

Computer Architecture
Lecture 9: GPUs and

GPGPU Programming

Prof. Onur Mutlu
ETH Zürich
Fall 2017

19 October 2017

Agenda for Today
n  GPUs

n  Introduction to GPU Programming

2

Digitaltechnik (Spring 2017) YouTube videos
Lecture 21: GPUs
https://youtu.be/MUPTdxl3JKs?t=23m17s

GPUs (Graphics Processing Units)

GPUs are SIMD Engines Underneath
n  The instruction pipeline operates like a SIMD pipeline (e.g.,

an array processor)

n  However, the programming is done using threads, NOT
SIMD instructions

n  To understand this, let’s go back to our parallelizable code
example

n  But, before that, let’s distinguish between
q  Programming Model (Software)

 vs.
q  Execution Model (Hardware)

4

Programming Model vs. Hardware Execution Model

n  Programming Model refers to how the programmer expresses
the code
q  E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,

Multi-threaded (MIMD, SPMD), …

n  Execution Model refers to how the hardware executes the
code underneath
q  E.g., Out-of-order execution, Vector processor, Array processor,

Dataflow processor, Multiprocessor, Multithreaded processor, …

n  Execution Model can be very different from the Programming
Model
q  E.g., von Neumann model implemented by an OoO processor
q  E.g., SPMD model implemented by a SIMD processor (a GPU)

5

How Can You Exploit Parallelism Here?

6

for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Let’s examine three programming
options to exploit instruction-level

parallelism present in this sequential
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)

Prog. Model 1: Sequential (SISD)

7

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code n  Can be executed on a:

n  Pipelined processor

n  Out-of-order execution processor
q  Independent instructions executed

when ready
q  Different iterations are present in the

instruction window and can execute in
parallel in multiple functional units

q  In other words, the loop is dynamically
unrolled by the hardware

n  Superscalar or VLIW processor
q  Can fetch and execute multiple

instructions per cycle

for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 2: Data Parallel (SIMD)

8

for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

Best executed by a SIMD processor (vector, array)

VLD A à V1

VLD B à V2

VADD V1 + V2 à V3

VST V3 à C

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 3: Multithreaded

9

for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

Prog. Model 3: Multithreaded

10

for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machine Can be executed on a SIMT machine
Single Instruction Multiple Thread

A GPU is a SIMD (SIMT) Machine
n  Except it is not programmed using SIMD instructions

n  It is programmed using threads (SPMD programming model)
q  Each thread executes the same code but operates a different

piece of data
q  Each thread has its own context (i.e., can be treated/restarted/

executed independently)

n  A set of threads executing the same instruction are
dynamically grouped into a warp (wavefront) by the
hardware
q  A warp is essentially a SIMD operation formed by hardware!

11

Warp 0 at PC X+3

Warp 0 at PC X+2

Warp 0 at PC X+1

SPMD on SIMT Machine

12

for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machine A GPU executes it using the SIMT model:
Single Instruction Multiple Thread

Warp 0 at PC X

Warp: A set of threads that execute
the same instruction (i.e., at the same PC)

Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)

SIMD vs. SIMT Execution Model
n  SIMD: A single sequential instruction stream of SIMD

instructions à each instruction specifies multiple data inputs
q  [VLD, VLD, VADD, VST], VLEN

n  SIMT: Multiple instruction streams of scalar instructions à
threads grouped dynamically into warps
q  [LD, LD, ADD, ST], NumThreads

n  Two Major SIMT Advantages:
q  Can treat each thread separately à i.e., can execute each thread

independently (on any type of scalar pipeline) à MIMD processing
q  Can group threads into warps flexibly à i.e., can group threads

that are supposed to truly execute the same instruction à
dynamically obtain and maximize benefits of SIMD processing

14

Multithreading of Warps

15

for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Warp 0 at PC X

n  Assume a warp consists of 32 threads
n  If you have 32K iterations, and 1 iteration/thread à 1K warps
n  Warps can be interleaved on the same pipeline à Fine grained

multithreading of warps

Warp 1 at PC X

Iter.
33

Iter.
34

Warp 20 at PC X+2

Iter.
20*32 + 1

Iter.
20*32 + 2

Warps and Warp-Level FGMT
n  Warp: A set of threads that execute the same instruction

(on different data elements) à SIMT (Nvidia-speak)
n  All threads run the same code
n  Warp: The threads that run lengthwise in a woven fabric …

16

Thread Warp 3
Thread Warp 8

Thread Warp 7

Thread Warp
Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline

High-Level View of a GPU

17

Latency Hiding via Warp-Level FGMT
n  Warp: A set of threads that

execute the same instruction
(on different data elements)

n  Fine-grained multithreading
q  One instruction per thread in

pipeline at a time (No
interlocking)

q  Interleave warp execution to
hide latencies

n  Register values of all threads stay
in register file

n  FGMT enables long latency
tolerance
q  Millions of pixels

18

Decode

R F

R F

R F

A L U

A L U

A L U

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2 Data All Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt

Warp Execution (Recall the Slide)

19

32-thread warp executing ADD A[tid],B[tid] à C[tid]

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

20

Lane

Functional Unit

Registers
for each
Thread

Memory Subsystem

Registers for
thread IDs
0, 4, 8, …

Registers for
thread IDs
1, 5, 9, …

Registers for
thread IDs
2, 6, 10, …

Registers for
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

SIMD Execution Unit Structure

Warp Instruction Level Parallelism
Can overlap execution of multiple instructions

q  Example machine has 32 threads per warp and 8 lanes
q  Completes 24 operations/cycle while issuing 1 warp/cycle

21

W3

W0
W1

W4

W2

W5

Load Unit Multiply Unit Add Unit

time

Warp issue

Slide credit: Krste Asanovic

n  Same instruction in different threads uses thread id to index
and access different data elements

SIMT Memory Access

Let’s assume N=16, 4 threads per warp à 4 warps

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Threads

Data elements

Warp 0 Warp 1 Warp 2 Warp 3

Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100000 threads
__global__ void KernelFunction(…) {
 int tid = blockDim.x * blockIdx.x + threadIdx.x;
 int varA = aa[tid];
 int varB = bb[tid];
 C[tid] = varA + varB;
}

CPU code

CUDA code

Slide credit: Hyesoon Kim

Sample GPU Program (Less Simplified)

24 Slide credit: Hyesoon Kim

Warp-based SIMD vs. Traditional SIMD
n  Traditional SIMD contains a single thread

q  Sequential instruction execution; lock-step operations in a SIMD instruction
q  Programming model is SIMD (no extra threads) à SW needs to know

vector length
q  ISA contains vector/SIMD instructions

n  Warp-based SIMD consists of multiple scalar threads executing in a
SIMD manner (i.e., same instruction executed by all threads)
q  Does not have to be lock step
q  Each thread can be treated individually (i.e., placed in a different warp)

à programming model not SIMD
n  SW does not need to know vector length
n  Enables multithreading and flexible dynamic grouping of threads

q  ISA is scalar à SIMD operations can be formed dynamically
q  Essentially, it is SPMD programming model implemented on SIMD

hardware
25

SPMD
n  Single procedure/program, multiple data

q  This is a programming model rather than computer organization

n  Each processing element executes the same procedure, except on
different data elements
q  Procedures can synchronize at certain points in program, e.g. barriers

n  Essentially, multiple instruction streams execute the same
program
q  Each program/procedure 1) works on different data, 2) can execute a

different control-flow path, at run-time
q  Many scientific applications are programmed this way and run on MIMD

hardware (multiprocessors)
q  Modern GPUs programmed in a similar way on a SIMD hardware

26

SIMD vs. SIMT Execution Model
n  SIMD: A single sequential instruction stream of SIMD

instructions à each instruction specifies multiple data inputs
q  [VLD, VLD, VADD, VST], VLEN

n  SIMT: Multiple instruction streams of scalar instructions à
threads grouped dynamically into warps
q  [LD, LD, ADD, ST], NumThreads

n  Two Major SIMT Advantages:
q  Can treat each thread separately à i.e., can execute each thread

independently on any type of scalar pipeline à MIMD processing
q  Can group threads into warps flexibly à i.e., can group threads

that are supposed to truly execute the same instruction à
dynamically obtain and maximize benefits of SIMD processing

27

Threads Can Take Different Paths in Warp-based SIMD

n  Each thread can have conditional control flow instructions
n  Threads can execute different control flow paths

28

Thread Warp Common PC

Thread
2

Thread
3

Thread
4

Thread
1

B

C D

E

F

A

G

Slide credit: Tor Aamodt

Control Flow Problem in GPUs/SIMT
n  A GPU uses a SIMD

pipeline to save area
on control logic.
q  Groups scalar threads

into warps

n  Branch divergence
occurs when threads
inside warps branch to
different execution
paths.

29

Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

This is the same as conditional/predicated/masked execution.
Recall the Vector Mask and Masked Vector Operations?

Remember: Each Thread Is Independent
n  Two Major SIMT Advantages:

q  Can treat each thread separately à i.e., can execute each thread
independently on any type of scalar pipeline à MIMD processing

q  Can group threads into warps flexibly à i.e., can group threads
that are supposed to truly execute the same instruction à
dynamically obtain and maximize benefits of SIMD processing

n  If we have many threads
n  We can find individual threads that are at the same PC
n  And, group them together into a single warp dynamically
n  This reduces “divergence” à improves SIMD utilization

q  SIMD utilization: fraction of SIMD lanes executing a useful
operation (i.e., executing an active thread)

30

Dynamic Warp Formation/Merging
n  Idea: Dynamically merge threads executing the same

instruction (after branch divergence)
n  Form new warps from warps that are waiting

q  Enough threads branching to each path enables the creation
of full new warps

31

Warp X

Warp Y

Warp Z

Dynamic Warp Formation/Merging
n  Idea: Dynamically merge threads executing the same

instruction (after branch divergence)

n  Fung et al., “Dynamic Warp Formation and Scheduling for

Efficient GPU Control Flow,” MICRO 2007.
32

Branch

Path A

Path B

Branch

Path A

Dynamic Warp Formation Example

33

A A B B G G A A C C D D E E F F

Time
A A B B G G A A C D E E F

Time

A x/1111
y/1111

B x/1110
y/0011

C x/1000
y/0010 D x/0110

y/0001 F x/0001
y/1100

E x/1110
y/0011

G x/1111
y/1111

A new warp created from scalar
threads of both Warp x and y
executing at Basic Block D

D

Execution of Warp x
at Basic Block A

Execution of Warp y
at Basic Block A

Legend
A A

Baseline

Dynamic
Warp
Formation

Slide credit: Tor Aamodt

Hardware Constraints Limit Flexibility of Warp Grouping

34

Lane

Functional Unit

Registers
for each
Thread

Memory Subsystem

Registers for
thread IDs
0, 4, 8, …

Registers for
thread IDs
1, 5, 9, …

Registers for
thread IDs
2, 6, 10, …

Registers for
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

Can you move any thread
flexibly to any lane?

An Example GPU

NVIDIA GeForce GTX 285
n  NVIDIA-speak:

q  240 stream processors
q  “SIMT execution”

n  Generic speak:
q  30 cores
q  8 SIMD functional units per core

36 Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

37

…

= instruction stream decode = SIMD functional unit, control
 shared across 8 units
 = execution context storage = multiply-add

= multiply

64 KB of storage
for thread contexts
(registers)

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

38

…
64 KB of storage
for thread contexts
(registers)

n  Groups of 32 threads share instruction stream (each group is
a Warp)

n  Up to 32 warps are simultaneously interleaved
n  Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

………

………

………

………

………

………

………

………

………

39

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

ETH Zürich
Fall 2017

19 October 2017

Introduction to
GPGPU Programming

Agenda for Today
n  Traditional accelerator model

q  Program structure
n  Bulk synchronous programming model

q  Memory hierarchy and memory management
q  Performance considerations

n  Memory access
n  SIMD utilization
n  Atomic operations
n  Data transfers

n  New programming features
q  Dynamic parallelism
q  Collaborative computing

41

General Purpose Processing on GPU
n  GPUs have democratized HPC

q  Great FLOP/$, massively parallel chip on a commodity PC

n  However, this is not for free
q  New programming model

q  New challenges

n  Algorithms need to be re-implemented and rethought
n  Many workloads exhibit inherent parallelism

q  Matrices
q  Image processing

n  Main bottlenecks
q  CPU-GPU data transfers (PCIe, NVLINK)

q  DRAM memory (GDDR5, HBM2)

42

CPU vs. GPU
n  Different design philosophies

q  CPU: A few out-of-order cores
q  GPU: Many in-order cores

ALU ALU

ALU ALU
Control

Cache

DRAM DRAM

CPU GPU

43

Slide credit: Hwu & Kirk

GPU Computing
n  Computation is offloaded to the GPU
n  Three steps

q  CPU-GPU data transfer (1)
q  GPU kernel execution (2)
q  GPU-CPU data transfer (3)

CPU
memory

CPU
cores Matrix

GPU
memory

GPU
coresMatrix

1

3

2

44

n  CPU threads and GPU kernels
q  Sequential or modestly parallel sections on CPU
q  Massively parallel sections on GPU

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nThr >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nThr >>>(args);

Traditional Program Structure

45

Slide credit: Hwu & Kirk

CUDA/OpenCL Programming Model
n  SIMT or SPMD
n  Bulk synchronous programming

q  Global (coarse-grain) synchronization between kernels

n  The host (typically CPU) allocates memory, copies data,
and launches kernels

n  The device (typically GPU) executes kernels
q  Grid (NDRange)
q  Block (work-group)

n  Within a block, shared memory and synchronization

q  Thread (work-item)

46

Transparent Scalability
n  Hardware is free to schedule thread blocks

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative to other blocks.

time

47

Slide credit: Hwu & Kirk

CUDA/OpenCL Programming Model
n  Memory hierarchy

Grid (Device)

Block (0, 0)

Thread (0, 0) Thread (1, 0)

Registers

Shared memory

Registers

Block (1, 0)

Thread (0, 0) Thread (1, 0)

Registers

Shared memory

Registers

Global / Texture & Surface memory

Constant memory
Host

48

n  Function prototypes
 float serialFunction(…);

 __global__ void kernel(…);

n  main()
q  1) Allocate memory space on the device – cudaMalloc(&d_in, bytes);

q  2) Transfer data from host to device – cudaMemCpy(d_in, h_in, …);

q  3) Execution configuration setup: #blocks and #threads

q  4) Kernel call – kernel<<<execution configuration>>>(args…);

q  5) Transfer results from device to host – cudaMemCpy(h_out, d_out, …);

n  Kernel – __global__ void kernel(type args,…)
q  Automatic variables transparently assigned to registers

q  Shared memory – __shared__

q  Intra-block synchronization – __syncthreads();

re
pe

at

as
 n

ee
de

d

Traditional Program Structure

49

Slide credit: Hwu & Kirk

CUDA Programming Language
n  Memory allocation

cudaMalloc((void**)&d_in, #bytes);

n  Memory copy
cudaMemcpy(d_in, h_in, #bytes,

 cudaMemcpyHostToDevice);

n  Kernel launch
kernel<<< #blocks, #threads >>>(args);

n  Memory deallocation
cudaFree(d_in);

n  Explicit synchronization

cudaDeviceSynchronize();

50

Indexing and Memory Access
n  Image layout in memory

q  height x width
q  Image[j][i], where 0 ≤ j < height, and 0 ≤ i < width

Image[0][1]

Image[1][2]

51

Indexing and Memory Access
n  Image layout in memory

q  Row-major layout
q  Image[j][i] = Image[j x width + i]

Image[0][1] = Image[0 x 8 + 1]

Image[1][2] = Image[1 x 8 + 2]

52

Indexing and Memory Access
n  One GPU thread per pixel
n  Grid of Blocks of Threads

q  blockIdx.x, threadIdx.x
q  gridDim.x, blockDim.x

Block 0

Block 0

Th
re

ad
 0

Th

re
ad

 1

Th
re

ad
 2

Th
re

ad
 3

blockIdx.x

threadIdx.x

blockIdx.x * blockDim.x +
threadIdx.x

6 * 4 + 1 = 25

53

Indexing and Memory Access
n  2D blocks

q  gridDim.x, gridDim.y

Block (0, 0)

blockIdx.x = 2
blockIdx.y = 1

Row = blockIdx.y *
blockDim.y + threadIdx.y

Row = 1 * 2 + 1 = 3

threadIdx.x = 1
threadIdx.y = 0

Col = blockIdx.x *
blockDim.x + threadIdx.x

Col = 0 * 2 + 1 = 1

Image[3][1] = Image[3 * 8 + 1]

54

Brief Review of GPU Architecture
n  Streaming Processor Array

q  Tesla architecture (G80/GT200)

SM

SP SP

SP SP

SP SP

SP SP

SFU

SFU

Register File

Instruction Fetch/Dispatch

Instruction Cache

Streaming Processor Array

TPC

SM SM

Texture L1 Cache

Texture Unit

TPCTPCTPCTPC

Shared Memory

Constant Cache

…..

55

Brief Review of GPU Architecture
n  Blocks are divided into warps

q  SIMD unit (32 threads)

n  Streaming Multiprocessors (SM)
q  Streaming Processors (SP)

Streaming Multiprocessor

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

LD/ST

SFU

SFU

SFU

SFU

Register File

Shared Memory / L1 Cache

Constant Cache

Dispatch Unit Dispatch Unit

Warp Scheduler Warp Scheduler

Instruction Cache

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…
Block 0’s warps Block 1’s warps

…
t0 t1 t2 … t31

…
Block 2’s warps

56

Brief Review of GPU Architecture
n  Streaming Multiprocessors (SM)

q  Compute Units (CU)

n  Streaming Processors (SP) or CUDA cores
q  Vector lanes

n  Number of SMs x SPs
q  Tesla (2007): 30 x 8
q  Fermi (2010): 16 x 32
q  Kepler (2012): 15 x 192
q  Maxwell (2014): 24 x 128
q  Pascal (2016): 56 x 64
q  Volta (2017): 80 x 64

57

Performance Considerations
n  Main bottlenecks

q  Global memory access
q  CPU-GPU data transfers

n  Memory access
q  Latency hiding

n  Thread Level Parallelism (TLP)
n  Occupancy

q  Memory coalescing
q  Data reuse

n  Shared memory usage

n  SIMD Utilization
n  Atomic operations
n  Data transfers between CPU and GPU

q  Overlap of communication and computation

58

Latency Hiding
n  Occupancy: ratio of active warps

q  Not only memory accesses (e.g., SFU)

Warp 0

ti
m

e

Instruction 3

4 active warps
Warp 0

ti
m

e

Instruction 3

2 active warps

Warp 1

Instruction 2

Warp 0

Instruction 4

(Long latency)

Warp 2

Instruction 1

Warp 3

Instruction 1

Warp 1

Instruction 3

Warp 0

Instruction 5

Warp 1

Instruction 2

Warp 0

Instruction 4

(Long latency)

Warp 1

Instruction 3

Warp 0

Instruction 5

59

Occupancy
n  SM resources (typical values)

q  Maximum number of warps per SM (64)
q  Maximum number of blocks per SM (32)
q  Register usage (256KB)
q  Shared memory usage (64KB)

n  Occupancy calculation
q  Number of threads per block
q  Registers per thread
q  Shared memory per block

n  The number of registers per thread is known in compile
time

60

n  When accessing global memory, peak bandwidth utilization
occurs when all threads in a warp access one cache line

Md Nd

W
 I D T

 H

WIDTH

Thread 1
Thread 2

Not coalesced Coalesced

Memory Coalescing

61

Slide credit: Hwu & Kirk

Memory Coalescing
n  Coalesced accesses

M2,0

M1,1

M1,0 M0,0

M0,1

M3,0

M2,1 M3,1

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2

M1,2 M0,2 M2,2 M3,2

M1,3 M0,3 M2,3 M3,3

M1,3 M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1
T1 T2 T3 T4

Time Period 2

Access
direction
in Kernel
code

…

62

Slide credit: Hwu & Kirk

Memory Coalescing
n  Uncoalesced accesses

M2,0

M1,1

M1,0 M0,0

M0,1

M3,0

M2,1 M3,1

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2

M1,2 M0,2 M2,2 M3,2

M1,3 M0,3 M2,3 M3,3

M1,3 M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction
in Kernel
code

…

63

Slide credit: Hwu & Kirk

Memory Coalescing
n  AoS vs. SoA Tenemos 2 data layouts principales (AoS y SoA) y uno nuevo propuesto (ASTA).

ASTA permite transformar uno en otro más rápidamente y facilita hacerlo in-place, para
ahorrar memoria. En la siguiente figura se ven los tres:

La granularidad en ASTA, es decir, el ancho del tile, estará relacionado con la
granularidad de acceso a la memoria (warp_size = 32, por ejemplo).

Convertir entre los distintos layouts, en realidad es transponer. Por ejemplo, AoS a
ASTA:

Y transponer es permutar (los números representan posiciones en la memoria y los
colores, tipo de dato):

Data Layout Alternatives

Array of
Structures

(AoS)

Array of
Structure of
Tiled Array

(ASTA)

struct foo{
 float a;
 float b;
 float c;
 int d;
} A[8];

struct foo{
 float a[4];
 float b[4];
 float c[4];
 int d[4];
} A[2];

Structure of
Arrays
(SoA)

struct foo{
 float a[8];
 float b[8];
 float c[8];
 int d[8];
} A;

19

Layout Conversion and Transposition

` Converting AoS to ASTA is not too different from
transposing a bunch of small tiles
` The first attempt, barrier-sync, would more likely to work

same as same as

transpose

AoS ASTA

divide into tiles

transpose

26

Layout Conversion and Transposition

` Transposition is a permutation
` A permutation can be decomposed to independent cycles of

shifting

0 1 2 3 4

5 6 7 8 9

0 1

2 3

4 5

6 7

8 9

transpose

28

64

Memory Coalescing
n  Linear and strided accesses

0.0#
1.0#
2.0#
3.0#
4.0#
5.0#
6.0#
7.0#
8.0#
9.0#
10.0#
11.0#
12.0#

1# 2# 4# 8# 16# 32# 64# 128# 256# 512# 1024#

Th
ro
ug
hp

ut
#(G

B/
s)
#

Stride#(Structure#size)#

GPU#

0.0#

0.5#

1.0#

1.5#

2.0#

2.5#

3.0#

3.5#

4.0#

4.5#

5.0#

1# 2# 4# 8# 16# 32# 64# 128# 256# 512# 1024#

Th
ro
ug
hp

ut
#(G

B/
s)
#

Stride#(Structure#size)#

1CPU# 2CPU# 4CPU#

AMD Kaveri A10-7850K

GPU CPU

65

Data Reuse
n  Same memory locations accessed by neighboring threads

for (int i = 0; i < 3; i++){
 for (int j = 0; j < 3; j++){
 sum += gauss[i][j] * Image[(i+row-1)*width + (j+col-1)];
 }
}

66

Data Reuse
n  Shared memory tiling

__shared__ int l_data[(L_SIZE+2)*(L_SIZE+2)];
…
Load tile into shared memory
__syncthreads();
for (int i = 0; i < 3; i++){
 for (int j = 0; j < 3; j++){
 sum += gauss[i][j] * l_data[(i+l_row-1)*(L_SIZE+2)+j+l_col-1];
 }
}

67

Shared Memory
n  Shared memory is an interleaved memory

q  Typically 32 banks
q  Each bank can service one address per cycle
q  Successive 32-bit words are assigned to successive banks

n  Bank = Address % 32

n  Bank conflicts are only possible within a warp
q  No bank conflicts between different warps

68

Shared Memory
n  Bank conflict free

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Linear addressing: stride = 1 Random addressing 1:1

69

Slide credit: Hwu & Kirk

Shared Memory
n  N-way bank conflicts

2-way bank conflict: stride = 2 8-way bank conflict: stride = 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0 x8

x8

70

Slide credit: Hwu & Kirk

Shared Memory
n  Bank conflicts are only possible within a warp

q  No bank conflicts between different warps

n  If strided accesses are needed, some optimization
techniques can help
q  Padding
q  Hash functions

71

SIMD Utilization
n  Intra-warp divergence

Compute(threadIdx.x);
if (threadIdx.x % 2 == 0){
 Do_this(threadIdx.x);
}
else{
 Do_that(threadIdx.x);
}

Compute

If

Else

72

SIMD Utilization
n  Intra-warp divergence

Compute(threadIdx.x);
if (threadIdx.x < 32){
 Do_this(threadIdx.x * 2);
}
else{
 Do_that((threadIdx.x%32)*2+1);
}

Compute

If

Else

73

Vector Reduction
n  Naïve mapping

0 1 2 3 4 5 7 6 10 9 8 11

0+1 2+3 4+5 6+7 10+11 8+9

0...3 4..7 8..11

0..7 8..15

1

2

3

iterations

Thread 0 Thread 8 Thread 2 Thread 4 Thread 6 Thread 10

74

Slide credit: Hwu & Kirk

Vector Reduction
n  Naïve mapping

__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (int stride = 1; stride < blockDim.x; stride *= 2) {

 __syncthreads();

 if (t % (2*stride) == 0)
 partialSum[t] += partialSum[t + stride];

}

75

Vector Reduction
n  Divergence-free mapping

Thread 0

0 1 2 3 … 13 15 14 18 17 16 19

0+16 15+31 1

3

4

Thread 1 Thread 2 Thread 14 Thread 15

iterations

76

Slide credit: Hwu & Kirk

Vector Reduction
n  Divergence-free mapping

__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (int stride = blockDim.x; stride > 1; stride >> 1){

 __syncthreads();

 if (t < stride)
 partialSum[t] += partialSum[t + stride];

}

77

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

n  Shared memory atomic operations
q  CUDA: int atomicAdd(int*, int);

q  PTX: atom.shared.add.u32 %r25, [%rd14], %r24;

q  SASS:

/*00a0*/ LDSLK P0, R9, [R8];

/*00a8*/ @P0 IADD R10, R9, R7;

/*00b0*/ @P0 STSCUL P1, [R8], R10;

/*00b8*/ @!P1 BRA 0xa0;

/*01f8*/ ATOMS.ADD RZ, [R7], R11;

Native atomic operations for
32-bit integer, and 32-bit and
64-bit atomicCAS

Tesla, Fermi, Kepler Maxwell

Atomic Operations

79

n  Atomic conflicts
q  Intra-warp conflict degree from 1 to 32

th0

th1

tbase

tconflict
th0 th1

2 2

0 1 2 3 ...

Shared memory

0 1 2 3 ...

Shared memory

th0 th1

0 2

th0 th1

tbase

No atomic conflict =
concurrent updates

Atomic conflict =
serialized updates

Atomic Operations

80

Histogram Calculation
n  Histograms count the number of data instances in disjoint

categories (bins)

for (each pixel i in image I){
Pixel = I[i] // Read pixel
Pixel’ = Computation(Pixel) // Optional computation
Histogram[Pixel’]++ // Vote in histogram bin

}

Thread 0 Thread 1 Thread 2 Thread n-1

Input data

Histogram

0 1 2

data[1]data[0] data[2] data[n-1]...

... B-1

data[n+1]data[n] data[n+2] data[2n-1]...

...

..
.

..
.

..
.

..
.

Atomic additions

81

Histogram Calculation
n  Frequent conflicts in natural images

169 170 171 174 177 182 187 192 194 192

169 173 173 175 177 181 185 189 191 192

169 173 173 175 177 180 184 188 190 193

169 172 173 174 176 180 183 187 189 193

171 173 173 174 176 179 182 185 187 192

174 175 175 175 176 178 180 183 184 1885 5 5 6 8 80 83 8 88

177 177 176 176 177 179 180 181 185 188

178 178 176 178 184 185 189 193 195 194

176 176 173 176 181 183 186 190 192 191

174 172 170 173 177 181 185 189 191 190

173 171 169 172 175 181 185 190 192 192

171 169 169 172 174 179 183 189 192 192

82

Histogram Calculation
n  Privatization: Per-block sub-histograms in shared memory

Block 0 Block 1

Block 2 Block 3

Block 0 Block 1

Block 2 Block 3

Block 0 Block 1

Block 2 Block 3

Block 0 Block 1

Block 2 Block 3

b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

b0 b1 b2 b3

Block 0’s sub-histo Block 1’s sub-histo Block 2’s sub-histo Block 3’s sub-histo

Global memory

Final histogram

Shared memory

83

Data Transfers
n  Synchronous and asynchronous transfers
n  Streams (Command queues)

q  Sequence of operations that are performed in order
n  CPU-GPU data transfer
n  Kernel execution

q  D input data instances, B blocks

n  GPU-CPU data transfer

q  Default stream

Copy data

Execute

Copy data

Execute

tT

tE

84

Asynchronous Transfers
n  Computation divided into nStreams

q  D input data instances, B blocks
q  nStreams

n  D/nStreams data instances
n  B/nStreams blocks

q  Estimates

Copy data

Execute

Copy data

Execute

tT

tE

€

tT +
tE

nStreams

€

tE +
tT

nStreams
tE >= tT (dominant kernel) tT > tE (dominant transfers)

85

n  Overlap of communication and computation (e.g., video
processing)

6 x b blocks compute on the sequence of frames

A sequence of 6 frames is transferred to device

A chunk of 2 frames is

transferred to device

2 x b blocks compute

on the chunk, while the

second chunk is being

transferred

Non-

streamed

execution

Streamed

execution

Execution time saved

thanks to streams

Asynchronous Transfers

86

Summary
n  Traditional accelerator model

q  Program structure
n  Bulk synchronous programming model

q  Memory hierarchy and memory management
q  Performance considerations

n  Memory access
q  Latency hiding: occupancy (TLP)
q  Memory coalescing
q  Data reuse: shared memory

n  SIMD utilization
n  Atomic operations
n  Data transfers

87

Computer Architecture
Lecture 9: GPUs and

GPGPU Programming

Prof. Onur Mutlu
ETH Zürich
Fall 2017

19 October 2017

