Computer Architecture Lecture 1: Introduction and Basics Prof. Onur Mutlu ETH Zürich Fall 2018 18 September 2018 # Question: What Is This? #### Answer: The First Major Piece of a Famous Architect Bahnhof Stadelhofen: "The train station has several of the features that became signatures of his work; straight lines and right angles are rare." ETH Alumnus, Civil Engineering Santiago Calatrava Valls (born 28 July 1951) is a Spanish architect, structural engineer, sculptor and painter, particularly known for his bridges supported by single leaning pylons, and his railway stations, stadiums, and museums, whose sculptural forms often resemble living organisms.^[1] His best-known works include the Milwaukee Art Museum, the Turning Torso tower in Malmo, Sweden, the Margaret Hunt Hill Bridge in Dallas, Texas, and the Museum of Tomorrow in Rio de Janeiro, # Question 2: What Is This? #### Answer: Masterpiece of a Famous Architect #### Design [edit] Calatrava said that the Oculus resembles a bird being released from a child's hand. The roof was originally designed to mechanically open to increase light and ventilation to the enclosed space. Herbert Muschamp, architecture critic of *The New York Times*, compared the design to the Bethesda Terrace and Fountain in Central Park, and wrote in 2004: ## Answer: Masterpiece of a Famous Architect 66 Santiago Calatrava's design for the World Trade Center PATH station should satisfy those who believe that buildings planned for ground zero must aspire to a spiritual dimension. Over the years, many people have discerned a metaphysical element in Mr. Calatrava's work. I hope New Yorkers will detect its presence, too. With deep appreciation, I congratulate the Port Authority for commissioning Mr. Calatrava, the great Spanish architect and engineer, to design a building with the power to shape the future of New York. It is a pleasure to report, for once, that public officials are not overstating the case when they describe a design as breathtaking.[43] 99 ## Design Constraints However, Calatrava's original soaring spike design was scaled back because of security issues. The *New York Times* observed in 2005: In the name of security, Santiago Calatrava's bird has grown a beak. Its ribs have doubled in number and its wings have lost their interstices of glass.... [T]he main transit hall, between Church and Greenwich Streets, will almost certainly lose some of its delicate quality, while gaining structural expressiveness. It may now evoke a slender stegosaurus more than it does a bird. [45] 99 #### Stegosaurus From Wikipedia, the free encyclopedia For the pachycephalosaurid of a similar name, see Stegoceras. Stegosaurus (/stego'soxres/[1]) is a genus of armored dinosaur. Fossils of this genus date to the Late Jurassic period, where they are found in Kimmeridgian to early Tithonian aged strata, between 155 and 150 million years ago, in the western United States and Portugal. Several #### Design Constraints: Noone is Immune However, Calatrava's original soaring spike design was scaled back because of security issues. The *New York Times* observed in 2005: In the name of security, Santiago Calatrava's bird has grown a beak. Its ribs have doubled in number and its wings have lost their interstices of glass.... [T]he main transit hall, between Church and Greenwich Streets, will almost certainly lose some of its delicate quality, while gaining structural expressiveness. It may now evoke a slender stegosaurus more than it does a bird. [45] The design was further modified in 2008 to eliminate the opening and closing roof mechanism because of budget and space constraints.^[46] The Transportation Hub has been dubbed "the world's most expensive transportation hub" for its massive cost for reconstruction—\$3.74 billion dollars. [48][58] By contrast, the proposed two-mile PATH extension 9 ## Question: What Is This? #### Answer: Masterpiece of Another Famous Architect #### Fallingwater From Wikipedia, the free encyclopedia Fallingwater or Kaufmann Residence is a house designed by architect Frank Lloyd Wright in 1935 in rural southwestern Pennsylvania, 43 miles (69 km) southeast of Pittsburgh. [4] The home was built partly over a waterfall on Bear Run in the Mill Run section of Stewart Township, Fayette County, Pennsylvania, in the Laurel Highlands of the Allegheny Mountains. *Time* cited it after its completion as Wright's "most beautiful job";^[5] it is listed among *Smithsonian's* Life List of 28 places "to visit before you die."^[6] It was designated a National Historic Landmark in 1966.^[3] In 1991, members of the American Institute of Architects named the house the "best all-time work of American architecture" and in 2007, it was ranked twenty-ninth on the list of America's Favorite Architecture according to the AIA. ## Your First Comp Arch Assignment - Go and visit Bahnhof Stadelhofen - Extra credit: Repeat for Oculus - Extra+ credit: Repeat for Fallingwater - Appreciate the beauty & out-of-the-box and creative thinking - Think about tradeoffs in the design of the Bahnhof - Strengths, weaknesses, goals of design - Derive principles on your own for good design and innovation - Due date: Any time during this course - Later during the course is better - Apply what you have learned in this course - Think out-of-the-box ## But First, Today's First Assignment Find The Differences Of This and That # Find The Differences of This and That #### This #### That 17 #### Many Tradeoffs Between Two Designs You can list them after you complete the first assignment... #### Aside: Evaluation Criteria for the Designs - Functionality (Does it meet the specification?) - Reliability - Space requirement - Cost - Expandability - Comfort level of users - Happiness level of users - Aesthetics - ... - How to evaluate goodness of design is always a critical question. #### A Key Question - How was Calavatra able to design especially his key buildings? - Can have many guesses - (Ultra) hard work, perseverance, dedication (over decades) - Experience - Creativity, Out-of-the-box thinking - A good understanding of past designs - Good judgment and intuition - Strong skill combination (math, architecture, art, engineering, ...) - Funding (\$\$\$\$), luck, initiative, entrepreneurialism - Strong understanding of and commitment to fundamentals - Principled design - **-** ... - (You will be exposed to and hopefully develop/enhance many of these skills in this course) ## Principled Design - "To me, there are two overriding principles to be found in nature which are most appropriate for building: - one is the optimal use of material, - the other the capacity of organisms to change shape, to grow, and to move." - Santiago Calatrava "Calatrava's constructions are inspired by natural forms like plants, bird wings, and the human body." #### Gare do Oriente, Lisbon, Revisited Source: By Martín Gómez Tagle - Lisbon, Portugal, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13764903 Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/ ## A Principled Design #### Zoomorphic architecture From Wikipedia, the free encyclopedia **Zoomorphic architecture** is the practice of using animal forms as the inspirational basis and blueprint for architectural design. "While animal forms have always played a role adding some of the deepest layers of meaning in architecture, it is now becoming evident that a new strand of biomorphism is emerging where the meaning derives not from any specific representation but from a more general allusion to biological processes."^[1] Some well-known examples of Zoomorphic architecture can be found in the TWA Flight Center building in New York City, by Eero Saarinen, or the Milwaukee Art Museum by Santiago Calatrava, both inspired by the form of a bird's wings.^[3] #### What Does This Remind You Of? #### What About This? #### A Quote from The Other Famous Architect "architecture [...] based upon principle, and not upon precedent" (Frank Lloyd Wright) 26 ## A Principled Design #### Organic architecture From Wikipedia, the free encyclopedia Organic architecture is a philosophy of architecture which promotes harmony between human habitation and the natural world through design approaches so sympathetic and well integrated with its site, that buildings, furnishings, and surroundings become part of a unified, interrelated composition. A well-known example of organic architecture is Fallingwater, the residence Frank Lloyd Wright designed for the Kaufmann family in rural Pennsylvania. Wright had many choices to locate a home on this large site, but chose to place the home directly over the waterfall and creek creating a close, yet noisy dialog with the rushing water and the steep site. The horizontal striations of stone masonry with daring cantilevers of colored beige concrete blend with native rock outcroppings and the wooded environment. #### Another View #### Yet Another View ## Major High-Level Goals of This Course - Understand the principles - Understand the precedents - Based on such understanding: - Enable you to evaluate tradeoffs of different designs and ideas - Enable you to develop principled designs - Enable you to develop novel, out-of-the-box designs - The focus is on: - Principles, precedents, and how to use them for new designs - In Computer Architecture ## Role of the (Computer) Architect #### Role of the Architect - -- Look Backward (Examine old code) - -- Look forward (Listen to the dreamers) - -- Look Up (Nature of the problems) - -- Look Down (Predict the future of technology) #### Role of The (Computer) Architect - Look backward (to the past) - Understand tradeoffs and designs, upsides/downsides, past workloads. Analyze and evaluate the past. - Look forward (to the future) - Be the dreamer and create new designs. Listen to dreamers. - Push the state of the art. Evaluate new design choices. - Look up (towards problems in the computing stack) - Understand important problems and their nature. - Develop architectures and ideas to solve important problems. - Look down (towards device/circuit technology) - Understand the capabilities of the underlying technology. - Predict and adapt to the future of technology (you are designing for N years ahead). Enable the future technology. #### Takeaways - Being an architect is not easy - You need to consider many things in designing a new system + have good intuition/insight into ideas/tradeoffs - But, it is fun and can be very rewarding - And, enables a great future - E.g., many scientific and everyday-life innovations would not have been possible without architectural innovation that enabled very high performance systems - E.g., your mobile phones - E.g., self-driving vehicles - This course will enable you to become a good computer architect #### So, I Hope You Are Here for This Systems Prog. - How does an assembly program end up executing as digital logic? - What happens in-between? - How is a computer designed using logic gates and wires to satisfy specific goals? "C" as a model of computation Programmer's view of how a computer system works Architect/microarchitect's view: How to design a computer that meets system design goals. Choices critically affect both snoices critically affect both the SW programmer and the HW designer HW designer's view of how a computer system works Digital logic as a model of computation Digital Design #### Levels of Transformation "The purpose of computing is [to gain] insight" (*Richard Hamming*) We gain and generate insight by solving problems How do we ensure problems are solved by electrons? #### **Algorithm** Step-by-step procedure that is guaranteed to terminate where each step is precisely stated and can be carried out by a computer - Finiteness - Definiteness - Effective computability Many algorithms for the same problem Microarchitecture An implementation of the ISA Problem Algorithm Program/Language **Runtime System** (VM, OS, MM) ISA (Architecture) Microarchitecture Logic Devices Electrons ISA (Instruction Set Architecture) Interface/contract between SW and HW. What the programmer assumes hardware will satisfy. **Digital logic circuits** Building blocks of micro-arch (e.g., gates) # Aside: A Famous Work By Hamming - Hamming, "Error Detecting and Error Correcting Codes," Bell System Technical Journal 1950. - Introduced the concept of Hamming distance - number of locations in which the corresponding symbols of two equal-length strings is different - Developed a theory of codes used for error detection and correction - Also see: - Hamming, "You and Your Research," Talk at Bell Labs, 1986. - http://www.cs.virginia.edu/~robins/YouAndYourResearch.html # Levels of Transformation, Revisited A user-centric view: computer designed for users The entire stack should be optimized for user ## The Power of Abstraction #### Levels of transformation create abstractions - Abstraction: A higher level only needs to know about the interface to the lower level, not how the lower level is implemented - E.g., high-level language programmer does not really need to know what the ISA is and how a computer executes instructions #### Abstraction improves productivity - No need to worry about decisions made in underlying levels - E.g., programming in Java vs. C vs. assembly vs. binary vs. by specifying control signals of each transistor every cycle - Then, why would you want to know what goes on underneath or above? # Crossing the Abstraction Layers As long as everything goes well, not knowing what happens underneath (or above) is not a problem. #### What if - The program you wrote is running slow? - The program you wrote does not run correctly? - The program you wrote consumes too much energy? - Your system just shut down and you have no idea why? - Someone just compromised your system and you have no idea how? #### What if - The hardware you designed is too hard to program? - The hardware you designed is too slow because it does not provide the right primitives to the software? #### What if You want to design a much more efficient and higher performance system? # Crossing the Abstraction Layers - Two key goals of this course are - to understand how a processor works underneath the software layer and how decisions made in hardware affect the software/programmer - to enable you to be comfortable in making design and optimization decisions that cross the boundaries of different layers and system components # An Example: Multi-Core Systems Multi-Core Chip # A Trend: Many Cores on Chip - Simpler and lower power than a single large core - Parallel processing on single chip \rightarrow faster, new applications AMD Barcelona 4 cores Intel Core i7 8 cores IBM Cell BE 8+1 cores IBM POWER7 8 cores Sun Niagara II 8 cores Nvidia Fermi 448 "cores" Intel SCC 48 cores, networked Tilera TILE Gx 100 cores, networked # Many Cores on Chip - What we want: - N times the system performance with N times the cores - What do we get today? # Unexpected Slowdowns in Multi-Core Moscibroda and Mutlu, "Memory performance attacks: Denial of memory service in multi-core systems," USENIX Security 2007. # Three Questions Can you figure out why the applications slow down if you do not know the underlying system and how it works? Can you figure out why there is a disparity in slowdowns if you do not know how the system executes the programs? Can you fix the problem without knowing what is happening "underneath"? # Three Questions: Rephrased & Concise Why is there any slowdown? Why is there a disparity in slowdowns? How can we solve the problem if we do not want that disparity? # Why Is This Important? - We want to execute applications in parallel in multi-core systems → consolidate more and more (for efficiency) - Cloud computing - Mobile phones - Automotive systems - We want to mix different types of applications together - those requiring QoS guarantees (e.g., video, pedestrian detection) - those that are important but less so - those that are less important - We want the system to be controllable and high performance # Why the Disparity in Slowdowns? # Digging Deeper: DRAM Bank Operation #### **DRAM Controllers** - A row-conflict memory access takes significantly longer than a row-hit access - Current controllers take advantage of this fact - Commonly used scheduling policy (FR-FCFS) [Rixner 2000]* - (1) Row-hit first: Service row-hit memory accesses first - (2) Oldest-first: Then service older accesses first - This scheduling policy aims to maximize DRAM throughput ^{*}Rixner et al., "Memory Access Scheduling," ISCA 2000. ^{*}Zuravleff and Robinson, "Controller for a synchronous DRAM ...," US Patent 5,630,096, May 1997. #### The Problem - Multiple applications share the DRAM controller - DRAM controllers designed to maximize DRAM data throughput - DRAM scheduling policies are unfair to some applications - Row-hit first: unfairly prioritizes apps with high row buffer locality - Threads that keep on accessing the same row - Oldest-first: unfairly prioritizes memory-intensive applications - DRAM controller vulnerable to denial of service attacks - Can write programs to exploit unfairness # A Memory Performance Hog ``` // initialize large arrays A, B for (j=0; j<N; j++) index = j*linesize; streaming A[index] = B[index]; (in sequence) ``` ``` // initialize large arrays A, B for (j=0; j<N; j++) { index = rand(); random A[index] = B[index]; ``` #### STREAM - Sequential memory access - Very high row buffer locality (96% hit rate) Very low row buffer locality (3% hit rate) - Memory intensive #### RANDOM - Random memory access - Similarly memory intensive Moscibroda and Mutlu, "Memory Performance Attacks," USENIX Security 2007. # What Does the Memory Hog Do? Row size: 8KB, request size: 64B 128 (8KB/64B) requests of STREAM serviced before a single request of RANDOM Moscibroda and Mutlu, "Memory Performance Attacks," USENIX Security 2007. ## Now That We Know What Happens Underneath - How would you solve the problem? - What is the right place to solve the problem? - Programmer? - System software? - Compiler? - Hardware (Memory controller)? - Hardware (DRAM)? - Circuits? - Two other goals of this course: - Enable you to think critically - Enable you to think broadly # Reading on Memory Performance Attacks Thomas Moscibroda and Onur Mutlu, "Memory Performance Attacks: Denial of Memory Service in Multi-Core Systems" Proceedings of the 16th USENIX Security Symposium (USENIX SECURITY) Proceedings of the <u>16th USENIX Security Symposium</u> (**USENIX SECURITY**), pages 257-274, Boston, MA, August 2007. <u>Slides (ppt)</u> One potential reading for your Homework 1 assignment # Memory Performance Attacks: Denial of Memory Service in Multi-Core Systems Thomas Moscibroda Onur Mutlu Microsoft Research {moscitho,onur}@microsoft.com # If You Are Interested ... Further Readings Onur Mutlu and Thomas Moscibroda, "Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors" Proceedings of the <u>40th International Symposium on Microarchitecture</u> (**MICRO**), pages 146-158, Chicago, IL, December 2007. <u>Slides (ppt)</u> - Onur Mutlu and Thomas Moscibroda, "Parallelism-Aware Batch Scheduling: Enhancing both Performance and Fairness of Shared DRAM Systems" - Proceedings of the <u>35th International Symposium on Computer Architecture</u> (**ISCA**) [Slides (ppt)] - Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda, - "Reducing Memory Interference in Multicore Systems via Application-Aware Memory Channel Partitioning" Proceedings of the <u>44th International Symposium on Microarchitecture</u> (**MICRO**), Porto Alegre, Brazil, December 2011. <u>Slides (pptx)</u> # Takeaway Breaking the abstraction layers (between components and transformation hierarchy levels) and knowing what is underneath enables you to **understand** and **solve** problems # Another Example DRAM Refresh # DRAM in the System Multi-Core Chip ## A DRAM Cell - A DRAM cell consists of a capacitor and an access transistor - It stores data in terms of charge in the capacitor - A DRAM chip consists of (10s of 1000s of) rows of such cells ## DRAM Refresh - DRAM capacitor charge leaks over time - The memory controller needs to refresh each row periodically to restore charge - Activate each row every N ms - \Box Typical N = 64 ms - Downsides of refresh - -- Energy consumption: Each refresh consumes energy - -- Performance degradation: DRAM rank/bank unavailable while refreshed - -- QoS/predictability impact: (Long) pause times during refresh - -- Refresh rate limits DRAM capacity scaling # First, Some Analysis - Imagine a system with 8 ExaByte DRAM (2^63 bytes) - Assume a row size of 8 KiloBytes (2^13 bytes) - How many rows are there? - How many refreshes happen in 64ms? - What is the total power consumption of DRAM refresh? - What is the total energy consumption of DRAM refresh during a day? - A good exercise... - Brownie points from me if you do it... ## Refresh Overhead: Performance # Refresh Overhead: Energy ## How Do We Solve the Problem? Observation: All DRAM rows are refreshed every 64ms. Critical thinking: Do we need to refresh all rows every 64ms? What if we knew what happened underneath (in DRAM cells) and exposed that information to upper layers? #### Underneath: Retention Time Profile of DRAM 64-128ms >256ms 128-256ms # Aside: Why Do We Have Such a Profile? Answer: Manufacturing is not perfect Not all DRAM cells are exactly the same Some are more leaky than others This is called Manufacturing Process Variation # Opportunity: Taking Advantage of This Profile - Assume we know the retention time of each row exactly - What can we do with this information? - Who do we expose this information to? - How much information do we expose? - Affects hardware/software overhead, power verification complexity, cost - How do we determine this profile information p - Also, who determines it? Problem **Algorithm** Program/Language **Runtime System** (VM, US, MM) ISA (Architecture) Microarchitecture Logic **Electrons** ## Retention Time of DRAM Rows Observation: Overwhelming majority of DRAM rows can be refreshed much less often without losing data Key Idea of RAIDR: Refresh weak rows more frequently, all other rows less frequently # RAIDR: Eliminating Unnecessary DRAM Refreshes Liu, Jaiyen, Veras, Mutlu, RAIDR: Retention-Aware Intelligent DRAM Refresh ISCA 2012. ## RAIDR: Mechanism 1. Profiling: Identify the retention time of all DRAM rows 64-128ms #### >256mc 1.25KB storage in controller for 32GB DRAM memory # 128-256ms > check the bins to determine refresh rate of a row ## RAIDR: Results and Takeaways - System: 32GB DRAM, 8-core; Various workloads - RAIDR hardware cost: 1.25 kB (2 Bloom filters) - Refresh reduction: 74.6% - Dynamic DRAM energy reduction: 16% - Idle DRAM power reduction: 20% - Performance improvement: 9% - Benefits increase as DRAM scales in density ## Reading on RAIDR Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu, "RAIDR: Retention-Aware Intelligent DRAM Refresh" Proceedings of the 39th International Symposium on Computer Architecture (ISCA), Portland, OR, June 2012. Slides (pdf) One potential reading for your Homework 1 assignment #### **RAIDR: Retention-Aware Intelligent DRAM Refresh** Jamie Liu Ben Jaiyen Richard Veras Onur Mutlu Carnegie Mellon University {jamiel, bjaiyen, rveras, onur}@cmu.edu ## If You Are Interested ... Further Readings Onur Mutlu, "Memory Scaling: A Systems Architecture Perspective" Technical talk at MemCon 2013 (MEMCON), Santa Clara, CA, August 2013. - Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris Wilkerson, Yoongu Kim, and Onur Mutlu, - "Improving DRAM Performance by Parallelizing Refreshes with Accesses" Slides (pptx) (pdf) Video Proceedings of the <u>20th International Symposium on High-Performance</u> <u>Computer Architecture</u> (**HPCA**), Orlando, FL, February 2014. <u>Slides (pptx) (pdf)</u> ## Takeaway 1 Breaking the abstraction layers (between components and transformation hierarchy levels) and knowing what is underneath enables you to **understand** and **solve** problems Cooperation between multiple components and layers can enable more effective solutions and systems # Digging Deeper: Making RAIDR Work "Good ideas are a dime a dozen" "Making them work is oftentimes the real contribution" #### Recall: RAIDR: Mechanism - 1. Profiling: Identify the retention time of all DRAM rows - → can be done at design time or during operation - 2. Binning: Store rows into bins by retention time - → use Bloom Filters for efficient and scalable storage - 1.25KB storage in controller for 32GB DRAM memory - 3. Refreshing: Memory controller refreshes rows in different bins at different rates - > check the bins to determine refresh rate of a row ## 1. Profiling #### To profile a row: - 1. Write data to the row - 2. Prevent it from being refreshed - 3. Measure time before data corruption | Row 1 | Row 2 | Row 3 | |-------------------------|------------------------------------|------------------------------------------------------------------------------------| | 11111111 | 11111111 | 11111111 | | 11111111 | 11111111 | 11111111 | | 11 <mark>0</mark> 11111 | 11111111 | 11111111 | | (64–128ms) | | | | | 11111 <mark>0</mark> 11 | 11111111 | | | (128-256ms) | (>256ms) | | | 111111111
111111111
11011111 | Row 1 Row 2 1111111111 11111111 11011111 11111111 (64–128ms) 11111011 (128–256ms) | ## DRAM Retention Time Profiling Q: Is it really this easy? A: Ummm, not really... ## Two Challenges to Retention Time Profiling Data Pattern Dependence (DPD) of retention time Variable Retention Time (VRT) phenomenon ## An Example VRT Cell ## VRT: Implications on Profiling Mechanisms - Problem 1: There does not seem to be a way of determining if a cell exhibits VRT without actually observing a cell exhibiting VRT - □ VRT is a memoryless random process [Kim+ JJAP 2010] - Problem 2: VRT complicates retention time profiling by DRAM manufacturers - Exposure to very high temperatures can induce VRT in cells that were not previously susceptible - → can happen during soldering of DRAM chips - → manufacturer's retention time profile may not be accurate - One option for future work: Use ECC to continuously profile DRAM online while aggressively reducing refresh rate - Need to keep ECC overhead in check ## More on DRAM Retention Analysis Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu, "An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms" Proceedings of the 40th International Symposium on Computer Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf) # An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms Jamie Liu* Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 jamiel@alumni.cmu.edu Ben Jaiyen^{*} Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 bjaiyen@alumni.cmu.edu Yoongu Kim Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 yoonguk@ece.cmu.edu Chris Wilkerson Intel Corporation 2200 Mission College Blvd. Santa Clara, CA 95054 chris.wilkerson@intel.com Onur Mutlu Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 onur@cmu.edu ## Finding DRAM Retention Failures - How can we reliably find the retention time of all DRAM cells? - Goals: so that we can - Make DRAM reliable and secure - Make techniques like RAIDR work - → improve performance and energy ## Mitigation of Retention Issues [SIGMETRICS'14] Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson, and Onur Mutlu, "The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study" Proceedings of the ACM International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides (pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets] #### The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study Samira Khan⁺∗ samirakhan@cmu.edu Donghyuk Lee[†] donghyuk1@cmu.edu Yoongu Kim[†] yoongukim@cmu.edu Alaa R. Alameldeen* alaa.r.alameldeen@intel.com chris.wilkerson@intel.com Chris Wilkerson* Onur Mutlut onur@cmu.edu [†]Carnegie Mellon University *Intel Labs ## Handling Variable Retention Time [DSN'15] Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and Onur Mutlu, "AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems" Proceedings of the <u>45th Annual IEEE/IFIP International Conference on</u> <u>Dependable Systems and Networks</u> (**DSN**), Rio de Janeiro, Brazil, June 2015. [<u>Slides (pptx) (pdf)</u>] ## AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems Moinuddin K. Qureshi[†] Dae-Hyun Kim[†] [†]Georgia Institute of Technology {moin, dhkim, pnair6}@ece.gatech.edu Samira Khan‡ Prashant J. Nair[†] Onur Mutlu[‡] [‡]Carnegie Mellon University {samirakhan, onur}@cmu.edu 88 ## Handling Data-Dependent Failures [DSN'16] Samira Khan, Donghyuk Lee, and Onur Mutlu, "PARBOR: An Efficient System-Level Technique to Detect Data-Dependent Failures in DRAM" Proceedings of the 45th Annual IEEE/IEID International Conference on Proceedings of the <u>45th Annual IEEE/IFIP International Conference on</u> <u>Dependable Systems and Networks</u> (**DSN**), Toulouse, France, June 2016. [<u>Slides (pptx) (pdf)</u>] ## PARBOR: An Efficient System-Level Technique to Detect Data-Dependent Failures in DRAM Samira Khan* Donghyuk Lee^{†‡} Onur Mutlu*[†] *University of Virginia [†]Carnegie Mellon University [‡]Nvidia *ETH Zürich 89 ## Handling Data-Dependent Failures [MICRO'17] Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R. Alameldeen, Donghyuk Lee, and Onur Mutlu, "Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content" Proceedings of the <u>50th International Symposium on Microarchitecture</u> (**MICRO**), Boston, MA, USA, October 2017. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)] ## Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content Samira Khan* Chris Wilkerson[†] Zhe Wang[†] Alaa R. Alameldeen[†] Donghyuk Lee[‡] Onur Mutlu* *University of Virginia [†]Intel Labs [‡]Nvidia Research *ETH Zürich 'AFARI 90 ## Handling Both DPD and VRT [ISCA'17] - Minesh Patel, Jeremie S. Kim, and Onur Mutlu, "The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions" Proceedings of the 44th International Symposium on Computer Architecture (ISCA), Toronto, Canada, June 2017. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] - First experimental analysis of (mobile) LPDDR4 chips - Analyzes the complex tradeoff space of retention time profiling - Idea: enable fast and robust profiling at higher refresh intervals & temperatures #### The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions Minesh Patel^{§‡} Jeremie S. Kim^{‡§} Onur Mutlu^{§‡} ETH Zürich [‡]Carnegie Mellon University ## 2. Binning - How to efficiently and scalably store rows into retention time bins? - Use Hardware Bloom Filters [Bloom, CACM 1970] #### Bloom Filter - [Bloom, CACM 1970] - Probabilistic data structure that compactly represents set membership (presence or absence of element in a set) - Non-approximate set membership: Use 1 bit per element to indicate absence/presence of each element from an element space of N elements - Approximate set membership: use a much smaller number of bits and indicate each element's presence/absence with a subset of those bits - Some elements map to the bits other elements also map to - Operations: 1) insert, 2) test, 3) remove all elements #### Bloom Filters #### Space/Time Trade-offs in ### Hash Coding with Allowable Errors In such applications, it is envisaged that overall performance could be improved by using a smaller core resident hash area in conjunction with the new methods and, when necessary, by using some secondary and perhaps time-consuming test to "catch" the small fraction of errors associated with the new methods. An example is discussed which illustrates possible areas of application for the new methods. Burton H. Bloom Computer Usage Company, Newton Upper Falls, Mass. In this paper trade-offs among certain computational factors in hash coding are analyzed. The paradigm problem considered is that of testing a series of messages one-by-one for membership in a given set of messages. Two new hash-coding methods are examined and compared with a particular conventional hash-coding method. The computational factors considered are the size of the hash area (space), the time required to identify a message as a nonmember of the given set (reject time), and an allowable error frequency. #### Bloom Filters: Pros and Cons #### Advantages - + Enables storage-efficient representation of set membership - + Insertion and testing for set membership (presence) are fast - + No false negatives: If Bloom Filter says an element is not present in the set, the element must not have been inserted - + Enables tradeoffs between time & storage efficiency & false positive rate (via sizing and hashing) #### Disadvantages -- False positives: An element may be deemed to be present in the set by the Bloom Filter but it may never have been inserted Not the right data structure when you cannot tolerate false positives #### Benefits of Bloom Filters as Refresh Rate Bins - False positives: a row may be declared present in the Bloom filter even if it was never inserted - Not a problem: Refresh some rows more frequently than needed - No false negatives: rows are never refreshed less frequently than needed (no correctness problems) - Scalable: a Bloom filter never overflows (unlike a fixed-size table) - Efficient: No need to store info on a per-row basis; simple hardware → 1.25 KB for 2 filters for 32 GB DRAM system #### Use of Bloom Filters in Hardware - Useful when you can tolerate false positives in set membership tests - See the following recent examples for clear descriptions of how Bloom Filters are used - Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh," ISCA 2012. - Seshadri et al., "The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing," PACT 2012. ## 3. Refreshing (RAIDR Refresh Controller) Determine which bin the row is in Determine if refreshing is needed ## 3. Refreshing (RAIDR Refresh Controller) Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh," ISCA 2012. ## RAIDR: Baseline Design Refresh control is in DRAM in today's auto-refresh systems RAIDR can be implemented in either the controller or DRAM ## RAIDR in Memory Controller: Option 1 #### Overhead of RAIDR in DRAM controller: 1.25 KB Bloom Filters, 3 counters, additional commands issued for per-row refresh (all accounted for in evaluations) ## RAIDR in DRAM Chip: Option 2 #### Overhead of RAIDR in DRAM chip: Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip) Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM) ## RAIDR: Results and Takeaways - System: 32GB DRAM, 8-core; SPEC, TPC-C, TPC-H workloads - RAIDR hardware cost: 1.25 kB (2 Bloom filters) - Refresh reduction: 74.6% - Dynamic DRAM energy reduction: 16% - Idle DRAM power reduction: 20% - Performance improvement: 9% - Benefits increase as DRAM scales in density ## DRAM Refresh: More Questions - What else can you do to reduce the impact of refresh? - What else can you do if you know the retention times of rows? - How can you accurately measure the retention time of DRAM rows? - Recommended reading: - Liu et al., "An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms," ISCA 2013. # We Will Dig Deeper More In This Course "Good ideas are a dime a dozen" "Making them work is oftentimes the real contribution" ## Computer Architecture Lecture 1: Introduction and Basics Prof. Onur Mutlu ETH Zürich Fall 2018 18 September 2018