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Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement
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Challenge: Intelligent Memory Device

Does memory
have to be
dumb?

SAFARI



Agenda

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices

o Top Down: Pull from Systems and Applications
Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion
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Processing in Memory:

Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory




Opportunity: 3D-Stacked Logic+Memory

vbrid Memory Cube

Logic

Other “True 3D" technologies
under development
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DRAM Landscape (circa 2015)

Segment DRAM Standards & Architectures

Commodity DDR3 (2007) [14]; DDR4 (2012) [18]

Low-Power  LPDDR3 (2012) [17]; LPDDR4 (2014) [20]

Graphics GDDRS5 (2009) [15]

Performance eDRAM [28], [32]; RLDRAM3 (2011) [29]

SBA/SSA (2010) [3%]; Staged Reads (2012) [%]; RAIDR (2012) [27];
SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [37];
Half-DRAM (2014) [39]; Row-Buffer Decoupling (2014) [33];

SARP (2014) [6]; AL-DRAM (2015) [25]

Academic

Table 1. Landscape of DRAM-based memory

Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.
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Two Key Questions in 3D-Stacked PIM

3D-stacked memory as a coarse-grained accelerator?
o what is the architecture and programming model?
o what are the mechanisms for acceleration?

What is the minimal processing-in-memory support we can
provide?

o without changing the system significantly

o while achieving significant benefits

SAFARI 8



Graph Processing

= Large graphs are everywhere (circa 2015)

oo [

36 Million 1.4 Billion 300 Million 30 Billion
Wikipedia Pages = Facebook Users Twitter Users  Instagram Photos

= Scalable large-scale graph processing is challenging

128 . _ +420/0—
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Key Bottlenecks in Graph Processing

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

1. Frequent random memory accesses

w.rank

w.next_rank

w.edges

2. Little amount of computation

SAFARI 10



Tesseract System for Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores
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Communications via

Remote Function Calls

Message Queue




Communications In Tesseract (1)

for (v: graph.vertices) {
for (w: v.successors) {

}
}

w.next_rank += weight * v.rank;

SAFARI
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Communications In Tesseract (1)

for (v: graph.vertices) {
for (w: v.successors) {

}
}

SAFARI

w.next_rank += weight * v.rank;
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Communications In Tesseract (I11)

for (v: graph.vertices) {

for (w: v.successors) { Non-blocking Remote Function Call
put(w.id, function() { w.next_rank += weight * v.rank; });
} Can be delayed
} until the nearest barrier
barrier();
Vault #1 Vault #2
put ~
\Y; &w
4-—-*”/// I‘\
put \\\
TS put
\__‘_\\\H -‘—_“_'_‘“—'——-b W
out | ]
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Remote Function Call (Non-Blocking)

1. Send function address & args to the remote core

2. Store the incoming message to the message queue
3. Flush the message queue when it is full or a

synchronization barrier is reached

Local
Core

[

NI

&func, &w, value

NI

>

Remote
Core b
MQ -

put(w.id, function() { w.next_rank +=value; })

SAFARI
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Prefetching

LP PF Buffer

MTP




Evaluated Systems

DDR3-000 HMC-000 HMC-MC Tesseract
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Tesseract Graph Processing Performance

>13X Performance Improvement

16
” On five graph processing algorithms 13.8x
1 11.6x
o 10 9.0x
>
D 8
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5 +56%  1+25%
, == [
DDR3-000 HMC-O000 HMC-MC Tesseract Tesseract- Tesseract-

LP LP-MTP
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Memory Bandwidth Consumption

2.9TB/s

Memory Bandwidth (TB/s)

2.2TB/s
1.3TB/s
190GB/s 243GB/s
80GB/s
— W

DDR3-000 HMC-Oo0 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP




_|

Eftfect of Bandwidth & Programming Model

] HMC-MC Bandwidth (640GB/s) [[] Tesseract Bandwidth (8TB/s)

Programming Model

3.0x

Speedup

2.3x v

-
0
HMC-MC HMC-MC + Tesseract + Tesseract
PIM BW Conventional BW (No Prefetching)
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Tesseract Graph Processing System Energy

B Memory Layers @ Logic Layers [ Cores
1.2

0.8
0.6
0.4

0.2 > 8X Energy Reduction

HMC-000 Tesseract with Prefetching
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Tesseract: Advantages & Disadvantages

Advantages

+ Specialized graph processing accelerator using PIM

+ Large system performance and energy benefits

+ Takes advantage of 3D stacking for an important workload

Disadvantages
- Changes a lot in the system
- New programming model

- Specialized Tesseract cores for graph processing
- Cost

- Scalability limited by off-chip links or graph partitioning

SAFARI 23



More on Tesseract

= Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,
and Kiyoung Chaoi,

"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing”

Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn  Sungpack Hong® Sungjoo Yoo Onur Mutlu’ Kiyoung Choi

junwhan@snu.ac.kr, sungpack.hong @oracle.com, sungjoo.yoo @ gmail.com, onur@cmu.edu, kchoi@snu.ac.kr

Seoul National University $0Oracle Labs TCarnegie Mellon University
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http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf

3D-Stacked PIM on Mobile Devices

= Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata
Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki
Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,

'Google Workloads for Consumer Devices: Mitigating Data
Movement Bottlenecks"

Proceedings of the 23rd International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks
Amirali Boroumand! Saugata Ghose! Youngsok Kim?

Rachata Ausavarungnirun'  Eric Shiv>  Rahul Thakur’  Daehyun Kim*?
Aki Kuusela®  Allan Knies®  Parthasarathy Ranganathan®  Onur Mutlu”"!
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/
https://www.asplos2018.org/
https://www.asplos2018.org/

Google Workloads

for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu
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Consumer Devices

Consumer devices are everywhere!

Energy consumption is

a first-class concern in consumer devices

§ |

SAFARI 27



Popular Google Consumer Workloads

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
@ OVouube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI 28



Energy Cost of Data Movement

It key observation: 62.7% of the total system
energy is spent on data movement

Data Movement

Processing-In-Memory (PIM)

Potential solution: move computation close to data

Challenge: limited area and energy budget
SAFARI 29



Using PIM to Reduce Data Movement

2"d key observation: a significant fraction of the
data movement often comes from simple functions

We can design lightweight logic to implement
these simple functions in memory

Small embedded Small fixed-function
low-power core accelerators

Offloading to PIM logic reduces energy and improves
performance, on average, by 55.4% and 54.2%

SAFARI 5



Workload Analysis

L2

Chrome TensorFlow
Google’s web browser Google’s machine learning
framework

@ OVoulube © O VouTube
Video Playback Video Capture
Google’s video codec Google’s video Codec
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Workload Analysis

Chrome TensorFlow
Google’s web browser Google’s machine learning

framework

P =

VP%J\{ VP 0

4 b

@ OVouTube @ D3 YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec
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How Chrome Renders a Web Page

(D)
£
1

HTML
Parser

HTML

Render Rasteriza- Composi-

Tree tion ting
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Loading and Layouting Painting
|

Parsing : |
|
| assembles all layers
| into a final screen image
l '
HTML HTML I I o
Parser : : S~
| Render | Rasteriza- Composi-
Layout . .
TLLGE I tion ting
css 2 1 SN
Parser 1 ] /’ I N
. N
| ! R | \
| ,’ ,’ 1 )3
.Y oy

paints those objects

calculates the and generates the bitmaps

visual elements and
position of each object



Browser Analysis

* To satisfy user experience, the browser must
provide:
— Fast loading of webpages
— Smooth scrolling of webpages
— Quick switching between browser tabs

* We focus on two important user interactions:
1) Page Scrolling
2) Tab Switching

— Both include page loading

SAFARI
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SAFARI

Tab Switching
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What Happens During Tab Switching?

* Chrome employs a multi-process architecture

— Each tab is a separate process

| Chrome Process c :

\—————l —————

(_L ~_L_ -L_
K

I—'_

\

=P

\——-

Tab | Tab 2 Tab N
Process Process Process

* Main operations during tab switching:
— Context switch

— Load the new page
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Memory Consumption

* Primary concerns during tab switching:
— How fast a new tab loads and becomes interactive

— Memory consumption

Chrome uses compression to
reduce each tab’s memory footprint

SAFARI 28



Data Movement Study

* To study data movement during tab switching,
we emulate a user switching through 50 tabs

We make two key observations:

1 Compression and decompression
contribute tol8.1% of the total system energy

2 19.6 GB of data moves between
CPU and ZRAM

SAFARI
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Can We Use PIM to Mitigate the Cost?

CPU -Only time CPU + PIM

Memory
Swap out N pages Swap out N pages -
Compres |

**
*
“
‘

hlgh
data movement | No off"‘:""P data
: movvement

compression

\

Other asks I

v

PIM core and PIM accelerator are feasible to

implement in-memory compression/decompression
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Tab Switching Wrap Up

A large amount of data movement happens
during tab switching as Chrome attempts to
compress and decompress tabs

Both functions can benefit from PIM execution

and can be implemented as PIM logic

SAFARI 31



Workload Analysis

2

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
© O YouTube @ O YouTube
Vldeo Playback Video Capture
Google’s video codec Google’s video codec
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TensorFlow Mobile

Prediction
9

Inferenc

®

57.3% of the inference energy is spent on
data movement

\

54.4% of the data movement energy comes from
packing/unpacking and quantization

SAFARI 34



Packing

Matrix Packed Matrix
I Packing ;

Reorders elements of matrices to minimize
cache misses during matrix multiplication

v v

Up to 40% of the Packing’s data movement
inference energy and 3 1% of accounts for up to
inference execution time 35.3% of the inference energy

A simple data reorganization process
that requires simple arithmetic

SAFARI 36



Quantization

floating point integer

Converts 32-bit floating point to 8-bit integers to improve
inference execution time and energy consumption

v v

Up to 16.8% of the Majority of quantization
inference energy energy comes from
and 16.1% of data movement

inference execution time

A simple data conversion operation that requires
shift, addition, and multiplication operations

SAFARI 36



Based on our analysis, we conclude that:

* Both functions are good candidates for PIM execution
* |t is feasible to implement them in PIM logic




Evaluation Methodology

* System Configuration (gem5 Simulator)

— SoC: 4 O00 cores, 8-wide issue, 64 kB L1cache,
2MB L2 cache

— PIM Core: | core per vault, |-wide issue, 4-wide SIMD,
32kB L1 cache

— 3D-Stacked Memory: 2GB cube, |16 vaults per cube
* Internal Bandwidth: 256 GB/S
¢ Off-Chip Channel Bandwidth: 32 GB/s

— Baseline Memory: LPDDR3, 2GB, FR-FCFS scheduler

* We study each target in isolation and emulate each
separately and run them in our simulator
SAFARI 40



Normalized Energy

CPU-Only EPIM-Core OPIM-Acc

o
©

.

o
o

o
-
!

FF T Frs
KT T TTIST

o
)

Normalized Energy

o
s

h I I
Sub-Pixel Deblocking  Motion

 JHIALIIII A/ 7777
/I

77.7% and 82.6% of energy reduction for texture tiling
and packing comes from eliminating data movement

1 core and PIM accelerator reduces
energy consumption on average by 49.1% and 55.4%
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Normalized Runtime

=
o

o O
o ™

Normalized Runtime
o o

o

CPU-Only B PIM-Core O PIM-Acc

TN
N

D
X
D
D
N
X
N
D
D
D

L

T
Y,

Offloading these kernels to PIM core and PIM accelerator
improves performance on average by 44.6% and 54.2%

4
2 ‘%
0 NN
Texture Color Comp- Decomp- | Sub-Pixel Deblocking  Motion |TensorFlow
Tiling Blitting ression ression [Interpolation Filter Estimation
Chrome Browser Video Playback TensorFlow
and Capture Mobile
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Google Workloads

for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

ASPLOS 2018
SAFARI Carnegie Mellon Google
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More on PIM for Mobile Devices

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand' Saugata Ghose' Youngsok Kim?
Rachata Ausavarungnirun’ Eric Shiv>  Rahul Thakur’  Daehyun Kim*?
AkiKuusela®  Allan Knies®>  Parthasarathy Ranganathan®  Onur Mutlu”!
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/
https://www.asplos2018.org/

Truly Distributed GPU Processing with PIM?

__global_
void applyScaleFactorsKernel( uint8 T * const out,
uint8 T const * const in, const double *factor,
size_t const numRows, size_t const numCols )
{
// Work out which pixel we are working on.
const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x;
const int colIldx = blockIdx.y:
const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if( rowIdx >= numRows ) return;

// Compute the index of my element

3 D-staCked memory size t linearIdx = rowldx + colIdx*numRows +

sliceIdx*numRows*numCols;

(memory stack) SM (Streaming Multiprocessor)

_______________ Logic layer

Logic layer
SM
I

Crossbar switch
[ [

Vault| .... |Vault
Ctrl Ctrl

Main GPU




Accelerating GPU Execution with PIM (I)

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.

Slides (pptx) (pdf)]

'Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh? FEiman Ebrahimi' Gwangsun Kim™  Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu? Stephen W. Keckler!

ICarnegie Mellon University NVIDIA *KAIST SETH Ziirich


https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Accelerating GPU Execution with PIM (1I)

Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the 25th International Conference on Paralle/
Architectures and Compilation Technigues (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik®  Xulong Tang* Adwait Jog> Onur Kayiran®
Asit K. Mishra*  Mahmut T. Kandemirt  Onur Mutlu>¢  Chita R. Das!

'Pennsylvania State University ~ 2College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs °ETH Zirich °Carnegie Mellon University
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https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/
http://pactconf.org/

Accelerating Linked Data Structures

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia *ETH Ziirich
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https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/
http://www.iccd-conf.com/

Executive Summary

* Our Goal: Accelerating pointer chasing inside
main memory

* Challenges: Parallelism challenge and Address
translation challenge

* Our Solution: In-Memory Polnter Chasing
Accelerator (IMPICA)

* Address-access decoupling: enabling parallelism in the
accelerator with low cost

* IMPICA page table: low cost page table in logic layer

* Key Results:

* 1.2X - 1.9X speedup for pointer chasing operations, +16%
database throughput

* 6% - 41% reduction in energy consumption
56



Linked Data Structures

* Linked data structures are widely used
in many important applications

Key Value )
Data Storane 11

Linked data structures are
connected by pointers

— -

ey 1r———_

Key 21——/§_—*| ma

jfl#/‘ﬂ”#/‘ﬂ?h Key3———~

dl1 sz dl:3 d¢4 di.’ dl‘5 d17 | :
B-Tree Hash Table
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The Problem: Pointer Chasing

* Traversing linked data structures
requires chasing pointers

Serialized and irregular access pattern
6X cycles per instruction in real workloads

58



Our Goal

Accelerating pointer chasing
inside main memory
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Parallelism Challenge

! ’Time
CPU core {Compl Memory Icomp]
access
CPU core {COmpI Memory ICO:mpJ
access
In-Memory Comp Memory | |~ IVIemory c)m:
Accelerator 2CCOSS p D access ; :

Slower for two operatlons
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Parallelism Challenge and Opportunity

* A simple in-memory accelerator can
still be slower than multiple CPU cores

CPU core CPU core CPU core

e

Accelerator

* Opportunity: a pointer-chasing
accelerator spends a long time
waiting for memory

{Compl Memory access (10-15X of Comp) ICompJ
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Our Solution:
Address-Access Decoupling

» Time

dCCess

CPU core {CompI Memory IComp}

Y N
CPU core ((‘nmnT Memorv

Address-access decoupling enables

t
Addr arallehsm in both englnes Wlth low cOS
Engin‘ P

Memory
Access access

Engine Y p—
dCCessS

62



IMPICA Core Architecture
DRAM

|
DRAM Layers

Logic Layer

Memory
IMPICA Controller

Cache
Access Queue t

Request Queue — —_—
‘ >, Address ‘ Access
Engine 4__‘ «— Engine
Traversal
D Response Queve
Tc(TravzersaF CPU



Address Translation Challenge

The page ¢able walk requires
multiple memory accesses

-----------------------------------------------------------------------------------------------------------------------------
A d o
* L4

* *

Virtual Address
"] __#PMLZ_| __#PDPT

ML4 PDPT PGD PGT

-
-“‘
.

‘e,
---------------------------------------------------------------------------------------------------------------------------



Our Solution: IMPICA Page Table

* Completely decouple the page table of
IMPICA from the page table of the

CPUs
INERO AP &g dablele

d data structure :nto IMPICA regions

Map linke e is a partial-to-any mapping

IMPICA page tabl

] 7\

Virtual Page E Physical Page

Virtual Address Space ~ Physical Address Space
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IMPICA Page Table: Mechanism

Virtual Address
Bit [47:4 . bage table Bit [11:0]

L saves one memory access

ion tab;le is almostg
he cache

Tiny reg
always in t

: Small Page Table
5‘(2MB) (4KB)

(N o*
---------------------------

Physical Address



Evaluation Methodology

* Simulator: gem5

* System Configuration

e CPU
* 4 Oo0 cores, 2GHz

e Cache:32KB L1, 1MB L2
* IMPICA
* 1 core, 500MHz, 32KB Cache
* Memory Bandwidth
* 12.8 GB/s for CPU, 51.2 GB/s for IMPICA

* Our simulator code is open source
* https://github.com/CMU-SAFARI/IMPICA
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Result = Microbenchmark Performance

W Baseline + extra 128KB L2 @ IMPICA

1.9X

2.0
g. 1.5 1.3X 1.9X
; .
@ 1.0 ——‘———— e —
Q
o
m 0.5 l

0.0

Linked List Hash Table B-Tree
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Result — Database Performance

1.20
1.10

5 1.00

-|E 0.90

ghput

Database

1.00
0.95
0.90
0.85
0.80

Database
Latency

+16%

Baseline + extra Baseline + extra IMPICA
128KB L2 1MB L2

Baseline + extra Baseline + extra IMPICA
128KB L2 1MB L2
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System Energy Consumption

M Baseline + extra 128KB L2 = IMPICA

—
o

Normalized Energy
o o
o U

Linked Hash B-Tree DBx1000
List Table
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Area and Power Overhead

CPU (Cortex-A57) 5.85 mm? per core
L2 Cache 5 mm? per MB
Memory Controller 10 mm?

IMPICA (+32KB cache) |0.45 mm?

* Power overhead: average power
increases by 5.6%




Accelerating Dependent Cache Misses

= Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Accelerating Dependent Cache Misses with an Enhanced
Memory Controller”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.

Slides (pptx) (pdf)]

Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib', Eiman Ebrahimi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin TApple *NVIDIA 3ETH Ziirich & Carnegie Mellon University
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Two Key Questions in 3D-Stacked PIM

How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?

o what is the architecture and programming model?
o what are the mechanisms for acceleration?

What is the minimal processing-in-memory support we can
provide?

o without changing the system significantly
o while achieving significant benefits
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PEI: PIM-Enabled Instructions (Ideas)

Goal: Develop mechanisms to get the most out of near-data
processing with minimal cost, minimal changes to the system, no
changes to the programming model

Key Idea 1: Expose each PIM operation as a cache-coherent,
virtually-addressed host processor instruction (called PEI) that
operates on only a single cache block

a

o 0O 0O O

e.g., _ pim_add(&w.next_rank, value) = pim.add r1, (r2)

No changes sequential execution/programming model

No changes to virtual memory

Minimal changes to cache coherence

No need for data mapping: Each PEI restricted to a single memory module

Key Idea 2: Dynamically decide where to execute a PEI (i.e., the
host processor or PIM accelerator) based on simple locality
characteristics and simple hardware predictors

a

Execute each operation at the location that provides the best performance
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Simple PIM Operations as ISA Extensions (II)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

w.next_rank += value;

Main Memory

Ll

64 bytes in ————
64 bytes out |

Conventional Architecture

w.next_rank

SAFARI
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Simple PIM Operations as ISA Extensions (I1I)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
__pim_add(&w.next_rank, value);

pim.add r1, (r2)

Main Memory

8 byteS in = e
O bytes out |

In-Memory Addition
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Always Executing in Memory? Not A Good Idea

60%
50%
0)
40% Increased
30%  Memory Bandwidth
_§' 20% Consumption
Cachi ffecti
Elg- 10% - acning very errective _ I
° =N
-10% Reduced Memory Bandwidth
-20% Consumption due to

2 o 5 = 'g g o0 In-Memory Computation
oM © Qo —
2 58 ¢E 38 ER T GE L E 58
o b P 2 © N ©c 2 3 ~N
N Y Q o +— & s 9 o 9
o UO)-c (¥ (4] nu =5 =

More Vertices

—
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PEI: PIM-Enabled Instructions (Example)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
___pim_add(&w.next_rank, value);

pim.add rl, (r2)

} Table 1: Summary of Supported PIM Operations
} Operation R W Input Output Applications
pfence e .
-byte integer increment O O  Obytes Obytes AT
pfe nce ( ) . 8-byte integer min O O 8bytes Obytes BFS, SP, WCC
’ Floating-point add O O 8bytes Obytes PR
Hash table probing O X S8bytes 9bytes HI
Histogram bin index 0O X 1byte 16bytes HG, RP
Euclidean distance O X 64bytes 4bytes SC
Dot product O X 32bytes 8bytes SVM

Executed either in memory or in the processor: dynamic decision

o Low-cost locality monitoring for a single instruction

Cache-coherent, virtually-addressed, single cache block only

Atomic between different PEIs

Not atomic with normal instructions (use pfence for ordering)

SAFARI
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PIM-Enabled Instructions

Key to practicality: single-cache-block restriction
o Each PEI can access at most one /last-level cache block
o Similar restrictions exist in atomic instructions

Benefits
o Localization: each PEI is bounded to one memory module

o Interoperability: easier support for cache coherence and
virtual memory

o Simplified locality monitoring: data locality of PEIs can be
identified simply by the cache control logic

SAFARI



Example (Abstract) PEI uArchitecture

Host Processor

Out-Of-Order
Core

L1 Cache
L2 Cache

PCU (pel

Computation Unit)

PMU (PEI
Mgmt Unit)

Last-Level
Cache

PIM
Directory

Locality
Monitor

HMC Controller

3D-stacked Memory

DRAM
PCU Controller

DRAM
PCU Controller

Network

DRAM
PCU Controller

Example PEI uArchitecture

SAFARI
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PEI: Initial Evaluation Results

Initial evaluations with 10 emerging data-intensive workloads
o Large-scale graph processing

- I Table 2: Baseline Simulation Configuration
o In-memory data analytics
. . _ C Configurati
o Machine learning and data mining omponent  Configuration
Core 16 out-of-order cores, 4 GHz, 4-issue
1 1 L1 I/D-Cache Private, 32 KB, 4/8-way, 64 B blocks, 16 MSHRs
J Th reec in pUt SetS (Sma I Il med Iu ml Ia rge) L2 Cache Private, 256 KB, 8-way, 64 B blocks, 16 MSHRs
1 L3 Cache Shared, 16 MB, 16-way, 64 B blocks, 64 MSHRs
for eaCh Workload to a na Iyze the Im paCt On-Chip Network Crossbar, 2 GHz, 144-bit links
i Main Memory 32 GB. 8 HMC:s, daisy-chain (80 GB/s full-duplex)
Of data Ioca I Ity HMC 4GB, 16 vaults, 256 DRAM banks [20]
- DRAM FR-FCFS, tCL = tRCD = tRP = 13.75ns [27]

— Vertical Links 64 TSVs per vault with 2 Gb/s signaling rate [23]

Pin-based cycle-level x86-64 simulation

Performance Improvement and Energy Reduction:
47% average speedup with large input data sets
32% speedup with small input data sets
25% avg. energy reduction in a single node with large input data sets

SAFARI o1



Evaluated Data-Intensive Applications

Ten emerging data-intensive workloads

o Large-scale graph processing

Average teenage follower, BFS, PageRank, single-source shortest
path, weakly connected components

o In-memory data analytics
Hash join, histogram, radix partitioning
o Machine learning and data mining
Streamcluster, SVM-RFE

Three input sets (small, medium, large) for each workload
to show the impact of data locality
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PEI Performance Delta: Large Data Sets

70%

60%

50%

40%

30%

20%

10%

0%

(Large Inputs, Baseline: Host-Only)

WCC

M PIM-Only [ Locality-Aware

SVM  GM
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Normalized Amount of Off-chip Transfer

ATF BFS PR SP WCC HJ HG RP SC
M Host-Only B PIM-Only [ Locality-Aware




PEI Performance Delta: Small Data Sets

60%

40%

20%

0%

-20%

-40%

-60%

—

ATF

(Small Inputs, Baseline: Host-Only)

Bl | [[[f

BFS

PR

SP WCC HIJ HG
M PIM-Only [ Locality-Aware

RP

SC

SVM GM
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Normalized Amount of Off-chip Transfer
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3
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dhldd].]
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PEI Performance Delta: Medium Data Sets

(Medium Inputs, Baseline: Host-Only)
70%

60%

50%

40%

30%

20%

111k Wh [ﬂ 1

» - _m
WCC RP SC SVM GM

-10%
M PIM-Only [ Locality-Aware
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PEI Energy Consumption

15 Host-Only
PIM-Only
Locality-Aware
1
0.5
0
Small Medium Large
M Cache M HMC Link @ DRAM
[ Host-side PCU [0 Memory-side PCU [1PMU

SAFARI
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PEI: Advantages & Disadvantages

Advantages

+ Simple and low cost approach to PIM

+ No changes to programming model, virtual memory
+ Dynamically decides where to execute an instruction

Disadvantages

- Does not take full advantage of PIM potential
- Single cache block restriction is limiting

SAFARI
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Simpler PIM: PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture”
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn  Sungjoo Yoo Onur Mutlu' Kiyoung Choi
junwhan @snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University TCarnegie Mellon University
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Automatic Code and Data Mapping

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.

Slides (pptx) (pdf)]

'Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh? FEiman Ebrahimi' Gwangsun Kim™  Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu? Stephen W. Keckler!

ICarnegie Mellon University NVIDIA *KAIST SETH Ziirich
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Automatic Offloading of Critical Code

= Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Accelerating Dependent Cache Misses with an Enhanced
Memory Controller”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.

Slides (pptx) (pdf)]

Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib', Eiman Ebrahimi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin TApple *NVIDIA 3ETH Ziirich & Carnegie Mellon University
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Automatic Ofttloading of Prefetch Mechanisms

= Milad Hashemi, Onur Mutlu, and Yale N. Patt,
"Continuous Runahead: Transparent Hardware Acceleration for
Memory Intensive Workloads"
Proceedings of the 49th International Symposium on
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

Continuous Runahead: Transparent Hardware Acceleration
for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu$, Yale N. Patt*

*The University of Texas at Austin SETH Ziirich
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Eftficient Automatic Data Coherence Support

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel’, Hasan Hassan'$, Brandon Lucia’,
Kevin Hsieh', Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*?

f Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich
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Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)
Computing Architectures
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Challenge and Opportunity for Future

Fundamentally
Low-Latency
(Data-Centric)
Computing Architectures
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Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement
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Agenda

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices

o Top Down: Pull from Systems and Applications
Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion

SAFARI
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Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory

SAFARI



Barriers to Adoption of PIM

1. Functionality of and applications for PIM
2. Ease of programming (interfaces and compiler/HW support)
3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping,
access/sharing control

5. Infrastructures to assess benefits and feasibility
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We Need to Revisit the Entire Stack

SW/HW Interface
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Key Challenge 1: Code Mapping

* Challenge 1: Which operations should be executed
in memory vs.in CPU!? ey

3D-stacked memory
(memory stack)

JIIIIIIIIIIII

void applyScaleFactorsKernel( uint8 T * const out,
uint8 T const * const in, const double *factor,
? size_t const numRows, size_t const numCols )
° {
// Work out which pixel we are working on.
const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x;
EEEEEEEEEN const int colIldx = blockIdx.y:
const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if( rowIdx >= numRows ) return;

// Compute the index of my element

size t linearIdx = rowldx + colIdx*numRows +
sliceIdx*numRows*numCols;

SM (Streaming Multiprocessor)

?

_______________ Logic layer

\ 4

Logic layer
SM

Main GPU

|
Crossbar switch

[ [
Vault| .... |Vault
Ctrl Ctrl




Key Challenge 2: Data Mapping

* Challenge 2: How should data be mapped to
different 3D memory stacks!?

3D-stacked memory
(memory stack) SM (Streammg Multiprocessor)

SM

Logic layer

I

Crossbar switch

[
Vault
Ctrl

Vault
Ctrl




How to Do the Code and Data Mapping?

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.

Slides (pptx) (pdf)]

'Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh? FEiman Ebrahimi' Gwangsun Kim™  Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu? Stephen W. Keckler!
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https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

How to Schedule Code?

Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the 25th International Conference on Paralle/
Architectures and Compilation Technigues (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik®  Xulong Tang* Adwait Jog> Onur Kayiran®
Asit K. Mishra*  Mahmut T. Kandemirt  Onur Mutlu>¢  Chita R. Das!

'Pennsylvania State University ~ 2College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs °ETH Zirich °Carnegie Mellon University
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Coherence for Hybrid CPU-PIM Apps

Challenge

Traditional
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How to Maintain Coherence?

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel’, Hasan Hassan'$, Brandon Lucia’,
Kevin Hsieh', Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*?

f Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich
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https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

How to Support Virtual Memory?

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia *ETH Ziirich
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How to Design Data Structures tor PIM?

= Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,

'Concurrent Data Structures for Near-Memory Computing”
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), Washington, DC, USA, July 2017.

[Slides (pptx) (pdf)]

Concurrent Data Structures for Near-Memory Computing

Zhiyu Liu Irina Calciu
Computer Science Department VMware Research Group
Brown University icalciu@vmware.com
zhiyu liu@brown.edu
Maurice Herlihy Onur Mutlu
Computer Science Department Computer Science Department
Brown University ETH Zirich
mph@cs.brown.edu onur.mutlu@inf.ethz.ch
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https://spaa.acm.org/
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Simulation Infrastructures for PIM

Ramulator extended for PIM
o Flexible and extensible DRAM simulator
o Can model many different memory standards and proposals

o Kim+, "Ramulator: A Flexible and Extensible DRAM
Simulator”, IEEE CAL 2015.

o https://github.com/CMU-SAFARI/ramulator

Ramulator: A Fast and Extensible DRAM Simulator

Yoongu Kim! Weikun Yang!2  Onur Mutlu!
1Carnegie Mellon University ~ ?Peking University
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An FPGA-based Test-bed for PIM?

= Hasan Hassan et al., SoftMC: A
Flexible and Practical Open- Chamber

Source Infrastructure for \ 1 ;" |

Enabling Experimental DRAM
Studies HPCA 2017.

= Flexible W
1;emp

= Easy to Use (C++ API) ' Controller

= Open-source Heater I EE;

\“"’ A >

github.com/CMU-SAFARL/SoftMC
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New Applications and Use Cases for PIM

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies™

BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

GRIM-Filter: Fast seed location filtering in
DNA read mapping using

processing-in-memory technologies

Jeremie S. Kim'®”, Damla Senol Cali', Hongyi Xin?, Donghyuk Lee3, Saugata Ghose’,
Mohammed Alser, Hasan Hassan®, Oguz Ergin®, Can Alkan*" and Onur Mutlu®'”

From The Sixteenth Asia Pacific Bioinformatics Conference 2018
Yokohama, Japan. 15-17 January 2018
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Genome Read In-Memory (GRIM) Filter:

Fast Seed Location Filtering in DNA Read Mapping
using Processing-in-Memory Technologies

Jeremie Kim,
Damla Senol, Hongyi Xin, Donghyuk Lee,
Saugata Ghose, Mohammed Alser, Hasan Hassan,
Oguz Ergin, Can Alkan, and Onur Mutlu

/ \ ETH:zurich

TOBB
UNIVERSITY OF
ECONOMICS AND TECHNOLOGY

Carnegie Mellon




Executive Summary

Genome Read Mapping is a very important problem and is the first
step in many types of genomic analysis

o Could lead to improved health care, medicine, quality of life

Read mapping is an approximate string matching problem
o Find the best fit of 100 character strings into a 3 billion character dictionary

o Alignment is currently the best method for determining the similarity between
two strings, but is very expensive

We propose an in-memory processing algorithm GRIM-Filter for
accelerating read mapping, by reducing the number of required
alignments

We implement GRIM-Filter using in-memory processing within 3D-
stacked memory and show up to 3.7x speedup.

SAFARI 15



GRIM-Filter in 3D-stacked DRAM

Bank Custom GRIM-Filter Logic

Seed Location Filter Bitmask
Bank: s DRAM Layers (]

Row 1: AAAAA
Row 2: AAAAC
Row 3: AAAAG

)

[Comparato

Bitvector for bin 2

Bitvector for bin O
Bitvector for bin 1

Bitvector for bin t—1
A
A
o
Per-Bin
Logic Module

Incr. PAccumulato

Row N=1: TTTTT ' ~ —

e AmmyE Row Data Register

Logic Layer

Figure 7: Left block: GRIM-Filter bitvector layout within a DRAM bank. Center block: 3D-
stacked DRAM with tightly integrated logic layer stacked underneath with TSVs for a high
intra-DRAM data transfer bandwidth. Right block: Custom GRIM-Filter logic placed in the

logic layer.

= The layout of bit vectors in a bank enables filtering many bins in parallel

= Customized logic for accumulation and comparison per genome segment
o Low area overhead, simple implementation

SAFARI 16



GRIM-Filter Performance

Time (x1000

seconds) Benchmarks and their Execution Times

70

e =5 Errors

35 1|1 FastHASH

A b b i b i b

-1 -2
EP\RZA’OTZG 324012 ERPJ&OT?- ERR’zAOTZ EP\RZAOTZ ERR.ZA’OTZ ERR?_QOT?- EP\RQ_AOTZ ERRZAOTS%RP\ZA’OT 30
Benchmarks

1.8x-3.7x performance benefit across real data sets
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GRIM-Filter False Positive Rate

False Positive

Rate (%) Benchmarks and their False Positive Rates
45
5 Errors
22,5} 1|E=2 FastHASH
BN GRIM-Filter

EP\PQAOTZ ERR24012 RR-zQ_OTZ RR24012 RREAO-}Q ERREAOng R—za[)-fzg RRzaOng RR‘ZAOTBO R240130 -2
Benchmarks

5.6x-6.4x False Positive reduction across real data sets
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Conclusions

= We propose an in memory filter algorithm to accelerate end-
to-end genome read mapping by reducing the number of
required alignments

= Compared to the previous best filter
o We observed 1.8x-3.7x speedup
o We observed 5.6x-6.4x fewer false positives

= GRIM-Filter is a universal filter that can be applied to any
genome read mapper

SAFARI 19



In-Memory DNA Sequence Analysis

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies™

BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

GRIM-Filter: Fast seed location filtering in
DNA read mapping using

processing-in-memory technologies

Jeremie S. Kim'®”, Damla Senol Cali', Hongyi Xin?, Donghyuk Lee3, Saugata Ghose’,
Mohammed Alser, Hasan Hassan®, Oguz Ergin®, Can Alkan*" and Onur Mutlu®'”

From The Sixteenth Asia Pacific Bioinformatics Conference 2018
Yokohama, Japan. 15-17 January 2018
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Open Problems: PIM Adoption

Enabling the Adoption of Processing-in-Memory:
Challenges, Mechanisms, Future Research Directions

SAUGATA GHOSE, KEVIN HSIEH, AMIRALI BOROUMAND,
RACHATA AUSAVARUNGNIRUN

Carnegie Mellon University

ONUR MUTLU
ETH Ziirich and Carnegie Mellon University

https://arxiv.org/pdf/1802.00320.pdf
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Enabling the Paradigm Shift




Computer Architecture Today

You can revolutionize the way computers are built, if you
understand both the hardware and the software (and
change each accordingly)

You can invent new paradigms for computation,
communication, and storage

Recommended book: Thomas Kuhn, “The Structure of
Scientific Revolutions” (1962)

o Pre-paradigm science: no clear consensus in the field

o Normal science: dominant theory used to explain/improve
things (business as usual); exceptions considered anomalies

o Revolutionary science: underlying assumptions re-examined
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Computer Architecture Today

You can revolutlonlze the way computers are built, if you
understand botl oftware (and
change each ac ~

Recomme s

anomalies

o Revoluti examined
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Agenda

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices

o Top Down: Pull from Systems and Applications
Processing in Memory: Two Directions

a Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion
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Four Key Directions

=| Fundamentally Secure/Reliable/Safe Architectures

=| Fundamentally Energy-Efficient Architectures
o Memory-centric (Data-centric) Architectures

=| Fundamentally Low-Latency Architectures

=| Architectures for Genomics, Medicine, Health

SAFARI

126



Maslow’s Hierarchy of Needs, A Third Time

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Self- Self-fulfillment
Maslow, “Motivation and Personality,” _actualization: '\ needs
Book, 1954-1970. | S
peed
activities
prestige c SPGECI plishment \  Psychological
- = needs
Belongi needs:

min Speed |
Speed s

SA FA R' Source: https://www.simplypsychology.org/maslow.html 127




Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)
Computing Architectures
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Challenge and Opportunity for Future

Fundamentally
Low-Latency
(Data-Centric)
Computing Architectures
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Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement
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PIM: Concluding Remarks




A Quote from A Famous Architect

= “architecture [...] based upon principle, and not upon
precedent”
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Precedent-Based Design?

= “architecture [...] based upon principle, and not upon
precedent”




Principled Design

= “architecture [...] based upon principle, and not upon
precedent”
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The Overarching Principle

Organic architecture

From Wikipedia, the free encyclopedia

Organic architecture is a philosophy of architecture which promotes harmony
between human habitation and the natural world through design approaches so
sympathetic and well integrated with its site, that buildings, furnishings, and
surroundings become part of a unified, interrelated composition.

A well-known example of organic architecture is Fallingwater, the residence Frank Lloyd Wright
designed for the Kaufmann family in rural Pennsylvania. Wright had many choices to locate a
home on this large site, but chose to place the home directly over the waterfall and creek creating
a close, yet noisy dialog with the rushing water and the steep site. The horizontal striations of
stone masonry with daring cantilevers of colored beige concrete blend with native rock
outcroppings and the wooded environment.
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nother Example: Precedent-Based Design

Source: http://cookiemagik.deviantart.com/art/Train-station-207266944



Principled Design

Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256
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Another Principled Design

Source: By Martin Gomez Tagle - Lisbon, Portugal, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13764903
Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/




Another Principled Design

Source: De Galvan - Puente del Alamillo.jpg on Enciclopedia.us.es, GFDL, https://commons.wikimedia.org/w/index.php?curid=15026095



Pr1nc1ple Apphed to Another Structure
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https://commons.wikimedia.org/w/index.php?curid=31493356

The Overarching Principle

Zoomorphic architecture

From Wikipedia, the free encyclopedia

Zoomorphic architecture is the practice of using animal
forms as the inspirational basis and blueprint for architectural
design. "While animal forms have always played a role adding
some of the deepest layers of meaning in architecture, it is
now becoming evident that a new strand of biomorphism is
emerging where the meaning derives not from any specific
representation but from a more general allusion to biological
processes."!]

Some well-known examples of Zoomorphic architecture can be found in the TWA
Flight Center building in New York City, by Eero Saarinen, or the Milwaukee Art

Museum by Santiago Calatrava, both inspired by the form of a bird’s wings.!®!
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Overarching Principle for Computing?

Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg




Concluding Remarks

= It is time to design principled system architectures to solve
the memory problem

= Design complete systems to be balanced, high-performance,
and energy-efficient, i.e., data-centric (or memory-centric)

= Enable computation capability inside and close to memory

= This can

o Lead to orders-of-magnitude improvements

o Enable new applications & computing platforms
o Enable better understanding of nature
a
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The Future of Processing in Memory is Bright

= Regardless of challenges
o in underlying technology and overlying problems/requirements

Problem
Can enable: - Yet, we have to
- Orders of magnitude Program/Language - Think across the stack
improvements System Software

o SW/HW Interface - Design enabling systems
- New applications and

computing systems
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If In Doubt, See Other Doubtful Technologies

A very “doubtful” emerging technology
a for at least two decades

§HH+ Saih Proceedings of the IEEE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error
characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.

By Yu Cai, SauGaTta GHOSE, EricH F. HARATSCH, YIXIN Luo, AND ONUR MUTLU

SAFARI https://arxiv.org/pdf/1706.08642 146
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For Some Open Problems, See

Enabling the Adoption of Processing-in-Memory:
Challenges, Mechanisms, Future Research Directions

SAUGATA GHOSE, KEVIN HSIEH, AMIRALI BOROUMAND,
RACHATA AUSAVARUNGNIRUN

Carnegie Mellon University

ONUR MUTLU
ETH Ziirich and Carnegie Mellon University

https://arxiv.org/pdf/1802.00320.pdf
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Consumer Devices

Consumer devices are everywhere!

Energy consumption is

a first-class concern in consumer devices

§ |
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Popular Google Consumer Workloads

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
@ OVouube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI 152



Energy Cost of Data Movement

|5t key observation: 62.7% of the
total system energy is spent on data movement

Data Movement

Compute
Unit

Processing-in-Memory (PIM)

Potential solution: move computation close to data

Challenge: limited area and energy budget
SAFARI 153



Using PIM to Reduce Data Movement

2"d key observation: a significant fraction of
data movement often comes from simple functions

We can design lightweight logic to
implement these simple functions in memory

Small embedded Small fixed-function
low-power core accelerators

Offloading to PIM logic reduces energy by 55.4%
and improves performance by 54.2% on average

SAFARI 5



Goals

1 Understand the data movement related
bottlenecks in modern consumer workloads

2 Analyze opportunities to mitigate data movement
by using processing-in-memory (PIM)

3 Design PIM logic that can maximize energy
efficiency given the limited area and energy
budget in consumer devices
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Outline

 Introduction

* Background

* Analysis Methodology
* Workload Analysis

* Evaluation

e Conclusion
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Potential Solution to Address Data Movement

* Processing-in-Memory (PIM)
— A potential solution to reduce data movement
— ldea: move computation close to data
v Reduces data movement
v~ Exploits large in-memory bandwidth

v’ Exploits shorter access latency to memory

* Enabled by recent advances in 3D-stacked memory

Through-Silicon Via
7 (TSV)

SAFARI 8



Outline

* Introduction

* Background

* Analysis Methodology
* Workload Analysis

* Evaluation

e Conclusion

SAFARI 158



Workload Analysis Methodology
— Chromebook with an .'/ fvpg

Intel Celeron SoC and 2GB of DRAM

— Extensively use performance counters within SoC

e Workload Characterization

* Energy Model

— Sum of the energy consumption within the CPU,
all caches, off-chip interconnects, and DRAM
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PIM Logic Implementation

Logic Layer
L) < ' -
s S
;”” \\\'

’I \\
‘-’, \\\A
Customized embedded Small fixed-function
general-purpose core accelerators
No aggressive ILP techniques Multiple copies of customized
256-bit SIMD unit in-memory logic unit

SAFARI |1



Workload Analysis

L2

Chrome TensorFlow
Google’s web browser Google’s machine learning
framework

@ OVoulube © O VouTube
Video Playback Video Capture
Google’s video codec Google’s video Codec
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Workload Analysis

Chrome TensorFlow
Google’s web browser Google’s machine learning

framework

P =

VP%J\{ VP 0

4 b

@ OVouTube @ D3 YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec
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How Chrome Renders a Web Page

(D)
£
1

HTML
Parser

HTML

Render Rasteriza- Composi-

Tree tion ting

SAFARI 14



Loading and Layouting Painting
|

Parsing : |
|
| assembles all layers
| into a final screen image
l '
HTML HTML I I o
Parser : : S~
| Render | Rasteriza- Composi-
Layout . .
TLLGE I tion ting
css 2 1 SN
Parser 1 ] /’ I N
. N
| ! R | \
| ,’ ,’ 1 )3
.Y oy

paints those objects

calculates the and generates the bitmaps

visual elements and
position of each object



Browser Analysis

* To satisfy user experience, the browser must
provide:
— Fast loading of webpages
— Smooth scrolling of webpages
— Quick switching between browser tabs

* We focus on two important user interactions:
1) Page Scrolling
2) Tab Switching

— Both include page loading

SAFARI
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rasterization uses color blitters

to convert the basic primitives
into bitmaps

“*~-- Color

Blitting
Rasteriza- Composi-
Layout i nposi
tion ting

to minimize cache misses

during compositing, the graphics driver
reorganizes the bitmaps




Scrolling Energy Analysis

100% MW Texture Tiling
(0]

80%
60%
40%
ISR N EEET S e =

0}
0% Google Gmail Google Word- Twitter  Ani-
Docs Calendar Press mation !

Fraction of
Total Energy

41.9% of page scrolling energy is spent on
texture tiling and color blitting

SAFARI 19



Scrolling a Google Docs Web Page

1841012 M Texture Tiling M Color Blitting Other

15x1012_ _________________________________________________________________
12x1012_ _________________________________________________________________

9x1012_-__ _______________________________________________________
61012 | RS e

3x1012].. NN - -

0x1012. , -
Inter- Mem DRAM
connect Ctrl

Total Energy (pJ)

LLC

| 77% of total energy
| consumption goes to

data movement

Data Movement E Compute

A significant portion of %S 85
total data movement comes from
texture tiling and color blitting

Fraction
Total Ene
5
NS

37.7% of total syst
CAFARI of total system energy

Color
Tiling  Blitting

20



Can we use PIM to mitigate the data movement cost

for texture tiling and color blitting?




Can We Use PIM for Texture Tiling?

CPU Memory C’:’ u P ”:V’

: Rasterization % :

QEh :
— data movement Invoke
: Compositing

idle

Texture TiIing

Texture tiling is a good candidate for

PIM execution



Can We Implement Texture Tiling in PIM Logic?

Linear Bitmap Tiled Texture

Texture

Requires simple primitives: memcopy, bitwise
operations, and simple arithmetic operations

9.4% of the area 7.1% of the area
available for PIM logic available for PIM logic

PIM core and PIM accelerator are feasible to

implement in-memory Texture Tiling
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Color Blitting Analysis

Generates a large amount of data movement

Accounts for 19.1% of the total system energy during scrolling

Color blitting is a good candidate
for PIM execution

Requires low-cost operations:
Memset, simple arithmetic, and shift operations

It is feasible to implement color blitting
in PIM core and PIM accelerator

SAFARI 24



Scrolling Wrap Up

Texture tiling and color blitting account for
a significant portion (41.9%) of energy consumption

v

37.7% of total system energy goes to
data movement generated by these functions

1 Both functions can benefit significantly
from PIM execution

2 Both functions are feasible to implement
as PIM logic

SAFARI 25



SAFARI

Tab Switching
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What Happens During Tab Switching?

* Chrome employs a multi-process architecture

— Each tab is a separate process

| Chrome Process c :

\—————l —————

(_L ~_L_ -L_
K

I—'_

\

=P

\——-

Tab | Tab 2 Tab N
Process Process Process

* Main operations during tab switching:
— Context switch

— Load the new page

SAFARI 27



Memory Consumption

* Primary concerns during tab switching:
— How fast a new tab loads and becomes interactive

— Memory consumption

Chrome uses compression to
reduce each tab’s memory footprint

SAFARI 28



Data Movement Study

* To study data movement during tab switching,
we emulate a user switching through 50 tabs

We make two key observations:

1 Compression and decompression
contribute tol8.1% of the total system energy

2 19.6 GB of data moves between
CPU and ZRAM

SAFARI
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Can We Use PIM to Mitigate the Cost?

CPU -Only time CPU + PIM

Memory
Swap out N pages Swap out N pages -
Compres |

**
*
“
‘

hlgh
data movement | No off"‘:""P data
: movvement

compression

\

Other asks I

v

PIM core and PIM accelerator are feasible to

implement in-memory compression/decompression
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Tab Switching Wrap Up

A large amount of data movement happens
during tab switching as Chrome attempts to
compress and decompress tabs

Both functions can benefit from PIM execution

and can be implemented as PIM logic

SAFARI 31



Workload Analysis

L2

Chrome TensorFlow
Google’s web browser Google’s machine learning
framework

@ OVoulube © O VouTube
Video Playback Video Capture
Google’s video codec Google’s video codec
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Workload Analysis

L2

TensorFlow
Google’s machine learning

framework

@ O Voulube © O YouTube
Vldeo Playback Video Capture
Google’s video codec Google’s video codec
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TensorFlow Mobile

Prediction
9

Inferenc

®

57.3% of the inference energy is spent on
data movement

\

54.4% of the data movement energy comes from
packing/unpacking and quantization

SAFARI 34



Packing

Matrix Packed Matrix
I Packing ;

Reorders elements of matrices to minimize
cache misses during matrix multiplication

v v

Up to 40% of the Packing’s data movement
inference energy and 3 1% of accounts for up to
inference execution time 35.3% of the inference energy

A simple data reorganization process
that requires simple arithmetic
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Quantization

floating point integer

Converts 32-bit floating point to 8-bit integers to improve
inference execution time and energy consumption

v v

Up to 16.8% of the Majority of quantization
inference energy energy comes from
and 16.1% of data movement

inference execution time

A simple data conversion operation that requires
shift, addition, and multiplication operations

SAFARI 36



Based on our analysis, we conclude that:

* Both functions are good candidates for PIM execution
* |t is feasible to implement them in PIM logic




Video Playback and Capture
VP9

- Compressed Display - s Captured Compressed
(( ) video VP9 ’ V|deo VP9 V|deo (( )
- . Encoder :

Decoder

Majority of energy is spent on data movement

Majority of data movement comes from
simple functions in decoding and encoding pipelines
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Outline

* Introduction

* Background

* Analysis Methodology
* Workload Analysis

* Evaluation

e Conclusion
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Evaluation Methodology

* System Configuration (gem5 Simulator)

— SoC: 4 O00 cores, 8-wide issue, 64 kB L1cache,
2MB L2 cache

— PIM Core: | core per vault, |-wide issue, 4-wide SIMD,
32kB L1 cache

— 3D-Stacked Memory: 2GB cube, |16 vaults per cube
* Internal Bandwidth: 256 GB/S
¢ Off-Chip Channel Bandwidth: 32 GB/s

— Baseline Memory: LPDDR3, 2GB, FR-FCFS scheduler

* We study each target in isolation and emulate each
separately and run them in our simulator
SAFARI 40



Normalized Energy

CPU-Only EPIM-Core OPIM-Acc

o
©

.

o
o

o
-
!

FF T Frs
KT T TTIST

o
)

Normalized Energy

o
s

h I I
Sub-Pixel Deblocking  Motion

 JHIALIIII A/ 7777
/I

77.7% and 82.6% of energy reduction for texture tiling
and packing comes from eliminating data movement

1 core and PIM accelerator reduces
energy consumption on average by 49.1% and 55.4%
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Normalized Runtime

Normalized Runtime

CPU-Only B PIM-Core O PIM-Acc

1.0 -
TN \ N
0.8 - § % %E
N N
0.6 - § % ‘%:
N
0.4 - § § S‘:E
02 - % \ N
INSENEL S
0.0 I N B\
Texture Color Comp- Decomp- | Sub-Pixel Deblocking  Motion |TensorFlow
Tiling Blitting ression ression |Interpolation Filter Estimation
Chrome Browser Video Playback Tensor!=low
and Capture Mobile

Offloading these kernels to PIM core and PIM accelerator
improves performance on average by 44.6% and 54.2%

191



Conclusion

* Energy consumption is a major challenge in consumer devices

* We conduct an in-depth analysis of popular Google
consumer workloads
— 62.7% of the total system energy is spent on data movement

— Most of the data movement comes from simple functions that
consist of simple operations

e We use PIM to reduce data movement cost

— We design lightweight logic to implement
simple operations in DRAM

— Reduces total energy by 55.4% on average

— Reduces execution time by 54.2% on average
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Google Workloads

for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu
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3D-Stacked PIM on Mobile Devices

= Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata
Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki
Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,

'Google Workloads for Consumer Devices: Mitigating Data
Movement Bottlenecks"

Proceedings of the 23rd International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks
Amirali Boroumand! Saugata Ghose! Youngsok Kim?

Rachata Ausavarungnirun'  Eric Shiv>  Rahul Thakur’  Daehyun Kim*?
Aki Kuusela®  Allan Knies®  Parthasarathy Ranganathan®  Onur Mutlu”"!
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Accelerating Pointer Chasing in
3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh
Samira Khan, Nandita Vijaykumar, Kevin K. Chang,

Amirali Boroumand, Saugata Ghose, Onur Mutlu

(Carnegie

Mellon il UNVERSITY - BT 7 (irich
University
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Executive Summary

* Our Goal: Accelerating pointer chasing inside
main memory

* Challenges: Parallelism challenge and Address
translation challenge

* Our Solution: In-Memory Polnter Chasing
Accelerator (IMPICA)

* Address-access decoupling: enabling parallelism in the
accelerator with low cost

* IMPICA page table: low cost page table structure

* Key Results:

* 1.2X - 1.9X speedup for pointer chasing operations, +16%
database throughput

* 6% - 41% reduction in energy consumption
196



Linked Data Structures

* Linked data structures are widely used
in many important applications

Key Value )
Data Storane 11

Linked data structures are
connected by pointers

Key 1»— §:—*’—|

.k&Ey ) G ::}__| +_% ‘

IL_l.flJ/‘?"'”J/‘-sJ-?-'-, iKey3,._

] ! | —
2 dy dy ds dg d

B-Tree Hash Table

N/
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The Problem: Pointer Chasing

* Traversing linked data structures
requires chasing pointers

Serialized and irregular access pattern
6X cycles per instruction in real workloads

198



Our Goal

Accelerating pointer chasing
inside main memory

Logic layer 199



Outline

*Parallelism Challenge
*IMPICA Core Architecture

* Address Translation Challenge
*IMPICA Page Table

* Evaluation

* Conclusion
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Parallelism Challenge

! ’Time
CPU core {Compl Memory Icomp]
access
CPU core {COmpI Memory ICO:mpJ
access
In-Memory Comp Memory | |~ IVIemory c)m:
Accelerator 2CCOSS p D access ; :

Slower for two operatlons
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Parallelism Challenge and Opportunity

* A simple in-memory accelerator can
still be slower than multiple CPU cores

CPU core CPU core CPU core

e

Accelerator

* Opportunity: a pointer-chasing
accelerator spends a long time
waiting for memory

{Compl Memory access (10-15X of Comp) ICompJ
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Our Solution:
Address-Access Decoupling

» Time

dCCess

CPU core {CompI Memory IComp}

Y N
CPU core ((‘nmnT Memorv

Address-access decoupling enables

t
Addr arallehsm in both englnes Wlth low cOS
Engin‘ P

Memory
Access access

Engine Y p—
dCCessS
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IMPICA Core Architecture

DRAM
|
DRAM Layers
Logic Layer Memory
IMPICA Controller
Cache
Access Queue t
Request Queue —_— —
‘ >, Address ‘ Access
Engine 4__{ «— Engine
Traversal
I R Response Queve
Tc Travzersal CPU



Outline

* Motivation and Our Approach
*Parallelism Challenge
*IMPICA Core Architecture

* Address Translation Challenge
*IMPICA Page Table

* Evaluation

* Conclusion
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Address Translation Challenge

The page ¢able walk requires
multiple memory accesses

-----------------------------------------------------------------------------------------------------------------------------
A d o
* L4

* *

Virtual Address
"] __#PMLZ_| __#PDPT

ML4 PDPT PGD PGT

-
-“‘
.

‘e,
---------------------------------------------------------------------------------------------------------------------------



Our Solution: IMPICA Page Table

* Completely decouple the page table of
IMPICA from the page table of the

CPUs
INERO AP &g dablele

d data structure :nto IMPICA regions

Map linke e is a partial-to-any mapping

IMPICA page tabl

] 7\

Virtual Page E Physical Page

Virtual Address Space ~ Physical Address Space
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IMPICA Page Table: Mechanism

Virtual Address
Bit [47:4 . bage table Bit [11:0]

L saves one memory access

ion tab;le is almostg
he cache

Tiny reg
always in t

: Small Page Table
5‘(2MB) (4KB)

(N o*
---------------------------

Physical Address



Outline

* Motivation and Our Approach
*Parallelism Challenge
*IMPICA Core Architecture

* Address Translation Challenge
*IMPICA Page Table

* Evaluation

* Conclusion

209



Evaluated Workloads

* Microbenchmarks
* Linked list (from Olden benchmark)
* Hash table (from Memcached)

* B-tree (from DBx1000)

* Application
* DBx 1000 (with TPC-C benchmark)

210



Evaluation Methodology

* Simulator: gem5

* System Configuration

e CPU
* 4 Oo0 cores, 2GHz

e Cache:32KB L1, 1MB L2
* IMPICA
* 1 core, 500MHz, 32KB Cache
* Memory Bandwidth
* 12.8 GB/s for CPU, 51.2 GB/s for IMPICA

* Our simulator code is open source
* https://github.com/CMU-SAFARI/IMPICA

211
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Result = Microbenchmark Performance

W Baseline + extra 128KB L2 @ IMPICA

1.9X

2.0
g. 1.5 1.3X 1.9X
; .
@ 1.0 ——‘———— e —
Q
o
m 0.5 l

0.0

Linked List Hash Table B-Tree
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Result — Database Performance

1.20
1.10

5 1.00

-|E 0.90

ghput

Database

1.00
0.95
0.90
0.85
0.80

Database
Latency

+16%

Baseline + extra Baseline + extra IMPICA
128KB L2 1MB L2

Baseline + extra Baseline + extra IMPICA
128KB L2 1MB L2
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System Energy Consumption

M Baseline + extra 128KB L2 = IMPICA

—
o

Normalized Energy
o o
o U

Linked Hash B-Tree DBx1000
List Table
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Area and Power Overhead

CPU (Cortex-A57)

5.85 mm? per core

L2 Cache 5 mm? per MB
Memory Controller 10 mm?
IMPICA (+32KB cache) |0.45 mm?

* Power overhead: average power

increases by 5.6%

215



More in the Paper

* Interface and design considerations
* CPU interface and programming model
* Page table management
* Cache coherence

* Area and power overhead analysis
* Sensitivity to IMPICA page table design

216



Conclusion

* Performing pointer-chasing inside main memory can greatly
speed up the traversal of linked data structures

* Challenges: Parallelism challenge and Address translation
challenge

* Our Solution: In-Memory Polnter Chasing Accelerator
* Address-access decoupling: enabling parallelism with low cost
* IMPICA page table: low cost page table structure

* Key Results:

* 1.2X - 1.9X speedup for pointer chasing operations, +16%
database throughput

* 6% - 41% reduction in energy consumption

* Our solution can be applied to a broad class of in-memory
accelerators 517



Current Investigations

* More efficient address translation and protection
mechanisms for PIM

* More concurrent data structures for PIM

218



More Info on IMPICA (Current Status)

* Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges,
Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer Design (ICCD),
Phoenix,AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia *ETH Ziirich
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Accelerating Linked Data Structures

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia *ETH Ziirich
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GRIM-Filter:

Fast seed location filtering in DNA read mapping
using processing-in-memory technologies

Jeremie S. Kim,
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Saugata Ghose, Mohammed Alser, Hasan Hassan,
Oguz Ergin, Can Alkan, and Onur Mutlu
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Executive Summary

Systems e ETH ziri:

Genome Read Mapping is a very important problem and is the first
step in genome analysis

Read Mapping is an approximate string matching problem
o Find the best fit of 100 character strings into a 3 billion character dictionary

o Alignment is currently the best method for determining the similarity between
two strings, but is very expensive

We propose an algorithm called GRIM-Filter

o Accelerates read mapping by reducing the number of required
alignments

o GRIM-Filter can be accelerated using processing-in-memory

Adds simple logic into 3D-Stacked memory
Uses high internal memory bandwidth to perform parallel filtering

GRIM-Filter with processing-in-memory delivers a 3.7x speedup

SAFARI =



GRIM-Filter Outline

1. Motivation and Goal

2. Background Read Mappers

a. Hash Table Based
b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter
4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
SAFARI




Motivation and Goal H

Systems e ETH ziri:

Sequencing: determine the [A,C,G,T] series in DNA strand

Today’s machines sequence short strands (reads)
o Reads are on the order of 100 — 20k base pairs (bp)
o The human genome is approximately 3 billion bp

Therefore genomes are cut into reads, which are sequenced
independently, and then reconstructed

o Read mapping is the first step in analyzing someone’s genome to
detect predispositions to diseases, personalize medicine, etc.

Goal: We want to accelerate end-to-end performance
of read mapping

SAFARI 22



GRIM-Filter Outline

1. Motivation and Goal

2. Background: Read Mappers

a. Hash Table Based
b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter
4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
SAFARI




Background: Read Mappers

We now have sequenced reads and want a full genome

We map reads to a known reference genome (>99.9%
similarity across humans) with some minor errors allowed

\/ —_—
Because of high similarity, long sequences in reads
perfectly match in the reference genome

VIS R

.. GACTGTGTCGA ..

We can use a hash table to help quickly map the reads!

Systems e ETH ziri:
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GRIM-Filter Outline

2. Background: Read Mappers
a.Hash TableBased

a. Hash Table Based
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Generating Hash Tables E;,:

To map any reads, generate a hash table per reference genome.

k-length sequences Location list where k-mer occurs
(k-mers) in the reference genome
A A AAA 12 35 502 610 721 989
A A AAC 13 609 /88
A AAAT 36 434 ,..:... ....................... > @434 AAAAT
s e

GGGGG 52 67 334 634 851 T @36: |AAAAT

We can query the table with substrings from reads
to quickly find a list of possible mapping locations

SAFARI 22



Hash Tables in Read Mapping n;;

Read Sequence (100 bp)

99.99% of locations
result in a mismatch

Hash Table

We want to filter these out
sOo we do not waste time
trying to align them

SAFARI



Location Filtering

Alignment is expensive and requires the use of O(n?2)
dynamic programming algorithm
o We need to align millions to billions of reads

- . : . : . +

' our goal is to accelerate read mapping
by improving the filtering step

- el w 5 Il | Wl Wl | vlvll\—l\ll

Both methods are used by mappers today, but filtering has
replaced alignment as the bottleneck [xin+, BMc Genomics 20133

SAFARI >l
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GRIM-Filter Outline

2. Background: Read Mappers
b. Hash Table Based with Filter

b. Hash Table Based with Filter
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Hash Tables in Read Mapping :E;?

Read Sequence (100 bp)

—— X

Alleihilg... Rlegnaigh. Fralse
Negative
Filter

37 140 x
894 1203 §§ x
1564 x

*
.
.....
---------------------------------------------------
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GRIM-Filter Outline

1. Motivation and Goal

2. Background: Read Mappers

a. Hash Table Based
b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter
4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
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Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

SAFARI 2



GRIM-Filter: Bins

= We partition the genome into large sequences (bins).
Bnx-23 Bin x - 1

Systems e ETH ziri:

»ss GGAAATACGTTCAGTCAGTTGGAAATACGTTTTGGGCGTTACTTCTCAGTACGTACAGTACAGTAAAAATGACAGTAAGAC ...

—_— —_ —_
Binx -2 Bin x
o Represent each bin with a bitvector Bitvector ‘
that holds the occurrence of all AAAAA |1 AAAAA
permutations of a small string (token) in AAAAC | 0 | existsin
the bin AAAAT 1 bin x
cceee | 1
Q T_o account for matches tr_\at st_raddle cccet (Bl cocer
bins, we employ overlapping bins CCCCG doesn't
= A read will now always completely fall within o | | existin
a single bin GGGGG | 1 bin x
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GRIM-Filter: Bitvectors

Bin x Bitvector
_|
)]
>
@
— :
[ — [— [ —

Q)
_|
)]
. B
N ) B
[ —)
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GRIM-Filter: Bitvectors

bing
AAAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA mm

Reference
Genome

Storing all bitvectors
requires 4™ x t bits

by by in memory,
CAAAAA | 1 AAAAA | O where t = number
AAAAC | 1 AAAAC | 1 :
of bins.
AAAAG | 0 AAAAG | O
AAAAT |0 . :
: : AGAAA | 1
CCCCT | 1 . :
: : GAAAA | 1 ..
tokens { . _ _ _ . o o For bin size ~200,
GACAG | 1 and n =5,
: : . : memory footprint
GCATG | 1 GCATG | 1 ~3.8 GB
TTGCA | 1
LTTTTT |0 TTTTT | 0
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Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

SAFARI 2



GRIM-Filter: Checking a Bin

How GRIM-Filter determines whether to discard potential
match locations in a given bin prior to alignment

INPUT: Read Sequence r
GAACTTGGAGTCTA ..« CGAG

o Get tokens

—_— e e e e e e e e o >
~
~
-~
~
____________________
S >
-~
~
\\
-~
\\ \\
-~ ~
~ ~
\\ S \\
~ ~
~ S < \A
| | ~ S
~ \\
\\ \\
n ~ ~b
~
~
tokens \ " S
~
~
~
~
~
~
A

o Match tokens to bitvector

e Read bitvector for bin_num(x)

v

1

- O

= Threshold?

: NV \ES

Discard Send to
Read Mapper
for Sequence

Allgnment

e Sum e Compare
+

S —

o o

SAFARI
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Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper
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Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

SAFARI 2



Integrating GRIM-Filter into a Read Mapper

INPUT: All Potential Seed Locations

INPUT: Read Sequence +++ (020128 ). 020131 )ee( 414415 ) e
GAACTTGCGAG » s« GTATT 9 - s

’0 ) S KEEP " KEEP
GRIM_FiIter: l.lOOO10_OIIIO1_O1OIII
Filter Bitmask Generator D—’SCARDl
. J X
210001010 422011010 44 OReference Segment Storage
Seed Location Filter Bitmask reference reference
segment segment
@ 020]3] @ 41 4415
O Read Mapper: Edit-Distance Calculation
Sequence Alignment

v

SAFARI OUTPUT: Correct Mappings



GRIM-Filter Outline

1. Motivation and Goal

2. Background: Read Mappers

a. Hash Table Based
b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter
4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
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Key Properties of GRIM-Filter Ej

Systems e ETH ziri:

Simple Operations:

o To check a given bin, find the sum of all bits corresponding to
each token in the read

o Compare against threshold to determine whether to align

Highly Parallel: Each bin is operated on independently
and there are many many bins

Memory Bound: Given the frequent accesses to the large
bitvectors, we find that GRIM-Filter is memory bound

These properties together make GRIM-Filter
a good algorithm to be run in 3D-Stacked DRAM
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3D-Stacked Memory

DRAM Layers

=g~

Systems e ETH ziri:

pd

7

U

1

b

1

//
i

Logic Layer

/

3D-Stacked DRAM architecture has extremely high
bandwidth as well as a stacked customizable logic layer

o Logic Layer enables Processing-in-Memory, offloading
computation to this layer and alleviating the memory bus

o Embed GRIM-Filter operations into DRAM logic layer and
appropriately distribute bitvectors throughout memory

SAFARI
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3D-Stacked Memory

Systems e ETH ziri:

http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png
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3D-Stacked Memory k=
Micron’s HMC

Systems e ETH ziri:

Micron has working demonstration
components

http://images.anandtech.com/doci/9266/HBMCar_678x452.jpg

http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png




GRIM-Filter in 3D-Stacked DRAM I =

Systems e ETH ziri:

o
Qv
>
~

Row@:RAAAAA
Row[L:AAAAC
Row2:AAAAG

Bitvector forinD
— Bitvector forbin

Bitvector forin
]
o)
itvector forinE—1
A
Jl\
\l

o
L7 .=
& =

Each DRAM layer is organized as an array of banks
o A bank is an array of cells with a row buffer to transfer data

B

Row@R-1:EITTTTT

X

The layout of bitvectors in a bank enables filtering many
bins in parallel
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GRIM-Filter in 3D-Stacked DRAM I =

Systems e ETH ziri:
Per-Vault

CustomBEGRIM-Filterfdlogic

SeediocationFFilterBitmask
Bank -« DRAMELayers . ( §-‘§“
/L/ & g e
s S S8 |34 g
p= e tsvs | RS SR |
“ Q9| L«
T “» Vault S :
4/ /—:’7 - =
Loé Fayer A RowiDataRegister

Customized logic for accumulation and comparison
per genome segment
o Low area overhead, simple implementation

o For HBM2, we use 4096 incrementer LUTSs, 7-bit counters, and
comparators in logic layer

Details are in the paper
SAFARI



GRIM-Filter Outline

1. Motivation and Goal

2. Background: Read Mappers

a. Hash Table Based
b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter
4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
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Methodology

Performance simulated using an in-house 3D-Stacked DRAM
simulator

Evaluate 10 real read data sets (From the 1000 Genomes
Project)
o Each data set consists of 4 million reads of length 100

Evaluate two key metrics
o Performance

o False negative rate
The fraction of locations that pass the filter but result in @ mismatch

Compare against a state-of-the-art filter, FastHASH [xin+, BMC
Genomics 20131 When using mrFAST, but GRIM-Filter can be
used with ANY read mapper

SAFARI 2



GRIM-Filter Performance

Time (x1000 seconds)

Systems e ETH ziri:
Benchmarks and their Execution Times
[ FastHASH filter I GRIM-Filter

70
gg ] Sequence Alighment
40 - Error Tolerance (&)
30 n 1 e = 0.05
20 -
e
0
«“‘9” /\’ﬁ° «’9 ’\’9 «“3’ '\“3’ ’\”9’ «"9’ «”9” «’5& &

1.8x-3.7x performance benefit across real data sets
2.1x average performance benefit

GRIM-Filter gets performance due to its hardware-software co-design
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GRIM-Filter False Negative Rate E

Systems @ ETH ziric
Benchmarks and their False Negative Rates
[ FastHASH filter [ GRIM-Filter
Q
w 05
o444 - . - |Sequence Alignment
Q ' Error Tolerance (¢)
2 03-
E 0-2 T e=0-05
()
® 0.1 -
~JEeslin BN BN B8 BE BN BE BA AR RR EA |
Q A A% N v N v N A% N v <
f_(g b‘é\qﬁo @,\m@ @/\’i\ @/\’{/\ @/\W% 09/\%% @/\%O) @/\’9 @/\%Q @/\%Q VAQ}’OQO
LL

5.6x-6.4x False Negative reduction across real data sets
6.0x average reduction in False Negative Rate

GRIM-Filter utilizes more information available in the read to filter
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Other Results in the Paper

Sensitivity of execution time and false negative rates to
error tolerance of string matching

Read mapper execution time breakdown

Sensitivity studies on the filter
o Token Size

a Bin Size

o Error Tolerance
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GRIM-Filter Outline

1. Motivation and Goal

2. Background: Read Mappers

a. Hash Table Based
b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter
4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
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Conclusion

We propose an in-memory filtering algorithm to accelerate end-to-end
read mapping by reducing the number of required alignments

Systems e ETH ziri:

Key ideas:

Introduce a new representation of coarse-grained segments of the
reference genome

Use massively-parallel in-memory operations to identify read
presence within each coarse-grained segment

Key contributions and results:
Customized filtering algorithm for 3D-Stacked DRAM

Compared to the previous best filter
o We observed 1.8x-3.7x read mapping speedup
o We observed 5.6x-6.4x fewer false negatives

GRIM-Filter is a universal filter that can be applied to any read mapper
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In-Memory DNA Sequence Analysis

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies™

BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

GRIM-Filter: Fast seed location filtering in
DNA read mapping using

processing-in-memory technologies

Jeremie S. Kim'®”, Damla Senol Cali', Hongyi Xin?, Donghyuk Lee3, Saugata Ghose’,
Mohammed Alser, Hasan Hassan®, Oguz Ergin®, Can Alkan*" and Onur Mutlu®'”

From The Sixteenth Asia Pacific Bioinformatics Conference 2018
Yokohama, Japan. 15-17 January 2018
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LazyPIM

An Efficient Cache Coherence Mechanism for
Processing In Memory

Amirali Boroumand
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LazyPIM Summary

Cache Coherence is a major system challenge for PIM

— Conventional cache coherence makes PIM programming easy but loses
a significant portion of PIM benefits

e Observation:

— Significant amount of sharing between PIM cores and CPU cores in
many important data-intensive applications

— Efficient handling of coherence is critical to retain PIM benefits

LazyPIM

— Key idea: use speculation to avoid coherence lookups during PIM core
execution and compressed signatures to verify correctness after PIM
core is done

— Improves performance by 19.8% and energy by 18% vs. best previous
— Comes within 4.4% and 9.8% of ideal PIM energy and performance

We believe LazyPIM can enable new applications that benefit
from fine-grained sharing between CPU and PIM
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PIM Coherence

* A Major System Challenge for PIM: Coherence

CPU Threads §§ §§ PIM Threads
N
CPU

Need a coherence mechanism to Shared Data

ensure correctness!

SAFARI



PIM Coherence

* Potential solution: Conventional coherence protocols
— We can treat PIM cores as additional independent cores
— Use conventional coherence protocol to make them coherent with

Conventional coherence is impractical: large number of
coherence messages over off-chip channel

« Simplifies PIM programming model

% Generates a large amount of off-chip coherence traffic

X Eliminates on average 72.4% of ldeal PIM energy improvement
SAFARI 5



Goal and Key Ildea

 Our goal is to develop a cache coherence mechanism
that:

1) Maintains the logical behavior of conventional cache
coherence protocols to simplify PIM programming model

2) Retains the large performance and energy benefits of PIM

* Our key idea is
1) Avoid coherence lookups during PIM core execution

2) Batch lookups in compressed signatures and use them to
verify correctness after PIM core finishes

SAFARI



Background

Prior Approaches to PIM Coherence

SAFARI



Prior Approaches to PIM Coherence

* There are many recent proposals on PIM
— Primarily focus on the design of compute unit within the logic layer

* Prior works employ other approaches than conventional
coherence protocol

— Marking PIM-data as Non-cacheable
* They no longer need to deal with coherence

— Coarse-grained coherence
* Tracks coherence at a larger granularity than a single cache line
* Does not transfer permission while PIM is working
* No concurrent access from the CPU and PIM

SAFARI



Prior Approaches to PIM Coherence

* Prior works proposed coherence mechanisms assuming:

— Entire application could be offloaded to PIM core 2 Almost zero
sharing between PIM and CPU

— Only limited communication happens between CPU and PIM

Observation: These assumptions do not hold for many

important data-intensive applications that benefit from PIM

SAFARI 12
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Applications with Data Sharing
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Application Analysis for PIM

* An application benefits from PIM when we offload its
memory-intensive parts that:
— Generate a lot of data movement

— Have poor cache locality

— Contribute to a large portion of execution time

* Parts of the application that are compute-intensive or cache
friendly should remain on the CPU
— To benefit from larger and sophisticated cores with larger caches

SAFARI 14



Example: Hybrid In-Memory Database
Transactional Threads Analytical Threads
(CPU Friendly) (PIM Friendly)

Hybrid Database Ideal PIM vs. CPU-only:

1.93x Speedup
68% reduction in energy

% Data Sharing r

15



Applications with High Data Sharing

* Our application analysis shows that:
— Some portions of the applications perform better on CPUs

— These portions often access the same region of data as the PIM
cores

 Based on this observation, we can conclude that:

— There are important data-intensive applications that have strong
potential for PIM and show significant data sharing between the
CPU and PIM

16



Let’s see how prior approaches work for
these applications

SAFARI 17



Non-Cacheable

Transactional Analytical Threads
Threads (PIM Friendly)
(CPU Friendly)

X Generates a large number of off-chip accesses

% Significantly hurts CPU threads’ performance

£ v E
DataSharlng

SAFARI 18



Coarse-Grained Coherence

* Need to get coherence permission for the entire region

— Needs to flush every dirty data within that region to transfer
permission

¥ Unnecessarily flushes a large amount of
data in pointer-based data structure %g
Flush dirty data

(oo | [

* Does not allow concurrent accesses CPU PIM

Time

— Blocks CPUs accessing
PIM-data during PIM execution

¥ Coarse-grained locks frequently
cause thread serialization

SAFARI




Motivation: Summary

* Conventional cache coherence loses a significant portion of
PIM benefits

* Prior works use other approaches to avoid those costs
— Their assumption: Zero or a limited amount of sharing

 We observe that those assumptions do not hold for a
number of important data-intensive applications

— Using prior approaches eliminates a significant portion of PIM
benefits

 We want to get the best of both worlds

1) Maintain the logical behavior of conventional cache coherence
2) Retain the large performance and energy benefits of PIM

SAFARI
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Baseline PIM Architecture

P
/ : U/ '
([ Core ] [ Core ]\

[ Core ] [ Core ]

SAFARI
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Our Proposal

* LazyPIM.:

— Lets PIM cores use speculation to avoid coherence lookups
during execution

— Uses compressed signatures to batch the lookups and verify
correctness after the PIM core completes

Speculative
execution

No coherence

CPU check/update PIM

S

Verify Correctness
SAFARI y 23



LazyPIM High-level Operation

1) CPU portion
execution

CPU portion
Concurrent
execution

5) Conflict Checkl

SAFARI

:
=

PIM

2) OffIOad P

%

No Coherence S 3) PIM portion
<€ e uTes execution
4) Send P|M Signa

w
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How LazyPIM Avoids Pitfalls of Prior Approaches

e Conventional Coherence (Fine-grained)
X Generates a large amount of off-chip coherence traffic for every miss

& LazyPIM only sends a compressed signature after PIM cores finishes

* Coarse-grained Coherence
X Unnecessarily flushes a large amount of data

& LazyPIM performs only the necessary flushes
X Causes Thread Serialization

« LazyPIM enables concurrent execution of the CPUs and PIM cores

° )J\'RB?E@&*}#@JN& off-chip accesses hurting CPU threads’ performance

+« LazyPIM allows CPU threads to use caches
SAFARI 25



How we define conflicts in LazyPIM?

SAFARI
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Conflicts
CPUO CPU 1 PIM

1) Offload PIM kernel|

"'"Jv%{ | % """"""""""""""""""
| S | [ we ] asesrmsen®

1) PIM Read and Processor Write: Conflict

2) Processor Read and PIM Write: No Conflict

3) Processor Write and PIM Write: No Conflict

SAFARI 27
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LazyPIM Architecture

How does LazyPIM support speculative execution?

How does LazyPIM implement sighatures?

How does LazyPIM handle conflicts?

SAFARI
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Tracking speculative updates

* One-bit flag per cache line to mark all data updates as speculative

PIM Core




Tracking potential conflicts

 The CPU records all dirty cache lines and writes in
the PIM data region in the CPUWriteSet

Tracking memory accesses
 The PIMReadSet and PIMWriteSet are updated

for every read and write by the PIM core




Address

Bloom filter based signature has two major benefits:

e Allows us to easily perform conflict detection

* Allows for a large number of addresses to be stored within
a fixed-length register




Y

Conflict

If conflict happens:

If no conflicts:

* Any clean cache lines in the CPU that match an
address in the PIMWriteSet are invalidated

* PIM core commits speculative updates
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Evaluation Methodology

e Simulator

— Gemb full system simulator

* System Configuration:

— Processor

* 4-16 Cores, 8 wide issue, 2GHz Frequency

L1 1I/D Cache: 64KB private, 4-way associative, 64B Block

L2 Cache: 2MB shared, 8-way associative, 64B Blocks
* Cache Coherence Protocol: MESI

— PIM

e 4-16 Cores, 1 wide issue, 2GHz Frequency

* L11/D Cache: 64KB private, 4-way associative, 64B Block
 Cache Coherence Protocol: MESI

— 3D-stacked Memory
* One 4GB Cube, 16 Vaults per cube

SAFARI
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Applications
* Ligra

— Lightweight multithreaded graph processing for shared memory system
— We used three Ligra graph applications

* PageRank

* Radii

e Connected Components
— Input graphs constructed from real-world network datasets:

» arXiV General Relativity (5K nodes, 14K edges)

* peer-to- peer Gnutella25 (22K nodes, 54K edges).
* Enron email communication network (36K nodes, 183K edges)

 IMDB

— In-house prototype of an in-memory database (IMDB)

— Capable of running both transactional queries and analytical queries on the same
database tables (HTAP workload)

— 32K transactions, 128/256 analytical queries

SAFARI
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Speedup with 16 Threads

BCPU-only EWFG {ECG ONC ©bOlazyPIM Oldeal-PIM

2.00

- a 5

Components

ar

FG loses a significant portion of
Ideal-PIM’s improvement

LazyPIM consistently retains most of Ideal-PIM’s
benefits, coming within 9.8% of the Ideal-PIM
performance
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Conclusion

Cache Coherence is a major system challenge for PIM

— Conventional cache coherence makes PIM programming easy but loses
a significant portion of PIM benefits

e Observation:

— Significant amount of sharing between PIM cores and CPU cores in
many important data-intensive applications

— Efficient handling of coherence is critical to retain PIM benefits

LazyPIM

— Key idea: use speculation to avoid coherence lookups during PIM core
execution and compressed signatures to verify correctness after PIM
core is done

— Improves performance by 19.8% and energy by 18% vs. best previous
— Comes within 4.4% and 9.8% of ideal PIM energy and performance

We believe LazyPIM can enable new applications that benefit
from fine-grained sharing between CPU and PIM
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Eftficient Automatic Data Coherence Support

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.
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