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More Background and State-of-the-Art

INVITED
§HH+ Proceedings of the IEEE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error

characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.
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More Up-to-date Version

= Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,
"Errors in Flash-Memory-Based Solid-State Drives: Analysis,
Mitigation, and Recovery"”
Invited Book Chapter in Inside Solid State Drives, 2018.
[Preliminary arxiv.org version]
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Using the Vth Distribution Models

So, what can we do with the model?

Goal: Mitigate the effects of program interference caused
voltage shifts



Optimum Read Reference for Flash Memory

Read reference voltage affects the raw b|t error rate
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There exists an optimal read reference voltage

o Predictable if the statistics (i.e. mean, variance) of threshold
voltage distributions are characterized and modeled



Optimum Read Reference Voltage Prediction
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Vth shift learning (done every ~1k P/E cycles)
o Program sample cells with known data pattern and test Vth

o Program aggressor neighbor cells and test victim Vth after interference
o Characterize the mean shift in Vth (i.e., program interference noise)

Optimum read reference voltage prediction

0 Default read reference voltage + Predicted mean Vth shift by model



FEtfect of Read Reference Voltage Prediction
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More on Read Reference Voltage Prediction

= Yu Cai, Onur Mutlu, Erich F. Haratsch, and Ken Mai,
"Program Interference in MLC NAND Flash Memory:
Characterization, Modeling, and Mitigation”
Proceedings of the 31st IEEE International Conference on
Computer Design (ICCD), Asheville, NC, October 2013.
Slides (pptx) (pdf) Lightning Session Slides (pdf)

Program Interference in MLC NAND Flash Memory:
Characterization, Modeling, and Mitigation

Yu Cail, Onur Mutlul, Erich F. Haratsch® and Ken Mai'
1. Data Storage Systems Center. Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh. PA
2. LSI Corporation, San Jose, CA
yucaicai@gmail.com, {omutlu, kenmai}@andrew.cmu.edu
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More Accurate and Online Channel Modeling

Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutluy,

"Enabling Accurate and Practical Online Flash Channel Modeling
for Modern MLC NAND Flash Memory"

to appear in IEEE Journal on Selected Areas in Communications (JSAC),
2016.

Enabling Accurate and Practical
Online Flash Channel Modeling
for Modern MLC NAND Flash Memory

Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, Onur Mutlu
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Non-Gaussian Vth Distributions (1X-nm)
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Fig. 4: Gaussian-based model (solid/dashed lines) vs. data
measured from real NAND flash chips (markers) under dif-
ferent P/E cycle counts.

SA FAR’ Luo+, “Enabling Accurate and Practical Online Flash Channel 13
Modeling for Modern MLC NAND Flash Memory”, JSAC 2016.



Better Modeling of Vth Distributions (I)
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Fig. 6: Our new Student’s t-based model (solid/dashed lines)
vs. data measured from real NAND flash chips (markers) under
different P/E cycle counts.
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Better Modeling of Vth Distributions (II)

P/E Cycles 0 25K 5K 75K 10K 12K 14K 16K 18K 20K AVG
Gaussian 99% 1.8% 1.6% 1.8% 19% 2.4% 3.1% 8.7% 2.1% 2.3% 2.6%
Normal-Laplace .34% .46% .55% .61% .63% .67% .68% .710% .67% .67% .61%
Student’s t 37% 51% .61% .68% .710% .76% .16% .718% .76% .18% .68%

TABLE 1: Modeling error of the evaluated threshold voltage
distribution models, at various P/E cycle counts.

Characterization Latency & Online Computation Latency

Gaussian

Normal-Laplace 7////////////% | ‘

Student's t 7////////////% : ‘
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Latency (ms)

Fig. 8: Overall latency breakdown of the three evaluated
threshold voltage distribution models for static modeling.

SAFARI

15



Vth Prediction vs. Reality with Better Modeling
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Fig. 13: Threshold voltage distribution as predicted by our
dynamic model for 20K P/E cycles, using characterization
data from 2.5K, 5K, 7.5K, and 10K P/E cycles, shown as
solid/dashed lines. Markers represent data measured from real
NAND flash chips at 20K P/E cycles.

SA FARI Luo+, “Enabling Accurate and Practical Online Flash Channel 14
Modeling for Modern MLC NAND Flash Memory”, JSAC 2016.



Online Read Reference Voltage Prediction
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Fig. 16: Actual and modeled optimal read reference voltages
(Vop:) using the three evaluated threshold voltage distribution
models at different P/E cycle counts.
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Effect on RBER of Read Ref V Prediction
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Fig. 17: RBER achieved by actual and modeled optimal read
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voltage distribution models at different P/E cycle counts.
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More Accurate and Online Channel Modeling

Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutluy,

"Enabling Accurate and Practical Online Flash Channel Modeling
for Modern MLC NAND Flash Memory"

to appear in IEEE Journal on Selected Areas in Communications (JSAC),
2016.

Enabling Accurate and Practical
Online Flash Channel Modeling
for Modern MLC NAND Flash Memory

Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, Onur Mutlu
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Goal

Develop a better error correction mechanism for cases
where ECC fails to correct a page

21



Observations So Far

Immediate neighbor cell has the most effect on the victim
cell when programmed

A single set of read reference voltages is used to determine
the value of the (victim) cell

The set of read reference voltages is determined based on
the overall threshold voltage distribution of all cells
in flash memory

22



New Observations [Cai+ SIGMETRICS’14]

Vth distributions of cells with different-valued
immediate-neighbor cells are significantly different

o Because neighbor value affects the amount of Vth shift

Corollary: If we know the value of the immediate-neighbor,

we can find a more accurate set of read reference voltages
based on the “conditional” threshold voltage distribution

Cai et al., Neighbor-Cell Assisted Error Correction for MLC NAND Flash
Memories, SIGMETRICS 2014.
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Secrets of Threshold Voltage Distributions

Aggressor WL | 11 10 —{ 01 00 |—{ 01 10 11 —{ 00 f—---...
Victim WL | L ......
Victim WL before MSB State P State P,

page of aggressor WL
are programmed

N11 N10NO1 N11 N10ONO1

Victim WL after MSB
page of aggressor WL State P’
are programmed
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If We Knew the Immediate Neighbor ...

Then, we could choose a different read reference voltage to
more accurately read the “victim” cell

25



Overall vs Conditional Reading

N11 NOO N1ONO1 REF, N11 NOO N1ONOL

= Using the optimum read reference voltage based on the
overall distribution leads to more errors

= Better to use the optimum read reference voltage based on
the conditional distribution (i.e., value of the neighbor)

o Conditional distributions of two states are farther apart from
each other

26



Real NAND Flash Chip Measurement Results

Probabkility density function
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Raw BER of conditional reading is much smaller than overall reading
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Idea: Neighbor Assisted Correction (NAC)

Read a page with the read reference voltages based on
overall Vth distribution (same as today) and buffer it

If ECC fails:
o Read the immediate-neighbor page

o Re-read the page using the read reference voltages
corresponding to the voltage distribution assuming a particular
immediate-neighbor value

o Replace the buffered values of the cells with that particular
immediate-neighbor cell value

o Apply ECC again

28



Neighbor Assisted Correction Flow

READ Read LSB&MSB Neighbors How to select next local
REQUEST (either from NAC-Buffer or from Flash disk) '
T optimum read reference
y 2
Read the Page VOltage )
Read the Page (from Flash using the next set of local optimum |4
(either from NAC-Buffer or from Flash disk) read reference voltages)
. 4
Correct the Page Yes
Are there
N any remaining sets of loca
optimum read reference
voltages?
Y;s go
SEND SEND
DATA OUT DATA OUT ERROR

Trigger neighbor-assisted reading only when ECC fails

Read neighbor values and use corresponding read
reference voltages in a prioritized order until ECC passes
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Lifetime Extension with NAC

Raw BER

10'1:
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NAC fix N11
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10

33% lifetime |mprovement at no performance loss

ATV
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Performance Analysis of NAC

uP/E<18K = P/E=18K = PIE=22K u P/E=24K = P/E=25K
p(ECCfail)=0  p(ECCfail|=10*(-14) p(ECCfail)=10*(-5) p(ECCfail)=10*(-2) p(ECCfail)=33%
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No performance loss within nominal lifetime
and with reasonable (1%) ECC fail rates
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More on Neighbor-Assisted Correction

= Yu Cai, Gulay Yalcin, Onur Mutlu, Eric Haratsch, Osman Unsal,
Adrian Cristal, and Ken Mai,

"Neighbor-Cell Assisted Error Correction for MLC NAND
Flash Memories"

Proceedings of the ACM International Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS), Austin, TX, June 2014. Slides (ppt) (pdf)

Neighbor-Cell Assisted Error Correction
for MLC NAND Flash Memories

Yu Cai', Gulay Yalcin®, Onur Mutlu', Erich F. Haratsch®,
Osman Unsal®, Adrian Cristal®®, and Ken Mai'

'Electrical and Computer Engineen'ng Department, Carnegie Mellon University
Barcelona Supercomputing Center, Spain 1A — CSIC — Spain National Research Council ~ “LSI Corporation
yucaicai @gmail.com, {omutlu, kenmai}@ece.cmu.edu, {gulay.yalcin, adrian.cristal, osman.unsal} @bsc.es
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Read Disturb Errors in Flash Memory




One Issue: Read Disturb in Flash Memory

All scaled memories are prone to read disturb errors

DRAM
SRAM

Hard Disks: Adjacent Track Interference
NAND Flash

SAFARI 3



NAND Flash Memory Background

Block O

Flash Memory

Block N

SAFARI

Flash
Controller




Flash Cell Array

Block X

Page Y

%:
%:
T ]

Sense Amplifiers 37

1 1 1 111 I._I 1 1
Sense Amplifiers
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Flash Cell

Float Drain
oating
Gate /

Gate J

-

Source

/

Floating Gate Transistor
(Flash Cell)
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Vread = 2% |
/1

Gate

Flash Read

V.. =25V | |
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Vpass = % |
/1

Gate

Flash Pass-Through

Vpass= Vv ||
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Read from Flash Cell Array

pass = Pass (5V) Page 1
V.,=25
read Read (2.5V) Page 2
V _.=5.0
Pe Pass (5V) Page 3
Vo ses = 5.0 -- -
Pass (5V) Page 4
Correct values 0 0 1 1

SAFARior page 2:
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Pass (5V)

Pass (5V)

Read (2.5V)

Pass (5V)

Read Disturb Problem: “Weak Programming” Effect

Page 1

Page 2

Page 3

Page 4

SAFARI Repeatedly read page 3 (or any page other than page 2)
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Read Disturb Problem: “Weak Programming” Effect

V._.=50V

Pes Page 1
V.. =25V

read Page 2
V._.=50V

P Page 3
V..=50V

pass

Page 4

Incorrect values

from page 2: 0
SAFARI High pass-through voltage induces™Weak-programming” effect s




Executive Summary [DSN’15]

* Read disturb errors limit flash memory lifetime today
— Apply a high pass-through voltage (V) to multiple pages on a read

— Repeated application of V, .. can alter stored values in unread pages

* We characterize read disturb on real NAND flash chips
—Slightly lowering V. greatly reduces read disturb errors
— Some flash cells are more prone to read disturb

* Technique 1: Mitigate read disturb errors online
— V,uss Tuning dynamically finds and applies a lowered V _; per block

— Flash memory lifetime improves by 21%

* Technique 2: Recover after failure to prevent data loss

— Read Disturb Oriented Error Recovery (RDR) selectively corrects
cells more susceptible to read disturb errors

— Reduces raw bit error rate (RBER) by up to 36%

SAFARI 4



Key Observation 1: Slightly lowering V .

greatly reduces read disturb errors

1300
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Fig. 11. Raw bit error rate vs. read disturb count for different V3,55 values,
for flash memory under 8K P/E cycles of wear.

Percentage of Vpass Reduction
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* Mitigation: V

SAFARI

pass

Outline

Tuning
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Read Disturb Mitigation: V

*Key Idea: Dynamically find and apply a lowered
V

pass

bass 1UNING

* Trade-off for lowering V
+Allows more read disturbs

—Induces more read errors

SAFARI
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Read Errors Induced by V__.. Reduction

pass
Reducing V__..to 4.9V

pass

Vipss = 4.9V page 1
V. .g=2.5V page 2
Vipss = 4.9V bage 3
Vipss = 4.9V page 4
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Read Errors Induced by V__.. Reduction

pass
Reducing V... to 4.7V

pass

V. _..=4.7V I
pass
| | Page 1
V.. =25V r
read I I 3.5 Page 2
A
V _..=4.7V ]
pass
M Page 3
Voass =47 ¥ I I 35 Page 4
A

Incorrect values

from page 2: 0 0 1
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Utilizing the Unused ECC Capability

x 103 ECC Correction Capability

1.0 1 |
Unused ECC capability '{

0.8
0.6

0.4 -
0.2 -

RBER

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21
N-day Retention

1. ECC provisioned for high retention “age”
2. Unused ECC capability can be used to fix read errors

3. Unused ECC capability decreases over retention age
Dynamically adjust V., so that read errors fully utilize

the unused ECC capability
SAFARI
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V__.. Reduction Trade-Off Summary

pass

* Today: Conservatively set V_... to a high voltage

pass
—Accumulates more read disturb errors at the end of
each refresh interval

+No read errors

* Idea: Dynamically adjust V  to unused ECC
capability
+ Minimize read disturb errors
oControl read errors to be tolerable by ECC

olf read errors exceed ECC capability, read again with a

higher V. to correct read errors

SAFARI =



V. ... Tuning Steps

pass

* Perform once for each block every day:

1. Estimate unused ECC capability (using retention age)

2. Aggressively reduce V until read errors exceeds ECC
capability

3. Gradually increase V , until read error becomes just
less than ECC capability

SAFARI



Evaluation of V. Tuning

*19 real workload I/O traces
* Assume 7-day refresh period

*Similar methodology as before to determine

acceptable V. reduction

e Overhead for a 512 GB flash drive:

—128 KB storage overhead for per-block V
worst-case page

sass SEtting and

—24.34 sec/day average V_... Tuning overhead

pass

SAFARI



V,.ss TUNING Lifetime Improvements
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Read Disturb Prone vs. Resistant Cells

PDF

N read

disturbs
Disturb-Resistant @ o

N read disturbs
Disturb-Prone @

Normalized V,,
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Observation 2: Some Flash Cells Are

More Prone to Read Disturb
After 250K read disturbs:

Disturb-prone cells have higher threshold voltages

Disturb-resistant cells have lower threshold voltages

.1

@sturb prone
—ER state

Dlsturb resistant
2 P1 state

Normallzed Vi, «

SAFARI



Read Disturb Oriented Error Recovery (RDR)

*Triggered by an uncorrectable flash error
—Back up all valid data in the faulty block
—Disturb the faulty page 100K times (more)
—Compare Vs before and after read disturb
—Select cells susceptible to flash errors (V,~0<V,<V,.0)

—Predict among these susceptible cells
* Cells with more V., shifts are disturb-prone = Lower V,, state
* Cells with less V,,, shifts are disturb-resistant = Higher V,, state

Reduces total error count by up to 36% @ 1M read disturbs
ECC can be used to correct the remaining errors

SAFARI



RDR Evaluation

x 1073
12

No Recovery = = = = RDR

RBER
O N B O ®©

0 0.2M 0.4M 0.6M 0.8M 1M
Read Disturb Count

Reduces total error counts by up to 36% @ 1M read disturbs
ECC can be used to correct the remaining errors
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Morte on Flash Read Disturb Errors [DSN’15]

= Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch, Ken Mai,
and Onur Mutlu,

"Read Disturb Errors in MLC NAND Flash Memory:
Characterization and Mitigation”
Proceedings of the 45th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), Rio de
Janeiro, Brazil, June 2015.

Read Disturb Errors in MLC NAND Flash Memory:
Characterization, Mitigation, and Recovery

Yu Cai, Yixin Luo, Saugata Ghose, Erich E Haratsch*, Ken Mai, Onur Mutlu
Carnegie Mellon University, *Seagate Technology
yucaicai@gmail.com, {yixinfuo, ghose, kenmali, onur}@cmu. edu
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Data Retention in Flash Memory




YV

FlashMemory

Characterize retention loss in real NAND chip
I:!M read performance for old data
Recover old data after failure

62
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TECHSPOT

TRENDING ~ REVIEWS ~ FEATURES ~ DOWNLOADS ~  PRODUCT FINDER ~ FORUMS ~

An unfortunate tale about Samsung's SSD 840
read performance degradation

An avalanche of reports emerged last September, when owners of the usually speedy

Samsung SSD 840 and SSD 840 EVO detected the drives were no longer performing as
they used to.

The issue has to do with older blocks of data: reading_old files nsistently slower than
norma as slow as 30MB/s whereas hewly-written files ones used in
benchmarks, perform as fast as new — arc 500 MIB/s for the well regarded SSD 840
EVO. The reason no one had noticed (we reviewed the drive back in September 2013) is

that data has to be several weeks old to show the problem. Samsung promptly admitted
the issue and proposed a fix.

Reference: (May 5, 2015) Per Hansson, “When SSD Performance Goes Awry”
http://www.techspot.com/article/997-samsung-ssd-read-performance-degradation/
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FlashMemory

(SuMMIT |

Why is old data slower?

Retention loss!

. - =
S © Maren Couet 2013
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AashVenory Retention loss

Charge leakage over time

cee66e —®> eee ‘e @ * >
Flash cell Flash cell Retention Flash cell

error

One dominant source of flash
memory errors [DATE ‘12, ICCD “12]

Side effect: Longer read latency
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nag@y Multi-Level Cell (MLC)
threshold voltage distribution
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Normalized V,,
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\ 4
N A s

s Experimental Testing Platform

A

ST

~xrrexs FPro

~7(JSB ca ftroller)

=207 3x-nm
"-NANI? Flash

"L AVidex-VEEPGA
(NAND-Cantroller). .« : i

[Cai+, FCCM 2011, DATE 2012, ICCD 2012, DATE 2013, ITJ  NAND Daughter Board
2013, ICCD 2013, SIGMETRICS 2014, DSN 2015, HPCA 2015]

Cai et al., FPGA-based Solid-State Drive prototyping platform, FCCM 2011.




fesieny Characterized threshold voltage distribution

 SuMMIT |

Probability density function

o

o

o

0.

A @0day  Oday—os
/= N 40-day 17-day
02 |
\
01 _ \
Poo =150 200 250 300 350 400 450 500

Normalized threshold voltage

Finding: Cell’s threshold voltage decreases over time
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=" Threshold voltage reduces over time
Old data

PDF
Less More

charge

Normalized V,,
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Fasithiemory First read attempt fails
Old data

PDF
Less More

charge

Raw bit errors > ~ Normalized Vy

I ECC correctable errors 70



FlasMenory Read-retry
Old data

PDF Increase read latency

Normalized V,,

71

Fewer raw bit errors
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= Why is old data slower?

Retention loss
- Leak charge over time
- Generate retention errors
- Require read-retry
- Longer read latency

SAFARI]

72



FlashMemory

I:!M read performance for old data

7
SAFARI] 3



Flash emory The ideal read voltage
Old data

PDF

OPT: Optimal read reference voltage
- minimal read latency

OPT, OPT

C

Normalized V,,

74

Minimal raw bit errors
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AashNenory In reality

*OPT changes over time due to retention loss

*Luckily, OPT change is:
- Gradual
- Uni-directional (decreases over time)

SAFARI]
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" Retention Optimized Reading (ROR)

Components:

1. Online pre-optimization algorithm
- Learns and records OPT
- Performs in the background once every day

2. Simpler read-retry technique

- If recorded OPT is out-of-date, read-retry with
lower voltage

SAFARI] 76



1. Online Pre-Optimization Algorithm

e Triggered periodically (e.qg., per day)

* Find and record an OPT as per-block V.,

* Performed in background

*Small storage overhead
New Old

PDF V V

pred pred

Normalized V,,
SAFARI 7



2. Improved Read-Retry Technique

*Performed as normal read
*V,req Already close to actual OPT
*Decrease V¢ if V., fails, and retry

PDF OPT Ve

Very close Normalized V,,
SAFARI /8



XYV

RashMienory ROR result

M Baseline B ROR

Read-retry
count, 30%

count

BCH decoding
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Total read
latency, 29%
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=Y Retention optimized reading

Retention loss = longer read latency
Optimal read reference voltage (OPT)
— Shortest read latency
- Decreases gradually over time (retention)
- Learn OPT periodically
- Minimize read-retry & RBER
— Shorter read latency
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FlashMemory

Recover old data after failure
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M

Aashemry Retention failure
Very old data
PDF
P1 P2 °3
(10)  opT, (00) oPT. (01)

Normalized V,,

82

Uncorrectable errors
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Raghieey Leakage speed variation

PDF N-day
retention

0
4% low-leaking cell
®
4___<:) -leaki
N-day retention ast-leaking cel

Normalized V,,
83
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FasiMiemory A simplified example

PDF

O »r3

Normalized V,,
84
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HashVeor Reading very old data

Very old

PDE Fast-leaking cells have lower V,,

Slow-leaking cells have higher V.,

Normalized V,
85
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N\M/

FlashMemory "Rlsky” cells

b ------------ \
l _
PDF = irisky 5= I P2
o |

Normalized V
Uncorrectable errors o
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e Retention Failure Recovery (RFR)

Key idea: Guess original state of the cell from

its leakage speed property ____________ -

B \

lRlsky +s= [l r2 :

Three steps 1S L k= p3 E
I

1. Identify risky cells \ Key Formula )

2. ldentify fast-/slow-leaking cells
3. Guess original states
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FlashMemory

(SuMMIT |

Program with
random data

Detect failure,
backup data

Recover data

SAFARI]

RFR Evaluation

28 days

12 addt’l.

days

*Expect to eliminate
50% of raw bit errors

*£CC can correct
remaining errors
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Characterize retention loss in real NAND chip
I:!M read performance for old data
Recover old data after failure

89
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Aashemry Conclusion

Retention loss = Longer read latency
Retention optimized reading (ROR)

- Learns OPT periodically

- 71% shorter read latency

Retention failure recovery (RFR)

- Use leakage property to guess correct state
- 50% error reduction before ECC correction
- Recover data after failure

SAFAR| 20



More on Flash Read Disturb Errors rlasnMe@ory

= Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, and Onur Mutlu,
"Data Retention in MLC NAND Flash Memory: Characterization,
Optimization and Recovery"”
Proceedings of the 21st International Symposium on High-Performance

Computer Architecture (HPCA), Bay Area, CA, February 2015.
[Slides (pptx) (pdf)]

Data Retention in MLC NAND Flash Memory:
Characterization, Optimization, and Recovery

Yu Cai, Yixin Luo, Erich F. Haratsch®, Ken Mai, Onur Mutlu
Carnegie Mellon University, "LSI Corporation
yucaicai@gmail.com, yixinluo@cs.cmu.edu, erich.haratsch@lsi.com, {kenmai, omutlu} @ece.cmu.edu
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http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_hpca15.pdf
http://darksilicon.org/hpca/
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_yixin_hpca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_yixin_hpca15-talk.pdf

Agenda

Background, Motivation and Approach
Experimental Characterization Methodology

Error Analysis and Management

Main Characterization Results

Retention-Aware Error Management

Threshold Voltage and Program Interference Analysis
Read Reference Voltage Prediction

Neighbor-Assisted Error Correction

Read Disturb Error Handling

Retention Error Handling

Large Scale Field Analysis

3D NAND Flash Memory Reliability

Summary
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Large Scale Field Analysis of
Flash Memory Errors




SSD Error Analysis of Facebook Systems

= First large-scale field study of flash memory errors

= Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS), Portland, OR, June 2015.
[Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The
Register] [Coverage on TechSpot] [Coverage on The Tech

Report]

A Large-Scale Study of Flash Memory Failures in the Field

Justin Meza Qiang Wu Sanjeev Kumar Onur Mutlu
Carnegie Mellon University Facebook, Inc. Facebook, Inc. Carnegie Mellon University

meza@cmu.edu gqwu@fb.com skumar@fb.com onur@cmu.edu
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http://www.techspot.com/news/61090-researchers-publish-first-large-scale-field-ssd-reliability.html
http://techreport.com/news/28519/facebook-ssd-reliability-study-shows-early-burnouts

A few SSDs cause most errors
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A few SSDs cause most errors
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Summary
SSD lifecycle

g Ny

- Early detection lifecycle period
~distinct from hard disk drive
lifecycle. |

F— _ﬁ




SSD lifecycle

trends




Storage lifecycle background:
the bathtub curve for disk drives

Failure
rate

Usage
[Schroeder+,FAST'07]



Storage lifecycle background:
the bathtub curve for disk drives

Early
failure
period

Wearout
period

Failure

rate Useful life

period

Usage

[Schroeder+,FAST'07]



Do SSDs display similar
lifecycle periods?




Usedata written to flash
to examine SSD lifecycle

(time-independent utilization metric)
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7/20GB, 1 SSD  720GB, 2 SSDs

S50 failure rate
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7/20GB, 1 SSD  720GB, 2 SSDs
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SSD lifecycle

g .y

. Early detection lifecycle period
 distinct from hard disk drive
lifecycle.
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High temperature:
may throttle or

shut down
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- Throttling SSD usage helps
- mitigate temperature-induced [
errors.

.

Temperature



Summary

We do not observe the
effects of read

disturbance errors in the
field.

Read

disturbance

*



Summary

- Throttling $SD usage helps
“mitigate temperature-induced
errors.

———

Temperature



Summary

We quantify the effects of
the page cache and write
amplification in the field.

U ——

Access pattern
dependence




Large-Scale SSD Error Analysis [siGMETRICS15]

= First large-scale field study of flash memory errors

= Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Portland, OR, June
2015.

Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The Register]

[Coverage on TechSpot] [Coverage on The Tech Report]

A Large-Scale Study of Flash Memory Failures in the Field

Justin Meza Qiang Wu Sanjeev Kumar Onur Mutlu
Carnegie Mellon University Facebook, Inc. Facebook, Inc. Carnegie Mellon University
meza@cmu.edu gwu@fb.com skumar@fb.com onur@cmu.edu
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http://techreport.com/news/28519/facebook-ssd-reliability-study-shows-early-burnouts

Other Works on NAND Flash
Memory Modeling & Issues




Flash Memory Programming Vulnerabilities

= Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F.
Haratsch,

"Vulnerabilities in MLC NAND Flash Memory Programming:
Experimental Analysis, Exploits, and Mitigation Techniques"
Proceedings of the 23rd International Symposium on High-Performance

Computer Architecture (HPCA) Industrial Session, Austin, TX, USA,
February 2017.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

Vulnerabilities in MLC NAND Flash Memory Programming;:
Experimental Analysis, Exploits, and Mitigation Techniques

Yu Cail Saugata Ghose! Yixin LuotT Ken Mail Onur Mutlu$' Erich F. Haratsch?
TCarnegie Mellon University jESeagate Technology SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17.pdf
https://hpca2017.org/
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-talk.pptx
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https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-lightning-talk.pptx
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Accurate and Online Channel Modeling

= Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"Enabling Accurate and Practical Online Flash Channel Modeling
for Modern MLC NAND Flash Memory"

to appear in IEEE Journal on Selected Areas in Communications (JSAC),
2016.

Enabling Accurate and Practical
Online Flash Channel Modeling
for Modern MLC NAND Flash Memory

Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, Onur Mutlu
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https://people.inf.ethz.ch/omutlu/pub/online-nand-flash-memory-channel-model_jsac16.pdf
http://www.comsoc.org/jsac

Agenda

Background, Motivation and Approach
Experimental Characterization Methodology

Error Analysis and Management

Main Characterization Results

Retention-Aware Error Management

Threshold Voltage and Program Interference Analysis
Read Reference Voltage Prediction

Neighbor-Assisted Error Correction

Read Disturb Error Handling

Retention Error Handling

Large Scale Field Analysis

3D NAND Flash Memory Reliability

Summary

o o 0o 0 0 0 o0 0o O

122



3D NAND Flash Memory




3D NAND Flash Reliability I [HPCA18]

= Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"HeatWatch: Improving 3D NAND Flash Memory Device
Reliability by Exploiting Self-Recovery and Temperature-
Awareness"
Proceedings of the 24th International Symposium on High-Performance
Computer Architecture (HPCA), Vienna, Austria, February 2018.
'Lightning Talk Video]

Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

HeatWatch: Improving 3D NAND Flash Memory Device Reliability
by Exploiting Self-Recovery and Temperature Awareness

Yixin Luo! Saugata Ghose! Yu Cait Erich F. Haratsch? Onur Mutlu$T
TCarnegie Mellon University iSeagate Technology SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=7ZpGozzEVpY&feature=youtu.be
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https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18_lightning-talk.pdf

3D NAND Flash Reliability II sicmETRICS 18]

Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"Improving 3D NAND Flash Memory Lifetime by Tolerating
Early Retention Loss and Process Variation”

Proceedings of the ACM International Conference on Measurement and

Modeling of Computer Systems (SIGMETRICS), Irvine, CA, USA, June
2018.

[Abstract]

Improving 3D NAND Flash Memory Lifetime
by Tolerating Early Retention Loss and Process Variation

Yixin Luo' Saugata Ghose' Yu Cai’ Erich F. Haratsch* Onur Mutlu®?
TCarnegie Mellon University *Seagate Technology SETH Ziirich
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http://www.sigmetrics.org/sigmetrics2018/
https://people.inf.ethz.ch/omutlu/pub/3D-NAND-flash-lifetime-early-retention-loss-and-process-variation_sigmetrics18-abstract.pdf

NAND Flash Memory Lifetime Problem

it Error Rate (RBER)

Flash lifetime decreases in each generation
despite increased ECC strength

Wearout (Program/Erase Cycles, or PEC)
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Planar vs. 3D NAND Flash Memory

R

~ D

N J
Planar NAND 3D NAND
Flash Memory Flash Memory

Reduce flash cell size,

Scaling Reduce distance b/w cells

Increase # of layers

Reliability  Scaling hurts reliability [Not well Studied!]
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Charge Trap Based 3D Flash Cell

= Cross-section of a charge trap transistor

D

Charge Trap

\ (Insulator)

<+— Control Gate

g
Substrate £
g

'@q}@
O P 4

#—— Gate Oxide

Drain

Tunnel Oxide
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2D vs. 3D Flash Cell Design

S Charge Trap
Gate Oxide @ (Insulator)
w il Floating Gate g Control
200 @ (Conductor) @ Cate
1nnel Oxide =
D Gate Oxide
Substrate D

Tunnel Oxide

2D Floating-Gate Cell 3D Charge-Trap Cell
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3D NAND Flash Memory Organization

Metal Wire
Substrate

Wordline 1

5 Wordline 0

X Bitline 0 Bitline 1 Bitline N—-1

Fig. 43. Organization of flash cells in an M-layer 3D charge trap NAND flash memory chip, where each block consists of
M wordlines and N bitlines.
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More Background and State-of-the-Art

= Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,
"Errors in Flash-Memory-Based Solid-State Drives: Analysis,
Mitigation, and Recovery"”
Invited Book Chapter in Inside Solid State Drives, 2018.
[Preliminary arxiv.org version]

Errors in Flash-Memory-Based Solid-State Drives:
Analysis, Mitigation, and Recovery

YU CAI, SAUGATA GHOSE
Carnegie Mellon University

ERICH F. HARATSCH
Seagate Technology

YIXIN LUO
Carnegie Mellon University

ONUR MUTLU
ETH Zirich and Carnegie Mellon University
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https://arxiv.org/pdf/1711.11427.pdf
https://link.springer.com/book/10.1007/978-981-13-0599-3/
https://arxiv.org/pdf/1711.11427.pdf

3D vs. Planar NAND Errors: Comparison

Table 4. Changes in behavior of different types of errors in 3D NAND flash memory, compared to planar (i.e., two-dimensional)

NAND flash memory. See Section 6.2 for a detailed discussion.

SAFARI]

Error Type

Change in 3D vs. Planar

P/E Cycling
(Section 3.1)

3D is less susceptible,
due to current use of charge trap transistors for flash cells

Program
(Section 3.2)

3D is less susceptible for now,
due to use of one-shot programming (see Section 2.4)

Cell-to-Cell Interference
(Section 3.3)

3D is less susceptible for now,
due to larger manufacturing process technology

Data Retention
(Section 3.4)

3D is more susceptible,
due to early retention loss

Read Disturb
(Section 3.5)

3D is less susceptible for now,
due to larger manufacturing process technology
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Improving 3D NAND
Flash Memory Lifetime by

Tolerating Early Retention Loss
and Process Variation

Yixin Luo Saugata Ghose YuCai ErichF Haratsch Onur Mutlu

Carnegie Mellon Sl?fynix ETH i
SAFARI] @SEAGATE
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Executive Summary

* Problem: 3D NAND error characteristics are not well studied
* Goal: Understand & mitigate 3D NAND errors to improve lifetime

* Contribution 1: Characterize real 3D NAND flash chips
* Process variation: 21x error rate difference across layers
 Early retention loss: Error rate increases by 10x after 3 hours
* Retention interference: Not observed before in planar NAND

* Contribution 2: Model RBER and threshold voltage
* RBER (raw bit error rate) variation model
* Retention loss model

* Contribution 3: Mitigate 3D NAND flash errors
* LaVAR: Layer Variation Aware Reading
* LI-RAID: Layer-Interleaved RAID
* ReMAR: Retention Model Aware Reading
* Improve flash lifetime by 1.85x or reduce ECC overhead by 78.9%
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Agenda

* Background & Introduction

* Contribution 1: Characterize real 3D NAND flash chips
* Contribution 2: Model RBER and threshold voltage
 Contribution 3: Mitigate 3D NAND flash errors

* Conclusion
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Agenda

* Contribution 1: Characterize real 3D NAND flash chips
* Process variation
* Early retention loss
* Retention interference
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Process Variation Across Layers

Layer M

Flash cells on different layers may
have different error characteristics

—

Layer O

BLN BL1 BLO
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Characterization Methodology

* Modified firmware version in the flash controller
* Controls the read reference voltage of the flash chip
* Bypasses ECC to get raw data (with raw bit errors)

* Analysis and post-processing of the data on the server

Server

SAFARI
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RBER

Layer-to-Layer Process Variation
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Layer-to-Layer Process Variation

4x10~%1{ -- MSB (another chip) 4 A
-~ LSB (another chip) AN 7\
— MSB i fYr
3x10%{ — LSB P A
n: :r "-t”; Ill Ff
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”ﬂf\,\\f/ 1\ o #
1x1074+ e gsiel N Al VP
5 AN -
!y
!
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0 20 40 60 80 100
(top) Normalized Layer Number (bottom)
Large RBER variation
across layers and LSB-MSB pages

SAFARI
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Retention Loss Phenomenon

Planar NAND Cell 3D NAND Cell

Control
Gate

Charge Trap
(Insulator)

Gate Oxide

Floating Gate |

(Conductor) - Control Gate

Substrate

Tunnel Oxide Gate Oxide

Substrate

Tunnel Oxide

Most dominant type of error in planar NAND.
Is this true for 3D NAND as well?
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Early Retention Loss

3 hours

Ox

103 10% 105 10° 107

Retention errors increase quickly
immediately after programming

SAFARI
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Characterization Summary

» Layer-to-layer process variation
* Large RBER variation across layers and LSB-MSB pages
* 2 Need new mechanisms to tolerate RBER variation!

* Early retention loss
* RBER increases quickly after programming
* 2 Need new mechanisms to tolerate retention errors!

 Retention interference
* Amount of retention loss correlated with neighbor cells’ states
* 2 Need new mechanisms to tolerate retention interference!

* More threshold voltage and RBER results in the (})aper:
3D NAND P/E cycling, Il)rogram interference, read disturb, read
variation, bitline-to-bitline process variation

* Qur approach based on insights developed via our experimental
characterization: Develop error models, and build online
error mitigation mechanisms using the models
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Agenda

* Contribution 2: Model RBER and threshold voltage
* Retention loss model
« RBER variation model
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Probability

What Do We Model?

Read Reference Voltages

e
Vb C

Threshold

Voltage
t Va v Distribution
MSB LSB | : l
l I l
| | |
| | |
! I !
11 01 | 00 | 10
: i 1
|
: . >
Phreshold Voltage (V)

Raw Bit Errors
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Probability

>

Optimal Read Reference Voltage

Va Vb Vc
| |
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Threshold Voltage (V,;)
Raw Bit Errors
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Retention Loss Model
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Retention Time (s)
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N 216 -
e 214 -
we 212 1
e. | 210-

o
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-

[ o
® Measured \
-~ Linear Fit .\\

102 103 104 105 106 107

Retention Time (s)

Early retention loss can be modeled as
a simple linear function of log(retention time)
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Retention Loss Model

* Goal: Develop a simple linear model that can be used online

* Models
* Optimal read reference voltage (V,and V)
* Raw bit error rate (log(RBER))

* Mean and standard deviation of threshold voltage distribution
(u and o)

* As a function of
* Retention time (log(t))
* P/E cycle count (PEC)

‘eg,V,, = (@aXPEC+B)Xxlog(t)+yXPEC+ 6

* Model error <1 step for V, and V,
* Adjusted R? > 89%
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RBER Variation Model

0.10
. :Evg =1.4x10"* [0 Variation-agnostic Vopt
E 0.081 I 1[Avg = L6x107" [ Variation-aware Vopt

— it = =5

8 0.06- Fit = gamma(2.2, 7.4x107>)
2 m Fit = gamma(1.8, 8.1x107>)
5 0.04 1 —
o MSB pages in middle layers
o
£0.02 J\

0.00 —=

b 1x10~% 2x10™% 3x10% 4x10* 5><10'4 6x10~4

Per-Page RBER

Variation-agnosticV,,,

« Same V_,for all layers optimized for the entire block

RBER distribution follows gamma distribution

KL-divergence error = 0.09
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Agenda

 Contribution 3: Mitigate 3D NAND flash errors

* LaVAR: Layer Variation Aware Reading
 LI-RAID: Layer-Interleaved RAID

* ReMAR: Retention Model Aware Reading
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LaVAR: Layer Variation Aware Reading

* Layer-to-layer process variation
* Error characteristics are different in each layer

* Goal: Adjust read reference voltage for each layer

* Key Idea: Learn a voltage offset (Offset) for each layer

, yLayer aware __ ., Layer agnostic
Vopt = Vopt + Of fset

e Mechanism

 Offset: Learned once for each chip & stored in a table
* Uses (2 X Layers) Bytes memory per chip

. Vﬁgif er agnostic, predicted by any existing V,,, model

* E.g., ReMAR [Luo+Sigmetrics’18], HeatWatch [Luo+HPCA ‘18],
OFCM [Lu0+]SAC16 ARVT[Papandreou+GLSVLSI '14]

* Reduces RBER on average by 43%

(based on our characterization data)
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LI-RAID: Layer-Interleaved RAID

* Layer-to-layer process variation
* Worst-case RBER much higher than average RBER

* Goal: Significantly reduce worst-case RBER

* Key Idea

* Group flash pages on less reliable layers
with pages on more reliable layers

* Group MSE pages with LSBE pages

* Mechanism
* Reorganize RAID layout to eliminate worst-case RBER
* <0.8% storage overhead

SAFARI
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Conventional RAID

Wordline # | Layer # | Page | Chip0 | Chip1 | Chip2 | Chip3
0 0 MSB | Group O | Group O | Group O | Group 0
0 0 LSB | Group 1 | Group 1 | Group 1 | Group 1
1 1 MSB | Group 2 | Group 2 | Group 2 | Group 2
1 1 LSB | Group 3 | Group 3 | Group 3 | Group 3
2 2 LSB | Group 5 | Group 5 | Group 5 | Group 5
3 3 MSB | Group 6 | Group 6 | Group 6 | Group 6
3 3 LSB | Group 7 | Group 7 | Group 7 | Group 7

Worst-case RBER in any layer
limits the lifetime of conventional RAID

SAFARI
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LI-RAID: Layer-Interleaved RAID

Wordline # | Layer # | Page | Chip0 | Chip1 | Chip2 | Chip3

0 0 MSB
IAY:M Groupl Blank Group5 | Group 2
IUAYM Group 2 Group1l Blank  Group5

'R Group 3 JGIOUPOY Blank [Group 4"
Y] Gioup 4 Group 3 [GIOUDGY Blank

IAY:M Group5 Group2 Groupl Blank
IUAY’E  Blank  Group 5 | Group 2 | Group 1
LSB

0
1
1
2
2
3
3

WIWINININ|INIO

Any page with worst-case RBER can be corrected by
other reliable pages in the RAID group
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LI-RAID: Layer-Interleaved RAID

* Layer-to-layer process variation
* Worst-case RBER much higher than average RBER

* Goal: Significantly reduce worst-case RBER

* Key Idea

* Group flash pages on less reliable layers
with pages on more reliable layers

* Group MSE pages with LSBE pages

* Mechanism
* Reorganize RAID layout to eliminate worst-case RBER
* <0.8% storage overhead

* Reduces worst-case RBER by 66.9%
(based on our characterization data)

SAFARI
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ReMAR: Retention Model Aware Reading

* Early retention loss
* Threshold voltage shifts quickly after programming

* Goal: Adjust read reference voltages based on retention loss
* Key Idea: Learn and use a retention loss model online

* Mechanism
* Periodically characterize and learn retention loss model online

* Retention time = Read timestamp - Write timestamp
* Uses 800 KB memory to store program time of each block

* Predict retention-aware V. using the model

* Reduces RBER on average by 51.9%
(based on our characterization data)
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Impact on System Reliability

—Baseline —State-of-the-art —LaVAR
LaVAR + LI-RAID —This Work

1E-2
ECC Limit

85% longer

/ ﬁash lifetime

/_//79% lower ECC
— storage overhead
1E-5

1E-3

1E-4

Worst-Case RBER

LaVAR, LI-RAID, and ReMAR improve flash lifetime
or reduce ECC overhead significantly
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Error Mitigation Techniques Summary

* LaVAR: Layer Variation Aware Reading
* Learn a V. offset for each layer and apply layer-aware V, ,

* LI-RAID: Layer-Interleaved RAID

* Group flash pages on less reliable layers
with pages on more reliable layers

* Group MSE pages with LSB pages

* ReMAR: Retention Model Aware Reading
* Learn retention loss model and apply retention-aware V,

opt
* Benefits:
* Improve flash lifetime by 1.85x or reduce ECC overhead by 78.9%

* ReNAC (in paper): Reread a failed page using V,, . based on the
retention interference induced by neighbor cell
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Agenda
* Background & Introduction
 Contribution 1: Characterize real 3D NAND flash chips
 Contribution 2: Model RBER and threshold voltage
 Contribution 3: Mitigate 3D NAND flash errors

* Conclusion
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Conclusion

* Problem: 3D NAND error characteristics are not well studied
* Goal: Understand & mitigate 3D NAND errors to improve lifetime

* Contribution 1: Characterize real 3D NAND flash chips
* Process variation: 21x error rate difference across layers
 Early retention loss: Error rate increases by 10x after 3 hours
* Retention interference: Not observed before in planar NAND

* Contribution 2: Model RBER and threshold voltage
* RBER (raw bit error rate) variation model
* Retention loss model

* Contribution 3: Mitigate 3D NAND flash errors
* LaVAR: Layer Variation Aware Reading
* LI-RAID: Layer-Interleaved RAID
* ReMAR: Retention Model Aware Reading
* Improve flash lifetime by 1.85x or reduce ECC overhead by 78.9%
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Improving 3D NAND
Flash Memory Lifetime

by Tolerating Early Retention Loss
and Process Variation

Yixin Luo Saugata Ghose YuCai ErichF Haratsch Onur Mutlu

Carnegie Mellon Sl?fynix ETH i
SAFARI] @SEAGATE
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3D NAND Flash Reliability II sicmETRICS 18]

Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"Improving 3D NAND Flash Memory Lifetime by Tolerating
Early Retention Loss and Process Variation”

Proceedings of the ACM International Conference on Measurement and

Modeling of Computer Systems (SIGMETRICS), Irvine, CA, USA, June
2018.

[Abstract]

Improving 3D NAND Flash Memory Lifetime
by Tolerating Early Retention Loss and Process Variation

Yixin Luo' Saugata Ghose' Yu Cai’ Erich F. Haratsch* Onur Mutlu®?
TCarnegie Mellon University *Seagate Technology SETH Ziirich
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One More Idea




Improving NAND Flash Memory Lifetime with
Write-hotness Aware Retention Vlanagement

Yixin Luo, Yu Cai, Saugata Ghose, Jongmoo Choi*, Onur Mutlu
Carnegie Mellon University, *Dankook University

SAFARI Carnegie Mellon
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SAFARI

Executive Summary

*Flash memory can achieve 50x endurance improvement by relaxing
retention time using refresh [Cai+ ICCD "12]

* Problem: Frequent refresh consumes the majority of endurance
improvement

* Goal: Reduce refresh overhead to increase flash memory lifetime
* Key Observation: Refresh is unnecessary for write-hot data

* Key Ideas of Write-hotness Aware Retention Management (WARM)

- Physically partition write-hot pages and write-cold pages within the flash
drive

- Apply different policies (garbage collection, wear-leveling, refresh) to each
group
* Key Results
- WARM w/o refresh improves lifetime by 3.24x

: WAR)I\/I w/ adaptive refresh improves lifetime by 12.9x (1.21x over refresh
only
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Conventional Write-Hotness Oblivious
Management

Cold Page 2
Cold Page 2
Cold Page 3 Cold Page 3
Cold Page 4
Cold Page 5

Unable to relax retention time for blocks with write-hot and cold pages

M
N
\
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Key Idea: Write-Hotness Aware Management

Cold Page 2 Page M
Cold Page 3 Page M+1
Cold Page 5 Page M+2

Page M+255
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Write-Hotness Aware Retention Management

= Yixin Luo, Yu Cai, Saugata Ghose, Jongmoo Choi, and Onur Mutlu,
"WARM: Improving NAND Flash Memory Lifetime with Write-
hothess Aware Retention Management"
Proceedings of the 31st International Conference on Massive Storage
Systems and Technologies (MSST), Santa Clara, CA, June 2015.
[Slides (pptx) (pdf)] [Poster (pdf)]

WARM: Improving NAND Flash Memory Lifetime
with Write-hotness Aware Retention Management

Yixin Luo Yu Cai Saugata Ghose
yixinluo @cs.cmu.edu yucaicai@gmail.com ghose@cmu.edu

Jongmoo Choi' Onur Mutlu
choijm@dankook.ac.kr onur@cmu.edu
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Agenda

Background, Motivation and Approach
Experimental Characterization Methodology

Error Analysis and Management

Main Characterization Results

Retention-Aware Error Management

Threshold Voltage and Program Interference Analysis
Read Reference Voltage Prediction

Neighbor-Assisted Error Correction

Read Disturb Error Handling

Retention Error Handling

Large Scale Field Analysis

3D NAND Flash Memory Reliability

Summary

o o 0o 0 0 0 o0 0o O
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Summary of Key Works

= Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,
"Error Characterization, Mitigation, and Recovery in Flash Memory Based
Solid State Drives"
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NAND Flash Vulnerabilities [HPCA’17]

HPCA, Feb. 2017

Vulnerabilities in MLC NAND Flash Memory Programming;:
Experimental Analysis, Exploits, and Mitigation Techniques

Saugata Ghosef Yixin Luo*T
TCarnegie Mellon University

Yu Cail

Modern NAND flash memory chips provide high density by
storing two bits of data in each flash cell, called a multi-level cell
(MLC). An MLC partitions the threshold voltage range of a flash
cell into four voltage states. When a flash cell is programmed,
a high voltage is applied to the cell. Due to parasitic capacitance
coupling between flash cells that are physically close to each
other, flash cell programming can lead to cell-to-cell program
interference, which introduces errors into neighboring flash
cells. In order to reduce the impact of cell-to-cell interference on
the reliability of MLC NAND flash memory, flash manufactu-
rers adopt a two-step programming method, which programs
the MLC in two separate steps. First, the flash memory partially
programs the least significant bit of the MLC to some intermedi-
ate threshold voltage. Second, it programs the most significant
bit to bring the MLC up to its full voltage state.

In this paper, we demonstrate that two-step programming
exposes new reliability and security vulnerabilities. We expe-

Ken Mail
iL‘Seagaihe Technology

Onur Mutlu$f Erich F. Haratsch?
SETH Ziirich

belongs to a different flash memory page (the unit of data
programmed and read at the same time), which we refer to,
respectively, as the least significant bit (LSB) page and the
most significant bit (MSB) page [5].

A flash cell is programmed by applying a large voltage
on the control gate of the transistor, which triggers charge
transfer into the floating gate, thereby increasing the thres-
hold voltage. To precisely control the threshold voltage of
the cell, the flash memory uses incremental step pulse pro-
gramming (ISPP) [12,21,25,41]. ISPP applies multiple short
pulses of the programming voltage to the control gate, in
order to increase the cell threshold voltage by some small
voltage amount (Vy¢p) after each step. Initial MLC designs
programmed the threshold voltage in one shot, issuing all
of the pulses back-to-back to program both bits of data at
the same time. However, as flash memory scales down, the
distance between neichborine flash cells decreases, which

https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities hpcal7.pdf
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NAND Flash Errors: A Modern Survey

INVITED
§HH+ Proceedings of the IEEE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error

characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.

By Yu Cail, SauGgata GHosE, EricH F. HArRATscH, YIXIN Luo, AND ONUR MUTLU

https://arxiv.org/pdf/1706.08642
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More Up-to-date Version

= Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,
"Errors in Flash-Memory-Based Solid-State Drives: Analysis,
Mitigation, and Recovery"”
Invited Book Chapter in Inside Solid State Drives, 2018.
[Preliminary arxiv.org version]

Errors in Flash-Memory-Based Solid-State Drives:
Analysis, Mitigation, and Recovery

YU CAI, SAUGATA GHOSE
Carnegie Mellon University

ERICH F. HARATSCH
Seagate Technology

YIXIN LUO
Carnegie Mellon University

ONUR MUTLU
ETH Zirich and Carnegie Mellon University
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HeatWatch

Improving 3D NAND Flash Memory Device Reliability by
Exploiting Self-Recovery and Temperature Awareness

Yixin Luo Saugata Ghose YuCai ErichF Haratsch Onur Mutlu
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Executive Summary

* 3D NAND flash memory susceptible to retention errors
* Charge leaks out of flash cell
* Two unreported factors: self-recovery and temperature

* We study self-recovery and temperature effects
* Experimental characterization of real 3D NAND chips

* Unified Self-Recovery and Temperature (URT) Model

* Predicts impact of retention loss, wearout, self-recovery,
temperature on flash cell voltage

* Low prediction error rate: 4.9%

* We develop a new technique to improve flash reliability

* HeatWatch
* Uses URT model to find optimal read voltages for 3D NAND flash
* Improves flash lifetime by 3.85x
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Outline

* Executive Summary
* Background on NAND Flash Reliability

 Characterization of Self-Recovery and Temperature
Effect on Real 3D NAND Flash Memory Chips

* URT: Unified Self-Recovery and Temperature Model

e HeatWatch Mechanism

* Conclusion
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3D NAND Flash Memory Background

Charge = Threshold Voltage

3D NAND
Flash Memory

Higher Voltage State
Data Value = 0

- Y
©0 000 | FlashCell
00000
00000
00000

eeeoe

&
&

Read Reference Voltage

Lower Voltage State
Data Value =1
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Flash Wearout

Program/Erase (P/E) - Wearout Wearout Effects:

1. Retention Loss

\ (voltage shift over time)

Insulator

2. Program Variation
(init. voltage difference b/w states)

Wearout Introduces Errors

Voltage
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Improving Flash Lifetime

Errors introduced by wearout
limit flash lifetime
(measured in P/E cycles)

Exploiting the
Self-Recovery Effect
Two Ways to Improve ‘
Flash Lifetime Exploiting the

Temperature Effect

182



Exploiting the Self-Recovery Effect

Partially repairs damage due to wearout

| o o o o
PE P/E P/E PJ/E PJE
W_J

Dwell Time: Idle Time Between P/E Cycles

o ———()
P/E P/E P/E P/E P/E

Y
Longer Dwell Time: More Self-Recovery

Reduces Retention Loss
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Exploiting the Temperature Effect

High Program
Temperature Voltage
Increases Program Variation
X
SR
seneV
High Storage
Temperature

Accelerates Retention Loss
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Prior Studies of Self-Recovery/Temperature

Planar (2D) NAND 3D NAND

Self-Recovery
Effect \/ X

Mielke 2006
Temperature \/ X
Effect
JEDEC 2010

(no characterization)
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Outline

* Executive Summary
* Background on NAND Flash Reliability

* Characterization of Self-Recovery and Temperature
Effect on Real 3D NAND Flash Memory Chips

* URT: Unified Self-Recovery and Temperature Model
* HeatWatch Mechanism

* Conclusion
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Characterization Methodology

* Modified firmware version in the flash controll

er

* Control the read reference voltage of the flash chip

* Bypass ECC to get raw NAND data (with raw bit

errors)
* Control temperature with a heat chamber

Heat Chamber

Server
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Characterized Devices

Real 30-39 Layer 3D MLC NAND Flash Chips

2-bit MLC

30-to
39-layer
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Probability

MLC Threshold Voltage Distribution Background
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Characterization Goal

=
Characterized O e
Metrics
Retention Loss Speed Program Variation
(how fast voltage shifts (initial voltage difference
over time) between states)

Characterized Self-Recovery Temperature
Phenomena Effect Effect
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Self-Recovery Effect Characterization Results

1.2
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Dwell time: Idle time between P/E cycles
Increasing dwell time from 1 minute to 2.3 hours

slows down retention loss speed by 40%
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Program Temperature Effect
Characterization Results

0 10 20 30 40 50 60 70
Program Temperature (Celsius)

Increasmg program temperature from 0°C to 70°C

ram variation by 21%
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Storage Temperature Effect
Characterization Results
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Lowering storage temperature from 70°C to 0°C

slows down retention loss speed by 58%
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Characterization Summary

i Major Results:

e Self-recovery affects retention loss speed

* Program temperature affects program variation
* Storage temperature affects retention loss speed

Unified Model

Other Characterizations Methods in the Paper:

* More detailed results on self-recovery and temperature
* Effects on error rate
* Effects on threshold voltage distribution

* Effects of recovery cycle (P/E cycles with
long dwell time) on retention loss speed
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Outline

* Executive Summary
* Background on NAND Flash Reliability

 Characterization of Self-Recovery and Temperature
Effect on Real 3D NAND Flash Memory Chips

* URT: Unified Self-Recovery and Temperature Model
* HeatWatch Mechanism

* Conclusion

195



Minimizing 3D NAND Errors

Optimal
Read Ref.
Voltage

Read Ref.
Voltage

Probability

Retention
Errors

Optimal read reference voltage

minimizes 3D NAND errors
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Predicting the Mean Threshold Voltage

Our URT Model:
V=V,+AV

Mean

Threshold
Voltage

Initial Voltage Voltage Shift

Before Retention Due to
(Program Variation) Retention Loss
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URT Model Overview

1. Program 3. Temperature
Variation Scaling
Component Component

2. Self-Recovery
and Retention
Component

Voltage Shift
Due to
Retention Loss

Initial Voltage
Before Retention




1. Program Variation Component

P/E Cycle Program
@ @ Temperature
VO
Initial
Voltage

Vo=A-T,-PEC+B-T,+ C-PEC+D

Validation: R2=91.7%
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2. Self-Recovery and Retention Component

Retention P/E Dwell
Time Cycle Time
AV
Retention Shift

I
AV (ter, t,g, PEC) = b- (PEC + ¢) - In (1 + = )
Ip+a-tey

Validation: 3x more accurate

than state-of-the-art model
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3. Temperature Scaling Component

Actual Actual

Retention Storage Dwell Dwell
Time Temp. Time Temp.

Effective Effective Dwell
Retention Time Time

Arrhenius Equation: AF-= el exp (Eﬂ ( — - — ))

Treaf Troom

Validation: Adjust an important parameter,

E, from 1.1 eVto 1.04 eV
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URT Model Summary

1. Program 3. Temperature
Variation Scaling
Component Component

2. Self-Recovery
and Retention
Component

Validation:
Prediction Error Rate = 4.9%




Outline

* Executive Summary
* Background on NAND Flash Reliability

 Characterization of Self-Recovery and Temperature
Effect on Real 3D NAND Flash Memory Chips

* URT: Unified Self-Recovery and Temperature Model
* HeatWatch Mechanism

* Conclusion

203



HeatWatch Mechanism

* Key Idea

* Predict change in threshold voltage distribution
by using the URT model

* Adapt read reference voltage to near-optimal (V)
based on predicted change in voltage distribution
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HeatWatch Mechanism Overview

Tracking Components

SSD P/E Cycles &

Temperature Dwell Time Retention Time

Prediction Components

Fine-Tuning

V,pi Prediction

URT Parameters

|
\
QqEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEER l'
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Tracking SSD Temperature

Tracking Components

Temperature

* Use existing sensors in the SSD

* Precompute temperature scaling factor

g at logarithmic time intervals y
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Tracking Dwell Time

Tracking Components

* Only need to log the timestamps of last 20 full drive writes

* Self-recovery effect diminishes after 20 P/E cycles
- )
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Tracking P/E Cycles and Retention Time

Tracking Components
P/E Cycles &

Retention Time

~
* P/E cycle count already recorded by SSD

* Log write timestamp for each block

* Retention time = read timestamp - write timestamp y

208



Predicting Optimal Read Reference Voltage

-

* Calculate URT using tracked information
* Modeling error: 4.9%
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Fine-Tuning URT Parameters Online

-

* Accommodates chip-to-chip variation
* Uses periodic sampling

Fine-Tuning

URT Parameters
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HeatWatch Mechanism Summary

Tracking Components

: P/E Cycles &
pwel Time :

[ Storage Overhead: 0.16% of DRAM in 1TB SSD ]"’

SSD

Temperature

Prediction Components

Fine-Tuning

Vopt Prediction URT Parameters

[’ Latency Overhead: < 1% of flash read latency J 211




HeatWatch Evaluation Methodology

28 real workload storage traces
* MSR-Cambridge

* We use real dwell time, retention time values
obtained from traces

 Temperature Model:
Trigonometric function + Gaussian noise

* Represents periodic temperature variation in each day
* Includes small transient temperature variation
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HeatWatch Greatly Improves Flash Lifetime
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HeatWatch improves lifetime by

capturing the effect of
retention, wearout, self-recovery, temperature
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Outline

* Executive Summary
* Background on NAND Flash Reliability

 Characterization of Self-Recovery and Temperature
Effect on Real 3D NAND Flash Memory Chips

* URT: Unified Self-Recovery and Temperature Model

e HeatWatch Mechanism

 Conclusion
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Conclusion

* 3D NAND flash memory susceptible to retention errors
* Charge leaks out of flash cell
* Two unreported factors: self-recovery and temperature

* We study self-recovery and temperature effects
* Experimental characterization of real 3D NAND chips

* Unified Self-Recovery and Temperature (URT) Model

* Predicts impact of retention loss, wearout, self-recovery,
temperature on flash cell voltage

* Low prediction error rate: 4.9%

* We develop a new technique to improve flash reliability

* HeatWatch
* Uses URT model to find optimal read voltages for 3D NAND flash
* Improves flash lifetime by 3.85x
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