
 
Computer Architecture 
Lecture 4: Main Memory 

and DRAM Fundamentals 
 
 

Prof. Onur Mutlu 
ETH Zürich 
Fall 2017 

28 September 2017 
 
 
 



My Office Hours Tomorrow 
n  Friday, 29 September 2017 
n  14:00-15:30 

2 



High-Level Summary of Last Lecture 
n  Issues in Caching 
n  More Effective Cache Design 
n  Memory Level Parallelism 
n  Miss Buffers (Miss Status Handling Registers) 

3 



Agenda for Today 
n  Enabling High Bandwidth Memories 
n  Main Memory System: A Broad Perspective 
n  DRAM Fundamentals and Operation 
n  Memory Controllers 

4 



Review: Hybrid Cache Replacement 
n  Problem: Not a single policy provides the highest performance 

q  For any given set 
q  For the entire cache overall 

n  Idea: Implement both policies and pick the one that is 
expected to perform best at runtime 
q  On a per-set basis or for the entire cache 
+ Higher performance 
-- Higher cost, complexity; Need selection mechanism 
 

n  How do you determine the best policy? 
q  Implement multiple tag stores, each following a particular policy 
q  Find the best and have the main tag store follow the best policy 

5 Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 2006. 
 



Required Reading on Hybrid Replacement 

n  Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N. Patt,  
"A Case for MLP-Aware Cache Replacement" 
Proceedings of the 
33rd International Symposium on Computer Architecture (ISCA), pages 
167-177, Boston, MA, June 2006. Slides (ppt) 

6 



Enabling High Bandwidth Memories 

 
 
 
 



Multiple Instructions per Cycle 
n  Processors can generate multiple cache/memory accesses 

per cycle 
n  How do we ensure the cache/memory can handle multiple 

accesses in the same clock cycle?  

n  Solutions: 
q  true multi-porting 
q  virtual multi-porting (time sharing a port) 
q  multiple cache copies 
q  banking (interleaving) 

8 



Handling Multiple Accesses per Cycle (I) 
n  True multiporting 

q  Each memory cell has multiple read or write ports 
+ Truly concurrent accesses (no conflicts on read accesses) 
-- Expensive in terms of latency, power, area 
q  What about read and write to the same location at the same 

time? 
n  Peripheral logic needs to handle this 

9 



Peripheral Logic for True Multiporting 

10 



Peripheral Logic for True Multiporting 

11 



Handling Multiple Accesses per Cycle (II) 
n  Virtual multiporting 

q  Time-share a single port 
q  Each access needs to be (significantly) shorter than clock cycle 
q  Used in Alpha 21264 
q  Is this scalable? 

12 



Cache 
Copy 1 

Handling Multiple Accesses per Cycle (III) 
n  Multiple cache copies 

q  Stores update both caches 
q  Loads proceed in parallel 

n  Used in Alpha 21164 

n  Scalability? 
q  Store operations cause a 

bottleneck 
q  Area proportional to “ports” 

13 

Port 1 
Load 

Store 

Port 1 
Data 

Cache 
Copy 2 Port 2 

Load 

Port 2 
Data 



Handling Multiple Accesses per Cycle (III) 
n  Banking (Interleaving) 

q  Address space partitioned into separate banks 
n  Bits in address determines which bank an address maps to 
n  Which bits to use for “bank address”? 

+ No increase in data store area 
-- Cannot satisfy multiple accesses  
    to the same bank in parallel 
-- Crossbar interconnect in input/output 
 

n  Bank conflicts 
q  Concurrent requests to the same bank 
q  How can these be reduced? 

n  Hardware? Software? 

14 

Bank 0: 
Even  

addresses 

Bank 1: 
Odd 

addresses 



General Principle: Interleaving 
n  Interleaving (banking) 

q  Problem: a single monolithic memory array takes long to 
access and does not enable multiple accesses in parallel 

q  Goal: Reduce the latency of memory array access and enable 
multiple accesses in parallel 

q  Idea: Divide the array into multiple banks that can be 
accessed independently (in the same cycle or in consecutive 
cycles) 
n  Each bank is smaller than the entire memory storage 
n  Access latencies to different banks can be overlapped 

q  A Key Issue: How do you map data to different banks? (i.e., 
how do you interleave data across banks?) 

15 



Further Readings on Caching and MLP 
n  Required: Qureshi et al., “A Case for MLP-Aware Cache 

Replacement,” ISCA 2006. 

n  One Pager: Glew, “MLP Yes! ILP No!,” ASPLOS Wild and Crazy 
Ideas Session, 1998. 

n  Mutlu et al., “Runahead Execution: An Effective Alternative to 
Large Instruction Windows,” IEEE Micro 2003. 

n  Li et al., “Utility-based Hybrid Memory Management,” 
CLUSTER 2017. 

n  Mutlu et al., “Parallelism-Aware Batch Scheduling,” ISCA 2008 
16 



The Main Memory System 

 
 
 
 



State-of-the-art in Main Memory (circa 2015) 

n  Recommended Reading 

n  Onur Mutlu and Lavanya Subramanian, 
"Research Problems and Opportunities in Memory 
Systems" 
Invited Article in 
Supercomputing Frontiers and Innovations (SUPERFRI), 
2014. 

18 



Required Readings on DRAM 
n  DRAM Organization and Operation Basics 

q  Sections 1 and 2 of: Lee et al., “Tiered-Latency DRAM: A Low 
Latency and Low Cost DRAM Architecture,” HPCA 2013. 

    https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf  
 
q  Sections 1 and 2 of Kim et al., “A Case for Subarray-Level 

Parallelism (SALP) in DRAM,” ISCA 2012. 
    https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf  
 

n  DRAM Refresh Basics 
q  Sections 1 and 2 of Liu et al., “RAIDR: Retention-Aware 

Intelligent DRAM Refresh,” ISCA 2012. 
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-
refresh_isca12.pdf  

19 



Reading on Simulating Main Memory 
n  How to evaluate future main memory systems? 
n  An open-source simulator and its brief description 

n  Yoongu Kim, Weikun Yang, and Onur Mutlu, 
"Ramulator: A Fast and Extensible DRAM Simulator" 
IEEE Computer Architecture Letters (CAL), March 2015.  
[Source Code]  

20 



Why Is Memory So Important? 
(Especially Today) 

 
 
 
 



The Performance Perspective 
n  “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996) 

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003. 



The Performance Perspective 

n  Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,  
"Runahead Execution: An Alternative to Very Large Instruction 
Windows for Out-of-order Processors" 
Proceedings of the 
9th International Symposium on High-Performance Computer 
Architecture (HPCA), pages 129-140, Anaheim, CA, February 2003. 
Slides (pdf)  

23 



The Energy Perspective 

24 

Dally, HiPEAC 2015 



The Energy Perspective 

25 

Dally, HiPEAC 2015 

A memory access consumes ~1000X  
the energy of a complex addition  



The Reliability Perspective 
n  Data from all of Facebook’s servers worldwide 
n  Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15. 

26 

Intuition: quadratic increase 
in 

capacity 



The Security Perspective 

27 



The Reliability & Security Perspectives 

28 https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf  

n  Onur Mutlu, 
"The RowHammer Problem and Other Issues We May Face as 
Memory Becomes Denser"  
Invited Paper in Proceedings of the 
Design, Automation, and Test in Europe Conference (DATE), Lausanne, 
Switzerland, March 2017.  
[Slides (pptx) (pdf)]  



Trends, Challenges, and Opportunities 
in Main Memory 

 
 
 
 



The Main Memory System 

 
 

n  Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor 

n  Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits 

30 

Processors 
and caches 

Main Memory Storage (SSD/HDD) 



The Main Memory System 

 
 

n  Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor 

n  Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits 

31 

Main Memory Storage (SSD/HDD) FPGAs 



The Main Memory System 

 
 

n  Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor 

n  Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits 

32 

Main Memory Storage (SSD/HDD) GPUs 



Memory System: A Shared Resource View 

33 

Storage 

Most of the system is dedicated to storing and moving data  



State of the Main Memory System 
n  Recent technology, architecture, and application trends 

q  lead to new requirements 
q  exacerbate old requirements 

n  DRAM and memory controllers, as we know them today, 
are (will be) unlikely to satisfy all requirements 

n  Some emerging non-volatile memory technologies (e.g., 
PCM) enable new opportunities: memory+storage merging 

n  We need to rethink the main memory system 
q  to fix DRAM issues and enable emerging technologies  
q  to satisfy all requirements 

 

34 



Major Trends Affecting Main Memory (I) 
n  Need for main memory capacity, bandwidth, QoS increasing  

n  Main memory energy/power is a key system design concern 

n  DRAM technology scaling is ending  
 

35 



Major Trends Affecting Main Memory (II) 
n  Need for main memory capacity, bandwidth, QoS increasing  

q  Multi-core: increasing number of cores/agents 
q  Data-intensive applications: increasing demand/hunger for data 
q  Consolidation: cloud computing, GPUs, mobile, heterogeneity 

n  Main memory energy/power is a key system design concern 

 
 
n  DRAM technology scaling is ending  
 

36 



Example: The Memory Capacity Gap 

 

n  Memory capacity per core expected to drop by 30% every two years 
n  Trends worse for memory bandwidth per core! 

37 

Core count doubling ~ every 2 years  
DRAM DIMM capacity doubling ~ every 3 years 

Lim et al., ISCA 2009 



1 

10 

100 

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017 

D
R

A
M

 Im
pr

ov
em

en
t 

(lo
g)

 Capacity Bandwidth Latency 

Example: Memory Bandwidth & Latency 

128x 

20x 

1.3x 

Memory latency remains almost constant 



DRAM Latency Is Critical for Performance 

In-Memory Data Analytics  
[Clapp+ (Intel), IISWC’15;   
 Awan+, BDCloud’15] 

Datacenter Workloads  
[Kanev+ (Google), ISCA’15] 

In-memory Databases  
[Mao+, EuroSys’12;  
Clapp+ (Intel), IISWC’15] 

Graph/Tree Processing  
[Xu+, IISWC’12; Umuroglu+, FPL’15] 



DRAM Latency Is Critical for Performance 

In-Memory Data Analytics  
[Clapp+ (Intel), IISWC’15;   
 Awan+, BDCloud’15] 

Datacenter Workloads  
[Kanev+ (Google), ISCA’15] 

In-memory Databases  
[Mao+, EuroSys’12;  
Clapp+ (Intel), IISWC’15] 

Graph/Tree Processing  
[Xu+, IISWC’12; Umuroglu+, FPL’15] 

Long memory latency → performance bottleneck




Major Trends Affecting Main Memory (III) 
n  Need for main memory capacity, bandwidth, QoS increasing  

 
n  Main memory energy/power is a key system design concern 

q  ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, 
IEEE Computer’03] >40% power in DRAM [Ware, HPCA’10][Paul,ISCA’15] 

q  DRAM consumes power even when not used (periodic refresh) 

n  DRAM technology scaling is ending  
 

41 



Major Trends Affecting Main Memory (IV) 
n  Need for main memory capacity, bandwidth, QoS increasing  

 
 
n  Main memory energy/power is a key system design concern 

 
n  DRAM technology scaling is ending  

q  ITRS projects DRAM will not scale easily below X nm  
q  Scaling has provided many benefits:  

n  higher capacity (density), lower cost, lower energy 

 
42 



Major Trends Affecting Main Memory (V) 
n  DRAM scaling has already become increasingly difficult 

q  Increasing cell leakage current, reduced cell reliability, 
increasing manufacturing difficulties [Kim+ ISCA 2014], 
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017] 

q  Difficult to significantly improve capacity, energy 

n  Emerging memory technologies are promising 

3D-Stacked DRAM higher bandwidth smaller capacity 
Reduced-Latency DRAM 
(e.g., RLDRAM, TL-DRAM) lower latency higher cost 

Low-Power DRAM 
(e.g., LPDDR3, LPDDR4) lower power higher latency 

higher cost 
Non-Volatile Memory (NVM) 
(e.g., PCM, STTRAM, ReRAM, 
3D Xpoint) 

larger capacity 
higher latency 

higher dynamic power 
lower endurance 

43 



Major Trends Affecting Main Memory (V) 
n  DRAM scaling has already become increasingly difficult 

q  Increasing cell leakage current, reduced cell reliability, 
increasing manufacturing difficulties [Kim+ ISCA 2014], 
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017] 

q  Difficult to significantly improve capacity, energy 

n  Emerging memory technologies are promising 

3D-Stacked DRAM higher bandwidth smaller capacity 
Reduced-Latency DRAM 
(e.g., RL/TL-DRAM, FLY-RAM) lower latency higher cost 

Low-Power DRAM 
(e.g., LPDDR3, LPDDR4, Voltron) lower power higher latency 

higher cost 
Non-Volatile Memory (NVM) 
(e.g., PCM, STTRAM, ReRAM, 3D 
Xpoint) 

larger capacity 
higher latency 

higher dynamic power 
lower endurance 

44 



Limits of Charge Memory 
n  Difficult charge placement and control 

q  Flash: floating gate charge 
q  DRAM: capacitor charge, transistor leakage 

n  Reliable sensing becomes difficult as charge 
storage unit size reduces 

45 



The DRAM Scaling Problem 
n  DRAM stores charge in a capacitor (charge-based memory) 

q  Capacitor must be large enough for reliable sensing 
q  Access transistor should be large enough for low leakage and high 

retention time 
q  Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009] 

n  DRAM capacity, cost, and energy/power hard to scale 
 

46 



As Memory Scales, It Becomes Unreliable 
n  Data from all of Facebook’s servers worldwide 
n  Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15. 

47 

Intuition: quadratic increase 
in 

capacity 



Large-Scale Failure Analysis of DRAM Chips 
n  Analysis and modeling of memory errors found in all of 

Facebook’s server fleet 

n  Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, 
"Revisiting Memory Errors in Large-Scale Production Data 
Centers: Analysis and Modeling of New Trends from the Field"  
Proceedings of the 
45th Annual IEEE/IFIP International Conference on Dependable 
Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.  
[Slides (pptx) (pdf)] [DRAM Error Model]  

48 



Infrastructures to Understand Such Issues 

49 Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014. 

Temperature 
Controller 

 

PC 

Heater FPGAs FPGAs 



SoftMC: Open Source DRAM Infrastructure 

n  Hasan Hassan et al., “
SoftMC: A Flexible and 
Practical Open-Source 
Infrastructure for Enabling 
Experimental DRAM Studies,” 
HPCA 2017. 

 
 
n  Flexible 
n  Easy to Use (C++ API) 
n  Open-source  
    github.com/CMU-SAFARI/SoftMC  

50 



SoftMC 

n  https://github.com/CMU-SAFARI/SoftMC  

 

51 



A Curious Discovery [Kim et al., ISCA 2014] 

 

One can  
predictably induce errors  

in most DRAM memory chips 

52 



DRAM RowHammer 

A simple hardware failure mechanism  
can create a widespread  

system security vulnerability 

53 



 Row of Cells

 Row

 Row

 Row

 Row


 Wordline


 VLOW
 VHIGH

 Vic2m Row


 Vic2m Row

 Hammered Row


Repeatedly reading a row enough 2mes (before memory gets 
refreshed) induces disturbance errors in adjacent rows in 
most real DRAM chips you can buy today


Opened
Closed


54


Modern DRAM is Prone to Disturbance Errors 

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)	



86%

(37/43)


83%

(45/54)


88%

(28/32)


A company
 B company
 C company


Up to

1.0×107 �

errors 


Up to

2.7×106�

errors 


Up to

3.3×105 �

errors 


55


Most DRAM Modules Are Vulnerable 

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)	



56


Recent DRAM Is More Vulnerable 



57


First

Appearance


Recent DRAM Is More Vulnerable 



58

All modules from 2012–2013 are vulnerable


First

Appearance


Recent DRAM Is More Vulnerable 



CPU


loop: 
  mov (X), %eax 
  mov (Y), %ebx 
  clflush (X)   
  clflush (Y) 
  mfence 
  jmp loop 

Download	from:	hMps://github.com/CMU-SAFARI/rowhammer		

DRAM Module


A Simple Program Can Induce Many Errors 

Y 

X 



CPU


Download	from:	hMps://github.com/CMU-SAFARI/rowhammer		

DRAM Module


A Simple Program Can Induce Many Errors 

Y 

X 1. Avoid cache hits

–  Flush X from cache


2. Avoid row hits to X 
–  Read Y in another row




CPU


loop: 
  mov (X), %eax 
  mov (Y), %ebx 
  clflush (X)   
  clflush (Y) 
  mfence 
  jmp loop 

Download	from:	hMps://github.com/CMU-SAFARI/rowhammer		

DRAM Module


A Simple Program Can Induce Many Errors 

 


 


Y 

X 



CPU


loop: 
  mov (X), %eax 
  mov (Y), %ebx 
  clflush (X)   
  clflush (Y) 
  mfence 
  jmp loop 

Download	from:	hMps://github.com/CMU-SAFARI/rowhammer		

DRAM Module


A Simple Program Can Induce Many Errors 

 


 


Y 

X 



CPU


 


 


loop: 
  mov (X), %eax 
  mov (Y), %ebx 
  clflush (X)   
  clflush (Y) 
  mfence 
  jmp loop 

Y 

X 

Download	from:	hMps://github.com/CMU-SAFARI/rowhammer		

DRAM Module


A Simple Program Can Induce Many Errors 
















A real reliability & security issue 


CPU Architecture
 Errors Access-Rate


Intel Haswell (2013)
 22.9K	 12.3M/sec	

Intel Ivy Bridge (2012)
 20.7K	 11.7M/sec	

Intel Sandy Bridge (2011)
 16.1K	 11.6M/sec	

AMD Piledriver (2012)
 59	 6.1M/sec	

64
Kim+, “Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	
DRAM	Disturbance	Errors,” ISCA 2014. 

Observed Errors in Real Systems 



One Can Take Over an Otherwise-Secure System 

65 

Exploiting the DRAM rowhammer bug to 
gain kernel privileges  (Seaborn, 2015) 

Flipping Bits in Memory Without Accessing Them: 
An Experimental Study of DRAM Disturbance Errors 
(Kim et al., ISCA 2014) 



RowHammer Security Attack Example 
n  “Rowhammer” is a problem with some recent DRAM devices in which 

repeatedly accessing a row of memory can cause bit flips in adjacent rows 
(Kim et al., ISCA 2014).  
q  Flipping Bits in Memory Without Accessing Them: An Experimental Study of 

DRAM Disturbance Errors (Kim et al., ISCA 2014) 

n  We tested a selection of laptops and found that a subset of them 
exhibited the problem.  

n  We built two working privilege escalation exploits that use this effect.  
q  Exploiting the DRAM rowhammer bug to gain kernel privileges  (Seaborn, 2015) 

n  One exploit uses rowhammer-induced bit flips to gain kernel privileges on 
x86-64 Linux when run as an unprivileged userland process.  

n  When run on a machine vulnerable to the rowhammer problem, the 
process was able to induce bit flips in page table entries (PTEs).  

n  It was able to use this to gain write access to its own page table, and 
hence gain read-write access to all of physical memory. 

66 Exploiting the DRAM rowhammer bug to gain kernel privileges  (Seaborn, 2015) 
 



Security Implications 

67 



More Security Implications 

68 Source: https://lab.dsst.io/32c3-slides/7197.html  

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16) 

“We can gain unrestricted access to systems of website visitors.” 



More Security Implications 

69 Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/ 

Drammer: Deterministic Rowhammer 
Attacks on Mobile Platforms, CCS’16  

“Can gain control of a smart phone deterministically” 



More Security Implications? 

70 



More on RowHammer Analysis 

71 

n  Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk 
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu, 
"Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors" 
Proceedings of the 
41st International Symposium on Computer Architecture (ISCA), 
Minneapolis, MN, June 2014.  
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [
Source Code and Data] 



1. Most Modules Are at Risk

2. Errors vs. Vintage

3. Error = Charge Loss

4. Adjacency: Aggressor & Vic2m

5. Sensi2vity Studies


6. Other Results in Paper

7. Solu2on Space


72


RowHammer Characterization Results 

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)	



Apple’s Patch for RowHammer 
n  https://support.apple.com/en-gb/HT204934  

HP, Lenovo, and other vendors released similar patches 



Our Solu2on

• PARA: ProbabilisAc Adjacent Row AcAvaAon


• Key Idea 

– A]er closing a row, we ac2vate (i.e., refresh) one of 

its neighbors with a low probability: p = 0.005


• Reliability Guarantee

– When p=0.005, errors in one year: 9.4×10-14

–  By adjus2ng the value of p, we can vary the strength 

of protec2on against errors


74
Kim+, “Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	
DRAM	Disturbance	Errors,” ISCA 2014. 



Advantages of PARA

•  PARA refreshes rows infrequently


–  Low power

–  Low performance-overhead


• Average slowdown: 0.20% (for 29 benchmarks)

• Maximum slowdown: 0.75% 


•  PARA is stateless

–  Low cost

–  Low complexity


•  PARA is an effecAve and low-overhead soluAon 
to prevent disturbance errors


75
Kim+, “Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	
DRAM	Disturbance	Errors,” ISCA 2014. 



Requirements for PARA

•  If implemented in DRAM chip


–  Enough slack in 2ming/refresh parameters

–  Plenty of slack today: 


•  Lee et al., “Adap2ve-Latency DRAM: Op2mizing DRAM 
Timing for the Common Case,” HPCA 2015.


•  Chang et al., “Understanding Latency Varia2on in Modern 
DRAM Chips,” SIGMETRICS 2016.


•  If implemented in memory controller

–  Beger coordina2on between memory controller 

and DRAM

– Memory controller should know which rows are 

physically adjacent





76




Industry Is Writing Papers About It, Too 

77 



Industry Is Writing Papers About It, Too 

78 



Future of Memory Reliability 

79 https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf  

n  Onur Mutlu, 
"The RowHammer Problem and Other Issues We May Face as 
Memory Becomes Denser"  
Invited Paper in Proceedings of the 
Design, Automation, and Test in Europe Conference (DATE), Lausanne, 
Switzerland, March 2017.  
[Slides (pptx) (pdf)]  



Aside: NAND Flash & SSD Scaling Issues 

USB Jack 

Virtex-II Pro 
(USB controller) 

Virtex-V FPGA 
(NAND Controller) 

HAPS-52 Mother Board 

USB Daughter Board 

NAND Daughter Board 

1x-nm 
NAND Flash 

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, 
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, PIEEE’17] 

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017. 



Aside: NAND Flash & SSD Scaling Issues 
n  Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu, 

"Error Characterization, Mitigation, and Recovery in Flash Memory Based 
Solid State Drives" 
to appear in Proceedings of the IEEE, 2017.  

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012. 
Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD 
2012. 
Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE 
2013. 
Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013. 
Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013. 
Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014. 
Cai+,”Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015. 
Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015.  
Luo+, “WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST 
2015. 
Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015. 
Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE 
JSAC 2016. 
Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation 
Techniques,” HPCA 2017. 
Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017.  

 
Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017. 



Aside: NAND Flash Errors and Mitigation 

82 

https://arxiv.org/pdf/1706.08642   

Proceedings of the IEEE, Sept. 2017 



Aside: NAND Flash Vulnerabilities 

83 

https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17.pdf  

HPCA, Feb. 2017 



Challenge and Opportunity for Future 

Fundamentally 
Secure, Reliable, Safe 
Memory Architectures 

84 



n  Fix it: Make memory and controllers more intelligent 
q  New interfaces, functions, architectures: system-mem codesign 

n  Eliminate or minimize it: Replace or (more likely) augment 
DRAM with a different technology 
q  New technologies and system-wide rethinking of memory & 

storage 

n  Embrace it: Design heterogeneous memories (none of which 
are perfect) and map data intelligently across them 
q  New models for data management and maybe usage 

n  … 

85 

Solu%ons	(to	memory	scaling)	require		
so5ware/hardware/device	coopera%on	

Microarchitecture 

ISA 

Programs 

Algorithms 
Problems 

Logic 

Devices 

Runtime System 
(VM, OS, MM) 

User 

How Do We Solve The Memory Problem? 



Solution 1: New Memory Architectures 

n  Overcome memory shortcomings with 
q  Memory-centric system design 
q  Novel memory architectures, interfaces, functions 
q  Better waste management (efficient utilization) 

n  Key issues to tackle 
q  Enable reliability at low cost à high capacity 
q  Reduce energy 
q  Reduce latency  
q  Improve bandwidth 
q  Reduce waste (capacity, bandwidth, latency) 
q  Enable computation close to data 

86 



Solution 1: New Memory Architectures 
n  Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 
n  Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012. 
n  Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013. 
n  Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013. 
n  Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013. 
n  Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013. 
n  Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014. 
n  Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 2014. 
n  Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014. 
n  Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014. 
n  Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015. 
n  Qureshi+, “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015. 
n  Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field,” DSN 2015. 
n  Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015. 
n  Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM,” IEEE CAL 2015. 
n  Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015. 
n  Ahn+, “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015. 
n  Lee+, “Decoupled Direct Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM,” PACT 2015. 
n  Seshadri+, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit Strided Accesses,” MICRO 2015. 
n  Lee+, “Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” TACO 2016. 
n  Hassan+, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access Locality,” HPCA 2016. 
n  Chang+, “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Migration in DRAM,” HPCA 2016. 
n  Chang+, “Understanding Latency Variation in Modern DRAM Chips Experimental Characterization, Analysis, and Optimization,” SIGMETRICS 2016. 
n  Khan+, “PARBOR: An Efficient System-Level Technique to Detect Data Dependent Failures in DRAM,” DSN 2016. 
n  Hsieh+, “Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems,” ISCA 2016. 
n  Hashemi+, “Accelerating Dependent Cache Misses with an Enhanced Memory Controller,” ISCA 2016. 
n  Boroumand+, “LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory,” IEEE CAL 2016. 
n  Pattnaik+, “Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities,” PACT 2016. 
n  Hsieh+, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation,” ICCD 2016. 
n  Hashemi+, “Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads,” MICRO 2016. 
n  Khan+, “A Case for Memory Content-Based Detection and Mitigation of Data-Dependent Failures in DRAM",” IEEE CAL 2016. 
n  Hassan+, “SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies,” HPCA 2017. 
n  Mutlu, “The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser,” DATE 2017. 
n  Lee+, “Design-Induced Latency Variation in Modern DRAM Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” SIGMETRICS 2017. 
n  Chang+, “Understanding Reduced-Voltage Operation in Modern DRAM Devices: Experimental Characterization, Analysis, and Mechanisms,” SIGMETRICS 2017. 
n  Patel+, “The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions,” ISCA 2017. 
n  Seshadri and Mutlu, “Simple Operations in Memory to Reduce Data Movement,” ADCOM 2017. 
n  Liu+, “Concurrent Data Structures for Near-Memory Computing,” SPAA 2017. 
n  Khan+, “Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content,” MICRO 2017. 
n  Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology,” MICRO 2017. 
n  Avoid DRAM: 

q  Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012. 
q  Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012. 
q  Seshadri+, “The Dirty-Block Index,” ISCA 2014. 
q  Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015. 
q  Vijaykumar+, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist Warps,” ISCA 2015. 
q  Pekhimenko+, “Toggle-Aware Bandwidth Compression for GPUs,” HPCA 2016. 

87 



Solution 2: Emerging Memory Technologies 
n  Some emerging resistive memory technologies seem more 

scalable than DRAM (and they are non-volatile) 

n  Example: Phase Change Memory 
q  Data stored by changing phase of material  
q  Data read by detecting material’s resistance 
q  Expected to scale to 9nm (2022 [ITRS 2009]) 
q  Prototyped at 20nm (Raoux+, IBM JRD 2008) 
q  Expected to be denser than DRAM: can store multiple bits/cell 

n  But, emerging technologies have (many) shortcomings 
q  Can they be enabled to replace/augment/surpass DRAM? 

88 



Solution 2: Emerging Memory Technologies 
n  Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, IEEE Micro’10. 
n  Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012. 
n  Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012. 
n  Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.  
n  Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013. 
n  Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014. 
n  Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014. 
n  Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014. 
n  Ren+, “ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015. 
n  Chauhan+, “NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016. 
n  Li+, “Utility-Based Hybrid Memory Management,” CLUSTER 2017. 
n  Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017. 

89 



Combination: Hybrid Memory Systems 

 

 
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 
Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 
2012 Best Paper Award. 
 

CPU 
DRAM
Ctrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Technology X (e.g., PCM) 

Hardware/software manage data allocation and movement  
to achieve the best of multiple technologies 



App/Data	A	 App/Data	B	 App/Data	C	

M
em

or
y	
er
ro
r	v

ul
ne

ra
bi
lit
y	

Vulnerable	
data	

Tolerant	
data	

ExploiSng	Memory	Error	Tolerance		
with	Hybrid	Memory	Systems	

Heterogeneous-Reliability	Memory	[DSN	2014]	

Low-cost	memory	Reliable	memory	

Vulnerable	
data	

Tolerant	
data	

Vulnerable	
data	

Tolerant	
data	

•  ECC	protected	
• Well-tested	chips	

•  NoECC	or	Parity	
•  Less-tested	chips	

91 

On	MicrosoY’s	Web	Search	workload	
Reduces	server	hardware	cost	by	4.7	%	
Achieves	single	server	availability	target	of	99.90	%	



More on Heterogeneous Reliability Memory 
n  Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman 

Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu, 
"Characterizing Application Memory Error Vulnerability to Optimize 
Data Center Cost via Heterogeneous-Reliability Memory"  
Proceedings of the 
44th Annual IEEE/IFIP International Conference on Dependable Systems and 
Networks (DSN), Atlanta, GA, June 2014. [Summary] [Slides (pptx) (pdf)] 
[Coverage on ZDNet]  

92 



An Orthogonal Issue: Memory Interference 

Main  
Memory 

93 

Core Core 

Core Core 

Cores’ interfere with each other when accessing shared main memory 
Uncontrolled interference leads to many problems (QoS, performance) 



n  Problem: Memory interference between cores is uncontrolled 
à unfairness, starvation, low performance 
à uncontrollable, unpredictable, vulnerable system 

 

n  Solution: QoS-Aware Memory Systems 
q  Hardware designed to provide a configurable fairness substrate  

n  Application-aware memory scheduling, partitioning, throttling 

q  Software designed to configure the resources to satisfy different 
QoS goals 

n  QoS-aware memory systems can provide predictable 
performance and higher efficiency 

An Orthogonal Issue: Memory Interference 



Goal: Predictable Performance in Complex Systems 

n  Heterogeneous agents: CPUs, GPUs, and HWAs  
n  Main memory interference between CPUs, GPUs, HWAs 

95 

CPU CPU CPU CPU 

Shared Cache 

GPU 

HWA HWA 

DRAM and Hybrid Memory Controllers 

DRAM and Hybrid Memories 

How to allocate resources to heterogeneous agents 
to mitigate interference and provide predictable performance?  



Strong Memory Service Guarantees 
n  Goal: Satisfy performance/SLA requirements in the 

presence of shared main memory, heterogeneous agents, 
and hybrid memory/storage 

n  Approach:  
q  Develop techniques/models to accurately estimate the 

performance loss of an application/agent in the presence of 
resource sharing 

q  Develop mechanisms (hardware and software) to enable the 
resource partitioning/prioritization needed to achieve the 
required performance levels for all applications 

q  All the while providing high system performance  

n  Subramanian et al., “MISE: Providing Performance Predictability and Improving Fairness 
in Shared Main Memory Systems,” HPCA 2013. 

n  Subramanian et al., “The Application Slowdown Model,” MICRO 2015. 
96 



How Can We Fix the Memory Problem &  
Design (Memory) Systems of the Future? 

 
 
 
 



Look Backward to Look Forward 
n  We first need to understand the principles of: 

q  Memory and DRAM 
q  Memory controllers 
q  Techniques for reducing and tolerating memory latency 
q  Potential memory technologies that can compete with DRAM 

n  This is what we will cover in the next lectures 

98 



Main Memory Fundamentals 

 
 
 
 



The Memory Chip/System Abstraction 

100 



Review: Memory Bank Organization 
n  Read access sequence: 

 1. Decode row address 
& drive word-lines 
  

      2. Selected bits drive 
bit-lines 
     • Entire row read 

       
      3. Amplify row data 
       
      4. Decode column 

address & select subset 
of row 

         • Send to output 
       
      5. Precharge bit-lines 
        • For next access 

101 



Review: SRAM (Static Random Access Memory) 

102 

bit-cell array 
 

2n row x 2m-col 
 

(n≈m to minimize 
overall latency) 

sense amp and mux 
2m diff pairs 

2n n 

m 

1 

row select 

bi
tli

ne
 

_b
itl

in
e 

n+m 

 Read Sequence 
1. address decode 
2. drive row select 
3. selected bit-cells drive bitlines 
   (entire row is read together) 

4. differential sensing and column select 
     (data is ready) 
5. precharge all bitlines 
     (for next read or write) 

   
 Access latency dominated by steps 2 and 3 
 Cycling time dominated by steps 2, 3 and 5 

-  step 2 proportional to 2m 

-  step 3 and 5 proportional to 2n 



Review: DRAM (Dynamic Random Access Memory) 

103 

row enable 
_b

itl
in

e 

bit-cell array 
 

2n row x 2m-col 
 

(n≈m to minimize 
overall latency) 

sense amp and mux 
2m 

2n n 

m 

1 

RAS 

CAS 
A DRAM die comprises  
of multiple such arrays 

Bits stored as charges on node 
capacitance (non-restorative) 

-  bit cell loses charge when read 
-  bit cell loses charge over time 

Read Sequence 
1~3 same as SRAM 
4. a “flip-flopping” sense amp 

amplifies and regenerates the 
bitline, data bit is mux’ed out 

5. precharge all bitlines 
 

Destructive reads 
Charge loss over time 
Refresh: A DRAM controller must 
periodically read each row within 
the allowed refresh time (10s of 
ms) such that charge is restored 
 



An Aside: Phase Change Memory 
n  Phase change material (chalcogenide glass) exists in two states: 

q  Amorphous: Low optical reflexivity and high electrical resistivity 
q  Crystalline: High optical reflexivity and low electrical resistivity 

104 

PCM is resistive memory:  High resistance (0), Low resistance (1) 

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM 
Alternative,” ISCA 2009. 



Review: DRAM vs. SRAM 
n  DRAM 

q  Slower access (capacitor) 
q  Higher density (1T 1C cell) 
q  Lower cost 
q  Requires refresh (power, performance, circuitry) 
q  Manufacturing requires putting capacitor and logic together 

n  SRAM 
q  Faster access (no capacitor) 
q  Lower density (6T cell) 
q  Higher cost 
q  No need for refresh 
q  Manufacturing compatible with logic process (no capacitor) 

105 



Some Fundamental Concepts (I) 
n  Physical address space 

q  Maximum size of main memory: total number of uniquely 
identifiable locations 

n  Physical addressability  
q  Minimum size of data in memory can be addressed 
q  Byte-addressable, word-addressable, 64-bit-addressable 
q  Microarchitectural addressability depends on the abstraction 

level of the implementation 

n  Alignment 
q  Does the hardware support unaligned access transparently to 

software? 

n  Interleaving 
106 



Some Fundamental Concepts (II) 
n  Interleaving (banking) 

q  Problem: a single monolithic memory array takes long to 
access and does not enable multiple accesses in parallel 

q  Goal: Reduce the latency of memory array access and enable 
multiple accesses in parallel 

q  Idea: Divide the array into multiple banks that can be 
accessed independently (in the same cycle or in consecutive 
cycles) 
n  Each bank is smaller than the entire memory storage 
n  Accesses to different banks can be overlapped 

q  A Key Issue: How do you map data to different banks? (i.e., 
how do you interleave data across banks?) 

107 



Interleaving 

108 



Interleaving Options 

109 



Some Questions/Concepts 
n  Remember CRAY-1 with 16 banks [From Digital Circuits] 

q  11 cycle bank latency; banks share address/data buses 
q  Consecutive words in memory in consecutive banks (word 

interleaving) 
q  1 access can be started (and finished) per cycle 

n  Can banks be operated fully in parallel? 
q  Multiple accesses started per cycle? 

n  What is the cost of this? 
q  We have seen it earlier 

n  Modern superscalar processors have L1 data caches with 
multiple, fully-independent banks; DRAM banks share buses 

110 



The Bank Abstraction 

111 



112 

Rank 



The DRAM Subsystem 

 
 
 
 



DRAM Subsystem Organization 

n  Channel 
n  DIMM 
n  Rank 
n  Chip 
n  Bank 
n  Row/Column 

114 



Page Mode DRAM 
n  A DRAM bank is a 2D array of cells: rows x columns 
n  A “DRAM row” is also called a “DRAM page” 
n  “Sense amplifiers” also called “row buffer” 

n  Each address is a <row,column> pair 
n  Access to a “closed row” 

q  Activate command opens row (placed into row buffer) 
q  Read/write command reads/writes column in the row buffer 
q  Precharge command closes the row and prepares the bank for 

next access 

n  Access to an “open row” 
q  No need for activate command 

115 



The DRAM Bank Structure 

116 



DRAM Bank Operation 

117 

Row Buffer 

(Row 0, Column 0) 

R
ow

 d
ec

od
er

 

Column mux 

Row address 0 

Column address 0 

Data 

Row 0 Empty 

  (Row 0, Column 1) 

Column address 1 

(Row 0, Column 85) 

Column address 85 

(Row 1, Column 0) 

HIT HIT 

Row address 1 

Row 1 

Column address 0 

CONFLICT ! 

Columns 

R
ow

s 

  Access Address:  



The DRAM Chip 
n  Consists of multiple banks (8 is a common number today) 
n  Banks share command/address/data buses 
n  The chip itself has a narrow interface (4-16 bits per read) 

n  Changing the number of banks, size of the interface (pins), 
whether or not command/address/data buses are shared 
has significant impact on DRAM system cost 

118 



128M x 8-bit DRAM Chip 

119 



DRAM Rank and Module 
n  Rank: Multiple chips operated together to form a wide 

interface 
n  All chips comprising a rank are controlled at the same time 

q  Respond to a single command 
q  Share address and command buses, but provide different data 

n  A DRAM module consists of one or more ranks 
q  E.g., DIMM (dual inline memory module) 
q  This is what you plug into your motherboard 

n  If we have chips with 8-bit interface, to read 8 bytes in a 
single access, use 8 chips in a DIMM 

120 



A 64-bit Wide DIMM (One Rank) 

121 

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Command Data



A 64-bit Wide DIMM (One Rank) 
n  Advantages: 

q  Acts like a high-
capacity DRAM chip 
with a wide 
interface 

q  Flexibility: memory 
controller does not 
need to deal with 
individual chips 

n  Disadvantages: 
q  Granularity: 

Accesses cannot be 
smaller than the 
interface width 

122 



Multiple DIMMs 

123 

n  Advantages: 
q  Enables even 

higher capacity 

n  Disadvantages: 
q  Interconnect 

complexity and 
energy 
consumption 
can be high 

   à Scalability is 
limited by this 



DRAM Channels 

 
n  2 Independent Channels: 2 Memory Controllers (Above) 
n  2 Dependent/Lockstep Channels: 1 Memory Controller with 

wide interface (Not shown above) 

124 



Generalized Memory Structure 

125 



Generalized Memory Structure 

126 

Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012. 



 
Computer Architecture 
Lecture 4: Main Memory 

and DRAM Fundamentals 
 
 

Prof. Onur Mutlu 
ETH Zürich 
Fall 2017 

28 September 2017 
 
 
 



We did not cover the following slides in lecture. 
These are for your preparation for the next lecture.  



The DRAM Subsystem 
The Top Down View 

 
 
 
 



DRAM Subsystem Organization 

n  Channel 
n  DIMM 
n  Rank 
n  Chip 
n  Bank 
n  Row/Column 
n  Cell 

130 



The	DRAM	subsystem	

Memory	channel	 Memory	channel	

DIMM	(Dual	in-line	memory	module)	

Processor	

“Channel”	



Breaking	down	a	DIMM	

DIMM	(Dual	in-line	memory	module)	

Side	view	

Front	of	DIMM	 Back	of	DIMM	



Breaking	down	a	DIMM	

DIMM	(Dual	in-line	memory	module)	

Side	view	

Front	of	DIMM	 Back	of	DIMM	

Rank	0:	collecSon	of	8	chips	 Rank	1	



Rank	

Rank	0	(Front)	 Rank	1	(Back)	

Data	<0:63>	CS	<0:1>	Addr/Cmd	

<0:63>	<0:63>	

Memory	channel	



Breaking	down	a	Rank	

Rank	0	

<0:63>	

Ch
ip
	0
	

Ch
ip
	1
	

Ch
ip
	7
	.	.	.	

<0
:7
>	

<8
:1
5>
	

<5
6:
63
>	

Data	<0:63>	



Breaking	down	a	Chip	

Ch
ip
	0
	

<0
:7
>	

Bank	0	

<0:7>	

<0:7>	

<0:7>	

...	

<0
:7
>	



Breaking	down	a	Bank	

Bank	0	

<0
:7
>	

row	0	

row	16k-1	

...	
2kB	

1B	

1B	(column)	

1B	

Row-buffer	

1B	

...	
<0
:7
>	



DRAM Subsystem Organization 

n  Channel 
n  DIMM 
n  Rank 
n  Chip 
n  Bank 
n  Row/Column 
n  Cell 

138 



Example:	Transferring	a	cache	block	

0xFFFF…F	

0x00	

0x40	

...
	

64B		
cache	block	

Physical	memory	space	

Channel	0	

DIMM	0	

Rank	0	
Mappe

d	to	



Example:	Transferring	a	cache	block	

0xFFFF…F	

0x00	

0x40	

...
	

64B		
cache	block	

Physical	memory	space	

Rank	0	Chip	0	 Chip	1	 Chip	7	

<0
:7
>	

<8
:1
5>
	

<5
6:
63
>	

Data	<0:63>	

.	.	.	



Example:	Transferring	a	cache	block	

0xFFFF…F	

0x00	

0x40	

...
	

64B		
cache	block	

Physical	memory	space	

Rank	0	Chip	0	 Chip	1	 Chip	7	

<0
:7
>	

<8
:1
5>
	

<5
6:
63
>	

Data	<0:63>	

Row	0	
Col	0	

.	.	.	



Example:	Transferring	a	cache	block	

0xFFFF…F	

0x00	

0x40	

...
	

64B		
cache	block	

Physical	memory	space	

Rank	0	Chip	0	 Chip	1	 Chip	7	

<0
:7
>	

<8
:1
5>
	

<5
6:
63
>	

Data	<0:63>	

8B	

Row	0	
Col	0	

.	.	.	

8B	



Example:	Transferring	a	cache	block	

0xFFFF…F	

0x00	

0x40	

...
	

64B		
cache	block	

Physical	memory	space	

Rank	0	Chip	0	 Chip	1	 Chip	7	

<0
:7
>	

<8
:1
5>
	

<5
6:
63
>	

Data	<0:63>	

8B	

Row	0	
Col	1	

.	.	.	



Example:	Transferring	a	cache	block	

0xFFFF…F	

0x00	

0x40	

...
	

64B		
cache	block	

Physical	memory	space	

Rank	0	Chip	0	 Chip	1	 Chip	7	

<0
:7
>	

<8
:1
5>
	

<5
6:
63
>	

Data	<0:63>	

8B	

8B	

Row	0	
Col	1	

.	.	.	

8B	



Example:	Transferring	a	cache	block	

0xFFFF…F	

0x00	

0x40	

...
	

64B		
cache	block	

Physical	memory	space	

Rank	0	Chip	0	 Chip	1	 Chip	7	

<0
:7
>	

<8
:1
5>
	

<5
6:
63
>	

Data	<0:63>	

8B	

8B	

Row	0	
Col	1	

A	64B	cache	block	takes	8	I/O	cycles	to	transfer.	
	

During	the	process,	8	columns	are	read	sequen%ally.	

.	.	.	



Latency Components: Basic DRAM Operation 

n  CPU → controller transfer time 
n  Controller latency 

q  Queuing & scheduling delay at the controller 
q  Access converted to basic commands 

n  Controller → DRAM transfer time 
n  DRAM bank latency 

q  Simple CAS (column address strobe) if row is “open” OR 
q  RAS (row address strobe) + CAS if array precharged OR 
q  PRE + RAS + CAS (worst case) 

n  DRAM → Controller transfer time 
q  Bus latency (BL) 

n  Controller to CPU transfer time 

146 



Multiple Banks (Interleaving) and Channels 
n  Multiple banks 

q  Enable concurrent DRAM accesses 
q  Bits in address determine which bank an address resides in 

n  Multiple independent channels serve the same purpose 
q  But they are even better because they have separate data buses 
q  Increased bus bandwidth 

n  Enabling more concurrency requires reducing 
q  Bank conflicts 
q  Channel conflicts 

n  How to select/randomize bank/channel indices in address? 
q  Lower order bits have more entropy 
q  Randomizing hash functions (XOR of different address bits) 

147 



How Multiple Banks Help 

148 



Address Mapping (Single Channel) 
n  Single-channel system with 8-byte memory bus 

q  2GB memory, 8 banks, 16K rows & 2K columns per bank 

n  Row interleaving 
q  Consecutive rows of memory in consecutive banks 

q  Accesses to consecutive cache blocks serviced in a pipelined manner 

n  Cache block interleaving 
n  Consecutive cache block addresses in consecutive banks 
n  64 byte cache blocks 

 
n  Accesses to consecutive cache blocks can be serviced in parallel 

149 

Column (11 bits) Bank (3 bits) Row (14 bits) Byte in bus (3 bits) 

Low Col.  High Column Row (14 bits) Byte in bus (3 bits) Bank (3 bits) 
3 bits 8 bits 



Bank Mapping Randomization 
n  DRAM controller can randomize the address mapping to 

banks so that bank conflicts are less likely 

n  Reading: 
q  Rau, “Pseudo-randomly Interleaved Memory,” ISCA 1991. 

150 

Column (11 bits) 3 bits Byte in bus (3 bits) 

XOR 

Bank index 
(3 bits) 



Address Mapping (Multiple Channels) 

n  Where are consecutive cache blocks? 

151 

Column (11 bits) Bank (3 bits) Row (14 bits) Byte in bus (3 bits) C

Column (11 bits) Bank (3 bits) Row (14 bits) Byte in bus (3 bits) C

Column (11 bits) Bank (3 bits) Row (14 bits) Byte in bus (3 bits) C

Column (11 bits) Bank (3 bits) Row (14 bits) Byte in bus (3 bits) C

Low Col.  High Column Row (14 bits) Byte in bus (3 bits) Bank (3 bits) 
3 bits 8 bits 

C

Low Col.  High Column Row (14 bits) Byte in bus (3 bits) Bank (3 bits) 
3 bits 8 bits 

C

Low Col.  High Column Row (14 bits) Byte in bus (3 bits) Bank (3 bits) 
3 bits 8 bits 

C

Low Col.  High Column Row (14 bits) Byte in bus (3 bits) Bank (3 bits) 
3 bits 8 bits 

C

Low Col.  High Column Row (14 bits) Byte in bus (3 bits) Bank (3 bits) 
3 bits 8 bits 

C



Interaction with VirtualàPhysical Mapping 
n  Operating System influences where an address maps to in 

DRAM 

n  Operating system can influence which bank/channel/rank a 
virtual page is mapped to.  

n  It can perform page coloring to  
q  Minimize bank conflicts 
q  Minimize inter-application interference [Muralidhara+ MICRO’11] 

q  Minimize latency in the network [Das+ HPCA’13] 
152 

Column (11 bits) Bank (3 bits) Row (14 bits) Byte in bus (3 bits) 

Page offset (12 bits) Physical Frame number (19 bits) 

Page offset (12 bits) Virtual Page number (52 bits) VA 

PA 
PA 



More on Reducing Bank Conflicts 
n  Read Sections 1 through 4 of: 

q  Kim et al., “A Case for Exploiting Subarray-Level Parallelism in 
DRAM,” ISCA 2012. 

153 



DRAM Refresh (I) 
n  DRAM capacitor charge leaks over time 
n  The memory controller needs to read each row periodically 

to restore the charge 
q  Activate + precharge each row every N ms 
q  Typical N = 64 ms 

n  Implications on performance? 
-- DRAM bank unavailable while refreshed 
-- Long pause times: If we refresh all rows in burst, every 64ms 

the DRAM will be unavailable until refresh ends 
n  Burst refresh: All rows refreshed immediately after one 

another 
n  Distributed refresh: Each row refreshed at a different time, 

at regular intervals 

154 



DRAM Refresh (II) 

n  Distributed refresh eliminates long pause times 
n  How else we can reduce the effect of refresh on 

performance? 
q  Can we reduce the number of refreshes? 

155 



-- Energy consumption: Each refresh consumes energy 
-- Performance degradation: DRAM rank/bank unavailable while 
refreshed 
-- QoS/predictability impact: (Long) pause times during refresh 
-- Refresh rate limits DRAM density scaling  

 

Downsides of DRAM Refresh 

156 

Liu et al., “RAIDR: Retention-aware Intelligent DRAM Refresh,” ISCA 2012. 



Memory Controllers 

 
 
 
 



DRAM versus Other Types of Memories 

n  Long latency memories have similar characteristics that 
need to be controlled. 

n  The following discussion will use DRAM as an example, but 
many scheduling and control issues are similar in the 
design of controllers for other types of memories 
q  Flash memory 
q  Other emerging memory technologies 

n  Phase Change Memory 
n  Spin-Transfer Torque Magnetic Memory 

q  These other technologies can place other demands on the 
controller 

158 



Flash Memory (SSD) Controllers 
n  Similar to DRAM memory controllers, except: 

q  They are flash memory specific 
q  They do much more: error correction, garbage collection, 

page remapping, … 

159 Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory 
Lifetime”, ICCD 2012. 



DRAM Types 
n  DRAM has different types with different interfaces optimized 

for different purposes 
q  Commodity: DDR, DDR2, DDR3, DDR4, … 
q  Low power (for mobile): LPDDR1, …, LPDDR5, … 
q  High bandwidth (for graphics): GDDR2, …, GDDR5, … 
q  Low latency: eDRAM, RLDRAM, … 
q  3D stacked: WIO, HBM, HMC, … 
q  … 

n  Underlying microarchitecture is fundamentally the same 
n  A flexible memory controller can support various DRAM types  
n  This complicates the memory controller 

q  Difficult to support all types (and upgrades) 

160 



DRAM Types (circa 2015) 

161 

Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE Comp Arch Letters 2015. 



DRAM Controller: Functions 
n  Ensure correct operation of DRAM (refresh and timing) 

n  Service DRAM requests while obeying timing constraints of 
DRAM chips 
q  Constraints: resource conflicts (bank, bus, channel), minimum 

write-to-read delays 
q  Translate requests to DRAM command sequences 

n  Buffer and schedule requests to for high performance + QoS 
q  Reordering, row-buffer, bank, rank, bus management 

n  Manage power consumption and thermals in DRAM 
q  Turn on/off DRAM chips, manage power modes 

162 



DRAM Controller: Where to Place 
n  In chipset 

+ More flexibility to plug different DRAM types into the system 
    + Less power density in the CPU chip 

 
n  On CPU chip 

+ Reduced latency for main memory access 
+ Higher bandwidth between cores and controller 

n  More information can be communicated (e.g. request’s 
importance in the processing core) 

163 



A Modern DRAM Controller (I) 

164 



165 

A Modern DRAM Controller 



DRAM Scheduling Policies (I) 
n  FCFS (first come first served) 

q  Oldest request first 

n  FR-FCFS (first ready, first come first served) 
1. Row-hit first 
2. Oldest first 
Goal: Maximize row buffer hit rate à maximize DRAM throughput 
 
q  Actually, scheduling is done at the command level 

n  Column commands (read/write) prioritized over row commands 
(activate/precharge) 

n  Within each group, older commands prioritized over younger ones 

 
166 



Review: DRAM Bank Operation 

167 

Row Buffer 

(Row 0, Column 0) 

R
ow

 d
ec

od
er

 

Column mux 

Row address 0 

Column address 0 

Data 

Row 0 Empty 

  (Row 0, Column 1) 

Column address 1 

(Row 0, Column 85) 

Column address 85 

(Row 1, Column 0) 

HIT HIT 

Row address 1 

Row 1 

Column address 0 

CONFLICT ! 

Columns 

R
ow

s 

  Access Address:  



DRAM Scheduling Policies (II) 
n  A scheduling policy is a request prioritization order 

n  Prioritization can be based on 
q  Request age 
q  Row buffer hit/miss status 
q  Request type (prefetch, read, write) 
q  Requestor type (load miss or store miss) 
q  Request criticality 

n  Oldest miss in the core? 
n  How many instructions in core are dependent on it? 
n  Will it stall the processor? 

q  Interference caused to other cores 
q  … 

168 



Row Buffer Management Policies 
n  Open row 

q  Keep the row open after an access 
+ Next access might need the same row à row hit 
-- Next access might need a different row à row conflict, wasted energy 

n  Closed row 
q  Close the row after an access (if no other requests already in the request 

buffer need the same row) 
+ Next access might need a different row à avoid a row conflict 
-- Next access might need the same row à extra activate latency 

 
n  Adaptive policies 

q  Predict whether or not the next access to the bank will be to 
the same row 

169 



Open vs. Closed Row Policies 

Policy First access Next access Commands 
needed for next 
access 

Open row Row 0 Row 0 (row hit) Read  

Open row Row 0 Row 1 (row 
conflict) 

Precharge + 
Activate Row 1 + 
Read 

Closed row Row 0 Row 0 – access in 
request buffer  
(row hit) 

Read 

Closed row Row 0 Row 0 – access not 
in request buffer 
(row closed) 

Activate Row 0 + 
Read + Precharge 

Closed row Row 0 Row 1 (row closed) Activate Row 1 + 
Read + Precharge 

170 



DRAM Power Management 
n  DRAM chips have power modes 
n  Idea: When not accessing a chip power it down 

n  Power states 
q  Active (highest power) 
q  All banks idle 
q  Power-down 
q  Self-refresh (lowest power) 

n  Tradeoff: State transitions incur latency during which the 
chip cannot be accessed 

171 



Difficulty of DRAM Control 

 
 
 
 



Why are DRAM Controllers Difficult to Design? 

n  Need to obey DRAM timing constraints for correctness 
q  There are many (50+) timing constraints in DRAM 
q  tWTR: Minimum number of cycles to wait before issuing a read 

command after a write command is issued 
q  tRC: Minimum number of cycles between the issuing of two consecutive 

activate commands to the same bank 
q  … 

n  Need to keep track of many resources to prevent conflicts 
q  Channels, banks, ranks, data bus, address bus, row buffers 

n  Need to handle DRAM refresh 
n  Need to manage power consumption 
n  Need to optimize performance & QoS (in the presence of constraints) 

q  Reordering is not simple 
q  Fairness and QoS needs complicates the scheduling problem 

173 



Many DRAM Timing Constraints 

n  From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing 
Write-Caused Interference in Memory Systems,” HPS Technical Report, 
April 2010. 

174 



More on DRAM Operation 
n  Kim et al., “A Case for Exploiting Subarray-Level Parallelism 

(SALP) in DRAM,” ISCA 2012. 
n  Lee et al., “Tiered-Latency DRAM: A Low Latency and Low 

Cost DRAM Architecture,” HPCA 2013. 

175 



DRAM Controller Design Is Becoming More Difficult 

n  Heterogeneous agents: CPUs, GPUs, and HWAs  
n  Main memory interference between CPUs, GPUs, HWAs 
n  Many timing constraints for various memory types 
n  Many goals at the same time: performance, fairness, QoS, 

energy efficiency, … 
176 

CPU CPU CPU CPU 

Shared Cache 

GPU 

HWA HWA 

DRAM and Hybrid Memory Controllers 

DRAM and Hybrid Memories 



Reality and Dream 
n  Reality: It difficult to optimize all these different constraints 

while maximizing performance, QoS, energy-efficiency, …  

n  Dream: Wouldn’t it be nice if the DRAM controller 
automatically found a good scheduling policy on its own? 

177 



Self-Optimizing DRAM Controllers 
n  Problem: DRAM controllers difficult to design à It is difficult for 

human designers to design a policy that can adapt itself very well 
to different workloads and different system conditions 

n  Idea: Design a memory controller that adapts its scheduling 
policy decisions to workload behavior and system conditions 
using machine learning. 

n  Observation: Reinforcement learning maps nicely to memory 
control. 

n  Design: Memory controller is a reinforcement learning agent that 
dynamically and continuously learns and employs the best 
scheduling policy. 

178 Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008. 



Self-Optimizing DRAM Controllers 
n  Engin Ipek, Onur Mutlu, José F. Martínez, and Rich 

Caruana,  
"Self Optimizing Memory Controllers: A 
Reinforcement Learning Approach" 
Proceedings of the 
35th International Symposium on Computer Architecture 
(ISCA), pages 39-50, Beijing, China, June 2008. 

179 

Goal: Learn to choose actions to maximize r0 + γr1 + γ2r2 + … ( 0 ≤ γ < 1)  



Self-Optimizing DRAM Controllers 
n  Dynamically adapt the memory scheduling policy via 

interaction with the system at runtime  
q  Associate system states and actions (commands) with long term 

reward values: each action at a given state leads to a learned reward 
q  Schedule command with highest estimated long-term reward value in 

each state 
q  Continuously update reward values for <state, action> pairs based on 

feedback from system 

180 



Self-Optimizing DRAM Controllers 
n  Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,  

"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach" 
Proceedings of the 35th International Symposium on Computer Architecture 
(ISCA), pages 39-50, Beijing, China, June 2008. 

181 



States, Actions, Rewards 

182 

❖  Reward function 

•  +1 for scheduling 
Read and Write 
commands 

•  0 at all other 
times 

Goal is to maximize 
data bus 
utilization 

  

❖  State attributes 

•  Number of reads, 
writes, and load 
misses in 
transaction queue 

•  Number of pending 
writes and ROB 
heads waiting for 
referenced row 

•  Request’s relative 
ROB order 

  

❖  Actions 

•  Activate 

•  Write 

•  Read - load miss 

•  Read - store miss 

•  Precharge - pending 

•  Precharge - preemptive 

•  NOP 

 

  



Performance Results 

183 



Self Optimizing DRAM Controllers 
n  Advantages 

+ Adapts the scheduling policy dynamically to changing workload 
behavior and to maximize a long-term target 
+ Reduces the designer’s burden in finding a good scheduling 
policy. Designer specifies: 

 1) What system variables might be useful 
 2) What target to optimize, but not how to optimize it 

 
n  Disadvantages and Limitations 

-- Black box: designer much less likely to implement what she  
cannot easily reason about 
-- How to specify different reward functions that can achieve 
different objectives? (e.g., fairness, QoS) 
-- Hardware complexity? 

184 



More on Self-Optimizing DRAM Controllers 
n  Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,  

"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach" 
Proceedings of the 35th International Symposium on Computer Architecture 
(ISCA), pages 39-50, Beijing, China, June 2008. 

185 



Evaluating New Ideas  
for New (Memory) Architectures 

 
 
 
 



Simulation: The Field of Dreams 

 
 
 
 



Dreaming and Reality 
n  An architect is in part a dreamer, a creator 

n  Simulation is a key tool of the architect 

n  Simulation enables 
q  The exploration of many dreams 
q  A reality check of the dreams 
q  Deciding which dream is better 

n  Simulation also enables 
q  The ability to fool yourself with false dreams 

188 



Why High-Level Simulation? 
n  Problem: RTL simulation is intractable for design space 

exploration à too time consuming to design and evaluate 
q  Especially over a large number of workloads 
q  Especially if you want to predict the performance of a good 

chunk of a workload on a particular design 
q  Especially if you want to consider many design choices 

n  Cache size, associativity, block size, algorithms 
n  Memory control and scheduling algorithms 
n  In-order vs. out-of-order execution 
n  Reservation station sizes, ld/st queue size, register file size, … 
n  … 

n  Goal: Explore design choices quickly to see their impact on 
the workloads we are designing the platform for 

189 



Different Goals in Simulation 
n  Explore the design space quickly and see what you want to 

q  potentially implement in a next-generation platform 
q  propose as the next big idea to advance the state of the art 
q  the goal is mainly to see relative effects of design decisions 

n  Match the behavior of an existing system so that you can 
q  debug and verify it at cycle-level accuracy 
q  propose small tweaks to the design that can make a difference in 

performance or energy 
q  the goal is very high accuracy 

n  Other goals in-between: 
q  Refine the explored design space without going into a full 

detailed, cycle-accurate design 
q  Gain confidence in your design decisions made by higher-level 

design space exploration 
190 



Tradeoffs in Simulation 
n  Three metrics to evaluate a simulator 

q  Speed 
q  Flexibility 
q  Accuracy 

n  Speed: How fast the simulator runs (xIPS, xCPS) 
n  Flexibility: How quickly one can modify the simulator to 

evaluate different algorithms and design choices? 
n  Accuracy: How accurate the performance (energy) numbers 

the simulator generates are vs. a real design (Simulation 
error) 

n  The relative importance of these metrics varies depending 
on where you are in the design process 

191 



Trading Off Speed, Flexibility, Accuracy 
n  Speed & flexibility affect: 

q  How quickly you can make design tradeoffs 

n  Accuracy affects: 
q  How good your design tradeoffs may end up being 
q  How fast you can build your simulator (simulator design time) 

n  Flexibility also affects: 
q  How much human effort you need to spend modifying the 

simulator 

n  You can trade off between the three to achieve design 
exploration and decision goals 

 
192 



High-Level Simulation 
n  Key Idea: Raise the abstraction level of modeling to give up 

some accuracy to enable speed & flexibility (and quick 
simulator design) 

 

n  Advantage 
+ Can still make the right tradeoffs, and can do it quickly 
    + All you need is modeling the key high-level factors, you can 
omit corner case conditions 
    + All you need is to get the “relative trends” accurately, not 
exact performance numbers 
 

n  Disadvantage 
-- Opens up the possibility of potentially wrong decisions 
   -- How do you ensure you get the “relative trends” accurately? 
 193 



Simulation as Progressive Refinement 
n  High-level models (Abstract, C) 
n  … 
n  Medium-level models (Less abstract) 
n  … 
n  Low-level models (RTL with eveything modeled) 
n  … 
n  Real design 
 
n  As you refine (go down the above list) 

q  Abstraction level reduces 
q  Accuracy (hopefully) increases (not necessarily, if not careful) 
q  Speed and flexibility reduce 
q  You can loop back and fix higher-level models 

194 



Making The Best of Architecture 
n  A good architect is comfortable at all levels of refinement 

q  Including the extremes 

n  A good architect knows when to use what type of 
simulation 

195 



Ramulator: A Fast and Extensible 
DRAM Simulator  

 [IEEE Comp Arch Letters’15] 

196 



Ramulator Motivation 
n  DRAM and Memory Controller landscape is changing 
n  Many new and upcoming standards 
n  Many new controller designs 
n  A fast and easy-to-extend simulator is very much needed 

197 



Ramulator  
n  Provides out-of-the box support for many DRAM standards: 

q  DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new 
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP) 

n  ~2.5X faster than fastest open-source simulator 
n  Modular and extensible to different standards 

198 



Case Study: Comparison of DRAM Standards 

199 

Across 22 
workloads, 
simple CPU 
model 



Ramulator Paper and Source Code 
n  Yoongu Kim, Weikun Yang, and Onur Mutlu, 

"Ramulator: A Fast and Extensible DRAM Simulator" 
IEEE Computer Architecture Letters (CAL), March 2015.  
[Source Code]  

n  Source code is released under the liberal MIT License 
q  https://github.com/CMU-SAFARI/ramulator  

200 



Extra Credit Assignment 
n  Review the Ramulator paper 

q  Send your reviews to me (omutlu@gmail.com)  

n  Download and run Ramulator 
q  Compare DDR3, DDR4, SALP, HBM for the libquantum 

benchmark (provided in Ramulator repository) 
q  Upload your brief report to Moodle and send an email to our 

instructor mailing list 

201 


