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Agenda for Today 
n  GPUs 
 
n  Introduction to GPU Programming 
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Digitaltechnik (Spring 2017) YouTube videos 
Lecture 21: GPUs 
https://youtu.be/MUPTdxl3JKs?t=23m17s 



GPUs (Graphics Processing Units)   

 
 
 
 
 
 



GPUs are SIMD Engines Underneath 
n  The instruction pipeline operates like a SIMD pipeline (e.g., 

an array processor) 

n  However, the programming is done using threads, NOT 
SIMD instructions 

n  To understand this, let’s go back to our parallelizable code 
example 

n  But, before that, let’s distinguish between  
q  Programming Model (Software) 

       vs. 
q  Execution Model (Hardware) 
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Programming Model vs. Hardware Execution Model 

n  Programming Model refers to how the programmer expresses 
the code 
q  E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow, 

Multi-threaded (MIMD, SPMD), … 

n  Execution Model refers to how the hardware executes the 
code underneath 
q  E.g., Out-of-order execution, Vector processor, Array processor, 

Dataflow processor, Multiprocessor, Multithreaded processor, … 

n  Execution Model can be very different from the Programming 
Model 
q  E.g., von Neumann model implemented by an OoO processor 
q  E.g., SPMD model implemented by a SIMD processor (a GPU) 
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How Can You Exploit Parallelism Here? 
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for (i=0; i < N; i++) 
    C[i] = A[i] + B[i]; 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 1 

Iter. 2 

Scalar Sequential Code  
 

Let’s examine three programming 
options to exploit instruction-level 

parallelism present in this sequential 
code: 

1. Sequential (SISD) 
 

2. Data-Parallel (SIMD) 
 

3. Multithreaded (MIMD/SPMD) 



Prog. Model 1: Sequential (SISD) 
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load 

load 

add 

store 

load 

load 

add 

store 

Iter. 1 

Iter. 2 

Scalar Sequential Code n  Can be executed on a: 

n  Pipelined processor 

n  Out-of-order execution processor 
q  Independent instructions executed 

when ready 
q  Different iterations are present in the 

instruction window and can execute in 
parallel in multiple functional units 

q  In other words, the loop is dynamically 
unrolled by the hardware 

n  Superscalar or VLIW processor 
q  Can fetch and execute multiple 

instructions per cycle 

for (i=0; i < N; i++) 
    C[i] = A[i] + B[i]; 



load 

load 

add 

store 

load 

load 

add 

store 

Iter. 1 

Iter. 2 

Scalar Sequential Code 

Prog. Model 2: Data Parallel (SIMD) 
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for (i=0; i < N; i++) 
    C[i] = A[i] + B[i]; 

Vector Instruction 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 
1 

Iter. 
2 

Vectorized Code 

Realization: Each iteration is independent 
 
Idea: Programmer or compiler generates a SIMD 
instruction to execute the same instruction from 
all iterations across different data 
 
Best executed by a SIMD processor (vector, array) 

VLD     A à V1 

VLD     B à V2 

VADD     V1 + V2 à V3 

VST     V3 à C 



load 

load 

add 

store 

load 

load 

add 

store 

Iter. 1 

Iter. 2 

Scalar Sequential Code 

Prog. Model 3: Multithreaded 

9 

for (i=0; i < N; i++) 
    C[i] = A[i] + B[i]; 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 
1 

Iter. 
2 Realization: Each iteration is independent 

 
Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data) 
 
Can be executed on a MIMD machine 



Prog. Model 3: Multithreaded 
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for (i=0; i < N; i++) 
    C[i] = A[i] + B[i]; 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 
1 

Iter. 
2 Realization: Each iteration is independent 

 
Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data) 
 
Can be executed on a MIMD machine 

This particular model is also called: 
 

SPMD: Single Program Multiple Data 

Can be executed on a SIMD machine Can be executed on a SIMT machine 
Single Instruction Multiple Thread 



A GPU is a SIMD (SIMT) Machine 
n  Except it is not programmed using SIMD instructions 

n  It is programmed using threads (SPMD programming model) 
q  Each thread executes the same code but operates a different 

piece of data 
q  Each thread has its own context (i.e., can be treated/restarted/

executed independently) 

n  A set of threads executing the same instruction are 
dynamically grouped into a warp (wavefront) by the 
hardware 
q  A warp is essentially a SIMD operation formed by hardware! 
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Warp 0 at PC X+3 

Warp 0 at PC X+2 

Warp 0 at PC X+1 

SPMD on SIMT Machine 
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for (i=0; i < N; i++) 
    C[i] = A[i] + B[i]; 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 
1 

Iter. 
2 

Realization: Each iteration is independent 
 
Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data) 
 
Can be executed on a MIMD machine 

This particular model is also called: 
 

SPMD: Single Program Multiple Data 

Can be executed on a SIMD machine A GPU executes it using the SIMT model: 
Single Instruction Multiple Thread 

Warp 0 at PC X 

Warp: A set of threads that execute 
the same instruction (i.e., at the same PC) 



Graphics Processing Units 
SIMD not Exposed to Programmer (SIMT) 

 
 
 
 
 
 



SIMD vs. SIMT Execution Model 
n  SIMD: A single sequential instruction stream of SIMD 

instructions à each instruction specifies multiple data inputs 
q  [VLD, VLD, VADD, VST], VLEN 

n  SIMT: Multiple instruction streams of scalar instructions à 
threads grouped dynamically into warps 
q  [LD, LD, ADD, ST], NumThreads 

n  Two Major SIMT Advantages:  
q  Can treat each thread separately à i.e., can execute each thread 

independently (on any type of scalar pipeline) à MIMD processing 
q  Can group threads into warps flexibly à i.e., can group threads 

that are supposed to truly execute the same instruction à 
dynamically obtain and maximize benefits of SIMD processing 
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Multithreading of Warps  
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for (i=0; i < N; i++) 
    C[i] = A[i] + B[i]; 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 
1 

Iter. 
2 

Warp 0 at PC X 

n  Assume a warp consists of 32 threads 
n  If you have 32K iterations, and 1 iteration/thread à 1K warps 
n  Warps can be interleaved on the same pipeline à Fine grained 

multithreading of warps 

Warp 1 at PC X 

Iter. 
33 

Iter. 
34 

Warp 20 at PC X+2 

Iter. 
20*32 + 1 

Iter. 
20*32 + 2 



Warps and Warp-Level FGMT 
n  Warp: A set of threads that execute the same instruction 

(on different data elements) à SIMT (Nvidia-speak) 
n  All threads run the same code 
n  Warp: The threads that run lengthwise in a woven fabric … 
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Thread Warp 3 
Thread Warp 8 

Thread Warp 7 

Thread Warp 
Scalar 
Thread 

W 

Scalar 
Thread 

X 

Scalar 
Thread 

Y 

Scalar 
Thread 

Z 

Common PC 

SIMD Pipeline 



High-Level View of a GPU 
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Latency Hiding via Warp-Level FGMT 
n  Warp: A set of threads that 

execute the same instruction 
(on different data elements) 

n  Fine-grained multithreading 
q  One instruction per thread in 

pipeline at a time (No 
interlocking) 

q  Interleave warp execution to 
hide latencies 

n  Register values of all threads stay 
in register file 

n  FGMT enables long latency 
tolerance 
q  Millions of pixels  
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Decode 

R F 

R F 

R F 

A L U 

A L U 

A L U 

D-Cache 

Thread Warp 6 

Thread Warp 1 
Thread Warp 2 Data All Hit? 

Miss? 

Warps accessing 
memory hierarchy 

Thread Warp 3 
Thread Warp 8 

Writeback 

Warps available 
for scheduling 

Thread Warp 7 

I-Fetch 

SIMD Pipeline 

Slide credit: Tor Aamodt 



Warp Execution (Recall the Slide) 
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32-thread warp executing ADD A[tid],B[tid] à C[tid] 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

Execution using 
one pipelined 
functional unit 

C[4] 

C[8] 

C[0] 

A[12] B[12] 

A[16] B[16] 

A[20] B[20] 

A[24] B[24] 

C[5] 

C[9] 

C[1] 

A[13] B[13] 

A[17] B[17] 

A[21] B[21] 

A[25] B[25] 

C[6] 

C[10] 

C[2] 

A[14] B[14] 

A[18] B[18] 

A[22] B[22] 

A[26] B[26] 

C[7] 

C[11] 

C[3] 

A[15] B[15] 

A[19] B[19] 

A[23] B[23] 

A[27] B[27] 

Execution using 
four pipelined 
functional units 

Slide credit: Krste Asanovic 
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Lane 

Functional Unit 

 
Registers 
for each  
Thread 

Memory Subsystem 

Registers for 
thread IDs 
0, 4, 8, … 

Registers for 
thread IDs 
1, 5, 9, … 

Registers for 
thread IDs 
2, 6, 10, … 

Registers for 
thread IDs 
3, 7, 11, … 

Slide credit: Krste Asanovic 

SIMD Execution Unit Structure 



Warp Instruction Level Parallelism 
Can overlap execution of multiple instructions 

q  Example machine has 32 threads per warp and 8 lanes 
q  Completes 24 operations/cycle while issuing 1 warp/cycle 

21 

W3 

W0 
W1 

W4 

W2 

W5 

Load Unit Multiply Unit Add Unit 

time 

Warp issue 

Slide credit: Krste Asanovic 



n  Same instruction in different threads uses thread id to index 
and access different data elements 

SIMT Memory Access 

Let’s assume N=16, 4 threads per warp à 4 warps  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
+ 

+ + + + 

Slide credit: Hyesoon Kim 

Threads 

Data elements 

Warp 0 Warp 1 Warp 2 Warp 3 



Sample GPU SIMT Code (Simplified) 

for (ii = 0; ii < 100000; ++ii) { 
C[ii] = A[ii] + B[ii]; 
} 

// there are 100000 threads 
__global__ void KernelFunction(…) { 
  int tid = blockDim.x * blockIdx.x + threadIdx.x; 
  int varA = aa[tid]; 
  int varB = bb[tid]; 
  C[tid] = varA + varB; 
} 

CPU code 

CUDA code 

Slide credit: Hyesoon Kim 



Sample GPU Program (Less Simplified) 
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Warp-based SIMD vs. Traditional SIMD 
n  Traditional SIMD contains a single thread  

q  Sequential instruction execution; lock-step operations in a SIMD instruction 
q  Programming model is SIMD (no extra threads) à SW needs to know 

vector length 
q  ISA contains vector/SIMD instructions 

n  Warp-based SIMD consists of multiple scalar threads executing in a 
SIMD manner (i.e., same instruction executed by all threads) 
q  Does not have to be lock step 
q  Each thread can be treated individually (i.e., placed in a different warp) 

à programming model not SIMD 
n  SW does not need to know vector length 
n  Enables multithreading and flexible dynamic grouping of threads 

q  ISA is scalar à SIMD operations can be formed dynamically 
q  Essentially, it is SPMD programming model implemented on SIMD 

hardware 
25 



SPMD 
n  Single procedure/program, multiple data  

q  This is a programming model rather than computer organization 

n  Each processing element executes the same procedure, except on 
different data elements 
q  Procedures can synchronize at certain points in program, e.g. barriers 

n  Essentially, multiple instruction streams execute the same 
program 
q  Each program/procedure 1) works on different data, 2) can execute a 

different control-flow path, at run-time 
q  Many scientific applications are programmed this way and run on MIMD 

hardware (multiprocessors) 
q  Modern GPUs programmed in a similar way on a SIMD hardware 

26 



SIMD vs. SIMT Execution Model 
n  SIMD: A single sequential instruction stream of SIMD 

instructions à each instruction specifies multiple data inputs 
q  [VLD, VLD, VADD, VST], VLEN 

n  SIMT: Multiple instruction streams of scalar instructions à 
threads grouped dynamically into warps 
q  [LD, LD, ADD, ST], NumThreads 

n  Two Major SIMT Advantages:  
q  Can treat each thread separately à i.e., can execute each thread 

independently on any type of scalar pipeline à MIMD processing 
q  Can group threads into warps flexibly à i.e., can group threads 

that are supposed to truly execute the same instruction à 
dynamically obtain and maximize benefits of SIMD processing 
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Threads Can Take Different Paths in Warp-based SIMD 

n  Each thread can have conditional control flow instructions 
n  Threads can execute different control flow paths 
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Thread Warp Common PC 

Thread 
2 

Thread 
3 

Thread 
4 

Thread 
1 

B 

C D 

E 

F 

A 

G 

Slide credit: Tor Aamodt 



Control Flow Problem in GPUs/SIMT 
n  A GPU uses a SIMD 

pipeline to save area 
on control logic. 
q  Groups scalar threads 

into warps 

n  Branch divergence 
occurs when threads 
inside warps branch to 
different execution 
paths. 
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Branch 

Path A 

Path B 

Branch 

Path A 

Path B 

Slide credit: Tor Aamodt 

This is the same as conditional/predicated/masked execution.  
Recall the Vector Mask and Masked Vector Operations? 



Remember: Each Thread Is Independent 
n  Two Major SIMT Advantages:  

q  Can treat each thread separately à i.e., can execute each thread 
independently on any type of scalar pipeline à MIMD processing 

q  Can group threads into warps flexibly à i.e., can group threads 
that are supposed to truly execute the same instruction à 
dynamically obtain and maximize benefits of SIMD processing 

n  If we have many threads 
n  We can find individual threads that are at the same PC 
n  And, group them together into a single warp dynamically 
n  This reduces “divergence” à improves SIMD utilization 

q  SIMD utilization: fraction of SIMD lanes executing a useful 
operation (i.e., executing an active thread) 
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Dynamic Warp Formation/Merging 
n  Idea: Dynamically merge threads executing the same 

instruction (after branch divergence) 
n  Form new warps from warps that are waiting 

q  Enough threads branching to each path enables the creation 
of full new warps 
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Warp X 

Warp Y 

Warp Z 



Dynamic Warp Formation/Merging 
n  Idea: Dynamically merge threads executing the same 

instruction (after branch divergence) 

 
n  Fung et al., “Dynamic Warp Formation and Scheduling for 

Efficient GPU Control Flow,” MICRO 2007. 
32 

Branch 

Path A 

Path B 

Branch 

Path A 



Dynamic Warp Formation Example 
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A A B B G G A A C C D D E E F F 

Time 
A A B B G G A A C D E E F 

Time 

A x/1111 
y/1111 

B x/1110 
y/0011 

C x/1000 
y/0010 D x/0110 

y/0001 F x/0001 
y/1100 

E x/1110 
y/0011 

G x/1111 
y/1111 

A new warp created from scalar 
threads of both Warp x and y 
executing at Basic Block D 

D 

Execution of Warp x 
at Basic Block A 

Execution of Warp y 
at Basic Block A 

Legend 
A A 

Baseline 

Dynamic 
Warp 
Formation 

Slide credit: Tor Aamodt 



Hardware Constraints Limit Flexibility of Warp Grouping 
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Lane 

Functional Unit 

 
Registers 
for each  
Thread 

Memory Subsystem 

Registers for 
thread IDs 
0, 4, 8, … 

Registers for 
thread IDs 
1, 5, 9, … 

Registers for 
thread IDs 
2, 6, 10, … 

Registers for 
thread IDs 
3, 7, 11, … 

Slide credit: Krste Asanovic 

Can you move any thread  
flexibly to any lane? 



An Example GPU 

 
 
 
 
 
 



NVIDIA GeForce GTX 285 
n  NVIDIA-speak: 

q  240 stream processors 
q  “SIMT execution” 

  

n  Generic speak: 
q  30 cores 
q  8 SIMD functional units per core 

36 Slide credit: Kayvon Fatahalian 



NVIDIA GeForce GTX 285 “core” 
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… 

= instruction stream decode = SIMD functional unit, control  
   shared across 8 units 
    = execution context storage  = multiply-add 

= multiply 

64 KB of storage  
for thread contexts 
(registers) 

Slide credit: Kayvon Fatahalian 



NVIDIA GeForce GTX 285 “core” 
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… 
64 KB of storage  
for thread contexts 
(registers) 

n  Groups of 32 threads share instruction stream (each group is 
a Warp) 

n  Up to 32 warps are simultaneously interleaved 
n  Up to 1024 thread contexts can be stored    
 
Slide credit: Kayvon Fatahalian 



NVIDIA GeForce GTX 285 

Tex 

Tex 

Tex 

Tex 

Tex 

Tex 

Tex 

Tex 

Tex 

Tex 

… … …

………

………

………

………

………

………

………

………

………
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30 cores on the GTX 285: 30,720 threads 

Slide credit: Kayvon Fatahalian 
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Agenda for Today 
n  Traditional accelerator model 

q  Program structure 
n  Bulk synchronous programming model 

q  Memory hierarchy and memory management 
q  Performance considerations 

n  Memory access 
n  SIMD utilization 
n  Atomic operations 
n  Data transfers 

n  New programming features 
q  Dynamic parallelism 
q  Collaborative computing 
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General Purpose Processing on GPU 
n  GPUs have democratized HPC 

q  Great FLOP/$, massively parallel chip on a commodity PC 

n  However, this is not for free 
q  New programming model 

q  New challenges 

n  Algorithms need to be re-implemented and rethought 
n  Many workloads exhibit inherent parallelism 

q  Matrices 
q  Image processing 

n  Main bottlenecks 
q  CPU-GPU data transfers (PCIe, NVLINK) 

q  DRAM memory (GDDR5, HBM2) 
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CPU vs. GPU 
n  Different design philosophies 

q  CPU: A few out-of-order cores 
q  GPU: Many in-order cores 

ALU ALU

ALU ALU
Control

Cache

DRAM DRAM

CPU GPU

43 

Slide credit: Hwu & Kirk 



GPU Computing 
n  Computation is offloaded to the GPU 
n  Three steps 

q  CPU-GPU data transfer (1) 
q  GPU kernel execution (2) 
q  GPU-CPU data transfer (3) 

CPU 
memory

CPU 
cores Matrix

GPU 
memory

GPU 
coresMatrix

1

3

2
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n  CPU threads and GPU kernels 
q  Sequential or modestly parallel sections on CPU 
q  Massively parallel sections on GPU 

Serial Code (host) 

. . . 

. . . 

Parallel Kernel (device) 
KernelA<<< nBlk, nThr >>>(args);

Serial Code (host) 

Parallel Kernel (device) 
KernelB<<< nBlk, nThr >>>(args);

Traditional Program Structure 
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Slide credit: Hwu & Kirk 



CUDA/OpenCL Programming Model 
n  SIMT or SPMD 
n  Bulk synchronous programming 

q  Global (coarse-grain) synchronization between kernels 

n  The host (typically CPU) allocates memory, copies data, 
and launches kernels 

n  The device (typically GPU) executes kernels 
q  Grid (NDRange) 
q  Block (work-group) 

n  Within a block, shared memory and synchronization 

q  Thread (work-item) 
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Transparent Scalability 
n  Hardware is free to schedule thread blocks 

Device 

Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Kernel grid 

Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Device 

Block 0 Block 1 Block 2 Block 3 

Block 4 Block 5 Block 6 Block 7 

Each block can execute in any order relative to other blocks.  

time 
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Slide credit: Hwu & Kirk 



CUDA/OpenCL Programming Model 
n  Memory hierarchy 

Grid (Device)

Block (0, 0)

Thread (0, 0) Thread (1, 0)

Registers

Shared memory

Registers

Block (1, 0)

Thread (0, 0) Thread (1, 0)

Registers

Shared memory

Registers

Global / Texture & Surface memory

Constant memory
Host
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n  Function prototypes 
   float serialFunction(…);

   __global__ void kernel(…);

n  main()
q  1) Allocate memory space on the device – cudaMalloc(&d_in, bytes);

q  2) Transfer data from host to device – cudaMemCpy(d_in, h_in, …);

q  3) Execution configuration setup: #blocks and #threads 

q  4) Kernel call – kernel<<<execution configuration>>>(args…);

q  5) Transfer results from device to host – cudaMemCpy(h_out, d_out, …); 

n  Kernel – __global__ void kernel(type args,…)
q  Automatic variables transparently assigned to registers 

q  Shared memory –  __shared__ 

q  Intra-block synchronization – __syncthreads();

re
pe

at
 

as
 n

ee
de

d 

Traditional Program Structure 
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Slide credit: Hwu & Kirk 



CUDA Programming Language 
n  Memory allocation 

cudaMalloc((void**)&d_in, #bytes);

n  Memory copy 
cudaMemcpy(d_in, h_in, #bytes,

           cudaMemcpyHostToDevice);

n  Kernel launch 
kernel<<< #blocks, #threads >>>(args);

n  Memory deallocation 
cudaFree(d_in);

n  Explicit synchronization 

cudaDeviceSynchronize();
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Indexing and Memory Access 
n  Image layout in memory 

q  height x width 
q  Image[j][i], where 0 ≤ j < height, and 0 ≤ i < width 

Image[0][1] 

Image[1][2] 
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Indexing and Memory Access 
n  Image layout in memory 

q  Row-major layout 
q  Image[j][i] = Image[j x width + i]  

Image[0][1] = Image[0 x 8 + 1] 

Image[1][2] = Image[1 x 8 + 2] 
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Indexing and Memory Access 
n  One GPU thread per pixel 
n  Grid of Blocks of Threads 

q  blockIdx.x, threadIdx.x
q  gridDim.x, blockDim.x

Block 0 

Block 0 

Th
re

ad
 0

 
Th

re
ad

 1
 

Th
re

ad
 2

 

Th
re

ad
 3

 

blockIdx.x

threadIdx.x

blockIdx.x * blockDim.x + 
threadIdx.x

6 * 4 + 1 = 25 
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Indexing and Memory Access 
n  2D blocks 

q  gridDim.x, gridDim.y 

Block (0, 0) 

blockIdx.x = 2
blockIdx.y = 1

Row = blockIdx.y * 
blockDim.y + threadIdx.y

Row = 1 * 2 + 1 = 3 

threadIdx.x = 1
threadIdx.y = 0

Col = blockIdx.x * 
blockDim.x + threadIdx.x

Col = 0 * 2 + 1 = 1 

Image[3][1] = Image[3 * 8 + 1] 
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Brief Review of GPU Architecture 
n  Streaming Processor Array 

q  Tesla architecture (G80/GT200) 

SM

SP SP

SP SP

SP SP

SP SP

SFU

SFU

Register File

Instruction Fetch/Dispatch

Instruction Cache

Streaming Processor Array

TPC

SM SM

Texture L1 Cache

Texture Unit

TPCTPCTPCTPC

Shared Memory

Constant Cache

…..
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Brief Review of GPU Architecture 
n  Blocks are divided into warps 

q  SIMD unit (32 threads) 

n  Streaming Multiprocessors (SM) 
q  Streaming Processors (SP) 

Streaming Multiprocessor

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

LD/ST

SFU

SFU

SFU

SFU

Register File

Shared Memory / L1 Cache

Constant Cache

Dispatch Unit Dispatch Unit

Warp Scheduler Warp Scheduler

Instruction Cache

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

… 
t0 t1 t2 … t31 

… 

… 
t0 t1 t2 … t31 

… 
Block 0’s warps Block 1’s warps 

… 
t0 t1 t2 … t31 

… 
Block 2’s warps 
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Brief Review of GPU Architecture 
n  Streaming Multiprocessors (SM) 

q  Compute Units (CU) 

n  Streaming Processors (SP) or CUDA cores 
q  Vector lanes 

n  Number of SMs x SPs 
q  Tesla (2007): 30 x 8 
q  Fermi (2010): 16 x 32 
q  Kepler (2012): 15 x 192 
q  Maxwell (2014): 24 x 128 
q  Pascal (2016): 56 x 64 
q  Volta (2017): 80 x 64 
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Performance Considerations 
n  Main bottlenecks 

q  Global memory access 
q  CPU-GPU data transfers 

n  Memory access 
q  Latency hiding 

n  Thread Level Parallelism (TLP) 
n  Occupancy 

q  Memory coalescing 
q  Data reuse 

n  Shared memory usage 

n  SIMD Utilization 
n  Atomic operations 
n  Data transfers between CPU and GPU 

q  Overlap of communication and computation 
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Latency Hiding 
n  Occupancy: ratio of active warps 

q  Not only memory accesses (e.g., SFU) 

Warp 0

ti
m

e

Instruction 3

4 active warps 
Warp 0

ti
m

e

Instruction 3

2 active warps 

Warp 1

Instruction 2

Warp 0

Instruction 4 

(Long latency)

Warp 2

Instruction 1

Warp 3

Instruction 1

Warp 1

Instruction 3

Warp 0

Instruction 5

Warp 1

Instruction 2

Warp 0

Instruction 4 

(Long latency)

Warp 1

Instruction 3

Warp 0

Instruction 5
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Occupancy 
n  SM resources (typical values) 

q  Maximum number of warps per SM (64) 
q  Maximum number of blocks per SM (32) 
q  Register usage (256KB) 
q  Shared memory usage (64KB) 

n  Occupancy calculation 
q  Number of threads per block 
q  Registers per thread 
q  Shared memory per block 

n  The number of registers per thread is known in compile 
time 
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n  When accessing global memory, peak bandwidth utilization 
occurs when all threads in a warp access one cache line 

Md Nd 

W
 I D T

 H 

WIDTH 

Thread 1 
Thread 2 

Not coalesced Coalesced 

Memory Coalescing 
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Memory Coalescing 
n  Coalesced accesses 

M2,0 

M1,1 

M1,0 M0,0 

M0,1 

M3,0 

M2,1 M3,1 

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2 

M1,2 M0,2 M2,2 M3,2 

M1,3 M0,3 M2,3 M3,3 

M1,3 M0,3 M2,3 M3,3 

M 

T1 T2 T3 T4 

Time Period 1 
T1 T2 T3 T4 

Time Period 2 

Access 
direction 
in Kernel 
code 

… 
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Memory Coalescing 
n  Uncoalesced accesses 

M2,0 

M1,1 

M1,0 M0,0 

M0,1 

M3,0 

M2,1 M3,1 

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2 

M1,2 M0,2 M2,2 M3,2 

M1,3 M0,3 M2,3 M3,3 

M1,3 M0,3 M2,3 M3,3 

M 

T1 T2 T3 T4 

Time Period 1 

T1 T2 T3 T4 

Time Period 2 

Access 
direction 
in Kernel 
code 

… 
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Memory Coalescing 
n  AoS vs. SoA Tenemos 2 data layouts principales (AoS y SoA) y uno nuevo propuesto (ASTA). 

ASTA permite transformar uno en otro más rápidamente y facilita hacerlo in-place, para 
ahorrar memoria. En la siguiente figura se ven los tres: 

 

La granularidad en ASTA, es decir, el ancho del tile, estará relacionado con la 
granularidad de acceso a la memoria (warp_size = 32, por ejemplo). 

Convertir entre los distintos layouts, en realidad es transponer. Por ejemplo, AoS a 
ASTA: 

 

Y transponer es permutar (los números representan posiciones en la memoria y los 
colores, tipo de dato): 

 

Data Layout Alternatives 

Array of 
Structures 

(AoS) 

Array of 
Structure of 
Tiled Array 

(ASTA)   

struct foo{ 
 float a; 
 float b; 
 float c;  
 int d; 
} A[8]; 

struct foo{ 
 float a[4]; 
 float b[4]; 
 float c[4];  
 int d[4]; 
} A[2]; 

Structure of 
Arrays 
(SoA) 

struct foo{ 
 float a[8]; 
 float b[8]; 
 float c[8];  
 int d[8]; 
} A; 

19 

Layout Conversion and Transposition 
 

` Converting AoS to ASTA is not too different from 
transposing a bunch of small tiles 
` The first attempt, barrier-sync, would more likely to work 

same as same as 

transpose 

AoS ASTA 

divide into tiles 

transpose 

26 

Layout Conversion and Transposition 
 

` Transposition is a permutation 
` A permutation can be decomposed to independent cycles of 

shifting 

0 1 2 3 4 

5 6 7 8 9 

0 1 

2 3 

4 5 

6 7 

8 9 

transpose 

28 
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Memory Coalescing 
n  Linear and strided accesses 

0.0#
1.0#
2.0#
3.0#
4.0#
5.0#
6.0#
7.0#
8.0#
9.0#
10.0#
11.0#
12.0#

1# 2# 4# 8# 16# 32# 64# 128# 256# 512# 1024#

Th
ro
ug
hp

ut
#(G

B/
s)
#

Stride#(Structure#size)#

GPU#

0.0#

0.5#

1.0#

1.5#

2.0#

2.5#

3.0#

3.5#

4.0#

4.5#

5.0#

1# 2# 4# 8# 16# 32# 64# 128# 256# 512# 1024#

Th
ro
ug
hp

ut
#(G

B/
s)
#

Stride#(Structure#size)#

1CPU# 2CPU# 4CPU#

AMD Kaveri A10-7850K 

GPU CPU 
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Data Reuse 
n  Same memory locations accessed by neighboring threads 

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 3; j++){
        sum += gauss[i][j] * Image[(i+row-1)*width + (j+col-1)];
    }
}
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Data Reuse 
n  Shared memory tiling 

__shared__ int l_data[(L_SIZE+2)*(L_SIZE+2)];
…
Load tile into shared memory
__syncthreads();
for (int i = 0; i < 3; i++){
  for (int j = 0; j < 3; j++){
    sum += gauss[i][j] * l_data[(i+l_row-1)*(L_SIZE+2)+j+l_col-1];
  }
}
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Shared Memory 
n  Shared memory is an interleaved memory 

q  Typically 32 banks 
q  Each bank can service one address per cycle 
q  Successive 32-bit words are assigned to successive banks 

n  Bank = Address % 32 

n  Bank conflicts are only possible within a warp 
q  No bank conflicts between different warps 
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Shared Memory 
n  Bank conflict free 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Linear addressing: stride = 1 Random addressing 1:1 
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Shared Memory 
n  N-way bank conflicts 

2-way bank conflict: stride = 2 8-way bank conflict: stride = 8 

Thread 11 
Thread 10 
Thread 9 
Thread 8 

Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 9 
Bank 8 

Bank 15 

Bank 7 

Bank 2 
Bank 1 
Bank 0 x8 

x8 
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Shared Memory 
n  Bank conflicts are only possible within a warp 

q  No bank conflicts between different warps 

n  If strided accesses are needed, some optimization 
techniques can help 
q  Padding 
q  Hash functions 
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SIMD Utilization 
n  Intra-warp divergence 

Compute(threadIdx.x);
if (threadIdx.x % 2 == 0){
  Do_this(threadIdx.x);
}
else{
  Do_that(threadIdx.x);
}

Compute

If

Else
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SIMD Utilization 
n  Intra-warp divergence 

Compute(threadIdx.x);
if (threadIdx.x < 32){
  Do_this(threadIdx.x * 2);
}
else{
  Do_that((threadIdx.x%32)*2+1);
}

Compute

If

Else
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Vector Reduction 
n  Naïve mapping 

0 1 2 3 4 5 7 6 10 9 8 11 

0+1 2+3 4+5 6+7 10+11 8+9 

0...3 4..7 8..11 

0..7 8..15 

1 

2 

3 

iterations 

Thread 0 Thread 8 Thread 2 Thread 4 Thread 6 Thread 10 
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Vector Reduction 
n  Naïve mapping 

__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (int stride = 1; stride < blockDim.x; stride *= 2) {

  __syncthreads();

  if (t % (2*stride) == 0)
    partialSum[t] += partialSum[t + stride];

}
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Vector Reduction 
n  Divergence-free mapping 

Thread 0 

0 1 2 3 … 13 15 14 18 17 16 19 

0+16 15+31 1 

3 

4 

Thread 1 Thread 2 Thread 14 Thread 15 

iterations 
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Vector Reduction 
n  Divergence-free mapping 

__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (int stride = blockDim.x; stride > 1;  stride >> 1){

  __syncthreads();

  if (t < stride)
    partialSum[t] += partialSum[t + stride];

}
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We did not cover the following slides in lecture. 
These are for your preparation for the next lecture.  



n  Shared memory atomic operations 
q  CUDA: int atomicAdd(int*, int);

q  PTX: atom.shared.add.u32 %r25, [%rd14], %r24;

q  SASS: 

/*00a0*/ LDSLK P0, R9, [R8]; 

/*00a8*/ @P0 IADD R10, R9, R7; 

/*00b0*/ @P0 STSCUL P1, [R8], R10; 

/*00b8*/ @!P1 BRA 0xa0;

/*01f8*/ ATOMS.ADD RZ, [R7], R11;

Native atomic operations for 
32-bit integer, and 32-bit and 
64-bit atomicCAS 

Tesla, Fermi, Kepler Maxwell 

Atomic Operations 
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n  Atomic conflicts 
q  Intra-warp conflict degree from 1 to 32 

th0

th1

tbase 

tconflict 
th0 th1

2 2

0 1 2 3 ...

Shared memory 

0 1 2 3 ...

Shared memory 

th0 th1

0 2

th0 th1

tbase 

No atomic conflict = 
concurrent updates 

Atomic conflict = 
serialized updates 

Atomic Operations 
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Histogram Calculation 
n  Histograms count the number of data instances in disjoint 

categories (bins) 

for (each pixel i in image I){
Pixel = I[i] // Read pixel
Pixel’ = Computation(Pixel) // Optional computation
Histogram[Pixel’]++ // Vote in histogram bin

}

Thread 0 Thread 1 Thread 2 Thread n-1

Input data

Histogram

0 1 2

data[1]data[0] data[2] data[n-1]...

... B-1

data[n+1]data[n] data[n+2] data[2n-1]...

...

..
.

..
.

..
.

..
.

Atomic additions 
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Histogram Calculation 
n  Frequent conflicts in natural images 

169 170 171 174 177 182 187 192 194 192

169 173 173 175 177 181 185 189 191 192

169 173 173 175 177 180 184 188 190 193

169 172 173 174 176 180 183 187 189 193

171 173 173 174 176 179 182 185 187 192

174 175 175 175 176 178 180 183 184 1885 5 5 6 8 80 83 8 88

177 177 176 176 177 179 180 181 185 188

178 178 176 178 184 185 189 193 195 194

176 176 173 176 181 183 186 190 192 191

174 172 170 173 177 181 185 189 191 190

173 171 169 172 175 181 185 190 192 192

171 169 169 172 174 179 183 189 192 192
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Histogram Calculation 
n  Privatization: Per-block sub-histograms in shared memory 

Block 0 Block 1

Block 2 Block 3

Block 0 Block 1

Block 2 Block 3

Block 0 Block 1

Block 2 Block 3

Block 0 Block 1

Block 2 Block 3

b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

b0 b1 b2 b3

Block 0’s sub-histo Block 1’s sub-histo Block 2’s sub-histo Block 3’s sub-histo 

Global memory 

Final histogram 

Shared memory 
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Data Transfers 
n  Synchronous and asynchronous transfers 
n  Streams (Command queues) 

q  Sequence of operations that are performed in order 
n  CPU-GPU data transfer 
n  Kernel execution 

q  D input data instances, B blocks 

n  GPU-CPU data transfer 

q  Default stream 

Copy data

Execute

Copy data

Execute

tT

tE
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Asynchronous Transfers 
n  Computation divided into nStreams 

q  D input data instances, B blocks 
q  nStreams 

n  D/nStreams data instances 
n  B/nStreams blocks 

q  Estimates 

Copy data

Execute

Copy data

Execute

tT

tE

€ 

tT +
tE

nStreams

€ 

tE +
tT

nStreams
tE >= tT (dominant kernel) tT > tE (dominant transfers) 
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n  Overlap of communication and computation (e.g., video 
processing) 

6 x b blocks compute on the sequence of frames

A sequence of 6 frames is transferred to device

A chunk of 2 frames is 

transferred to device

2 x b blocks compute 

on the chunk, while the 

second chunk is being 

transferred

Non-

streamed 

execution

Streamed 

execution

Execution time saved 

thanks to streams

Asynchronous Transfers 
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Summary 
n  Traditional accelerator model 

q  Program structure 
n  Bulk synchronous programming model 

q  Memory hierarchy and memory management 
q  Performance considerations 

n  Memory access 
q  Latency hiding: occupancy (TLP) 
q  Memory coalescing 
q  Data reuse: shared memory 

n  SIMD utilization 
n  Atomic operations 
n  Data transfers 

87 



 
 

Computer Architecture 
Lecture 9: GPUs and  

GPGPU Programming 

 
 

Prof. Onur Mutlu 
ETH Zürich 
Fall 2017 

19 October 2017 
 
 
 


