global scheduling policies.
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Application-Aware Prioritization in NoCs
n Das et al., “Application-Aware Prioritization Mechanisms for 

On-Chip Networks,” MICRO 2009.
q https://users.ece.cmu.edu/~omutlu/pub/app-aware-

noc_micro09.pdf
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Slack-Based Packet Scheduling
n Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das,

"Aergia: Exploiting Packet Latency Slack in On-Chip Networks"
Proceedings of the 37th International Symposium on Computer 
Architecture (ISCA), pages 106-116, Saint-Malo, France, June 
2010. Slides (pptx)
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Low-Cost QoS in On-Chip Networks (I)
n Boris Grot, Stephen W. Keckler, and Onur Mutlu,

"Preemptive Virtual Clock: A Flexible, Efficient, and Cost-
effective QOS Scheme for Networks-on-Chip"
Proceedings of the 42nd International Symposium on 
Microarchitecture (MICRO), pages 268-279, New York, NY, December 
2009. Slides (pdf)
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Low-Cost QoS in On-Chip Networks (II)
n Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,

"Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for 
Scalability and Service Guarantees"
Proceedings of the 38th International Symposium on Computer 
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)
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We did not cover the following slides in lecture. 
These are for benefit. 



MinBD:
Minimally-Buffered Deflection Routing

for Energy-Efficient Interconnect

Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata
Ausavarungnirun, and Onur Mutlu,

"MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient 
Interconnect"

Proceedings of the 6th ACM/IEEE International Symposium on Networks on 
Chip (NOCS), Lyngby, Denmark, May 2012. Slides (pptx) (pdf)



Bufferless Deflection Routing
n Key idea: Packets are never buffered in the network. When two 

packets contend for the same link, one is deflected.

n Removing buffers yields significant benefits
q Reduces power (CHIPPER: reduces NoC power by 55%)
q Reduces die area (CHIPPER: reduces NoC area by 36%)

n But, at high network utilization (load), bufferless deflection 
routing causes unnecessary link & router traversals
q Reduces network throughput and application performance
q Increases dynamic power

n Goal: Improve high-load performance of low-cost deflection 
networks by reducing the deflection rate.
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Outline: This Talk
n Motivation

n Background: Bufferless Deflection Routing

n MinBD: Reducing Deflections
q Addressing Link Contention
q Addressing the Ejection Bottleneck
q Improving Deflection Arbitration

n Results
n Conclusions
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n Results
n Conclusions

87



Issues in Bufferless Deflection Routing
n Correctness: Deliver all packets without livelock

q CHIPPER1: Golden Packet
q Globally prioritize one packet until delivered

n Correctness: Reassemble packets without deadlock

q CHIPPER1: Retransmit-Once

n Performance: Avoid performance degradation at high load

q MinBD

881 Fallin et al., “CHIPPER: A Low-complexity Bufferless Deflection Router”, HPCA 
2011. 



Key Performance Issues
1. Link contention: no buffers to hold traffic à

any link contention causes a deflection
à use side buffers

2. Ejection bottleneck: only one flit can eject per router 
per cycle à simultaneous arrival causes deflection

à eject up to 2 flits/cycle

3. Deflection arbitration: practical (fast) deflection 
arbiters deflect unnecessarily

à new priority scheme (silver flit)
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Outline: This Talk
n Motivation

n Background: Bufferless Deflection Routing

n MinBD: Reducing Deflections
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n Results
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n MinBD: Reducing Deflections
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q Addressing the Ejection Bottleneck
q Improving Deflection Arbitration

n Results
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Addressing Link Contention
n Problem 1: Any link contention causes a deflection

n Buffering a flit can avoid deflection on contention
n But, input buffers are expensive:

q All flits are buffered on every hop à high dynamic energy
q Large buffers necessary à high static energy and large area

n Key Idea 1: add a small buffer to a bufferless deflection 
router to buffer only flits that would have been deflected
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How to Buffer Deflected Flits
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Baseline RouterEject Inject

1 Fallin et al., “CHIPPER: A Low-complexity Bufferless Deflection Router”, HPCA 
2011. 

Destination

Destination

DEFLECTED



How to Buffer Deflected Flits
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Side-Buffered RouterEject Inject

Step 1. Remove up to 
one deflected flit per 
cycle from the outputs.

Step 2. Buffer this flit in a small 
FIFO “side buffer.”

Step 3. Re-inject this flit into 
pipeline when a slot is available.

Side Buffer

Destination

Destination

DEFLECTED



Why Could A Side Buffer Work Well?
n Buffer some flits and deflect other flits at per-flit level

q Relative to bufferless routers, deflection rate reduces
(need not deflect all contending flits)
à 4-flit buffer reduces deflection rate by 39%

q Relative to buffered routers, buffer is more efficiently 
used (need not buffer all flits)
à similar performance with 25% of buffer space
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Outline: This Talk
n Motivation

n Background: Bufferless Deflection Routing

n MinBD: Reducing Deflections
q Addressing Link Contention
q Addressing the Ejection Bottleneck
q Improving Deflection Arbitration

n Results
n Conclusions
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Addressing the Ejection Bottleneck
n Problem 2: Flits deflect unnecessarily because only one flit 

can eject per router per cycle

n In 20% of all ejections, ≥ 2 flits could have ejected
à all but one flit must deflect and try again
à these deflected flits cause additional contention

n Ejection width of 2 flits/cycle reduces deflection rate 21%

n Key idea 2: Reduce deflections due to a single-flit ejection 
port by allowing two flits to eject per cycle
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Addressing the Ejection Bottleneck
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Single-Width EjectionEject Inject

DEFLECTED



Addressing the Ejection Bottleneck
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Dual-Width EjectionEject Inject

For fair comparison, baseline routers have 
dual-width ejection for perf. (not power/area)



Outline: This Talk
n Motivation

n Background: Bufferless Deflection Routing

n MinBD: Reducing Deflections
q Addressing Link Contention
q Addressing the Ejection Bottleneck
q Improving Deflection Arbitration

n Results
n Conclusions
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Improving Deflection Arbitration
n Problem 3: Deflections occur unnecessarily because fast 

arbiters must use simple priority schemes

n Age-based priorities (several past works): full priority order 
gives fewer deflections, but requires slow arbiters

n State-of-the-art deflection arbitration (Golden Packet & 
two-stage permutation network)
q Prioritize one packet globally (ensure forward progress)
q Arbitrate other flits randomly (fast critical path)

n Random common case leads to uncoordinated arbitration
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Fast Deflection Routing Implementation
n Let’s route in a two-input router first:

n Step 1: pick a “winning” flit (Golden Packet, else random)
n Step 2: steer the winning flit to its desired output

and deflect other flit

è Highest-priority flit always routes to destination
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Fast Deflection Routing with Four Inputs
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n Each block makes decisions independently
n Deflection is a distributed decision
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Unnecessary Deflections in Fast Arbiters
n How does lack of coordination cause unnecessary deflections?

1. No flit is golden (pseudorandom arbitration)
2. Red flit wins at first stage
3. Green flit loses at first stage (must be deflected now)
4. Red flit loses at second stage; Red and Green are deflected

104

Destination

Destination

all flits have
equal priority

unnecessary
deflection!



Improving Deflection Arbitration
n Key idea 3: Add a priority level and prioritize one flit

to ensure at least one flit is not deflected in each cycle

n Highest priority: one Golden Packet in network
q Chosen in static round-robin schedule
q Ensures correctness

n Next-highest priority: one silver flit per router per cycle
q Chosen pseudo-randomly & local to one router
q Enhances performance
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Adding A Silver Flit
n Randomly picking a silver flit ensures one flit is not deflected

1. No flit is golden but Red flit is silver
2. Red flit wins at first stage (silver)
3. Green flit is deflected at first stage
4. Red flit wins at second stage (silver); not deflected
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At least one flit
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Minimally-Buffered Deflection Router

107

Eject Inject

Problem 1: Link Contention
Solution 1: Side Buffer

Problem 2: Ejection Bottleneck
Solution 2: Dual-Width Ejection

Problem 3: Unnecessary Deflections
Solution 3: Two-level priority scheme



Outline: This Talk
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n MinBD: Reducing Deflections
q Addressing Link Contention
q Addressing the Ejection Bottleneck
q Improving Deflection Arbitration
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Methodology: Simulated System
n Chip Multiprocessor Simulation

q 64-core and 16-core models
q Closed-loop core/cache/NoC cycle-level model
q Directory cache coherence protocol (SGI Origin-based)
q 64KB L1, perfect L2 (stresses interconnect), XOR-mapping
q Performance metric: Weighted Speedup

(similar conclusions from network-level latency)
q Workloads: multiprogrammed SPEC CPU2006

n 75 randomly-chosen workloads
n Binned into network-load categories by average injection rate
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Methodology: Routers and Network
n Input-buffered virtual-channel router

q 8 VCs, 8 flits/VC [Buffered(8,8)]: large buffered router
q 4 VCs, 4 flits/VC [Buffered(4,4)]: typical buffered router
q 4 VCs, 1 flit/VC [Buffered(4,1)]: smallest deadlock-free router
q All power-of-2 buffer sizes up to (8, 8) for perf/power sweep

n Bufferless deflection router: CHIPPER1

n Bufferless-buffered hybrid router: AFC2

q Has input buffers and deflection routing logic
q Performs coarse-grained (multi-cycle) mode switching

n Common parameters
q 2-cycle router latency, 1-cycle link latency
q 2D-mesh topology (16-node: 4x4; 64-node: 8x8)
q Dual ejection assumed for baseline routers (for perf. only)

111
1Fallin et al., “CHIPPER: A Low-complexity Bufferless Deflection Router”, HPCA 2011.
2Jafri et al., “Adaptive Flow Control for Robust Performance and Energy”, MICRO 2010.



Methodology: Power, Die Area, Crit. Path
n Hardware modeling

q Verilog models for CHIPPER, MinBD, buffered control logic
n Synthesized with commercial 65nm library

q ORION 2.0 for datapath: crossbar, muxes, buffers and links

n Power
q Static and dynamic power from hardware models
q Based on event counts in cycle-accurate simulations
q Broken down into buffer, link, other
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Deflection

Reduced Deflections & Improved Perf.
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Overall Performance Results
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Overall Power Results
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• Buffers are significant fraction of power in baseline routers
• Buffer power is much smaller in MinBD (4-flit buffer)
• Dynamic power increases with deflection routing
• Dynamic power reduces in MinBD relative to CHIPPER



Performance-Power Spectrum

116

Buf (1,1)

13.0
13.2
13.4
13.6
13.8
14.0
14.2
14.4
14.6
14.8
15.0

0.5 1.0 1.5 2.0 2.5 3.0

W
ei
gh
te
d	
Sp
ee
du

p

Network	Power	(W)
• Most energy-efficient (perf/watt) of any 

evaluated network router design

Buf (4,4)

Buf (4,1)

More Perf/Power Less Perf/Power

Buf (8,8)

AFC

CHIPPER

MinBD



0

0.5

1

1.5

2

2.5
Bu

ffe
re
d	
(8
,8
)

Bu
ffe

re
d	
(4
,4
)

Bu
ffe

re
d	
(4
,1
)

CH
IP
PE
R

M
in
BD

Normalized	Die	Area

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Bu
ffe

re
d	
(8
,8
)

Bu
ffe

re
d	
(4
,4
)

Bu
ffe

re
d	
(4
,1
)

CH
IP
PE
R

M
in
BD

Normalized	Critical	Path

Die Area and Critical Path

117

• Only 3% area increase over CHIPPER (4-flit buffer)
• Reduces area by 36% from Buffered (4,4)• Increases by 7% over CHIPPER, 8% over Buffered (4,4)

+3%

-36%
+7%+8%



Conclusions
n Bufferless deflection routing offers reduced power & area
n But, high deflection rate hurts performance at high load

n MinBD (Minimally-Buffered Deflection Router) introduces:
q Side buffer to hold only flits that would have been deflected
q Dual-width ejection to address ejection bottleneck
q Two-level prioritization to avoid unnecessary deflections

n MinBD yields reduced power (31%) & reduced area (36%)
relative to buffered routers

n MinBD yields improved performance (8.1% at high load)
relative to bufferless routers à closes half of perf. gap

n MinBD has the best energy efficiency of all evaluated designs 
with competitive performance
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More Readings
n Studies of congestion and congestion control in on-chip vs. 

internet-like networks

n George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu, and 
Srinivasan Seshan,
"On-Chip Networks from a Networking Perspective: 
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM Conference (SIGCOMM), 
Helsinki, Finland, August 2012. Slides (pptx)

n George Nychis, Chris Fallin, Thomas Moscibroda, and Onur Mutlu,
"Next Generation On-Chip Networks: What Kind of Congestion 
Control Do We Need?"
Proceedings of the 9th ACM Workshop on Hot Topics in Networks
(HOTNETS), Monterey, CA, October 2010. Slides (ppt) (key)
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HAT:	Heterogeneous	Adaptive	
Throttling	for	On-Chip	Networks

Kevin	Chang,	Rachata Ausavarungnirun,	Chris	Fallin,	and	Onur	Mutlu,
"HAT:	Heterogeneous	Adaptive	Throttling	for	On-Chip	Networks"

Proceedings	of	the	24th	International	Symposium	on	Computer	Architecture	and	
High	Performance	Computing (SBAC-PAD),	New	York,	NY,	October	2012.	Slides	

(pptx) (pdf)



Executive	Summary
• Problem:	Packets	contend	in	on-chip	networks	(NoCs),	

causing	congestion,	thus	reducing	performance
• Observations:	

1)	Some	applications	are	more	sensitive	to	network	
latency	than	others
2)	Applications	must	be	throttled	differently	to	achieve	
peak	performance

• Key	Idea:	Heterogeneous	Adaptive	Throttling	(HAT)
1)	Application-aware	source	throttling	
2)	Network-load-aware	throttling	rate	adjustment

• Result: Improves	performance	and	energy	efficiency	over	
state-of-the-art	source	throttling	policies
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Outline
• Background	and	Motivation
• Mechanism
• Prior	Works
• Results
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On-Chip	Networks
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Network	Congestion	Reduces	Performance
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Goal
• Improve	performance	in	a	highly	congested	NoC

• Reducing	network	load	decreases	network	
congestion,	hence	improves	performance

• Approach: source	throttling	to	reduce	network	load
– Temporarily	delay	new	traffic	injection

• Naïve	mechanism:	throttle	every	single	node
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gromacs:	network-non-intensive

+	9%- 2%

Different	applications	respond	differently	to	changes	in	
network	latency

mcf:	network-intensive	

Throttling	mcf reduces	congestion
gromacs is	more	sensitive	to	network	latency
Throttling	network-intensive applications	benefits	
system	performance	more
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Different	workloads	achieve	peak	performance	at	
different	throttling	rates

Dynamically	adjusting	throttling	rate	yields	
better	performance	than	a	single	static	rate

90% 92%
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Outline
• Background	and	Motivation
• Mechanism
• Prior	Works
• Results
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Heterogeneous	Adaptive	Throttling	(HAT)
1. Application-aware	throttling:

Throttle	network-intensive applications	that	
interfere	with	network-non-intensive
applications

2. Network-load-aware	throttling	rate	
adjustment:
Dynamically adjusts	throttling	rate	to	adapt	to	
different	workloads
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Heterogeneous	Adaptive	Throttling	(HAT)
1. Application-aware	throttling:

Throttle	network-intensive applications	that	
interfere	with	network-non-intensive
applications

2. Network-load-aware	throttling	rate	
adjustment:
Dynamically adjusts	throttling	rate	to	adapt	to	
different	workloads

130



Application-Aware	Throttling
1. Measure	Network	Intensity

Use	L1	MPKI	(misses	per	thousand	instructions)	to	estimate	
network	intensity

2. Classify	Application
Sort applications	by	L1	MPKI

3. Throttle	network-intensive	applications
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Heterogeneous	Adaptive	Throttling	(HAT)
1. Application-aware	throttling:

Throttle	network-intensive applications	that	
interfere	with	network-non-intensive
applications

2. Network-load-aware	throttling	rate	
adjustment:
Dynamically adjusts	throttling	rate	to	adapt	to	
different	workloads
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Dynamic	Throttling	Rate	Adjustment

• For	a	given	network	design,	peak	performance	
tends	to	occur	at	a	fixed	network	load	point

• Dynamically adjust	throttling	rate	to	achieve	that	
network	load	point
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Dynamic	Throttling	Rate	Adjustment
• Goal:	maintain	network	load	at	a	peak	
performance	point

1. Measure	network	load
2. Compare	and	adjust	throttling	rate

If	network	load	> peak	point:	
Increase	throttling	rate

elif network	load	≤ peak	point:	
Decrease	throttling	rate

134



Epoch-Based	Operation
• Continuous	HAT operation	is	expensive
• Solution:	performs	HAT at	epoch	granularity
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Time

Current	Epoch
(100K	cycles)

Next	Epoch
(100K	cycles)

During	epoch:
1) Measure	L1	MPKI

of	each	application
2) Measure	network	

load

Beginning	of	epoch:
1) Classify	applications
2) Adjust	throttling	rate
3) Reset	measurements



Outline
• Background	and	Motivation
• Mechanism
• Prior	Works
• Results
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Prior	Source	Throttling	Works
• Source	throttling	for	bufferless NoCs

[Nychis+	Hotnets’10,	SIGCOMM’12]

– Application-aware	throttling	based	on	starvation	rate
– Does	not	adaptively	adjust	throttling	rate
– “Heterogeneous	Throttling”

• Source	throttling	off-chip	buffered	networks	
[Thottethodi+	HPCA’01]

– Dynamically	trigger	throttling	based	on	fraction	of	
buffer	occupancy

– Not	application-aware:	fully	block	packet	injections	of	
every	node

– “Self-tuned	Throttling”
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Outline
• Background	and	Motivation
• Mechanism
• Prior	Works
• Results
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Methodology
• Chip	Multiprocessor	Simulator

– 64-nodemulti-core	systems	with	a	2D-mesh	topology
– Closed-loop	core/cache/NoC cycle-level model
– 64KB	L1,	perfect	L2	(always	hits	to	stress	NoC)

• Router	Designs
– Virtual-channel	buffered	router:	4	VCs,	4	flits/VC	[Dally+	IEEE	TPDS’92]
– Bufferless deflection	routers:	BLESS	[Moscibroda+	ISCA’09]

• Workloads
– 60	multi-core	workloads:	SPEC	CPU2006	benchmarks
– Categorized	based	on	their	network	intensity

• Low/Medium/High	intensity	categories

• Metrics:	Weighted	Speedup	(perf.),	perf./Watt	(energy	eff.),
and	maximum	slowdown	(fairness)
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HAT	provides	better	performance	improvement	than	
past	work
Highest	improvement	on	heterogeneous workload	mixes
- L	andM	are	more	sensitive to	network	latency

7.4%
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Congestion	is	much	lower	in	Buffered	NoC,	but	HAT still	
provides	performance	benefit

+	3.5%



Application	Fairness
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HAT	provides	better	fairness	than	prior	works
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8.5% 5%

HAT	increases	energy	efficiency	by	
reducing	congestion



Other	Results	in	Paper

• Performance	on	CHIPPER

• Performance	on	multithreaded workloads

• Parameters	sensitivity	sweep	of	HAT
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Conclusion
• Problem:	Packets	contend	in	on-chip	networks	(NoCs),	

causing	congestion,	thus	reducing	performance
• Observations:	

1)	Some	applications	are	more	sensitive	to	network	
latency	than	others
2)	Applications	must	be	throttled	differently	to	achieve	
peak	performance

• Key	Idea:	Heterogeneous	Adaptive	Throttling	(HAT)
1)	Application-aware	source	throttling	
2)	Network-load-aware	throttling	rate	adjustment

• Result: Improves	performance	and	energy	efficiency	over	
state-of-the-art	source	throttling	policies
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The Problem: Packet Scheduling
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The Problem: Packet Scheduling
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The Problem: Packet Scheduling

151

Sc
he

du
le

r

Conceptual

View

VC 0 Routing Unit 
(RC)

VC 
Allocator(VA)

Switch Allocator (SA)

VC 1
VC 2

From East

From West

From North

From South

From PE

From East

From West

From North

From South

From PE

VC 0 
VC 1 
VC 2 

App1 App2 App3 App4
App5 App6 App7 App8

Which packet to choose?



© Onur Mutlu, 2009, 2010

The Problem: Packet Scheduling

n Existing scheduling policies 
q Round Robin
q Age

n Problem 1: Local to a router
q Lead to contradictory decision making between routers: 

packets from one application may be prioritized at one router, 
to be delayed at next. 

n Problem 2: Application oblivious
q Treat all applications packets equally
q But applications are heterogeneous

n Solution: Application-aware global scheduling policies.
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Motivation: Stall-Time Criticality

n Applications are not homogenous

n Applications have different criticality with respect to the 
network
q Some applications are network latency sensitive 
q Some applications are network latency tolerant

n Application’s Stall Time Criticality (STC) can be measured 
by its average network stall time per packet (i.e. 
NST/packet)
q Network Stall Time (NST) is number of cycles the processor 

stalls waiting for network transactions to complete
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Motivation: Stall-Time Criticality

n Why do applications have different network stall time 
criticality (STC)? 

q Memory Level Parallelism (MLP) 
n Lower MLP leads to higher criticality

q Shortest Job First Principle (SJF) 
n Lower network load leads to higher criticality
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STC Principle 1: MLP

n Observation 1: Packet Latency != Network Stall Time
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STC Principle 1: MLP

n Observation 1: Packet Latency != Network Stall Time
n Observation 2: A low MLP application’s  packets have 

higher criticality than a high MLP application’s
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STC Principle 2: Shortest-Job-First
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Solution: Application-Aware Policies

n Idea
q Identify critical applications (i.e. network 

sensitive applications) and prioritize their packets 
in each router.

n Key components of scheduling policy:
q Application Ranking
q Packet Batching

n Propose low-hardware complexity solution
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Component 1: Ranking

n Ranking distinguishes applications based on Stall Time 
Criticality (STC)

n Periodically rank applications based on STC

n Explored many heuristics for estimating STC
q Heuristic based on outermost private cache Misses Per 

Instruction (L1-MPI) is the most effective
q Low L1-MPI => high STC => higher rank

n Why Misses Per Instruction (L1-MPI)?
q Easy to Compute (low complexity)
q Stable Metric (unaffected by interference in network)
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Component 1 : How to Rank?
n Execution time is divided into fixed “ranking intervals”

q Ranking interval is 350,000 cycles 
n At the end of an interval, each core calculates their L1-MPI 

and sends it to the Central Decision Logic (CDL)
q CDL is located in the central node of mesh

n CDL forms a rank order and sends back its rank to each core
q Two control packets per core every ranking interval

n Ranking order is a “partial order”

n Rank formation is not on the critical path
q Ranking interval is significantly longer than rank computation time
q Cores use older rank values until new ranking is available
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Component 2: Batching
n Problem: Starvation

q Prioritizing a higher ranked application can lead to starvation
of lower ranked application

n Solution: Packet Batching
q Network packets are grouped into finite sized batches 
q Packets of older batches are prioritized over younger 

batches

n Time-Based Batching
q New batches are formed in a periodic, synchronous manner 

across all nodes in the network, every T cycles 
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Putting it all together: STC Scheduling 
Policy
n Before injecting a packet into the network, it is tagged with 

q Batch ID (3 bits)
q Rank ID (3 bits)

n Three tier priority structure at routers
q Oldest batch first (prevent starvation)
q Highest rank first (maximize performance)
q Local Round-Robin    (final tie breaker)

n Simple hardware support: priority arbiters
n Global coordinated scheduling

q Ranking order and batching order are same across all routers
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STC Scheduling Example
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STC Scheduling Example
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STC Scheduling Example
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STC Scheduling Example
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STC Evaluation Methodology
n 64-core system

q x86 processor model based on Intel Pentium M
q 2 GHz processor, 128-entry instruction window
q 32KB private L1 and 1MB per core shared L2 caches, 32 miss buffers
q 4GB DRAM, 320 cycle access latency, 4 on-chip DRAM controllers

n Detailed Network-on-Chip model 
q 2-stage routers (with speculation  and look ahead routing)
q Wormhole switching (8 flit data packets)
q Virtual channel flow control (6 VCs, 5 flit buffer depth)
q 8x8 Mesh (128 bit bi-directional channels)

n Benchmarks
q Multiprogrammed scientific, server, desktop workloads (35 applications)
q 96 workload combinations
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Comparison to Previous Policies
n Round Robin & Age (Oldest-First)

q Local and application oblivious
q Age is biased towards heavy applications

n heavy applications flood the network
n higher likelihood of an older packet being from heavy application

n Globally Synchronized Frames (GSF) [Lee et al., ISCA 2008]
q Provides bandwidth fairness at the expense of system 

performance
q Penalizes heavy and bursty applications 

n Each application gets equal and fixed quota of flits (credits) in each batch.
n Heavy application quickly run out of credits after injecting into all active 

batches & stalls until oldest batch completes and frees up fresh credits.
n Underutilization of network resources
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STC System Performance and Fairness

n 9.1% improvement in weighted speedup over the best 
existing policy (averaged across 96 workloads)
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Enforcing Operating System Priorities
n Existing policies cannot enforce operating system (OS) 

assigned priorities in Network-on-Chip
n Proposed framework can enforce OS assigned priorities 

q Weight of applications => Ranking of applications
q Configurable batching interval based on application weight
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Application Aware Packet Scheduling: Summary
n Packet scheduling policies critically impact performance and 

fairness of NoCs
n Existing packet scheduling policies are local and application 

oblivious

n STC is a new, global, application-aware approach to         
packet scheduling in NoCs
q Ranking: differentiates applications based on their criticality
q Batching: avoids starvation due to rank-based prioritization

n Proposed framework 
q provides higher system performance and fairness than existing 

policies
q can enforce OS assigned priorities in network-on-chip 
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Packet Scheduling in NoC
§ Existing scheduling policies  

§ Round robin  
§ Age

§ Problem
§ Treat all packets equally
§ Application-oblivious

§ Packets have different criticality 
§ Packet is critical if latency of a packet affects application’s 

performance
§ Different criticality due to memory level parallelism (MLP)

All packets are not the same…!!!



Latency (   )

MLP Principle

StallCompute

Latency (   )

Latency (   )

Stall (   )  = 0   

Packet Latency != Network Stall Time

Different Packets have different criticality due to MLP

Criticality(   )  >   Criticality(   )  >   Criticality(   )   
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§ Evaluation
§ Conclusion



What is Aérgia?

§ Aérgia is the spirit of laziness in Greek mythology
§ Some packets can afford to slack!
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Slack of Packets

§ What is slack of a packet?
§ Slack of a packet is number of cycles it can be delayed in a router 

without (significantly) reducing application’s performance
§ Local network slack

§ Source of slack: Memory-Level Parallelism (MLP)
§ Latency of an application’s packet hidden from application due to 

overlap with latency of pending cache miss requests

§ Prioritize packets with lower slack



Concept of Slack 
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Load Miss Causes 
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Compute
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Execution Time
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Prioritizing using Slack 

Core A

Core B

Packet Latency Slack

13 hops 0   hops

3  hops 10 hops

10 hops 0 hops

4  hops 6 hops
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CausesLoad Miss 

Load Miss 
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Slack in Applications
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Slack in Applications

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

Pe
rc

en
ta

ge
 o

f a
ll 

Pa
ck

et
s 

(%
)

Slack in cycles

Gems

art

68% of packets have zero slack cycles



Diversity in Slack
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Diversity in Slack
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Estimating Slack Priority
Slack (P) = Max (Latencies of P’s Predecessors) – Latency of P

Predecessors(P) are the packets of outstanding cache miss 
requests when P is issued

§ Packet latencies not known when issued

§ Predicting latency of any packet Q
§ Higher latency if Q corresponds to an L2 miss
§ Higher latency if Q has to travel farther number of hops



§ Slack of P = Maximum Predecessor Latency – Latency of P

§ Slack(P) = 

PredL2: Set if any predecessor packet is servicing L2 miss

MyL2:  Set if  P is NOT servicing an L2 miss

HopEstimate: Max (# of hops of Predecessors) – hops of P

Estimating Slack Priority

PredL2
(2 bits)

MyL2
(1 bit)

HopEstimate
(2 bits)



Estimating Slack Priority
§ How to predict L2 hit or miss at core?

§ Global Branch Predictor based L2 Miss Predictor 
§ Use Pattern History Table and 2-bit saturating counters

§ Threshold based L2 Miss Predictor
§ If  #L2 misses in “M” misses >= “T” threshold then next load is a L2 miss. 

§ Number of miss predecessors?
§ List of outstanding L2 Misses

§ Hops estimate?
§ Hops => ∆X + ∆ Y distance
§ Use predecessor list to calculate slack hop estimate



Starvation Avoidance
§ Problem: Starvation

§ Prioritizing packets can lead to starvation of lower priority 
packets

§ Solution: Time-Based Packet Batching
§ New batches are formed at every T cycles 

§ Packets of older batches are prioritized over younger batches



Putting it all together
§ Tag header of the packet with priority bits before injection

§ Priority(P)?
§ P’s batch  (highest priority)
§ P’s Slack
§ Local Round-Robin                                        (final tie breaker)

PredL2
(2 bits)

MyL2
(1 bit)

HopEstimate
(2 bits)

Batch
(3 bits)Priority (P) =
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Evaluation Methodology
§ 64-core system

§ x86 processor model based on Intel Pentium M
§ 2 GHz processor, 128-entry instruction window
§ 32KB private L1 and 1MB per core shared L2 caches, 32  miss buffers
§ 4GB DRAM, 320 cycle access latency, 4 on-chip DRAM controllers

§ Detailed Network-on-Chip model 
§ 2-stage routers (with speculation  and look ahead routing)
§ Wormhole switching (8 flit data packets)
§ Virtual channel flow control (6 VCs, 5 flit buffer depth)
§ 8x8 Mesh (128 bit bi-directional channels)

§ Benchmarks
§ Multiprogrammed scientific, server, desktop workloads (35 applications)
§ 96 workload combinations



Qualitative Comparison
§ Round Robin & Age

§ Local and application oblivious
§ Age is biased towards heavy applications

§ Globally Synchronized Frames (GSF) 
[Lee et al., ISCA 2008]

§ Provides bandwidth fairness at the expense of system performance
§ Penalizes heavy and bursty applications 

§ Application-Aware Prioritization Policies (SJF) 
[Das et al., MICRO 2009]

§ Shortest-Job-First Principle
§ Packet scheduling policies which prioritize network sensitive 

applications which inject lower load 



System Performance

§ SJF provides 8.9% improvement
in weighted speedup

§ Aérgia improves system 
throughput by 10.3%

§ Aérgia+SJF improves system 
throughput by 16.1%
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Network Unfairness

§ SJF does not imbalance
network fairness

§ Aergia improves network
unfairness by 1.5X

§ SJF+Aergia improves 
network unfairness by 1.3X
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Conclusions & Future Directions
§ Packets have different criticality, yet existing packet 

scheduling policies treat all packets equally  
§ We propose a new approach to packet scheduling in NoCs

§ We define Slack as a key measure that characterizes the 
relative importance of a packet.

§ We propose Aérgia a novel architecture to accelerate low 
slack critical packets

§ Result
§ Improves system performance: 16.1% 
§ Improves network fairness: 30.8%
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p Pros
n Low design & layout 

complexity
n Simple, fast routers

p Cons
n Large diameter
n Energy & latency impact
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2-D Mesh



p Pros
n Multiple terminals

attached to a router node
n Fast nearest-neighbor 

communication via the 
crossbar

n Hop count reduction 
proportional to 
concentration degree

p Cons
n Benefits limited by 

crossbar complexity

UTCS 200HPCA '09

Concentration (Balfour & Dally, ICS ‘06)
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Concentration

p Side-effects
n Fewer channels
n Greater channel width
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p Benefits
n Restores bisection 

channel count
n Restores channel width
n Reduced crossbar 

complexity
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Flattened Butterfly (Kim et al., Micro 
‘07)

p Objectives:
n Improve connectivity
n Exploit the wire budget
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Flattened Butterfly (Kim et al., Micro 
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p Pros
n Excellent connectivity 
n Low diameter: 2 hops

p Cons
n High channel count: 
k2/2 per row/column

n Low channel utilization
n Increased control 

(arbitration) complexity
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Flattened Butterfly (Kim et al., Micro 
‘07)
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Multidrop Express Channels (MECS)

p Objectives:
n Connectivity
n More scalable channel 

count
n Better channel 

utilization
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Multidrop Express Channels (MECS)
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Multidrop Express Channels (MECS)
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Multidrop Express Channels (MECS)
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Multidrop Express Channels (MECS)
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Multidrop Express Channels (MECS)



p Pros
n One-to-many topology
n Low diameter: 2 hops
n k channels row/column
n Asymmetric

p Cons
n Asymmetric
n Increased control 

(arbitration) complexity
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Multidrop Express Channels (MECS)



Partitioning: a GEC Example
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MECS

MECS-X2

Flattened
Butterfly

Partitioned
MECS



Analytical Comparison
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CMesh FBfly MECS
Network Size 64 256 64 256 64 256
Radix (conctr’d) 4 8 4 8 4 8
Diameter 6 14 2 2 2 2
Channel count 2 2 8 32 4 8
Channel width 576 1152 144 72 288 288
Router inputs 4 4 6 14 6 14
Router outputs 4 4 6 14 4 4



Experimental Methodology

Topologies Mesh, CMesh, CMesh-X2, FBFly, MECS, MECS-X2
Network sizes 64 & 256 terminals
Routing DOR, adaptive
Messages 64 & 576 bits
Synthetic traffic Uniform random, bit complement, transpose, self-similar
PARSEC
benchmarks

Blackscholes, Bodytrack, Canneal, Ferret, 
Fluidanimate, Freqmine, Vip, x264

Full-system config M5 simulator, Alpha ISA, 64 OOO cores
Energy evaluation Orion + CACTI 6
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64 nodes: Uniform Random
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256 nodes: Uniform Random
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Energy (100K pkts, Uniform Random)
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64 Nodes: PARSEC
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Summary
p MECS

n A new one-to-many topology
n Good fit for planar substrates
n Excellent connectivity
n Effective wire utilization

p Generalized Express Cubes
n Framework & taxonomy for NOC topologies
n Extension of the k-ary n-cube model
n Useful for understanding and exploring 

on-chip interconnect options
n Future: expand & formalize
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Kilo-NoC: Topology-Aware QoS

Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,
"Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for 

Scalability and Service Guarantees"
Proceedings of the 38th International Symposium on Computer 

Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)



Motivation
n Extreme-scale chip-level integration

q Cores
q Cache banks
q Accelerators
q I/O logic
q Network-on-chip (NOC)

n 10-100 cores today
n 1000+ assets in the near future
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Kilo-NOC requirements
n High efficiency

q Area
q Energy

n Good performance
n Strong service guarantees (QoS)
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Topology-Aware QoS
n Problem: QoS support in each router is expensive (in terms 

of buffering, arbitration, bookkeeping)
q E.g., Grot et al., “Preemptive Virtual Clock: A Flexible, 

Efficient, and Cost-effective QOS Scheme for Networks-on-
Chip,” MICRO 2009.

n Goal: Provide QoS guarantees at low area and power cost

n Idea: 
q Isolate shared resources in a region of the network, support 

QoS within that area
q Design the topology so that applications can access the region 

without interference
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Baseline QOS-enabled CMP

Multiple VMs 
sharing a die
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Shared resources 
(e.g., memory controllers)

VM-private resources 
(cores, caches)
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Conventional NOC QOS

Contention scenarios:

n Shared resources 
q memory access

n Intra-VM traffic
q shared cache access

n Inter-VM traffic
q VM page sharing
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Conventional NOC QOS
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Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q

VM	#1

VM	#1

VM	#3

VM	#2

Contention scenarios:

n Shared resources
q memory access

n Intra-VM traffic
q shared cache access

n Inter-VM traffic
q VM page sharing

Network-wide guarantees without
network-wide QOS support



Kilo-NOC  QOS
n Insight: leverage rich network connectivity

q Naturally reduce interference among flows
Ø Limit the extent of hardware QOS support

n Requires a low-diameter topology
q This work: Multidrop Express Channels (MECS)
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n Dedicated, QOS-enabled 
regions
q Rest of die: QOS-free

n Richly-connected 
topology
q Traffic isolation

n Special routing rules
q Manage interference
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n Dedicated, QOS-enabled 
regions
q Rest of die: QOS-free

n Richly-connected 
topology
q Traffic isolation

n Special routing rules
q Manage interference
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n Dedicated, QOS-enabled 
regions
q Rest of die: QOS-free

n Richly-connected 
topology
q Traffic isolation

n Special routing rules
q Manage interference
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n Dedicated, QOS-enabled 
regions
q Rest of die: QOS-free

n Richly-connected 
topology
q Traffic isolation

n Special routing rules
q Manage interference
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n Topology-aware QOS 
support
q Limit QOS complexity to 

a fraction of the die

n Optimized flow control
q Reduce buffer 

requirements in QOS-
free regions
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Parameter Value

Technology 15 nm

Vdd 0.7 V

System 1024 tiles:
256 concentrated nodes (64 shared resources)

Networks:

MECS+PVC VC flow control, QOS support (PVC) at each node

MECS+TAQ VC flow control, QOS support only in shared regions

MECS+TAQ+EB EB flow control outside of SRs, 
Separate Request and Reply networks

K-MECS Proposed organization:  TAQ + hybrid flow control
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Kilo-NOC: a heterogeneous NOC architecture 
for kilo-node substrates

¡ Topology-aware QOS
§ Limits QOS support to a fraction of the die
§ Leverages low-diameter topologies
§ Improves NOC area- and energy-efficiency
§ Provides strong guarantees
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