

Computer Architecture

Lecture 3: Cache Management
and Memory Parallelism

Prof. Onur Mutlu
ETH Zurich
Fall 2017

27 September 2017

Summary of Last Lecture
n  ISA vs. Microarchitecture
n  Dataflow
n  Memory Hierarchy
n  Cache Design

2

Agenda for Today
n  Issues in Caching
n  More Effective Cache Design
n  Enabling Multiple Concurrent Memory Accesses

q  Memory Level Parallelism

n  Multi-Core Issues in Caching

3

Takeaway From Lectures 1 & 2

Breaking the abstraction layers
(between components and

transformation hierarchy levels)

and knowing what is underneath

enables you to understand and
solve problems

4

Computer Architecture

 Guidelines on Paper Reviews

Prof. Onur Mutlu
ETH Zürich
Fall 2017

How to Do the Paper/Talk Reviews
n  1: Summary

q  What is the problem the paper is trying to solve?
q  What are the key ideas of the paper? Key insights?
q  What are the key mechanisms? What is the implementation?
q  What are the key results? Key conclusions?

n  2: Strengths (most important ones)
q  Does the paper solve the problem well? Is it well written? …

n  3: Weaknesses (most important ones)
q  This is where you should think critically. Every paper/idea has a

weakness. This does not mean the paper is necessarily bad. It means
there is room for improvement and future research can accomplish this.

n  4: Can you do (much) better? Present your thoughts/ideas.
n  5: Takeaways: What you learned/enjoyed/disliked? Why?
n  6: Any other comments you would like to make.

n  Review should be short and concise (~one page)
6

Advice on Paper/Talk Reviews
n  When doing the reviews, be very critical

n  Always think about better ways of solving the problem or
related problems
q  Question the problem as well

n  This is how things progress in science and engineering (or
anywhere), and how you can make big leaps
q  By critical analysis

n  Sample reviews provided online

7

Back to Caching

8

n  Multiple blocks can be stored in the same cache set (i.e., index)
n  Example: 2-way cache:

Review: Set Associativity

9

Tag store Data store

V tag

=?

V tag

=?

Address
tag index byte in block

3 bits 2 bits 3b

Logic

MUX

MUX
byte in block

Key idea: Associative memory within the set
+ Accommodates conflicts better (fewer conflict misses)
-- More complex, slower access, larger tag store

SET

Hit?

Review: Higher Associativity
n  4-way

+ Likelihood of conflict misses even lower
-- More tag comparators and wider data mux; larger tags

10

Tag store

Data store

=? =? =? =?

MUX

MUX
byte in block

Logic Hit?

Review: Full Associativity
n  Fully associative cache

q  A block can be placed in any cache location

11

Tag store

Data store

=? =? =? =? =? =? =? =?

MUX

MUX
byte in block

Logic

Hit?

Review: Associativity (and Tradeoffs)
n  Degree of associativity: How many blocks can be present at

the same index (or set)?

n  Higher associativity
++ Higher hit rate
-- Slower cache access time (hit latency and data access latency)
-- More expensive hardware (more comparators)

n  Diminishing returns from higher
associativity

12
associativity

hit rate

Issues in Set-Associative Caches
n  Think of each block in a set having a “priority”

q  Indicating how important it is to keep the block in the cache

n  Key issue: How do you determine/adjust block priorities?
n  There are three key decisions in a set:

q  Insertion, promotion, eviction (replacement)

n  Insertion: What happens to priorities on a cache fill?
q  Where to insert the incoming block, whether or not to insert the block

n  Promotion: What happens to priorities on a cache hit?
q  Whether and how to change block priority

n  Eviction/replacement: What happens to priorities on a cache
miss?
q  Which block to evict and how to adjust priorities

13

Eviction/Replacement Policy
n  Which block in the set to replace on a cache miss?

q  Any invalid block first
q  If all are valid, consult the replacement policy

n  Random
n  FIFO
n  Least recently used (how to implement?)
n  Not most recently used
n  Least frequently used?
n  Least costly to re-fetch?

q  Why would memory accesses have different cost?

n  Hybrid replacement policies
n  Optimal replacement policy?

14

Implementing LRU
n  Idea: Evict the least recently accessed block
n  Problem: Need to keep track of access ordering of blocks

n  Question: 2-way set associative cache:
q  What do you need to implement LRU perfectly?

n  Question: 4-way set associative cache:
q  What do you need to implement LRU perfectly?
q  How many different orderings possible for the 4 blocks in the

set?
q  How many bits needed to encode the LRU order of a block?
q  What is the logic needed to determine the LRU victim?

15

Approximations of LRU
n  Most modern processors do not implement “true LRU” (also

called “perfect LRU”) in highly-associative caches

n  Why?
q  True LRU is complex
q  LRU is an approximation to predict locality anyway (i.e., not

the best possible cache management policy)

n  Examples:
q  Not MRU (not most recently used)
q  Hierarchical LRU: divide the N-way set into M “groups”, track

the MRU group and the MRU way in each group
q  Victim-NextVictim Replacement: Only keep track of the victim

and the next victim
16

Hierarchical LRU (not MRU)
n  Divide a set into multiple groups
n  Keep track of only the MRU group
n  Keep track of only the MRU block in each group

n  On replacement, select victim as:
q  A not-MRU block in one of the not-MRU groups (randomly pick

one of such blocks/groups)

17

Hierarchical LRU (not MRU): Questions
n  16-way cache
n  2 8-way groups

n  What is an access pattern that performs worse than true
LRU?

n  What is an access pattern that performs better than true
LRU?

18

Victim/Next-Victim Policy
n  Only 2 blocks’ status tracked in each set:

q  victim (V), next victim (NV)
q  all other blocks denoted as (O) – Ordinary block

n  On a cache miss
q  Replace V
q  Demote NV to V
q  Randomly pick an O block as NV

n  On a cache hit to V
q  Demote NV to V
q  Randomly pick an O block as NV
q  Turn V to O

19

Victim/Next-Victim Policy (II)
n  On a cache hit to NV

q  Randomly pick an O block as NV
q  Turn NV to O

n  On a cache hit to O
q  Do nothing

20

Victim/Next-Victim Example

21

Cache Replacement Policy: LRU or Random
n  LRU vs. Random: Which one is better?

q  Example: 4-way cache, cyclic references to A, B, C, D, E
n  0% hit rate with LRU policy

n  Set thrashing: When the “program working set” in a set is
larger than set associativity
q  Random replacement policy is better when thrashing occurs

n  In practice:
q  Depends on workload
q  Average hit rate of LRU and Random are similar

n  Best of both Worlds: Hybrid of LRU and Random
q  How to choose between the two? Set sampling

n  See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

22

What Is the Optimal Replacement Policy?
n  Belady’s OPT

q  Replace the block that is going to be referenced furthest in the
future by the program

q  Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966.

q  How do we implement this? Simulate?

n  Is this optimal for minimizing miss rate?
n  Is this optimal for minimizing execution time?

q  No. Cache miss latency/cost varies from block to block!
q  Two reasons: Remote vs. local caches and miss overlapping
q  Qureshi et al. “A Case for MLP-Aware Cache Replacement,“

ISCA 2006.

23

Reading
n  Key observation: Some misses more costly than others as their latency is

exposed as stall time. Reducing miss rate is not always good for
performance. Cache replacement should take into account MLP of misses.

n  Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N. Patt,
"A Case for MLP-Aware Cache Replacement"
Proceedings of the
33rd International Symposium on Computer Architecture (ISCA), pages
167-177, Boston, MA, June 2006. Slides (ppt)

24

Aside: Cache versus Page Replacement
n  Physical memory (DRAM) is a cache for disk

q  Usually managed by system software via the virtual memory
subsystem

n  Page replacement is similar to cache replacement
n  Page table is the “tag store” for physical memory data store

n  What is the difference?

q  Required speed of access to cache vs. physical memory
q  Number of blocks in a cache vs. physical memory
q  “Tolerable” amount of time to find a replacement candidate

(disk versus memory access latency)
q  Role of hardware versus software

25

What’s In A Tag Store Entry?
n  Valid bit
n  Tag
n  Replacement policy bits

n  Dirty bit?
q  Write back vs. write through caches

26

Handling Writes (I)
n  When do we write the modified data in a cache to the next level?

n  Write through: At the time the write happens
n  Write back: When the block is evicted

q  Write-back
+ Can combine multiple writes to the same block before eviction

q  Potentially saves bandwidth between cache levels + saves energy

 -- Need a bit in the tag store indicating the block is “dirty/modified”

q  Write-through
+ Simpler
+ All levels are up to date. Consistency: Simpler cache coherence because

no need to check close-to-processor caches’ tag stores for presence
-- More bandwidth intensive; no combining of writes

27

Handling Writes (II)
n  Do we allocate a cache block on a write miss?

q  Allocate on write miss: Yes
q  No-allocate on write miss: No

n  Allocate on write miss
+ Can combine writes instead of writing each of them

individually to next level
+ Simpler because write misses can be treated the same way as

read misses
-- Requires (?) transfer of the whole cache block

n  No-allocate
+ Conserves cache space if locality of writes is low (potentially

better cache hit rate)
28

Handling Writes (III)
n  What if the processor writes to an entire block over a small

amount of time?

n  Is there any need to bring the block into the cache from
memory in the first place?

n  Ditto for a portion of the block, i.e., subblock
q  E.g., 4 bytes out of 64 bytes

29

Sectored Caches
n  Idea: Divide a block into subblocks (or sectors)

q  Have separate valid and dirty bits for each sector
q  When is this useful? (Think writes…)

++ No need to transfer the entire cache block into the cache
 (A write simply validates and updates a subblock)

++ More freedom in transferring subblocks into the cache (a
cache block does not need to be in the cache fully)
 (How many subblocks do you transfer on a read?)

-- More complex design
-- May not exploit spatial locality fully when used for reads

30

tag subblock v subblock v subblock v d d d

Instruction vs. Data Caches
n  Separate or Unified?

n  Unified:
+ Dynamic sharing of cache space: no overprovisioning that

might happen with static partitioning (i.e., split I and D
caches)

-- Instructions and data can thrash each other (i.e., no
guaranteed space for either)

-- I and D are accessed in different places in the pipeline. Where
do we place the unified cache for fast access?

n  First level caches are almost always split
q  Mainly for the last reason above

n  Second and higher levels are almost always unified
31

Multi-level Caching in a Pipelined Design
n  First-level caches (instruction and data)

q  Decisions very much affected by cycle time
q  Small, lower associativity
q  Tag store and data store accessed in parallel

n  Second-level caches
q  Decisions need to balance hit rate and access latency
q  Usually large and highly associative; latency not as important
q  Tag store and data store accessed serially

n  Serial vs. Parallel access of levels
q  Serial: Second level cache accessed only if first-level misses
q  Second level does not see the same accesses as the first

n  First level acts as a filter (filters some temporal and spatial locality)
n  Management policies are therefore different

32

Cache Performance

Cache Parameters vs. Miss/Hit Rate
n  Cache size

n  Block size

n  Associativity

n  Replacement policy
n  Insertion/Placement policy

34

Cache Size
n  Cache size: total data (not including tag) capacity

q  bigger can exploit temporal locality better
q  not ALWAYS better

n  Too large a cache adversely affects hit and miss latency
q  smaller is faster => bigger is slower
q  access time may degrade critical path

n  Too small a cache
q  doesn’t exploit temporal locality well
q  useful data replaced often

n  Working set: the whole set of data
the executing application references
q  Within a time interval

35

hit rate

cache size

“working set”
 size

Block Size
n  Block size is the data that is associated with an address tag

q  not necessarily the unit of transfer between hierarchies
n  Sub-blocking: A block divided into multiple pieces (each with V bit)

q  Can improve “write” performance

n  Too small blocks
q  don’t exploit spatial locality well
q  have larger tag overhead

n  Too large blocks
q  too few total # of blocks à less

temporal locality exploitation
q  waste of cache space and bandwidth/energy
 if spatial locality is not high

36

hit rate

block
size

Large Blocks: Critical-Word and Subblocking
n  Large cache blocks can take a long time to fill into the cache

q  fill cache line critical word first
q  restart cache access before complete fill

n  Large cache blocks can waste bus bandwidth

q  divide a block into subblocks
q  associate separate valid bits for each subblock
q  When is this useful?

37

tag subblock v subblock v subblock v d d d

Associativity
n  How many blocks can be present in the same index (i.e., set)?

n  Larger associativity
q  lower miss rate (reduced conflicts)
q  higher hit latency and area cost (plus diminishing returns)

n  Smaller associativity
q  lower cost
q  lower hit latency

n  Especially important for L1 caches

n  Is power of 2 associativity required?

38

associativity

hit rate

Classification of Cache Misses
n  Compulsory miss

q  first reference to an address (block) always results in a miss
q  subsequent references should hit unless the cache block is

displaced for the reasons below

n  Capacity miss
q  cache is too small to hold everything needed
q  defined as the misses that would occur even in a fully-associative

cache (with optimal replacement) of the same capacity

n  Conflict miss
q  defined as any miss that is neither a compulsory nor a capacity

miss

39

How to Reduce Each Miss Type
n  Compulsory

q  Caching cannot help
q  Prefetching can

n  Conflict
q  More associativity
q  Other ways to get more associativity without making the

cache associative
n  Victim cache
n  Better, randomized indexing
n  Software hints?

n  Capacity
q  Utilize cache space better: keep blocks that will be referenced
q  Software management: divide working set such that each

“phase” fits in cache
40

How to Improve Cache Performance
n  Three fundamental goals

n  Reducing miss rate
q  Caveat: reducing miss rate can reduce performance if more

costly-to-refetch blocks are evicted

n  Reducing miss latency or miss cost

n  Reducing hit latency or hit cost

n  The above three together affect performance

41

Improving Basic Cache Performance
n  Reducing miss rate

q  More associativity
q  Alternatives/enhancements to associativity

n  Victim caches, hashing, pseudo-associativity, skewed associativity
q  Better replacement/insertion policies
q  Software approaches

n  Reducing miss latency/cost
q  Multi-level caches
q  Critical word first
q  Subblocking/sectoring
q  Better replacement/insertion policies
q  Non-blocking caches (multiple cache misses in parallel)
q  Multiple accesses per cycle
q  Software approaches

42

Cheap Ways of Reducing Conflict Misses
n  Instead of building highly-associative caches:

n  Victim Caches
n  Hashed/randomized Index Functions
n  Pseudo Associativity
n  Skewed Associative Caches
n  …

43

Victim Cache: Reducing Conflict Misses

n  Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

n  Idea: Use a small fully-associative buffer (victim cache) to
store recently evicted blocks
+ Can avoid ping ponging of cache blocks mapped to the same set (if two

cache blocks continuously accessed in nearby time conflict with each
other)

-- Increases miss latency if accessed serially with L2; adds complexity

44

Direct
Mapped
Cache

Next Level
Cache

Victim
cache

Hashing and Pseudo-Associativity
n  Hashing: Use better “randomizing” index functions

+ can reduce conflict misses
n  by distributing the accessed memory blocks more evenly to sets
n  Example of conflicting accesses: strided access pattern where

stride value equals number of sets in cache

-- More complex to implement: can lengthen critical path

n  Pseudo-associativity (Poor Man’s associative cache)
q  Serial lookup: On a miss, use a different index function and

access cache again
q  Given a direct-mapped array with K cache blocks

n  Implement K/N sets
n  Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]},

{1,Addr[lg(K/N)-1: 0]}, … , {N-1,Addr[lg(K/N)-1: 0]}

+ Less complex than N-way; -- Longer cache hit/miss latency
45

Skewed Associative Caches
n  Idea: Reduce conflict misses by using different index

functions for each cache way

n  Seznec, “A Case for Two-Way Skewed-Associative Caches,”

ISCA 1993.

46

Skewed Associative Caches (I)
n  Basic 2-way associative cache structure

47

Way 0 Way 1

Tag Index Byte in Block

Same index function
for each way

=? =?

Skewed Associative Caches (II)
n  Skewed associative caches

q  Each bank has a different index function

48

Way 0 Way 1

 tag index byte in block

f0

same index
same set

same index
redistributed to
different sets

=? =?

Skewed Associative Caches (III)
n  Idea: Reduce conflict misses by using different index

functions for each cache way

n  Benefit: indices are more randomized (memory blocks are

better distributed across sets)
q  Less likely two blocks have same index (esp. with strided access)

n  Reduced conflict misses

n  Cost: additional latency of hash function

n  Seznec, “A Case for Two-Way Skewed-Associative Caches,” ISCA 1993.

49

Software Approaches for Higher Hit Rate
n  Restructuring data access patterns
n  Restructuring data layout

n  Loop interchange
n  Data structure separation/merging
n  Blocking
n  …

50

Restructuring Data Access Patterns (I)
n  Idea: Restructure data layout or data access patterns
n  Example: If column-major

q  x[i+1,j] follows x[i,j] in memory
q  x[i,j+1] is far away from x[i,j]

n  This is called loop interchange
n  Other optimizations can also increase hit rate

q  Loop fusion, array merging, …
n  What if multiple arrays? Unknown array size at compile time?

51

Poor code
for i = 1, rows
 for j = 1, columns
 sum = sum + x[i,j]

Better code
for j = 1, columns
 for i = 1, rows
 sum = sum + x[i,j]

Restructuring Data Access Patterns (II)
n  Blocking

q  Divide loops operating on arrays into computation chunks so
that each chunk can hold its data in the cache

q  Avoids cache conflicts between different chunks of
computation

q  Essentially: Divide the working set so that each piece fits in
the cache

n  But, there are still self-conflicts in a block
1. there can be conflicts among different arrays
2. array sizes may be unknown at compile/programming time

52

Restructuring Data Layout (I)
n  Pointer based traversal

(e.g., of a linked list)
n  Assume a huge linked

list (1B nodes) and
unique keys

n  Why does the code on
the left have poor cache
hit rate?
q  “Other fields” occupy

most of the cache line
even though rarely
accessed!

53

struct Node {
 struct Node* next;
 int key;
 char [256] name;
 char [256] school;
}

while (node) {
 if (nodeàkey == input-key) {
 // access other fields of node
 }
 node = nodeànext;
}

Restructuring Data Layout (II)
n  Idea: separate frequently-

used fields of a data
structure and pack them
into a separate data
structure

n  Who should do this?
q  Programmer
q  Compiler

n  Profiling vs. dynamic

q  Hardware?
q  Who can determine what

is frequently used?

54

struct Node {
 struct Node* next;
 int key;
 struct Node-data* node-data;
}

struct Node-data {
 char [256] name;
 char [256] school;
}

while (node) {
 if (nodeàkey == input-key) {
 // access nodeànode-data
 }
 node = nodeànext;
}

Improving Basic Cache Performance
n  Reducing miss rate

q  More associativity
q  Alternatives/enhancements to associativity

n  Victim caches, hashing, pseudo-associativity, skewed associativity
q  Better replacement/insertion policies
q  Software approaches

n  Reducing miss latency/cost
q  Multi-level caches
q  Critical word first
q  Subblocking/sectoring
q  Better replacement/insertion policies
q  Non-blocking caches (multiple cache misses in parallel)
q  Multiple accesses per cycle
q  Software approaches

55

Miss Latency/Cost
n  What is miss latency or miss cost affected by?

q  Where does the miss get serviced from?
n  Local vs. remote memory
n  What level of cache in the hierarchy?
n  Row hit versus row miss in DRAM
n  Queueing delays in the memory controller and the interconnect
n  …

q  How much does the miss stall the processor?
n  Is it overlapped with other latencies?
n  Is the data immediately needed?
n  …

56

Memory Level Parallelism (MLP)

q  Memory Level Parallelism (MLP) means generating and
servicing multiple memory accesses in parallel [Glew’98]

q  Several techniques to improve MLP (e.g., out-of-order execution)

q  MLP varies. Some misses are isolated and some parallel

 How does this affect cache replacement?

time

A
B

C

isolated miss parallel miss

Traditional Cache Replacement Policies

q  Traditional cache replacement policies try to reduce miss
count

q  Implicit assumption: Reducing miss count reduces memory-

related stall time

q  Misses with varying cost/MLP breaks this assumption!

q  Eliminating an isolated miss helps performance more than

eliminating a parallel miss
q  Eliminating a higher-latency miss could help performance

more than eliminating a lower-latency miss

58

Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1.  Minimizes miss count (Belady’s OPT)
2.  Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

An Example

Fewest Misses = Best Performance

P3 P2 P1 P4

H H H H M H H H M Hit/Miss
Misses=4
Stalls=4

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

Time stall
Belady’s OPT replacement

M M

MLP-Aware replacement

Hit/Miss

P3 P2 S1 P4 P3 P2 P1 P4 P3 P2 S2 P4 P3 P2 S3 P4 S1 S2 S3 P1 P3 P2 S3 P4 S1 S2 S3 P4

H H H

S1 S2 S3 P4

H M M M H M M M
Time stall Misses=6

Stalls=2

Saved
cycles

Cache

MLP-Aware Cache Replacement
n  How do we incorporate MLP into replacement decisions?

n  Qureshi et al., “A Case for MLP-Aware Cache Replacement,”
ISCA 2006.
q  Reading for review

61

Other Recommended Cache Papers (I)

n  Qureshi et al., “Adaptive Insertion Policies for High
Performance Caching,” ISCA 2007.

62

Other Recommended Cache Papers (II)

n  Seshadri et al., “The Evicted-Address Filter: A Unified
Mechanism to Address Both Cache Pollution and
Thrashing,” PACT 2012.

63

Other Recommended Cache Papers (III)

n  Pekhimenko et al., “Base-Delta-Immediate Compression:
Practical Data Compression for On-Chip Caches,” PACT
2012.

64

Hybrid Cache Replacement
(Selecting Between

Multiple Replacement Policies)

Hybrid Cache Replacement
n  Problem: Not a single policy provides the highest performance

q  For any given set
q  For the entire cache overall

n  Idea: Implement both policies and pick the one that is
expected to perform best at runtime
q  On a per-set basis or for the entire cache
+ Higher performance
-- Higher cost, complexity; Need selection mechanism

n  How do you determine the best policy?
q  Implement multiple tag stores, each following a particular policy
q  Find the best and have the main tag store follow the best policy

66

Terminology
n  Tag Store is also called Tag Directory

n  Main Tag Store/Directory (MTD)
q  Tag Store that is actually used to keep track of the block

addresses present in the cache

n  Auxiliary Tag Store/Directory (ATD-PolicyX)
q  Tag Store that is used to emulate a policy X
q  Not used for tracking the block addresses present in the cache
q  Used for tracking what the block addresses in the cache would

have been if the cache were following Policy X

67

68

Tournament Selection (TSEL) of
Replacement Policies for a Single Set

ATD-Policy1 ATD-Policy2 Saturating Counter (SCTR)
HIT HIT Unchanged
MISS MISS Unchanged
HIT MISS += Cost of Miss in ATD-Policy2
MISS HIT -= Cost of Miss in ATD-Policy1

SET A SET A+
SCTR

If MSB of SCTR is 1, MTD uses
Policy1, else MTD uses Policy2

ATD-Policy1 ATD-Policy2

SET A
MTD

Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 2006.

69

Extending TSEL to All Sets

Implementing TSEL on a per-set basis is expensive
Counter overhead can be reduced by using a global counter

+
SCTR

Policy for All
Sets In MTD

Set A
ATD-Policy1

Set B
Set C
Set D
Set E
Set F
Set G
Set H

Set A
ATD-Policy2

Set B
Set C
Set D
Set E
Set F
Set G
Set H

Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 2006.

70

Dynamic Set Sampling (DSS)

+
SCTR

Policy for All
Sets In MTD

ATD-Policy1

Set B

Set E

Set G

Set B

Set E

Set G

ATD-Policy2
Set ASet A

Set C
Set D

Set F

Set H

Set C
Set D

Set F

Set H

Not all sets are required to decide the best policy
Have the ATD entries only for few sets.

Sets that have ATD entries (B, E, G) are called leader sets

Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 2006.

71

Dynamic Set Sampling (DSS)

q  Bounds using analytical model and simulation (in paper)

q  DSS with 32 leader sets performs similar to having all sets

q  Last-level cache typically contains 1000s of sets, thus ATD
entries are required for only 2%-3% of the sets

How many sets are required to choose best performing policy?

ATD overhead can further be reduced by using MTD to
always simulate one of the policies (say Policy1)

Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 2006.

72

Decide policy only for
follower sets

+

Sampling Based Adaptive Replacement (SBAR)

The storage overhead of SBAR is less than 2KB
(0.2% of the baseline 1MB cache)

SCTR

MTD

Set B

Set E

Set G

Set G

ATD-Policy2
Set A

Set C
Set D

Set F

Set H

Set B
Set E

Leader sets
Follower sets

Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 2006.

73

Results for SBAR

Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 2006.

74

SBAR adaptation to phases

SBAR selects the best policy for each phase of this application

LIN is better LRU is better

Enabling Multiple Outstanding Misses

Handling Multiple Outstanding Accesses
n  Question: If the processor can generate multiple cache

accesses, can the later accesses be handled while a
previous miss is outstanding?

n  Goal: Enable cache access when there is a pending miss

n  Goal: Enable multiple misses in parallel
q  Memory-level parallelism (MLP)

n  Solution: Non-blocking or lockup-free caches
q  Kroft, “Lockup-Free Instruction Fetch/Prefetch Cache

Organization," ISCA 1981.

76

Handling Multiple Outstanding Accesses
n  Idea: Keep track of the status/data of misses that are being

handled in Miss Status Handling Registers (MSHRs)

q  A cache access checks MSHRs to see if a miss to the same
block is already pending.
n  If pending, a new request is not generated
n  If pending and the needed data available, data forwarded to later

load

q  Requires buffering of outstanding miss requests

77

Miss Status Handling Register
n  Also called “miss buffer”
n  Keeps track of

q  Outstanding cache misses
q  Pending load/store accesses that refer to the missing cache

block

n  Fields of a single MSHR entry
q  Valid bit
q  Cache block address (to match incoming accesses)
q  Control/status bits (prefetch, issued to memory, which

subblocks have arrived, etc)
q  Data for each subblock
q  For each pending load/store

n  Valid, type, data size, byte in block, destination register or store
buffer entry address

78

Miss Status Handling Register Entry

79

MSHR Operation
n  On a cache miss:

q  Search MSHRs for a pending access to the same block
n  Found: Allocate a load/store entry in the same MSHR entry
n  Not found: Allocate a new MSHR
n  No free entry: stall

n  When a subblock returns from the next level in memory
q  Check which loads/stores waiting for it

n  Forward data to the load/store unit
n  Deallocate load/store entry in the MSHR entry

q  Write subblock in cache or MSHR
q  If last subblock, deallocate MSHR (after writing the block in

cache)

80

Non-Blocking Cache Implementation
n  When to access the MSHRs?

q  In parallel with the cache?
q  After cache access is complete?

n  MSHRs need not be on the critical path of hit requests
q  Which one below is the common case?

n  Cache miss, MSHR hit
n  Cache hit

81

Computer Architecture

Lecture 3: Cache Management
and Memory Parallelism

Prof. Onur Mutlu
ETH Zürich
Fall 2017

27 September 2017

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

Enabling High Bandwidth Memories

Multiple Instructions per Cycle
n  Processors can generate multiple cache/memory accesses

per cycle
n  How do we ensure the cache/memory can handle multiple

accesses in the same clock cycle?

n  Solutions:
q  true multi-porting
q  virtual multi-porting (time sharing a port)
q  multiple cache copies
q  banking (interleaving)

85

Handling Multiple Accesses per Cycle (I)
n  True multiporting

q  Each memory cell has multiple read or write ports
+ Truly concurrent accesses (no conflicts on read accesses)
-- Expensive in terms of latency, power, area
q  What about read and write to the same location at the same

time?
n  Peripheral logic needs to handle this

86

Peripheral Logic for True Multiporting

87

Peripheral Logic for True Multiporting

88

Handling Multiple Accesses per Cycle (II)
n  Virtual multiporting

q  Time-share a single port
q  Each access needs to be (significantly) shorter than clock cycle
q  Used in Alpha 21264
q  Is this scalable?

89

Cache
Copy 1

Handling Multiple Accesses per Cycle (III)
n  Multiple cache copies

q  Stores update both caches
q  Loads proceed in parallel

n  Used in Alpha 21164

n  Scalability?
q  Store operations cause a

bottleneck
q  Area proportional to “ports”

90

Port 1
Load

Store

Port 1
Data

Cache
Copy 2 Port 2

Load

Port 2
Data

Handling Multiple Accesses per Cycle (III)
n  Banking (Interleaving)

q  Address space partitioned into separate banks
n  Bits in address determines which bank an address maps to
n  Which bits to use for “bank address”?

+ No increase in data store area
-- Cannot satisfy multiple accesses
 to the same bank in parallel
-- Crossbar interconnect in input/output

n  Bank conflicts
q  Concurrent requests to the same bank
q  How can these be reduced?

n  Hardware? Software?

91

Bank 0:
Even

addresses

Bank 1:
Odd

addresses

General Principle: Interleaving
n  Interleaving (banking)

q  Problem: a single monolithic memory array takes long to
access and does not enable multiple accesses in parallel

q  Goal: Reduce the latency of memory array access and enable
multiple accesses in parallel

q  Idea: Divide the array into multiple banks that can be
accessed independently (in the same cycle or in consecutive
cycles)
n  Each bank is smaller than the entire memory storage
n  Accesses to different banks can be overlapped

q  A Key Issue: How do you map data to different banks? (i.e.,
how do you interleave data across banks?)

92

Further Readings on Caching and MLP
n  Required: Qureshi et al., “A Case for MLP-Aware Cache

Replacement,” ISCA 2006.

n  One Pager: Glew, “MLP Yes! ILP No!,” ASPLOS Wild and
Crazy Ideas Session, 1998.

n  Mutlu et al., “Runahead Execution: An Effective Alternative
to Large Instruction Windows,” IEEE Micro 2003.

n  Li et al., “Utility-based Hybrid Memory Management,”
CLUSTER 2017.

93

Multi-Core Issues in Caching

Caches in Multi-Core Systems
n  Cache efficiency becomes even more important in a multi-

core/multi-threaded system
q  Memory bandwidth is at premium
q  Cache space is a limited resource across cores/threads

n  How do we design the caches in a multi-core system?

n  Many decisions
q  Shared vs. private caches
q  How to maximize performance of the entire system?
q  How to provide QoS to different threads in a shared cache?
q  Should cache management algorithms be aware of threads?
q  How should space be allocated to threads in a shared cache?

95

Private vs. Shared Caches
n  Private cache: Cache belongs to one core (a shared block can be in

multiple caches)
n  Shared cache: Cache is shared by multiple cores

96

CORE 0 CORE 1 CORE 2 CORE 3

 L2
CACHE

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

 L2
CACHE

CORE 0 CORE 1 CORE 2 CORE 3

DRAM MEMORY CONTROLLER

 L2
CACHE

Resource Sharing Concept and Advantages
n  Idea: Instead of dedicating a hardware resource to a

hardware context, allow multiple contexts to use it
q  Example resources: functional units, pipeline, caches, buses,

memory
n  Why?

+ Resource sharing improves utilization/efficiency à throughput
q  When a resource is left idle by one thread, another thread can

use it; no need to replicate shared data
+ Reduces communication latency

q  For example, data shared between multiple threads can be kept
in the same cache in multithreaded processors

+ Compatible with the shared memory programming model

97

Resource Sharing Disadvantages
n  Resource sharing results in contention for resources

q  When the resource is not idle, another thread cannot use it
q  If space is occupied by one thread, another thread needs to re-

occupy it

- Sometimes reduces each or some thread’s performance
 - Thread performance can be worse than when it is run alone

- Eliminates performance isolation à inconsistent performance
across runs

 - Thread performance depends on co-executing threads
- Uncontrolled (free-for-all) sharing degrades QoS
 - Causes unfairness, starvation

Need to efficiently and fairly utilize shared resources
98

Private vs. Shared Caches
n  Private cache: Cache belongs to one core (a shared block can be in

multiple caches)
n  Shared cache: Cache is shared by multiple cores

99

CORE 0 CORE 1 CORE 2 CORE 3

 L2
CACHE

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

 L2
CACHE

CORE 0 CORE 1 CORE 2 CORE 3

DRAM MEMORY CONTROLLER

 L2
CACHE

Shared Caches Between Cores
n  Advantages:

q  High effective capacity
q  Dynamic partitioning of available cache space

n  No fragmentation due to static partitioning
n  If one core does not utilize some space, another core can

q  Easier to maintain coherence (a cache block is in a single location)
q  Shared data and locks do not ping pong between caches – stay in one place

n  Disadvantages
q  Slower access (cache not tightly coupled with the core)
q  Cores incur conflict misses due to other cores’ accesses

n  Misses due to inter-core interference
n  Some cores can destroy the hit rate of other cores

q  Guaranteeing a minimum level of service (or fairness) to each core is harder
(how much space, how much bandwidth?)

100

Shared Caches: How to Share?
n  Free-for-all sharing

q  Placement/replacement policies are the same as a single core
system (usually LRU or pseudo-LRU)

q  Not thread/application aware
q  An incoming block evicts a block regardless of which threads

the blocks belong to

n  Problems
q  Inefficient utilization of cache: LRU is not the best policy
q  A cache-unfriendly application can destroy the performance of

a cache friendly application
q  Not all applications benefit equally from the same amount of

cache: free-for-all might prioritize those that do not benefit
q  Reduced performance, reduced fairness

101

Example: Utility Based Shared Cache Partitioning
n  Goal: Maximize system throughput
n  Observation: Not all threads/applications benefit equally from

caching à simple LRU replacement not good for system
throughput

n  Idea: Allocate more cache space to applications that obtain the
most benefit (i.e., marginal utility) from more space

n  The high-level idea can be applied to other shared resources as
well.

n  Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches,” MICRO 2006.

n  Suh et al., “A New Memory Monitoring Scheme for Memory-
Aware Scheduling and Partitioning,” HPCA 2002.

102

Marginal Utility of a Cache Way

103

 Utility Ua
b = Misses with a ways – Misses with b ways

Low Utility
High Utility

Saturating Utility

Num ways from 16-way 1MB L2

M
is

se
s

pe
r 1

00
0

in
st

ru
ct

io
ns

Utility Based Shared Cache Partitioning Motivation

104

Num ways from 16-way 1MB L2

M
is

se
s

pe
r 1

00
0

in
st

ru
ct

io
ns

 (M
P

K
I) equake

vpr

LRU

UTIL
Improve performance by giving more cache to
the application that benefits more from cache

Utility Based Cache Partitioning (III)

105

Three components:

q  Utility Monitors (UMON) per core

q  Partitioning Algorithm (PA)

q  Replacement support to enforce partitions

I$

D$
Core1

I$

D$
Core2 Shared

L2 cache

Main Memory

UMON1 UMON2 PA

1. Utility Monitors
q  For each core, simulate LRU policy using a separate tag

store called ATD (auxiliary tag directory/store)

q  Hit counters in ATD to count hits per recency position

q  LRU is a stack algorithm: hit counts è utility
 E.g. hits(2 ways) = H0+H1

106

MTD (Main Tag Store)

Set B

Set E

Set G

Set A

Set C
Set D

Set F

Set H

ATD
Set B

Set E

Set G

Set A

Set C
Set D

Set F

Set H

+ + + +
(MRU)H0 H1 H2…H15(LRU)

Utility Monitors

107

Dynamic Set Sampling
q  Extra tags incur hardware and power overhead

q  Sampling sets reduces overhead [Qureshi+ ISCA’06]

q  Sampling 32 sets sufficient (analytical bounds)

q  Storage < 2kB/UMON

108

MTD

ATD Set B

Set E

Set G

Set A

Set C
Set D

Set F

Set H

+ + + +
(MRU)H0 H1 H2…H15(LRU)

Set B

Set E

Set G

Set A

Set C
Set D

Set F

Set H

Set B

Set E

Set G

Set A

Set C
Set D

Set F

Set H

Set B
Set E
Set G

UMON (DSS)

2. Partitioning Algorithm
q  Evaluate all possible partitions and select the best

q  With a ways to core1 and (16-a) ways to core2:
 Hitscore1 = (H0 + H1 + … + Ha-1) ---- from UMON1

 Hitscore2 = (H0 + H1 + … + H16-a-1) ---- from UMON2

q  Select a that maximizes (Hitscore1 + Hitscore2)

q  Partitioning done once every 5 million cycles

109

3. Enforcing Partitions: Way Partitioning

110

Way partitioning support: [Suh+ HPCA’02, Iyer ICS’04]
1.  Each line has core-id bits

2.  On a miss, count ways_occupied in set by miss-causing app

ways_occupied < ways_given

Yes No

Victim is the LRU line
from other app

Victim is the LRU line
from miss-causing app

Performance Metrics
n  Three metrics for performance:

1.  Weighted Speedup (default metric)
 è perf = IPC1/AloneIPC1 + IPC2/AloneIPC2

 è correlates with reduction in execution time

2.  Throughput
 è perf = IPC1 + IPC2
 è can be unfair to low-IPC application

3.  Harmonic mean of Speedups
 è perf = hmean(IPC1/AloneIPC1, IPC2/AloneIPC2)
 è balances fairness and performance

111

Weighted Speedup Results for UCP

112

IPC Results for UCP

113

UCP improves average throughput by 17%

Any Problems with UCP So Far?
- Scalability
- Non-convex curves?

n  Time complexity of partitioning low for two cores
(number of possible partitions ≈ number of ways)

n  Possible partitions increase exponentially with cores

n  For a 32-way cache, possible partitions:
q  4 cores à 6545
q  8 cores à 15.4 million

n  Problem NP hard à need scalable partitioning algorithm
114

Greedy Algorithm [Stone+ ToC ’92]
n  GA allocates 1 block to the app that has the max utility for

one block. Repeat till all blocks allocated

n  Optimal partitioning when utility curves are convex

n  Pathological behavior
for non-convex curves

115

Problem with Greedy Algorithm

n  Problem: GA considers benefit only from the immediate
block. Hence, it fails to exploit large gains from looking ahead

116

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

A
B

In each iteration, the
utility for 1 block:

U(A) = 10 misses
U(B) = 0 misses

Blocks assigned

M
is

se
s

All blocks assigned to
A, even if B has same
miss reduction with
fewer blocks

Lookahead Algorithm
n  Marginal Utility (MU) = Utility per cache resource

q  MUa
b = Ua

b/(b-a)

n  GA considers MU for 1 block. LA considers MU for all
possible allocations

n  Select the app that has the max value for MU.
Allocate it as many blocks required to get max MU

n  Repeat till all blocks assigned

117

Lookahead Algorithm Example

118

Time complexity ≈ ways2/2 (512 ops for 32-ways)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

A
B

Iteration 1:
 MU(A) = 10/1 block
MU(B) = 80/3 blocks

B gets 3 blocks

Result: A gets 5 blocks and B gets 3 blocks (Optimal)

Next five iterations:
 MU(A) = 10/1 block
 MU(B) = 0
A gets 1 block

Blocks assigned

M
is

se
s

UCP Results

119

Four cores sharing a 2MB 32-way L2

Mix2
(swm-glg-mesa-prl)

Mix3
(mcf-applu-art-vrtx)

Mix4
(mcf-art-eqk-wupw)

Mix1
(gap-applu-apsi-gzp)

LA performs similar to EvalAll, with low time-complexity

LRU
UCP(Greedy)
UCP(Lookahead)
UCP(EvalAll)

Utility Based Cache Partitioning
n  Advantages over LRU

+ Improves system throughput
+ Better utilizes the shared cache

n  Disadvantages
- Fairness, QoS?

n  Limitations
- Scalability: Partitioning limited to ways. What if you have

numWays < numApps?
- Scalability: How is utility computed in a distributed cache?
- What if past behavior is not a good predictor of utility?

120

The Multi-Core System: A Shared Resource View

121

Shared
Storage

Need for QoS and Shared Resource Mgmt.
n  Why is unpredictable performance (or lack of QoS) bad?

n  Makes programmer’s life difficult
q  An optimized program can get low performance (and

performance varies widely depending on co-runners)

n  Causes discomfort to user
q  An important program can starve
q  Examples from shared software resources

n  Makes system management difficult
q  How do we enforce a Service Level Agreement when hardware

resources are sharing is uncontrollable?

122

Resource Sharing vs. Partitioning
n  Sharing improves throughput

q  Better utilization of space

n  Partitioning provides performance isolation (predictable
performance)
q  Dedicated space

n  Can we get the benefits of both?

n  Idea: Design shared resources such that they are efficiently
utilized, controllable and partitionable
q  No wasted resource + QoS mechanisms for threads

123

Shared Hardware Resources
n  Memory subsystem (in both multithreaded and multi-core

systems)
q  Non-private caches
q  Interconnects
q  Memory controllers, buses, banks

n  I/O subsystem (in both multithreaded and multi-core
systems)
q  I/O, DMA controllers
q  Ethernet controllers

n  Processor (in multithreaded systems)
q  Pipeline resources
q  L1 caches

124

Efficient Cache Utilization
n  Critical for performance, especially in multi-core systems
n  Many works in this area
n  Three sample works

n  Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA
2005.

n  Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to
Address both Cache Pollution and Thrashing,” PACT 2012.

n  Pekhimenko et al., “Base-Delta-Immediate Compression: Practical
Data Compression for On-Chip Caches,” PACT 2012.

125

MLP-Aware Cache Replacement

Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N. Patt,
"A Case for MLP-Aware Cache Replacement"

Proceedings of the 33rd International Symposium on Computer Architecture
(ISCA), pages 167-177, Boston, MA, June 2006. Slides (ppt)

126

127

Memory Level Parallelism (MLP)

q  Memory Level Parallelism (MLP) means generating and
servicing multiple memory accesses in parallel [Glew’98]

q  Several techniques to improve MLP (e.g., out-of-order execution,
runahead execution)

q  MLP varies. Some misses are isolated and some parallel

 How does this affect cache replacement?

time

A
B

C

isolated miss parallel miss

Traditional Cache Replacement Policies

q  Traditional cache replacement policies try to reduce miss
count

q  Implicit assumption: Reducing miss count reduces memory-

related stall time

q  Misses with varying cost/MLP breaks this assumption!

q  Eliminating an isolated miss helps performance more than

eliminating a parallel miss
q  Eliminating a higher-latency miss could help performance

more than eliminating a lower-latency miss

128

129

Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1.  Minimizes miss count (Belady’s OPT)
2.  Reduces isolated misses (MLP-Aware)

For a fully associative cache containing 4 blocks

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

An Example

Fewest Misses = Best Performance

130

P3 P2 P1 P4

H H H H M H H H M Hit/Miss
Misses=4
Stalls=4

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

Time stall
Belady’s OPT replacement

M M

MLP-Aware replacement

Hit/Miss

P3 P2 S1 P4 P3 P2 P1 P4 P3 P2 S2 P4 P3 P2 S3 P4 S1 S2 S3 P1 P3 P2 S3 P4 S1 S2 S3 P4

H H H

S1 S2 S3 P4

H M M M H M M M
Time stall Misses=6

Stalls=2

Saved
cycles

Cache

131

Motivation

q  MLP varies. Some misses more costly than others

q  MLP-aware replacement can improve performance by
reducing costly misses

132

Outline
q  Introduction

q  MLP-Aware Cache Replacement
§  Model for Computing Cost
§  Repeatability of Cost
§  A Cost-Sensitive Replacement Policy

q  Practical Hybrid Replacement
§  Tournament Selection
§  Dynamic Set Sampling
§  Sampling Based Adaptive Replacement

q  Summary

133

Computing MLP-Based Cost

q Cost of miss is number of cycles the miss stalls the processor

q Easy to compute for isolated miss

q Divide each stall cycle equally among all parallel misses

 A

B
C

t0 t1 t4 t5 time

1

½

1 ½

½

t2 t3

½

1

134

q  Miss Status Holding Register (MSHR) tracks all in flight
misses

q  Add a field mlp-cost to each MSHR entry

q  Every cycle for each demand entry in MSHR

 mlp-cost += (1/N)

 N = Number of demand misses in MSHR

A First-Order Model

135

Machine Configuration

q Processor
§  aggressive, out-of-order, 128-entry instruction window

q L2 Cache
§  1MB, 16-way, LRU replacement, 32 entry MSHR

q Memory
§  400 cycle bank access, 32 banks

q Bus
§  Roundtrip delay of 11 bus cycles (44 processor cycles)

136

Distribution of MLP-Based Cost

Cost varies. Does it repeat for a given cache block? MLP-Based Cost

%
 o

f A
ll

L2
 M

is
se

s

137

Repeatability of Cost

q An isolated miss can be parallel miss next time

q Can current cost be used to estimate future cost ?

q Let δ = difference in cost for successive miss to a block
§  Small δ è cost repeats
§  Large δ è cost varies significantly

138

q In general δ is small è repeatable cost
q When δ is large (e.g. parser, mgrid) è performance loss

Repeatability of Cost δ < 60
59 < δ < 120

δ > 120

139

The Framework

MSHR

L2 CACHE

MEMORY

Quantization of Cost

Computed mlp-based
cost is quantized to a
3-bit value

CCL C
A
R
E Cost-Aware

Repl Engine

Cost
Calculation
Logic

PROCESSOR

ICACHE DCACHE

140

q  A Linear (LIN) function that considers recency and cost

 Victim-LIN = min { Recency (i) + S*cost (i) }

S = significance of cost. Recency(i) = position in LRU stack
cost(i) = quantized cost

Design of MLP-Aware Replacement policy
q LRU considers only recency and no cost

 Victim-LRU = min { Recency (i) }

q Decisions based only on cost and no recency hurt

performance. Cache stores useless high cost blocks

141

Results for the LIN policy

Performance loss for parser and mgrid due to large δ
.

142

Effect of LIN policy on Cost

Miss += 4%
IPC += 4%

Miss += 30%
IPC -= 33%

Miss -= 11%
IPC += 22%

143

Outline
q  Introduction

q  MLP-Aware Cache Replacement
§  Model for Computing Cost
§  Repeatability of Cost
§  A Cost-Sensitive Replacement Policy

q  Practical Hybrid Replacement
§  Tournament Selection
§  Dynamic Set Sampling
§  Sampling Based Adaptive Replacement

q  Summary

144

Tournament Selection (TSEL) of
Replacement Policies for a Single Set

ATD-LIN ATD-LRU Saturating Counter (SCTR)
HIT HIT Unchanged
MISS MISS Unchanged
HIT MISS += Cost of Miss in ATD-LRU
MISS HIT -= Cost of Miss in ATD-LIN

SET A SET A+
SCTR

If MSB of SCTR is 1, MTD
uses LIN else MTD use LRU

ATD-LIN ATD-LRU

SET A
MTD

145

Extending TSEL to All Sets

Implementing TSEL on a per-set basis is expensive
Counter overhead can be reduced by using a global counter

+
SCTR

Policy for All
Sets In MTD

Set A
ATD-LIN

Set B
Set C
Set D
Set E
Set F
Set G
Set H

Set A
ATD-LRU

Set B
Set C
Set D
Set E
Set F
Set G
Set H

146

Dynamic Set Sampling

+
SCTR

Policy for All
Sets In MTD

ATD-LIN

Set B

Set E

Set G

Set B

Set E

Set G

ATD-LRU
Set ASet A

Set C
Set D

Set F

Set H

Set C
Set D

Set F

Set H

Not all sets are required to decide the best policy
Have the ATD entries only for few sets.

Sets that have ATD entries (B, E, G) are called leader sets

147

Dynamic Set Sampling

q  Bounds using analytical model and simulation (in paper)

q  DSS with 32 leader sets performs similar to having all sets

q  Last-level cache typically contains 1000s of sets, thus ATD
entries are required for only 2%-3% of the sets

How many sets are required to choose best performing policy?

ATD overhead can further be reduced by using MTD to
always simulate one of the policies (say LIN)

148

Decide policy only for
follower sets

+

Sampling Based Adaptive Replacement (SBAR)

The storage overhead of SBAR is less than 2KB
(0.2% of the baseline 1MB cache)

SCTR

MTD

Set B

Set E

Set G

Set G

ATD-LRU
Set A

Set C
Set D

Set F

Set H

Set B
Set E

Leader sets
Follower sets

149

Results for SBAR

150

SBAR adaptation to phases

SBAR selects the best policy for each phase of ammp

LIN is better LRU is better

151

Outline
q  Introduction

q  MLP-Aware Cache Replacement
§  Model for Computing Cost
§  Repeatability of Cost
§  A Cost-Sensitive Replacement Policy

q  Practical Hybrid Replacement
§  Tournament Selection
§  Dynamic Set Sampling
§  Sampling Based Adaptive Replacement

q  Summary

152

Summary

q MLP varies. Some misses are more costly than others

q MLP-aware cache replacement can reduce costly misses

q Proposed a runtime mechanism to compute MLP-Based
cost and the LIN policy for MLP-aware cache replacement

q SBAR allows dynamic selection between LIN and LRU with
low hardware overhead

q Dynamic set sampling used in SBAR also enables other
cache related optimizations

The Evicted-Address Filter

Vivek Seshadri, Onur Mutlu, Michael A. Kozuch, and Todd C. Mowry,
"The Evicted-Address Filter: A Unified Mechanism to Address Both

Cache Pollution and Thrashing"
Proceedings of the

21st ACM International Conference on Parallel Architectures and Compilation
Techniques (PACT), Minneapolis, MN, September 2012. Slides (pptx)

153

Execu&ve	Summary	
•  Two	problems	degrade	cache	performance	

–  Pollu&on	and	thrashing	
–  Prior	works	don’t	address	both	problems	concurrently	

•  Goal:	A	mechanism	to	address	both	problems	
•  EAF-Cache	

–  Keep	track	of	recently	evicted	block	addresses	in	EAF	
–  Insert	low	reuse	with	low	priority	to	mi&gate	pollu&on	
–  Clear	EAF	periodically		to	mi&gate	thrashing	
–  Low	complexity	implementa&on	using	Bloom	filter	

•  EAF-Cache	outperforms	five	prior	approaches	that	
address	pollu&on	or	thrashing	 154	

Cache	U&liza&on	is	Important	

Core	 Last-Level	
Cache	

Memory	

Core	 Core	

Core	 Core	

Increasing	conten&on	

Effec&ve	cache	u&liza&on	is	important	

Large	latency	

155	

Reuse	Behavior	of	Cache	Blocks	

A B C A B C S T U V WX Y A B C

Different	blocks	have	different	reuse	behavior	

Access	Sequence:	

High-reuse	block	 Low-reuse	block	

Z

Ideal	Cache	 A B C	

156	

Cache	Pollu&on	

H G F E D C B AS H G F E D C BT S H G F E D CU T S H G F E D
MRU	 LRU	

LRU	Policy	

Prior	work:	Predict	reuse	behavior	of	missed	blocks.	
Insert	low-reuse	blocks	at	LRU	posi&on.	

H G F E D C B ASTU
MRU	 LRU	

AB AC B A

AS AT S A

Cache	

Problem:	Low-reuse	blocks	evict	high-reuse	blocks	

157	

Cache	Thrashing	

H G F E D C B AI	 H G F E D C BJ	 I	 H G F E D CK J	 I	 H G F E D

MRU	 LRU	

LRU	Policy	 A B C D E F G H I	 J	 KAB AC B A

Prior	work:	Insert	at	MRU	posi&on	with	a	very	low	
probability	(Bimodal	inser2on	policy)	

Cache	

H G F E D C B AI	J	K
MRU	 LRU	

AI	 AJ	 I	 A
A	frac&on	of	
working	set	
stays	in	cache	

Cache	

Problem:	High-reuse	blocks	evict	each	other	

158	

Shortcomings	of	Prior	Works	
Prior	works	do	not	address	both	pollu&on	and	
thrashing	concurrently	

Prior	Work	on	Cache	Pollu2on	
No	control	on	the	number	of	blocks	inserted	with	high	
priority	into	the	cache	

Prior	Work	on	Cache	Thrashing	
No	mechanism	to	dis&nguish	high-reuse	blocks	
from	low-reuse	blocks	

Our	goal:	Design	a	mechanism	to	address	both	
pollu&on	and	thrashing	concurrently	

159	

Outline	

•  Evicted-Address	Filter	
– Reuse	Predic&on	
– Thrash	Resistance	

•  Final	Design	

•  Evalua&on	
•  Conclusion	

•  Background	and	Mo&va&on	

•  Advantages	and	Disadvantages	

160	

Reuse	Predic&on	

Miss	 Missed-block	
High	reuse	

Low	reuse	

?	

Keep	track	of	the	reuse	behavior	of	every	cache	
block	in	the	system	

Imprac2cal	
1.  High	storage	overhead	
2.  Look-up	latency	

161	

Prior	Work	on	Reuse	Predic&on	
Use	program	counter	or	memory	region	
informa&on.	

BA TS

PC	1	 PC	2	

BA TS

PC	1	 PC	2	 PC	1	

PC	2	

C C

U U

1.	Group	Blocks	 2.	Learn	group	
behavior	 3.	Predict	reuse	

1.  Same	group	→ same	reuse	behavior	
2.  No	control	over	number	of	high-reuse	blocks	

162	

Our	Approach:	Per-block	Predic&on	
Use	recency	of	evic&on	to	predict	reuse	

A
Time	

Time	of	evic&on	

A

Accessed	soon	
aher	evic&on	

S
Time	

S

Accessed	long	&me	
aher	evic&on	

163	

Evicted-Address	Filter	(EAF)	

Cache	

EAF	
(Addresses	of	recently	evicted	blocks)	

Evicted-block	address	

Miss	 Missed-block	address	

In	EAF?	Yes	 No	
MRU	 LRU	

High	Reuse		 Low	Reuse		

164	

Naïve	Implementa&on:	Full	Address	Tags	

EAF	

1. 	Large	storage	overhead	
2. 	Associa&ve	lookups	–	High	energy		

Recently	
evicted	address	

Need	not	be	
100%	accurate	

?	

165	

Low-Cost	Implementa&on:	Bloom	Filter	

EAF	

Implement	EAF	using	a	Bloom	Filter	
Low	storage	overhead	+	energy	

Need	not	be	
100%	accurate	

?	

166	

Y	

Bloom	Filter	
Compact	representa&on	of	a	set	

0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	1	

1. 	Bit	vector	
2. 	Set	of	hash	func&ons	

H1	 H2	

H1	 H2	

X	

1	 1	1	

Insert	Test	
Z	W

Remove	

X	 Y	

May	remove	
mul&ple	addresses	Clear	ü	û	 False	posi&ve	

167	

Inserted	Elements:	 X	 Y	

EAF	using	a	Bloom	Filter	
EAF	

Insert	

Test	

Evicted-block	
address	

Remove	
FIFO	address		

Missed-block	address	

Bloom	Filter	

Remove	
If	present	

	when	full	

Clear	

ü	 û	

ü	

û	1

2
	when	full	

Bloom-filter	EAF:	4x	reduc&on	in	storage	overhead,	
1.47%	compared	to	cache	size	 168	

Outline	

•  Evicted-Address	Filter	
– Reuse	Predic&on	
– Thrash	Resistance	

•  Final	Design	

•  Evalua&on	
•  Conclusion	

•  Background	and	Mo&va&on	

•  Advantages	and	Disadvantages	

169	

Large	Working	Set:	2	Cases	

Cache	 EAF	
AEK J	 I	 H G FL C BD

Cache	 EAF	
R Q P O N M LS J	 I	 H G F E DK C B A

1

2

Cache	<	Working	set	<	Cache	+	EAF	

Cache	+	EAF	<	Working	Set	

170	

Large	Working	Set:	Case	1	

Cache	 EAF	
AEK J	 I	 H G FL C BD

û	û	

BFL K J	 I	 H GA D CE CGA L K J	 I	 HB E DF

û	

A L K J	 I	 H GB E DFC

û	û	û	û	û	û	û	û	û	û	û	û	
ASequence:	 B C D E F G H I	 J	 K L A B C

EAF	Naive:	
D

û	
A B C

Cache	<	Working	set	<	Cache	+	EAF	

171	

Large	Working	Set:	Case	1	

Cache	 EAF	
E AK J	 I	 H G FL C BD

ASequence:	 B C D E F G H I	 J	 K L A B CA B

EAF	BF:	 û	û	û	û	û	û	û	û	

A

ü	ü	ü	ü	ü	ü	
EAF	Naive:	û	û	û	û	û	û	û	û	û	û	û	û	û	û	û	

A L K J	 I	 H G BE D C ABFA L K J	 I	 H G BE DF C AB

D

H G BE DF C AA L K J	 I	BCD

D

û	
ü	

Not	removed	
Not		present	in	the	EAF	

Bloom-filter	based	EAF	mi&gates	thrashing	

H

û	

G F E I	

Cache	<	Working	set	<	Cache	+	EAF	

172	

Large	Working	Set:	Case	2	

Cache	 EAF	
R Q P O N M LS J	 I	 H G F E DK C B A

Problem:		All	blocks	are	predicted	to	have	low	reuse	

Use	Bimodal	Inser2on	Policy	for	low	reuse	
blocks.	Insert	few	of	them	at	the	MRU	posi&on	

	Allow	a	frac&on	of	the	working	set	to	stay	in	the	
cache	

Cache	+	EAF	<	Working	Set	

173	

Outline	

•  Evicted-Address	Filter	
– Reuse	Predic&on	
– Thrash	Resistance	

•  Final	Design	

•  Evalua&on	
•  Conclusion	

•  Background	and	Mo&va&on	

•  Advantages	and	Disadvantages	

174	

EAF-Cache:	Final	Design	

Cache	
Bloom	Filter	

Counter	

1

2

3

Cache	evic2on	

Cache	miss	

Counter	reaches	max	

Insert	address	into	filter	
Increment	counter	

Test	if	address	is	present	in	filter	
Yes,	insert	at	MRU.	No,	insert	with	BIP	

Clear	filter	and	counter	

175	

Outline	

•  Evicted-Address	Filter	
– Reuse	Predic&on	
– Thrash	Resistance	

•  Final	Design	

•  Evalua&on	
•  Conclusion	

•  Background	and	Mo&va&on	

•  Advantages	and	Disadvantages	

176	

EAF:	Advantages	

Cache	
Bloom	Filter	

Counter	

1. 	Simple	to	implement	

2. 	Easy	to	design	and	verify	

3. 	Works	with	other	techniques	(replacement	policy)	

Cache	evic&on	

Cache	miss	

177	

EAF:	Disadvantage	

Cache	

A First	access	

AA

A Second	access	Miss	

Problem:	For	an	LRU-friendly	applica2on,	EAF	
incurs	one	addi2onal	miss	for	most	blocks	

Dueling-EAF:	set	dueling	between	EAF	and	LRU	

In	EAF?	

178	

Outline	

•  Evicted-Address	Filter	
– Reuse	Predic&on	
– Thrash	Resistance	

•  Final	Design	

•  Evalua&on	
•  Conclusion	

•  Background	and	Mo&va&on	

•  Advantages	and	Disadvantages	

179	

Methodology	
•  Simulated	System	

–  In-order	cores,	single	issue,	4	GHz	
–  32	KB	L1	cache,	256	KB	L2	cache	(private)	
–  Shared	L3	cache	(1MB	to	16MB)	
– Memory:	150	cycle	row	hit,	400	cycle	row	conflict	

•  Benchmarks	
–  SPEC	2000,	SPEC	2006,	TPC-C,	3	TPC-H,	Apache 		

•  Mul&-programmed	workloads	
–  Varying	memory	intensity	and	cache	sensi&vity	

•  Metrics	
–  4	different	metrics	for	performance	and	fairness	
–  Present	weighted	speedup	

180	

Comparison	with	Prior	Works	
Addressing	Cache	Pollu2on	

-	No	control	on	number	of	blocks	inserted	with	high	
priority	⟹ Thrashing		

Run-&me	Bypassing	(RTB)	–	Johnson+	ISCA’97	
-	Memory	region	based	reuse	predic&on	

Single-usage	Block	Predic&on	(SU)	–	Piquet+	ACSAC’07	
Signature-based	Hit	Predic&on	(SHIP)	–	Wu+	MICRO’11	
-	Program	counter	based	reuse	predic&on	

Miss	Classifica&on	Table	(MCT)	–	Collins+	MICRO’99	
-	One	most	recently	evicted	block	

181	

Comparison	with	Prior	Works	
Addressing	Cache	Thrashing	

-	No	mechanism	to	filter	low-reuse	blocks	⟹ Pollu&on	

TA-DIP	–	Qureshi+	ISCA’07,	Jaleel+	PACT’08	
TA-DRRIP	–	Jaleel+	ISCA’10	
-	Use	set	dueling	to	determine	thrashing	applica&ons	

182	

Results	–	Summary	

0%	

5%	

10%	

15%	

20%	

25%	

1-Core	 2-Core	 4-Core	

Pe
rf
or
m
an

ce
	Im

pr
ov
em

en
t	o

ve
r	L
RU

	

TA-DIP	 TA-DRRIP	 RTB	 MCT	
SHIP	 EAF	 D-EAF	

183	

-10%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	
W
ei
gh
te
d	
Sp
ee
du

p	
Im

pr
ov
em

en
t	o

ve
r	

LR
U
	

Workload	Number	(135	workloads)	

LRU	

EAF	

SHIP	

D-EAF	

4-Core:	Performance	

184	

Effect	of	Cache	Size	

0%	

5%	

10%	

15%	

20%	

25%	

1MB	 2MB	 4MB	 8MB	 2MB	 4MB	 8MB	 16MB	

2-Core	 4-Core	

W
ei
gh
te
d	
Sp
ee
du

p	
Im

pr
ov
em

en
t	

ov
er
	L
RU

	

SHIP	 EAF	 D-EAF	

185	

Effect	of	EAF	Size	

0%	

5%	

10%	

15%	

20%	

25%	

30%	

0	 0.2	 0.4	 0.6	 0.8	 1	 1.2	 1.4	 1.6	W
ei
gh
te
d	
Sp
ee
du

p	
	Im

pr
ov
em

en
t	O

ve
r	L
RU

	

#	Addresses	in	EAF	/	#	Blocks	in	Cache	

1	Core	 2	Core	 4	Core	

186	

Other	Results	in	Paper	

•  EAF	orthogonal	to	replacement	policies	
–  LRU,	RRIP	–	Jaleel+	ISCA’10	

•  Performance	improvement	of	EAF	increases	with	
increasing	memory	latency	

•  EAF	performs	well	on	four	different	metrics	
–  Performance	and	fairness	

•  Alterna&ve	EAF-based	designs	perform	comparably		
–  Segmented	EAF	
–  Decoupled-clear	EAF	

187	

Conclusion	
•  Cache	u&liza&on	is	cri&cal	for	system	performance	

–  Pollu&on	and	thrashing	degrade	cache	performance	
–  Prior	works	don’t	address	both	problems	concurrently	
	

•  EAF-Cache	
–  Keep	track	of	recently	evicted	block	addresses	in	EAF	
–  Insert	low	reuse	with	low	priority	to	mi&gate	pollu&on	
–  Clear	EAF	periodically	and	use	BIP	to	mi&gate	thrashing	
–  Low	complexity	implementa&on	using	Bloom	filter	

•  EAF-Cache	outperforms	five	prior	approaches	that	address	
pollu&on	or	thrashing	
	

188	

Base-Delta-Immediate
Cache Compression

Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Philip B. Gibbons, Michael
A. Kozuch, and Todd C. Mowry,

"Base-Delta-Immediate Compression: Practical Data Compression
for On-Chip Caches"

Proceedings of the
21st ACM International Conference on Parallel Architectures and Compilation

Techniques (PACT), Minneapolis, MN, September 2012. Slides (pptx)
189

Execu2ve	Summary	
•  Off-chip	memory	latency	is	high	

–  Large	caches	can	help,	but	at	significant	cost		
•  Compressing	data	in	cache	enables	larger	cache	at	low	
cost	

•  Problem:	Decompression	is	on	the	execu&on	cri&cal	path		
•  Goal:	Design	a	new	compression	scheme	that	has		
		1.	low	decompression	latency,		2.	low	cost,	3.	high	compression	ra&o			
•  Observa2on:	Many	cache	lines	have	low	dynamic	range	
data	

•  Key	Idea:	Encode	cachelines	as	a	base	+	mul&ple	differences	
•  Solu2on:	Base-Delta-Immediate	compression	with	low	
decompression	latency	and	high	compression	ra&o		
–  Outperforms	three	state-of-the-art	compression	mechanisms		

	
	

190	

Mo2va2on	for	Cache	Compression	
Significant	redundancy	in	data:	

191	

0x00000000	

How	can	we	exploit	this	redundancy?	
– Cache	compression		helps	
– Provides	effect	of	a	larger	cache	without	
making	it	physically	larger	

0x0000000B	 0x00000003	 0x00000004	 …	

Background	on	Cache	Compression	

•  Key	requirements:	
– Fast	(low	decompression	latency)	
– Simple	(avoid	complex	hardware	changes)	
– Effec2ve	(good	compression	ra&o)	

	

192	

CPU	
L2	

Cache	
Uncompressed	Compressed	Decompression	Uncompressed	

L1	
Cache	

Hit	

Shortcomings	of	Prior	Work	

193	

Compression	
Mechanisms	

Decompression	
Latency	

Complexity	 Compression	
Ra2o	

Zero	 ü	 ü	 û	

Shortcomings	of	Prior	Work	

194	

Compression	
Mechanisms	

Decompression	
Latency	

Complexity	 Compression	
Ra2o	

Zero	 ü	 ü	 û	
Frequent	Value	 û	 û	 ü	

Shortcomings	of	Prior	Work	

195	

Compression	
Mechanisms	

Decompression	
Latency	

Complexity	 Compression	
Ra2o	

Zero	 ü	 ü	 û	
Frequent	Value	 û	 û	 ü	
Frequent	Parern	 û	 û/ü	 ü	

Shortcomings	of	Prior	Work	

196	

Compression	
Mechanisms	

Decompression	
Latency	

Complexity	 Compression	
Ra2o	

Zero	 ü	 ü	 û	
Frequent	Value	 û	 û	 ü	
Frequent	Parern	 û	 û/ü	 ü	
Our	proposal:	
BΔI	 ü	 ü	 ü	

Outline	

• Mo&va&on	&	Background	
•  Key	Idea	&	Our	Mechanism	
•  Evalua&on	
•  Conclusion		

197	

Key	Data	Pa\erns	in	Real	Applica2ons	

198	

0x00000000	 0x00000000	 0x00000000	 0x00000000	 …	

0x000000FF	 0x000000FF	 0x000000FF	 0x000000FF	 …	

0x00000000	 0x0000000B	 0x00000003	 0x00000004	 …	

0xC04039C0	 0xC04039C8	 0xC04039D0	 0xC04039D8	 …	

Zero	Values:	ini&aliza&on,		sparse	matrices,	NULL	pointers	

Repeated	Values:	common	ini&al	values,	adjacent	pixels	

Narrow	Values:	small	values	stored	in	a	big	data	type	

Other	Pa\erns:	pointers	to	the	same	memory	region	

How	Common	Are	These	
Pa\erns?	

0%	

20%	

40%	

60%	

80%	

100%	
		l
ib
qu

an
tu
m
		

		l
bm

		
		m

cf
		

		t
pc
h1

7	
	

		s
je
ng
		

		o
m
ne

tp
p	
	

		t
pc
h2

		
		s
ph

in
x3
		

		x
al
an
cb
m
k	
	

		b
zip

2	
	

		t
pc
h6

		
		l
es
lie
3d

		
		a
pa
ch
e	
	

		g
ro
m
ac
s		

		a
st
ar
		

		g
ob

m
k	
	

		s
op

le
x	
	

		g
cc
		

		h
m
m
er
		

		w
rf
		

		h
26

4r
ef
		

		z
eu

sm
p	
	

		c
ac
tu
sA
DM

		
		G

em
sF
DT

D	
	

Av
er
ag
e	

Ca
ch
e	
Co

ve
ra
ge
	(%

)	

Zero	
Repeated	Values	
Other	Parerns	

199	

SPEC2006,	databases,	web	workloads,	2MB	L2	cache	
“Other	Parerns”	include	Narrow	Values	

43%	of	the	cache	lines	belong	to	key	parerns	

Key	Data	Pa\erns	in	Real	Applica2ons	

200	

0x00000000	 0x00000000	 0x00000000	 0x00000000	 …	

0x000000FF	 0x000000FF	 0x000000FF	 0x000000FF	 …	

0x00000000	 0x0000000B	 0x00000003	 0x00000004	 …	

0xC04039C0	 0xC04039C8	 0xC04039D0	 0xC04039D8	 …	

Zero	Values:	ini&aliza&on,		sparse	matrices,	NULL	pointers	

Repeated	Values:	common	ini&al	values,	adjacent	pixels	

Narrow	Values:	small	values	stored	in	a	big	data	type	

Other	Pa\erns:	pointers	to	the	same	memory	region	

Low	Dynamic	Range:	
		

Differences	between	values	are	significantly	
smaller	than	the	values	themselves	

	

32-byte	Uncompressed	Cache	Line	
	

Key	Idea:	Base+Delta	(B+Δ)	Encoding	

201	

0xC04039C0	 0xC04039C8	 0xC04039D0	 …	 0xC04039F8	

4	bytes	

0xC04039C0	
Base	

	 0x00	

1	byte	

0x08	

1	byte	

0x10	

1	byte	

…	 0x38	 12-byte		
Compressed	Cache	Line	

20	bytes	saved	ü	Fast	Decompression:	
vector	addi&on	

ü	Simple	Hardware:		
				arithme&c	and	comparison	

ü	Effec2ve:	good	compression	ra&o	

Can	We	Do	Be\er?	

•  Uncompressible	cache	line	(with	a	single	base):		
					

•  Key	idea:		
				Use	more	bases,	e.g.,	two	instead	of	one	
•  Pro:		

– More	cache	lines	can	be	compressed	
•  Cons:	

– Unclear	how	to	find	these	bases	efficiently	
– Higher	overhead	(due	to	addi&onal	bases)	

202	

0x00000000	 0x09A40178	 0x0000000B	 0x09A4A838	 …	

B+Δ	with	Mul2ple	Arbitrary	Bases	

203	

1	

1.2	

1.4	

1.6	

1.8	

2	

2.2	

GeoMean	

Co
m
pr
es
si
on

	R
a2

o	 1	 2	 3	 4	 8	 10	 16	

ü	2	bases	–	the	best	op&on	based	on	evalua&ons	

How	to	Find	Two	Bases	Efficiently?	
1.   First	base	-	first	element	in	the	cache	line	

2.   Second	base	-	implicit	base	of	0		

Advantages	over	2	arbitrary	bases:	
– Berer	compression	ra&o	
– Simpler	compression	logic	

204	

ü	Base+Delta	part	

ü	Immediate	part	

Base-Delta-Immediate	(BΔI)	Compression	

B+Δ (with	two	arbitrary	bases)	vs.	BΔI	

205	

1	
1.2	
1.4	
1.6	
1.8	
2	

2.2	
		l
bm

		
		w

rf
		

		h
m
m
er
		

		s
ph

in
x3
		

		t
pc
h1

7	
	

		l
ib
qu

an
tu
m
		

		l
es
lie
3d

		
		g
ro
m
ac
s		

		s
je
ng
		

		m
cf
		

		h
26

4r
ef
		

		t
pc
h2

		
		o
m
ne

tp
p	
	

		a
pa
ch
e	
	

		b
zip

2	
	

		x
al
an
cb
m
k	
	

		a
st
ar
		

		t
pc
h6

		
		c
ac
tu
sA
DM

		
		g
cc
		

		s
op

le
x	
	

		g
ob

m
k	
	

		z
eu

sm
p	
	

		G
em

sF
DT

D	
	

Ge
oM

ea
n	Co

m
pr
es
si
on

	R
a2

o	 B+Δ	(2	bases)	 BΔI	

Average	compression	ra&o	is	close,	but	BΔI	is	simpler	

BΔI	Implementa2on	
•  Decompressor	Design	

– Low	latency	

•  Compressor	Design	
– Low	cost	and	complexity	

•  BΔI	Cache	Organiza2on	
– Modest	complexity	

206	

Δ0	B0	

BΔI	Decompressor	Design	

207	

Δ1	 Δ2	 Δ3	

Compressed	Cache	Line	

V0	 V1	 V2	 V3	

+	 +	

Uncompressed	Cache	Line	

+	 +	

B0	 Δ0	

B0	 B0	 B0	 B0	

Δ1	 Δ2	 Δ3	

V0	
V1	 V2	 V3	

Vector	addi&on	

BΔI	Compressor	Design	

208	

32-byte	Uncompressed	Cache	Line	

8-byte	B0	
1-byte	Δ	

CU	

8-byte	B0	
2-byte	Δ	

CU	

8-byte	B0	
4-byte	Δ	

CU	

4-byte	B0	
1-byte	Δ	

CU	

4-byte	B0	
2-byte	Δ	

CU	

2-byte	B0	
1-byte	Δ	

CU	

Zero	
CU	

Rep.	
Values	
CU	

Compression	Selec&on	Logic	(based	on	compr.	size)	

CFlag	&	
CCL	

CFlag	&	
CCL	

CFlag	&	
CCL	

CFlag	&	
CCL	

CFlag	&	
CCL	

CFlag	&	
CCL	

CFlag	&	
CCL	

CFlag	&	
CCL	

Compression	Flag	
&	Compressed	
Cache	Line	

CFlag	&	
CCL	

Compressed	Cache	Line	

BΔI	Compression	Unit:	8-byte	B0	1-byte	Δ		

209	

32-byte	Uncompressed	Cache	Line	
	

V0	 V1	 V2	 V3	

8	bytes	

-	 -	 -	 -	

B0=				

V0					

V0					B0					 B0					 B0					 B0					

V0					 V1					 V2					 V3					

Δ0	 Δ1	 Δ2	 Δ3	

Within	1-byte	
range?	

Within	1-byte	
range?	

Within	1-byte	
range?	

Within	1-byte	
range?	

Is	every	element	within	1-byte	range?	

Δ0	B0	 Δ1	 Δ2	 Δ3	B0	 Δ0	 Δ1	 Δ2	 Δ3	

Yes	 No	

BΔI	Cache	Organiza2on	

210	

Tag0	 Tag1	

…	 …	

…	 …	

Tag	Storage:	
Set0	

Set1	

Way0	 Way1	

Data0	

…	

…	

Set0	

Set1	

Way0	 Way1	

…	

Data1	

…	

32	bytes	Data	Storage:	
Conven2onal	2-way	cache	with	32-byte	cache	lines	

BΔI:	4-way	cache	with	8-byte	segmented	data	

Tag0	 Tag1	

…	 …	

…	 …	

Tag	Storage:	

Way0	 Way1	 Way2	 Way3	

…	 …	

Tag2	 Tag3	

…	 …	

Set0	

Set1	

üTwice	as	many	tags		

üC	-	Compr.	encoding	
bits	C

Set0	

Set1	

…	 …	 …	 …	 …	 …	 …	 …	

S0	S0	 S1	 S2	 S3	 S4	 S5	 S6	 S7	

…	 …	 …	 …	 …	 …	 …	 …	

8	bytes	

üTags	map	to	mul&ple	adjacent	segments	2.3%	overhead	for	2	MB	cache	

Qualita2ve	Comparison	with	Prior	Work	
•  Zero-based	designs	

–  ZCA	[Dusser+,	ICS’09]:	zero-content	augmented	cache	
–  ZVC	[Islam+,	PACT’09]:	zero-value	cancelling	
–  Limited	applicability	(only	zero	values)	

•  FVC	[Yang+,	MICRO’00]:	frequent	value	compression	
–  High	decompression	latency	and	complexity	

•  Pa\ern-based	compression	designs	
–  FPC	[Alameldeen+,	ISCA’04]:	frequent	parern	compression	

•  High	decompression	latency	(5	cycles)	and	complexity	
–  C-pack	[Chen+,	T-VLSI	Systems’10]:	prac&cal	implementa&on	of	
FPC-like	algorithm	

•  High	decompression	latency	(8	cycles)	

211	

Outline	

• Mo&va&on	&	Background	
•  Key	Idea	&	Our	Mechanism	
•  Evalua&on	
•  Conclusion		

212	

Methodology	
•  Simulator	

–  	x86	event-driven	simulator	based	on	Simics	[Magnusson
+,	Computer’02]	

•  Workloads	
– SPEC2006	benchmarks,	TPC,	Apache	web	server	
– 1	–	4	core	simula&ons	for	1	billion	representa&ve	
instruc&ons	

•  System	Parameters	
– L1/L2/L3	cache	latencies	from	CACTI	[Thoziyoor+,	ISCA’08]	
– 4GHz,	x86	in-order	core,	512kB	-	16MB	L2,	simple	
memory	model	(300-cycle	latency	for	row-misses)	

213	

Compression	Ra2o:	BΔI	vs.	Prior	Work		

BΔI	achieves	the	highest	compression	ra&o	

214	

1	
1.2	
1.4	
1.6	
1.8	
2	

2.2	
		l
bm

		
		w

rf
		

		h
m
m
er
		

		s
ph

in
x3
		

		t
pc
h1

7	
	

		l
ib
qu

an
tu
m
		

		l
es
lie
3d

		
		g
ro
m
ac
s		

		s
je
ng
		

		m
cf
		

		h
26

4r
ef
		

		t
pc
h2

		
		o
m
ne

tp
p	
	

		a
pa
ch
e	
	

		b
zip

2	
	

		x
al
an
cb
m
k	
	

		a
st
ar
		

		t
pc
h6

		
		c
ac
tu
sA
DM

		
		g
cc
		

		s
op

le
x	
	

		g
ob

m
k	
	

		z
eu

sm
p	
	

		G
em

sF
DT

D	
	

Ge
oM

ea
n	Co
m
pr
es
si
on

	R
a2

o	

ZCA	 FVC		 FPC	 BΔI	
1.53	

SPEC2006,	databases,	web	workloads,	2MB	L2	

Single-Core:	IPC	and	MPKI	

215	

0.9	
1	

1.1	
1.2	
1.3	
1.4	
1.5	

N
or
m
al
iz
ed

	IP
C	

L2	cache	size	

Baseline	(no	compr.)	
BΔI	

8.1%	
5.2%	

5.1%	
4.9%	

5.6%	
3.6%	

0	
0.2	
0.4	
0.6	
0.8	
1	

N
or
m
al
iz
ed

	M
PK

I		
L2	cache	size	

Baseline	(no	compr.)	
BΔI	
16%	

24%	
21%	

13%	
19%	14%	

BΔI	achieves	the	performance	of	a	2X-size	cache	
Performance	improves	due	to	the	decrease	in	MPKI	

Mul2-Core	Workloads	
•  Applica&on	classifica&on	based	on		

Compressibility:	effec&ve	cache	size	increase	
(Low	Compr.	(LC)	<	1.40,	High	Compr.	(HC)	>=	1.40)	

Sensi2vity:	performance	gain	with	more	cache		
(Low	Sens.	(LS)	<	1.10,	High	Sens.	(HS)	>=	1.10;	512kB	->	2MB)	
		

•  Three	classes	of	applica&ons:	
–  LCLS,	HCLS,	HCHS,		no	LCHS	applica&ons	

•  For	2-core	-	random	mixes	of	each	possible	class	pairs		
(20	each,	120	total	workloads)	

216	

Mul2-Core:	Weighted	Speedup	

BΔI	performance	improvement	is	the	highest	(9.5%)	

4.5%	
3.4%	

4.3%	

10.9%	

16.5%	
18.0%	

9.5%	

0.95	

1.00	

1.05	

1.10	

1.15	

1.20	

LCLS	-	LCLS	 LCLS	-	HCLS	 HCLS	-	HCLS	 LCLS	-	HCHS	 HCLS	-	HCHS	HCHS	-	HCHS	

Low	Sensi&vity	 High	Sensi&vity	 GeoMean	

N
or
m
al
iz
ed

	W
ei
gh
te
d	
Sp
ee
du

p	 ZCA	 FVC	 FPC	 BΔI	

If	at	least	one	applica&on	is	sensi2ve,	then	the	
performance	improves	 217	

Other	Results	in	Paper	

•  IPC	comparison	against	upper	bounds	
–  BΔI	almost	achieves	performance	of	the	2X-size	cache	

•  Sensi&vity	study	of	having	more	than	2X	tags	
–  Up	to	1.98	average	compression	ra&o	

•  Effect	on	bandwidth	consump&on	
–  2.31X	decrease	on	average	

•  Detailed	quan&ta&ve	comparison	with	prior	work	
•  Cost	analysis	of	the	proposed	changes	

–  2.3%	L2	cache	area	increase	

218	

Conclusion	
•  A	new	Base-Delta-Immediate	compression	mechanism		
•  Key	insight:	many	cache	lines	can	be	efficiently	
represented	using	base	+	delta	encoding	

•  Key	proper&es:	
–  Low	latency	decompression		
–  Simple	hardware	implementa&on	
–  High	compression	ra2o	with	high	coverage		

•  Improves	cache	hit	raNo	and	performance	of	both	single-
core	and	mul&-core	workloads	
–  Outperforms	state-of-the-art	cache	compression	techniques:	
FVC	and	FPC	

	
219	

