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Lecture Announcement
n Monday, November 26, 2018
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n Apéro after the lecture J

n Prof. Arvind (Massachusetts Institute of Technology)

n D-INFK Distinguished Colloquium
n The Riscy Expedition
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events/colloquium/event-detail.html?eventFeedId=42658
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Memory System is the Major Shared Resource
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threads’ requests 
interfere



Much More of a Shared Resource in Future

4



Memory System Shared by Heterogeneous Agents

n Heterogeneous agents: CPUs, GPUs, and HWAs 
n Main memory interference between CPUs, GPUs, HWAs
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CPU CPU CPU CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance? 



Staged Memory Scheduling

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu,
"Staged Memory Scheduling: Achieving High Performance 

and Scalability in Heterogeneous Systems”
39th International Symposium on Computer Architecture (ISCA), 

Portland, OR, June 2012. 

SMS ISCA 2012 Talk

http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://isca2012.ittc.ku.edu/
file:///Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/rachata_isca12_talk.pptx


SMS: Executive Summary
n Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers

n Problem: Existing monolithic application-aware memory 
scheduler designs are hard to scale to large request buffer sizes

n Solution: Staged Memory Scheduling (SMS) 
decomposes the memory controller into three simple stages:
1) Batch formation: maintains row buffer locality
2) Batch scheduler: reduces interference between applications
3) DRAM command scheduler: issues requests to DRAM

n Compared to state-of-the-art memory schedulers:
q SMS is significantly simpler and more scalable
q SMS provides higher performance and fairness
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SMS: Staged Memory Scheduling
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Stage 1

Stage 2

SMS: Staged Memory Scheduling
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Current Batch
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Complexity
n Compared to a row hit first scheduler, SMS consumes*

q 66% less area
q 46% less static power

n Reduction comes from:
q Monolithic scheduler à stages of simpler schedulers
q Each stage has a simpler scheduler (considers fewer 

properties at a time to make the scheduling decision)
q Each stage has simpler buffers (FIFO instead of out-of-order)
q Each stage has a portion of the total buffer size (buffering is 

distributed across stages)

11* Based on a Verilog model using 180nm library



Performance at Different GPU Weights
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n At every GPU weight, SMS outperforms the best previous 
scheduling algorithm for that weight

Performance at Different GPU Weights
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More on SMS
n Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, 

Gabriel Loh, and Onur Mutlu,
"Staged Memory Scheduling: Achieving High 
Performance and Scalability in Heterogeneous Systems"
Proceedings of the 39th International Symposium on Computer 
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/rachata_isca12_talk.pptx


DASH Memory Scheduler
[TACO 2016]
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Current SoC Architectures

n Heterogeneous agents: CPUs and HWAs 
q HWA : Hardware Accelerator

n Main memory is shared by CPUs and HWAs à Interference
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CPU CPU CPU CPU

Shared Cache HWA HWA HWA

DRAM Controller

DRAM

How to schedule memory requests from CPUs and HWAs 
to mitigate interference? 



Example Heterogeneous SoC
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DASH Scheduler: Executive Summary
n Problem: Hardware accelerators (HWAs) and CPUs share the same 

memory subsystem and interfere with each other in main memory
n Goal: Design a memory scheduler that improves CPU performance while 

meeting HWAs’ deadlines
n Challenge: Different HWAs have different memory access characteristics 

and different deadlines, which current schedulers do not smoothly handle
q Memory-intensive and long-deadline HWAs significantly degrade CPU 

performance when they become high priority (due to slow progress)
q Short-deadline HWAs sometimes miss their deadlines despite high priority

n Solution: DASH Memory Scheduler 
q Prioritize HWAs over CPU anytime when the HWA is not making good progress
q Application-aware scheduling for CPUs and HWAs

n Key Results:
1) Improves CPU performance for a wide variety of workloads by 9.5% 
2) Meets 100% deadline met ratio for HWAs

n DASH source code freely available on our GitHub
18



Goal of Our Scheduler (DASH)

• Goal: Design a memory scheduler that 
– Meets GPU/accelerators’ frame rates/deadlines and
– Achieves high CPU performance

• Basic Idea:
– Different CPU applications and hardware accelerators 

have different memory requirements
– Track progress of different agents and prioritize 

accordingly

19



Key Observation:
Distribute Priority for Accelerators

• GPU/accelerators need priority to meet deadlines
• Worst case prioritization not always the best
• Prioritize when they are not on track to meet a 

deadline

20

Distributing priority over time mitigates impact 
of accelerators on CPU cores’ requests



Existing QoS-Aware Scheduling Scheme
n Dynamic Prioritization for a CPU-GPU System [Jeong et al., DAC 2012] 

q Dynamically adjust GPU priority based on its progress
q Lower GPU priority if GPU is making a good progress to achieve its 

target frame rate 

n We apply this scheme for a wide variety of HWAs
q Compare HWA’s current progress against expected progress

n Current Progress : (The number of finished memory requests for a period)
(The number of total memory requests for a period )

n Expected Progress : (Elapsed cycles in a period)
(Total cycles in a period)

q Every scheduling unit, dynamically adjust HWA priority
n If Expected Progress > EmergentThreshold (=0.9) : HWA > CPU
n If (Current Progress) > (Expected Progress) : HWA < CPU
n If (Current Progress) <= (Expected Progress) : HWA = CPU
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Problems in Dynamic Prioritization
n Dynamic Prioritization for a CPU-HWA system

q Compares HWA’s current progress against expected progress

n Current Progress : (The number of finished memory requests for a period)
(The number of total memory requests for a period )

n Expected Progress : (Elapsed cycles in a period)
(Total cycles in a period)

q Every scheduling unit, dynamically adjust HWA priority
n If Expected Progress > EmergentThreshold (=0.9) : HWA > CPU
n If (Current Progress) > (Expected Progress) : HWA < CPU
n If (Current Progress) <= (Expected Progress) : HWA = CPU
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1. An HWA is prioritized over CPU cores only when it is closed to HWA’s deadline

2. This scheme does not consider the diverse memory access characteristics of
CPUs and HWAs
• It treats each CPU and each HWA equally    

The HWA often misses deadlines

Missing opportunities to improve system performance



Key Idea 1: Distributed Priority
n Problem 1: An HWA is prioritized over CPU cores only when it is close 

to HWA’s deadline

n Key Idea 1: Distributed Prioritization for a CPU-HWA system
q Compares HWA’s current progress against expected progress

n Current Progress : (The number of finished memory requests for a period)
(The number of total memory requests for a period )

n Expected Progress : (Elapsed cycles in a period)
(Total cycles in a period)

q Dynamically adjust HWA priority based on its progress every scheduling unit
n If Expected Progress > EmergentThreshold (=0.9) : HWA > CPU
n If (Current Progress) > (Expected Progress) : HWA < CPU
n If (Current Progress) <= (Expected Progress) : HWA > CPU

23

Prioritize HWAs over CPU anytime when the HWA is not making good progress



Example: Scheduling HWA and CPU Requests 
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Alone Execution Timeline time

n Scheduling requests from 2 CPU applications and a HWA
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q CPU-B : memory intensive application
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DASH: Distributed Priority
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n Distributed Priority (Scheduling unit = 4T)
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DASH: Distributed Priority
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n Distributed Priority (Scheduling unit = 4T)
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DASH: Distributed Priority
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n Distributed Priority (Scheduling unit = 4T)
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DASH: Distributed Priority
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n Distributed Priority (Scheduling unit = 4T)
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DASH: Distributed Priority
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n Distributed Priority (Scheduling unit = 4T)
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Key Observation: 
Not All Accelerators are Equal

• Long-deadline accelerators are more likely to 
meet their deadlines

• Short-deadline accelerators are more likely to 
miss their deadlines

30

Schedule short-deadline accelerators 
based on worst-case memory access time 



Key Observation: 
Not All CPU cores are Equal

• Memory-intensive cores are much less 
vulnerable to interference

• Memory non-intensive cores are much more 
vulnerable to interference

31

Prioritize accelerators over memory-intensive cores 
to ensure accelerators do not become urgent



DASH Summary: 
Key Ideas and Results

• Distribute priority for HWAs
• Prioritize HWAs over memory-intensive CPU 

cores even when not urgent
• Prioritize short-deadline-period HWAs based 

on worst case estimates
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Improves CPU performance by 7-21%
Meets (almost) 100% of deadlines for HWAs



DASH: Scheduling Policy

n DASH scheduling policy 
1. Short-deadline-period HWAs with high priority
2. Long-deadline-period HWAs with high priority
3. Memory non-intensive CPU applications
4. Long-deadline-period HWAs with low priority
5. Memory-intensive CPU applications
6. Short-deadline-period HWAs with low priority

33

Switch 
probabilistically



Experimental Methodology (1/2)
n New Heterogeneous System Simulator

q We have released this at GitHub (https://github.com/CMU-SAFARI/HWASim)
n Configurations

q 8 CPUs (2.66GHz), 32KB/L1, 4MB Shared/L2
q 4 HWAs
q DDR3 1333 DRAM x 2 channels

n Workloads
q CPUs: 80 multi-programmed workloads

n SPEC CPU2006, TPC, NAS parallel benchmark
q HWAs: 

n Image processing 
n Image recognition [Lee+ ICCD 2009] [Viola and Jones CVPR 2001]

n Metrics
q CPUs : Weighted Speedup
q HWAs : Deadline met ratio (%)

34



Experimental Methodology (2/2)
n Parameters of the HWAs

n Configurations of 4 HWAs
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Period Bandwidth Deadline 
Group

IMG : Image Processing 33 ms 360MB/s Long

HES : Hessian 2 us 478MB/s Short

MAT : Matching (1) 20fps 35.4 us 8.32 GB/s Long

MAT : Matching (2) 30fps 23.6 us 5.55 GB/s Long

RSZ : Resize 46.5 – 5183 us 2.07 – 3.33 GB/s Long

DET : Detect 0.8 – 9.6 us 1.60 – 1.86 GB/s Short

Configuration
Config-A IMG x 2, HES, MAT(2)

Config-B HES, MAT(1), RSZ, DET



Evaluated Memory Schedulers
n FRFCFS-St, TCM-St: FRFCFS or TCM with static priority for HWAs

q HWAs always have higher priority than CPUs
q FRFCFS-St: FRFCFS [Zuravleff and Robinson US Patent 1997, Rixner et al. ISCA 2000] for CPUs

n Prioritizes row-buffer hits and older requests

q TCM-St: TCM [Kim+ MICRO 2010] for CPUs
n Always prioritizes memory-non-intensive applications
n Shuffles thread ranks of memory-intensive applications

n FRFCFS-Dyn: FRFCFS with dynamic priority for HWAs [Jeong et al., DAC 2012] 

q HWA’s priority is dynamically adjusted based on its progress
n FRFCFS-Dyn0.9: EmergentThreshold = 0.9 for all HWAs (Only after 90% of the HWA’s period 

elapsed, the HWA has higher priority than CPUs) 
n FRFCFS-DynOpt: Each HWA has different EmergentThreshold to meet its deadline

n DASH: Distributed Priority + Application-aware scheduling for CPUs + HWAs
q TCM is used for CPUs to classify memory intensity of CPUs
q EmergentThreshold = 0.8 for all HWAs 

36

Config-A Config-B
IMG HES MAT HES MAT RSZ DET

0.9 0.2 0.2 0.5 0.4 0.7 0.5



Performance and Deadline Met Ratio
n Weighted Speedup for CPUs

n Deadline Met Ratio (%) for HWAs
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

DASH
FRFCFS-DynOpt
FRFCFS-Dyn0.9

TCM-St
FRFCFS-St

Weighted Speedup

IMG HES MAT RSZ DET
FRFCFS-St 100 100 100 100 100
TCM-St 100 100 100 100 100
FRFCFS-Dyn0.9 100 99.4 46.01 97.98 97.14
FRFCFS-DynOpt 100 100 99.997 100 99.99
DASH 100 100 100 100 100



Performance and Deadline Met Ratio
n Weighted Speedup for CPUs

n Deadline Met Ratio (%) for HWAs
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DASH
FRFCFS-DynOpt
FRFCFS-Dyn0.9

TCM-St
FRFCFS-St

Weighted Speedup

IMG HES MAT RSZ DET
FRFCFS-St 100 100 100 100 100
TCM-St 100 100 100 100 100
FRFCFS-Dyn0.9 100 99.4 46.01 97.98 97.14
FRFCFS-DynOpt 100 100 99.997 100 99.99
DASH 100 100 100 100 100

1. DASH achieves 100% deadline met ratio



Performance and Deadline Met Ratio
n Weighted Speedup for CPUs

n Deadline Met Ratio (%) for HWAs
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DASH
FRFCFS-DynOpt
FRFCFS-Dyn0.9

TCM-St
FRFCFS-St

Weighted Speedup

IMG HES MAT RSZ DET
FRFCFS-St 100 100 100 100 100

TCM-St 100 100 100 100 100

FRFCFS-Dyn0.9 100 99.4 46.01 97.98 97.14

FRFCFS-DynOpt 100 100 99.997 100 99.99

DASH 100 100 100 100 100

+9.5%

1. DASH achieves 100% deadline met ratio
2. DASH achieves better performance (+9.5%) than FRFCFS-DynOpt

that meets the most of HWAs’ deadlines (Optimized for HWAs)



Performance and Deadline Met Ratio
n Weighted Speedup for CPUs

n Deadline Met Ratio (%) for HWAs
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

DASH
FRFCFS-DynOpt
FRFCFS-Dyn0.9

TCM-St
FRFCFS-St

Weighted Speedup

IMG HES MAT RSZ DET
FRFCFS-St 100 100 100 100 100

TCM-St 100 100 100 100 100

FRFCFS-Dyn0.9 100 99.4 46.01 97.98 97.14

FRFCFS-DynOpt 100 100 99.997 100 99.99

DASH 100 100 100 100 100

+9.5%

1. DASH achieves 100% deadline met ratio
2. DASH achieves better performance (+9.5%) than FRFCFS-DynOpt

that meets the most of HWAs’ deadlines (Optimized for HWAs)
3. DASH achieves comparable performance to FRFCFS-Dyn0.9 

that frequently misses HWAs’ deadlines (Optimized for CPUs)



More on DASH
n Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, and 

Onur Mutlu,
"DASH: Deadline-Aware High-Performance Memory 
Scheduler for Heterogeneous Systems with Hardware 
Accelerators"
ACM Transactions on Architecture and Code Optimization (TACO), 
Vol. 12, January 2016. 
Presented at the 11th HiPEAC Conference, Prague, Czech Republic, 
January 2016. 
[Slides (pptx) (pdf)] 
[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
http://taco.acm.org/
https://www.hipeac.net/2016/prague/
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pdf
https://github.com/CMU-SAFARI/HWASim


Predictable Performance: 
Strong Memory Service Guarantees
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Goal: Predictable Performance in Complex Systems

n Heterogeneous agents: CPUs, GPUs, and HWAs 
n Main memory interference between CPUs, GPUs, HWAs

43

CPU CPU CPU CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance? 



Strong Memory Service Guarantees
n Goal: Satisfy performance/SLA requirements in the 

presence of shared main memory, heterogeneous agents, 
and hybrid memory/storage

n Approach: 
q Develop techniques/models to accurately estimate the 

performance loss of an application/agent in the presence of 
resource sharing

q Develop mechanisms (hardware and software) to enable the 
resource partitioning/prioritization needed to achieve the 
required performance levels for all applications

q All the while providing high system performance 

n Subramanian et al., “MISE: Providing Performance Predictability and Improving Fairness 
in Shared Main Memory Systems,” HPCA 2013.

n Subramanian et al., “The Application Slowdown Model,” MICRO 2015.
44



Predictable Performance Readings (I)
n Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,

"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory 
Systems"
Proceedings of the 15th International Conference on 
Architectural Support for Programming Languages and Operating 
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010. 
Slides (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf


Predictable Performance Readings (II)
n Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, 

and Onur Mutlu,
"MISE: Providing Performance Predictability and 
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx


Predictable Performance Readings (III)
n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and 

Onur Mutlu,

"The Application Slowdown Model: Quantifying and Controlling 
the Impact of Inter-Application Interference at Shared Caches 
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture

(MICRO), Waikiki, Hawaii, USA, December 2015. 

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 

(pptx) (pdf)] 

[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim


MISE: 
Providing Performance Predictability 

in Shared Main Memory Systems

Lavanya Subramanian, Vivek Seshadri, 
Yoongu Kim, Ben Jaiyen, Onur Mutlu
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Unpredictable Application Slowdowns
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Need for Predictable Performance
n There is a need for predictable performance

q When multiple applications share resources 
q Especially if some applications require performance 

guarantees

n Example 1: In mobile systems
q Interactive applications run with non-interactive applications
q Need to guarantee performance for interactive applications

n Example 2: In server systems
q Different users’ jobs consolidated onto the same server
q Need to provide bounded slowdowns to critical jobs 

50

Our Goal: Predictable performance 
in the presence of memory interference



Outline
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1. Estimate Slowdown
q Key Observations
q Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown



Outline
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1. Estimate Slowdown
q Key Observations
q Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown
q Providing Soft Slowdown Guarantees
q Minimizing Maximum Slowdown



Slowdown: Definition
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Key Observation 1
For a memory bound application,  
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Shared

Alone

 Rate ServiceRequest 
 Rate ServiceRequest 

Slowdown =
Shared
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 ePerformanc
 ePerformanc

 Slowdown =

Easy

Harder

Intel Core i7, 4 cores
Mem. Bandwidth: 8.5 GB/s



Key Observation 2
Request Service Rate Alone (RSRAlone) of an application can be 

estimated by giving the application highest priority in 
accessing memory 

Highest priority à Little interference
(almost as if the application were run alone)
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Key Observation 2
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1. Run alone
Time units Service order

Main 
Memory

12

Request Buffer State
Main 

Memory

2. Run with another application
Service order

Main 
Memory

123

Request Buffer State
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Memory Interference-induced Slowdown Estimation 
(MISE) model for memory bound applications

)(RSR  Rate ServiceRequest 
)(RSR  Rate ServiceRequest 

Slowdown
SharedShared
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Key Observation 3
n Memory-bound application
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Key Observation 3
n Non-memory-bound application
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Memory Interference-induced Slowdown Estimation 
(MISE) model for non-memory bound applications



Outline
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1. Estimate Slowdown
q Key Observations
q Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown
q Providing Soft Slowdown Guarantees
q Minimizing Maximum Slowdown



Interval Based Operation
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time

Interval

a

Estimate 
slowdown

Interval

Estimate 
slowdown

n Measure RSRShared, 
n Estimate RSRAlone

an Measure RSRShared, 
n Estimate RSRAlone



Measuring RSRShared and α
n Request Service Rate Shared (RSRShared)

q Per-core counter to track number of requests serviced
q At the end of each interval, measure

n Memory Phase Fraction (  )
q Count number of stall cycles at the core
q Compute fraction of cycles stalled for memory

Length Interval
Serviced Requests ofNumber 

  RSRShared =

α
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Estimating Request Service Rate Alone (RSRAlone)

n Divide each interval into shorter epochs

n At the beginning of each epoch
q Memory controller randomly picks an application as the 

highest priority application

n At the end of an interval, for each application, estimate 

PriorityHigh Given n Applicatio Cycles ofNumber 
EpochsPriority High  During Requests ofNumber RSR

           

Alone =
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Goal: Estimate RSRAlone
How: Periodically give each application 

highest priority in accessing memory 



Inaccuracy in Estimating RSRAlone
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n When an application has highest priority
q Still experiences some interference
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Main 
Memory
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Time units Service order
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Memory
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Interference Cycles
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Memory
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Accounting for Interference in RSRAlone Estimation

n Solution: Determine and remove interference cycles from 
RSRAlone calculation

n A cycle is an interference cycle if
q a request from the highest priority application is 

waiting in the request buffer and
q another application’s request was issued previously
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Cycles ceInterferen -Priority High Given n Applicatio Cycles ofNumber 
EpochsPriority High  During Requests ofNumber RSR

           

Alone =
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MISE Model: Putting it All Together 
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Previous Work on Slowdown Estimation
n Previous work on slowdown estimation

q STFM (Stall Time Fair Memory) Scheduling [Mutlu+, MICRO ‘07] 

q FST (Fairness via Source Throttling) [Ebrahimi+, ASPLOS ‘10]

q Per-thread Cycle Accounting [Du Bois+, HiPEAC ‘13]

n Basic Idea:
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Shared

Alone

 Time Stall
 Time Stall

 Slowdown =

Hard

Easy

Count number of cycles application receives interference



Two Major Advantages of MISE Over STFM

n Advantage 1:
q STFM estimates alone performance while an 

application is receiving interference à Hard
q MISE estimates alone performance while giving an 

application the highest priority à Easier

n Advantage 2:
q STFM does not take into account compute phase for 

non-memory-bound applications 
q MISE accounts for compute phase à Better accuracy
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Methodology
n Configuration of our simulated system

q 4 cores
q 1 channel, 8 banks/channel
q DDR3 1066 DRAM 
q 512 KB private cache/core

n Workloads
q SPEC CPU2006 
q 300 multi programmed workloads
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Quantitative Comparison
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Comparison to STFM
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Providing “Soft” Slowdown Guarantees
n Goal

1. Ensure QoS-critical applications meet a prescribed 
slowdown bound

2. Maximize system performance for other applications

n Basic Idea
q Allocate just enough bandwidth to QoS-critical 

application
q Assign remaining bandwidth to other applications
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MISE-QoS: Mechanism to Provide Soft QoS
n Assign an initial bandwidth allocation to QoS-critical application
n Estimate slowdown of QoS-critical application using the MISE 

model
n After every N intervals

q If slowdown > bound B +/- ε, increase bandwidth allocation
q If slowdown < bound B +/- ε, decrease bandwidth allocation

n When slowdown bound not met for N intervals
q Notify the OS so it can migrate/de-schedule jobs
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Methodology
n Each application (25 applications in total) considered the 

QoS-critical application
n Run with 12 sets of co-runners of different memory 

intensities
n Total of 300 multiprogrammed workloads
n Each workload run with 10 slowdown bound values
n Baseline memory scheduling mechanism

q Always prioritize QoS-critical application 
[Iyer+, SIGMETRICS 2007]

q Other applications’ requests scheduled in FRFCFS order
[Zuravleff +, US Patent 1997, Rixner+, ISCA 2000]
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A Look at One Workload
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Effectiveness of MISE in Enforcing QoS
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MISE-QoS correctly predicts whether or not 
the bound is met for 95.7% of workloads



Performance of Non-QoS-Critical Applications
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Other Results in the Paper
n Sensitivity to model parameters

q Robust across different values of model parameters

n Comparison of STFM and MISE models in enforcing soft 
slowdown guarantees
q MISE significantly more effective in enforcing guarantees

n Minimizing maximum slowdown
q MISE improves fairness across several system configurations
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Summary
n Uncontrolled memory interference slows down  

applications unpredictably
n Goal: Estimate and control slowdowns
n Key contribution

q MISE: An accurate slowdown estimation model 
q Average error of MISE: 8.2%

n Key Idea
q Request Service Rate is a proxy for performance
q Request Service Rate Alone estimated by giving an application highest 

priority in accessing memory
n Leverage slowdown estimates to control slowdowns

q Providing soft slowdown guarantees
q Minimizing maximum slowdown
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MISE: Pros and Cons

n Upsides:
q Simple new insight to estimate slowdown
q Much more accurate slowdown estimations than prior 

techniques (STFM, FST)
q Enables a number of QoS mechanisms that can use slowdown 

estimates to satisfy performance requirements

n Downsides:
q Slowdown estimation is not perfect - there are still errors
q Does not take into account caches and other shared resources 

in slowdown estimation
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More on MISE
n Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, 

and Onur Mutlu,
"MISE: Providing Performance Predictability and 
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx


Extending MISE to Shared Caches: ASM
n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and 

Onur Mutlu,

"The Application Slowdown Model: Quantifying and Controlling 
the Impact of Inter-Application Interference at Shared Caches 
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture

(MICRO), Waikiki, Hawaii, USA, December 2015. 

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 

(pptx) (pdf)] 

[Source Code] 

86
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https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim


Handling Memory Interference 
In Multithreaded Applications

Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, 
Chang Joo Lee, Onur Mutlu, and Yale N. Patt, 
"Parallel Application Memory Scheduling"

Proceedings of the 44th International Symposium on Microarchitecture (MICRO), 
Porto Alegre, Brazil, December 2011. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx


Multithreaded (Parallel) Applications
n Threads in a multi-threaded application can be inter-

dependent
q As opposed to threads from different applications

n Such threads can synchronize with each other
q Locks, barriers, pipeline stages, condition variables, 

semaphores, …

n Some threads can be on the critical path of execution due 
to synchronization; some threads are not

n Even within a thread, some “code segments” may be on 
the critical path of execution; some are not
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Critical Sections

n Enforce mutually exclusive access to shared data
n Only one thread can be executing it at a time
n Contended critical sections make threads wait à threads 

causing serialization can be on the critical path
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Each thread:
loop {

Compute
lock(A)

Update shared data
unlock(A)

}

N

C



Barriers

n Synchronization point
n Threads have to wait until all threads reach the barrier
n Last thread arriving at the barrier is on the critical path
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Each thread:
loop1 {

Compute
}
barrier
loop2 {

Compute
}



Stages of Pipelined Programs
n Loop iterations are statically divided into code segments called stages
n Threads execute stages on different cores
n Thread executing the slowest stage is on the critical path
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loop {
Compute1

Compute2

Compute3
}

A

B

C

A B C



Handling Interference in Parallel Applications

n Threads in a multithreaded application are inter-dependent
n Some threads can be on the critical path of execution due 

to synchronization; some threads are not
n How do we schedule requests of inter-dependent threads 

to maximize multithreaded application performance?

n Idea: Estimate limiter threads likely to be on the critical path and 
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

n Hardware/software cooperative limiter thread estimation:
n Thread executing the most contended critical section
n Thread executing the slowest pipeline stage
n Thread that is falling behind the most in reaching a barrier

92PAMS Micro 2011 Talk

file:///Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/ebrahimi_micro2011_talk.pptx


Prioritizing Requests from Limiter Threads

93

Critical Section 1 BarrierNon-Critical Section

Waiting for Sync 
or Lock

Thread D
Thread C

Thread B

Thread A

Time

Barrier

Time

Barrier

Thread D

Thread C

Thread B
Thread A

Critical Section 2 Critical Path

Saved
Cycles Limiter Thread: DBCA

Most Contended
Critical Section: 1

Limiter Thread Identification



Parallel App Mem Scheduling: Pros and Cons

n Upsides:
q Improves the performance of multi-threaded applications
q Provides a mechanism for estimating “limiter threads”
q Opens a path for slowdown estimation for multi-threaded 

applications

n Downsides:
q What if there are multiple multi-threaded applications running 

together?
q Limiter thread estimation can become complex
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More on PAMS
n Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo

Lee, Onur Mutlu, and Yale N. Patt, 
"Parallel Application Memory Scheduling"
Proceedings of the 44th International Symposium on 
Microarchitecture (MICRO), Porto Alegre, Brazil, December 
2011. Slides (pptx)

95

http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
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Other Ways of 
Handling Memory Interference



Fundamental Interference Control Techniques

n Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling
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Designing QoS-Aware Memory Systems: Approaches

n Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism
q QoS-aware memory controllers 
q QoS-aware interconnects
q QoS-aware caches

n Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping
q Source throttling to control access to memory system 
q QoS-aware data mapping to memory controllers  
q QoS-aware thread scheduling to cores
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Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda, 

"Reducing Memory Interference in Multicore Systems via 
Application-Aware Memory Channel Partitioning”

44th International Symposium on Microarchitecture (MICRO), 

Porto Alegre, Brazil, December 2011. Slides (pptx)

MCP Micro 2011 Talk

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx
file:///Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/subramanian_micro11_talk.pptx


Observation: Modern Systems Have Multiple Channels

A new degree of freedom
Mapping data across multiple channels
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Data Mapping in Current Systems
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Partitioning Channels Between Applications
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Overview: Memory Channel Partitioning (MCP) 

n Goal
q Eliminate harmful interference between applications

n Basic Idea
q Map the data of badly-interfering applications to different 

channels

n Key Principles
q Separate low and high memory-intensity applications
q Separate low and high row-buffer locality applications

103Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.



Key Insight 1: Separate by Memory Intensity
High memory-intensity applications interfere with low 

memory-intensity applications in shared memory channels
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Key Insight 2: Separate by Row-Buffer Locality
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Memory Channel Partitioning (MCP) Mechanism

1. Profile applications
2. Classify applications into groups
3. Partition channels between application groups
4. Assign a preferred channel to each application
5. Allocate application pages to preferred channel
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Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.



Interval Based Operation
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time

Current Interval Next Interval

1. Profile applications

2. Classify applications into groups
3. Partition channels between groups
4. Assign preferred channel to applications

5. Enforce channel preferences



Observations

n Applications with very low memory-intensity rarely 
access memory
à Dedicating channels to them results in precious 
memory bandwidth waste

n They have the most potential to keep their cores busy
à We would really like to prioritize them

n They interfere minimally with other applications
à Prioritizing them does not hurt others
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Integrated Memory Partitioning and Scheduling (IMPS)

n Always prioritize very low memory-intensity 
applications in the memory scheduler

n Use memory channel partitioning to mitigate 
interference between other applications

109Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.



Hardware Cost
n Memory Channel Partitioning (MCP)

q Only profiling counters in hardware
q No modifications to memory scheduling logic
q 1.5 KB storage cost for a 24-core, 4-channel system

n Integrated Memory Partitioning and Scheduling (IMPS)
q A single bit per request
q Scheduler prioritizes based on this single bit

110Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.



Performance of Channel Partitioning
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Combining Multiple Interference Control Techniques

n Combined interference control techniques can mitigate 
interference much more than a single technique alone can 
do

n The key challenge is:
q Deciding what technique to apply when
q Partitioning work appropriately between software and 

hardware
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MCP and IMPS: Pros and Cons

n Upsides:
q Keeps the memory scheduling hardware simple
q Combines multiple interference reduction techniques
q Can provide performance isolation across applications mapped 

to different channels
q General idea of partitioning can be extended to smaller 

granularities in the memory hierarchy: banks, subarrays, etc. 

n Downsides:
q Reacting is difficult if workload changes behavior after 

profiling
q Overhead of moving pages between channels restricts benefits 
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More on Memory Channel Partitioning
n Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, 

Mahmut Kandemir, and Thomas Moscibroda, 
"Reducing Memory Interference in Multicore Systems via 
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on 
Microarchitecture (MICRO), Porto Alegre, Brazil, December 
2011. Slides (pptx)
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We did not cover the following slides in lecture. 
These are for your preparation for the next lecture. 



Fundamental Interference Control Techniques

n Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling
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Fairness via Source Throttling

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-Performance 

Fairness Substrate for Multi-Core Memory Systems"
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)

FST ASPLOS 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf
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The Problem with “Smart Resources”

n Independent interference control mechanisms in 
caches, interconnect, and memory can contradict 
each other

n Explicitly coordinating mechanisms for different 
resources requires complex implementation

n How do we enable fair sharing of the entire 
memory system by controlling interference in a 
coordinated manner?
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Source Throttling: A Fairness Substrate

n Key idea: Manage inter-thread interference at the cores 
(sources), not at the shared resources

n Dynamically estimate unfairness in the memory system 
n Feed back this information into a controller
n Throttle cores’ memory access rates accordingly

q Whom to throttle and by how much depends on performance 
target (throughput, fairness, per-thread QoS, etc)

q E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

n Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12.
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Fairness via Source Throttling (FST)

n Two components (interval-based)

n Run-time unfairness evaluation (in hardware)
q Dynamically estimates the unfairness (application slowdowns) 

in the memory system
q Estimates which application is slowing down which other

n Dynamic request throttling (hardware or software)
q Adjusts how aggressively each core makes requests to the 

shared resources
q Throttles down request rates of cores causing unfairness

n Limit miss buffers, limit injection rate
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Dynamic Request Throttling
n Goal: Adjust how aggressively each core makes requests to 

the shared memory system 

n Mechanisms:
q Miss Status Holding Register (MSHR) quota

n Controls the number of concurrent requests accessing shared 
resources from each application

q Request injection frequency
n Controls how often memory requests are issued to the last level 

cache from the MSHRs
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Dynamic Request Throttling
n Throttling level assigned to each core determines both 

MSHR quota and request injection rate
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Throttling level MSHR quota Request Injection Rate

100% 128 Every cycle

50% 64 Every other cycle

25% 32 Once every 4 cycles

10% 12 Once every 10 cycles

5% 6 Once every 20 cycles

4% 5 Once every 25 cycles

3% 3 Once every 30 cycles

2% 2 Once every 50 cycles
Total # of
MSHRs: 128



System Software Support

n Different fairness objectives can be configured by       
system software
q Keep maximum slowdown in check

n Estimated Max Slowdown < Target Max Slowdown
q Keep slowdown of particular applications in check to achieve a 

particular performance target
n Estimated Slowdown(i) < Target Slowdown(i)

n Support for thread priorities
q Weighted Slowdown(i) = 

Estimated Slowdown(i) x Weight(i)
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Source Throttling Results: Takeaways

n Source throttling alone provides better performance than a 
combination of “smart” memory scheduling and fair caching
q Decisions made at the memory scheduler and the cache 

sometimes contradict each other

n Neither source throttling alone nor “smart resources” alone 
provides the best performance

n Combined approaches are even more powerful 
q Source throttling and resource-based interference control
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Source Throttling: Ups and Downs
n Advantages

+ Core/request throttling is easy to implement: no need to 
change the memory scheduling algorithm

+ Can be a general way of handling shared resource 
contention

+ Can reduce overall load/contention in the memory system

n Disadvantages
- Requires slowdown estimations à difficult to estimate
- Thresholds can become difficult to optimize 

à throughput loss due to too much throttling
à can be difficult to find an overall-good configuration
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More on Source Throttling (I)
n Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,

"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory 
Systems"
Proceedings of the 15th International Conference on 
Architectural Support for Programming Languages and Operating 
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010. 
Slides (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf


More on Source Throttling (II)
n Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,

"HAT: Heterogeneous Adaptive Throttling for On-Chip 
Networks"
Proceedings of the 24th International Symposium on Computer 
Architecture and High Performance Computing (SBAC-PAD), New 
York, NY, October 2012. Slides (pptx) (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://www.sbc.org.br/sbac/2012/
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pdf


More on Source Throttling (III)
n George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu, 

and Srinivasan Seshan,

"On-Chip Networks from a Networking Perspective: 
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM Conference

(SIGCOMM), Helsinki, Finland, August 2012. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://conferences.sigcomm.org/sigcomm/2012/
http://users.ece.cmu.edu/~omutlu/pub/nychis_sigcomm12_talk.pptx


Fundamental Interference Control Techniques
n Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling
Idea: Pick threads that do not badly interfere with each 

other to be scheduled together on cores sharing the memory 
system
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Application-to-Core Mapping to Reduce Interference

n Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory 
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance 
Computer Architecture (HPCA), Shenzhen, China, February 2013. 
Slides (pptx)

n Key ideas:
q Cluster threads to memory controllers (to reduce across chip interference)
q Isolate interference-sensitive (low-intensity) applications in a separate 

cluster (to reduce interference from high-intensity applications)
q Place applications that benefit from memory bandwidth closer to the 

controller
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http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx


Multi-Core to Many-Core

Multi-Core Many-Core
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Many-Core On-Chip Communication
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Problem: Spatial Task Scheduling

Applications Cores

How to map applications to cores?
136



Challenges in Spatial Task Scheduling

Applications Cores

How to reduce destructive interference between applications? 

How to reduce communication distance? 

137

How to prioritize applications to improve throughput? 



Application-to-Core Mapping

138

Clustering

Balancing

Isolation

Radial 
Mapping

Improve Locality
Reduce Interference

Improve Bandwidth 
Utilization

Reduce Interference

Improve Bandwidth
Utilization



Step 1 — Clustering
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Inefficient data mapping to memory and caches

Memory 
Controller



Step 1 — Clustering

Improved Locality
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Reduced Interference

Cluster 0 Cluster 2

Cluster 1 Cluster 3



System Performance
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System performance improves by 17%



Network Power
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More on App-to-Core Mapping
n Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh

Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory 
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance 
Computer Architecture (HPCA), Shenzhen, China, February 2013. 
Slides (pptx)

143

http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx


Interference-Aware Thread Scheduling
n An example from scheduling in compute clusters (data 

centers)
n Data centers can be running virtual machines
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Virtualized Cluster
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Conventional DRM Policies
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Microarchitecture-level Interference
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• VMs within a host compete for:
– Shared cache capacity
– Shared memory bandwidth

Can operating-system-level metrics capture the 
microarchitecture-level resource interference?



Microarchitecture Unawareness
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Impact on Performance
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Impact on Performance
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A-DRM: Architecture-aware DRM
• Goal: Take into account microarchitecture-level 

shared resource interference
– Shared cache capacity
– Shared memory bandwidth

• Key Idea: 
– Monitor and detect microarchitecture-level shared 

resource interference
– Balance microarchitecture-level resource usage across 

cluster to minimize memory interference while 
maximizing system performance
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A-DRM: Architecture-aware DRM
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More on Architecture-Aware DRM
n Hui Wang, Canturk Isci, Lavanya Subramanian, Jongmoo Choi, 

Depei Qian, and Onur Mutlu,
"A-DRM: Architecture-aware Distributed Resource 
Management of Virtualized Clusters"
Proceedings of the 11th ACM SIGPLAN/SIGOPS International 
Conference on Virtual Execution Environments (VEE), Istanbul, 
Turkey, March 2015. 
[Slides (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15.pdf
http://www.cercs.gatech.edu/vee15/
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pdf


Interference-Aware Thread Scheduling
n Advantages

+ Can eliminate/minimize interference by scheduling “symbiotic 
applications” together (as opposed to just managing the 
interference)
+ Less intrusive to hardware (less need to modify the hardware 
resources)

n Disadvantages and Limitations
-- High overhead to migrate threads and data between cores and 
machines
-- Does not work (well) if all threads are similar and they 
interfere 
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Summary
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Summary: Fundamental Interference Control Techniques

n Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling

Best is to combine all. How would you do that?
156



Summary: Memory QoS Approaches and Techniques

n Approaches: Smart vs. dumb resources
q Smart resources: QoS-aware memory scheduling
q Dumb resources: Source throttling; channel partitioning
q Both approaches are effective in reducing interference
q No single best approach for all workloads

n Techniques: Request/thread scheduling, source throttling, 
memory partitioning
q All approaches are effective in reducing interference
q Can be applied at different levels: hardware vs. software
q No single best technique for all workloads

n Combined approaches and techniques are the most powerful
q Integrated Memory Channel Partitioning and Scheduling [MICRO’11]

157MCP Micro 2011 Talk

file:///Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/subramanian_micro11_talk.pptx


Summary: Memory Interference and QoS

n QoS-unaware memory à
uncontrollable and unpredictable system

n Providing QoS awareness improves performance, 
predictability, fairness, and utilization of the memory system

n Discussed many new techniques to:
q Minimize memory interference
q Provide predictable performance

n Many new research ideas needed for integrated techniques 
and closing the interaction with software
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What Did We Not Cover?

n Prefetch-aware shared resource management
n DRAM-controller co-design
n Cache interference management
n Interconnect interference management
n Write-read scheduling
n DRAM designs to reduce interference
n Interference issues in near-memory processing
n …
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What the Future May Bring

n Simple yet powerful interference control and scheduling 
mechanisms
q memory scheduling + interconnect scheduling

n Real implementations and investigations
q SoftMC infrastructure, FPGA-based implementations

n Interference and QoS in the presence of even more 
heterogeneity
q PIM, accelerators, …

160



SoftMC: Open Source DRAM Infrastructure

n Hasan Hassan et al., “SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies,” HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source 

github.com/CMU-SAFARI/SoftMC 
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf


SoftMC

n https://github.com/CMU-SAFARI/SoftMC
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https://github.com/CMU-SAFARI/SoftMC


Some Other Ideas … 
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Decoupled DMA w/ Dual-Port DRAM
[PACT 2015]

164



Isolating CPU and IO Traffic by 
Leveraging a Dual-Data-Port DRAM

Donghyuk Lee
Lavanya Subramanian, Rachata Ausavarungnirun, 

Jongmoo Choi, Onur Mutlu

Decoupled Direct Memory Access
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processor

Logical System Organization

main 
memory

IO devices

CPU access

IO access

Main memory connects processor and IO devices   
as an intermediate layer
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in Memory Channel
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Executive Summary
• Problem

– CPU and IO accesses contend for the shared memory channel

• Our Approach: Decoupled Direct Memory Access (DDMA)
– Design new DRAM architecture with two independent data ports

àDual-Data-Port DRAM
– Connect one port to CPU and the other port to IO devices

àDecouple CPU and IO accesses

• Application
– Communication between compute units (e.g., CPU – GPU)
– In-memory communication (e.g., bulk in-memory copy/init.)  
– Memory-storage communication (e.g., page fault, IO prefetch)

• Result
– Significant performance improvement (20% in 2 ch. & 2 rank system) 
– CPU pin count reduction (4.5%)
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Outline
1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach

1. Problem
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Integrating IO interface on the processor chip     
leads to high area cost

Processor Pin Count
(w/o power pins)

power
memory

(2 ch)

IO interface
(10.6%)ot

he
rs

IO interface
(28.4%)

others

memory
(2 ch)

(w/ power pins)
Processor Pin Count

959 pins in total 359 pins in total

Problem 2: High Cost for IO Interfaces



174

Shared Memory Channel

• Memory channel contention for IO access 
and CPU access

• High area cost for integrating IO interfaces 
on processor chip
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Outline
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4. Applications for DDMA 

2. Our Approach
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Our Approach
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?

CPU

graphics

network

storage

USB

DRAM 
Chip

DMA
CTRL.

D
M

A 
co

nt
ro

l

Processor 
Chip

co
nt

ro
l c

ha
nn

el
Dual-Data-
Port DRAM

Port 1

Port 2

memory 
controller

DMA
Chip DMA IO interface

IO ACCESS

Decoupled Direct Memory Access

CPU ACCESS



178

Outline
1. Problem

3. Dual-Data-Port DRAM
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Problem: Single Data Port
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DDP-DRAM Memory System
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Three Data Transfer Modes

• CPU Access: Access through CPU channel
– DRAM read/write with CPU port selection

• IO Access: Access through IO channel
– DRAM read/write with IO port selection

• Port Bypass: Direct transfer between channels
– DRAM access with port bypass selection
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2. IO Access Mode
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3. Port Bypass Mode
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Outline
1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach
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Three Applications for DDMA

• Communication b/w Compute Units
– CPU-GPU communication

• In-Memory Communication and Initialization
– Bulk page copy/initialization

• Communication b/w Memory and Storage
– Serving page fault/file read & write
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Evaluation Methods
• System

– Processor: 4 – 16 cores
– LLC: 16-way associative, 512KB private cache-slice/core
– Memory: 1 – 4 ranks and 1 – 4 channels

• Workloads
– Memory intensive:                                                           

SPEC CPU2006, TPC, stream (31 benchmarks)
– CPU-GPU communication intensive:                                                                                

polybench (8 benchmarks)
– In-memory communication intensive:                           

apache, bootup, compiler, filecopy, mysql, fork, 
shell, memcached (8 in total)
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Performance on Various Systems
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More on Decoupled DMA
n Donghyuk Lee, Lavanya Subramanian, Rachata

Ausavarungnirun, Jongmoo Choi, and Onur Mutlu,
"Decoupled Direct Memory Access: Isolating CPU and 
IO Traffic by Leveraging a Dual-Data-Port DRAM"
Proceedings of the 24th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), San 
Francisco, CA, USA, October 2015. 
[Slides (pptx) (pdf)] 
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Predictable Performance Again: 
Strong Memory Service Guarantees
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Remember MISE?
n Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, 

and Onur Mutlu,
"MISE: Providing Performance Predictability and 
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)
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Extending Slowdown Estimation to Caches
n How do we extend the MISE model to include shared cache 

interference?

n Answer: Application Slowdown Model

n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and 
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling 
the Impact of Inter-Application Interference at Shared Caches 
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 
(pptx) (pdf)] 
[Source Code]
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Quantifying and Controlling Impact of 
Interference at Shared Caches and Main Memory

Lavanya Subramanian, Vivek Seshadri, 
Arnab Ghosh, Samira Khan, Onur Mutlu
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Application Slowdown Model



Shared Cache and Memory Contention
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Cache Capacity Contention
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Estimating Cache and Memory Slowdowns
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Service Rates vs. Access Rates
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The Application Slowdown Model
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Real System Studies:
Cache Access Rate vs. Slowdown 
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Challenge

How to estimate alone cache access rate?
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Auxiliary Tag Store
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Accounting for Contention Misses

• Revisiting alone memory request service rate

Cycles serving contention misses should not 
count as high priority cycles
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 CyclesPriority High  #
EpochsPriority High  During Requests #

nApplicatioan  of Rate ServiceRequest  Alone
           

=



Alone Cache Access Rate Estimation
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Cycles Contention Cache# - CyclesPriority High  #
EpochsPriority High  During Requests #

nApplicatioan  of  Rate Access Cache                  
           

Alone =

Cache Contention Cycles: Cycles spent serving contention misses

Time ServiceMemory  Average                                            
 x Misses Contention #  Cycles Contention Cache =

From auxiliary tag store
when given high priority

Measured when given 
high priority



Application Slowdown Model (ASM)
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Previous Work on Slowdown 
Estimation

• Previous work on slowdown estimation
– STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ’07] 

– FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ’10]

– Per-thread Cycle Accounting [Du Bois et al., HiPEAC ’13]

• Basic Idea:

Shared

Alone

 TimeExecution 
 TimeExecution 

 Slowdown =

Count interference experienced by each request à Difficult
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ASM’s estimates are much more coarse grained à Easier



Model Accuracy Results

Average error of ASM’s slowdown estimates: 10% 
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Leveraging ASM’s Slowdown Estimates

• Slowdown-aware resource allocation for high 
performance and fairness

• Slowdown-aware resource allocation to bound 
application slowdowns

• VM migration and admission control schemes 
[VEE ’15]

• Fair billing schemes in a commodity cloud
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Cache Capacity Partitioning
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Cache Capacity Partitioning
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ASM-Cache: Slowdown-aware 
Cache Way Partitioning

• Key Requirement: Slowdown estimates for all 
possible way partitions

• Extend ASM to estimate slowdown for all 
possible cache way allocations

• Key Idea: Allocate each way to the application 
whose slowdown reduces the most
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Memory Bandwidth Partitioning
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ASM-Mem: Slowdown-aware 
Memory Bandwidth Partitioning

• Key Idea: Allocate high priority proportional to 
an application’s slowdown

• Application i’s requests given highest priority 
at the memory controller for its fraction
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Coordinated Resource 
Allocation Schemes
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Fairness and Performance Results
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Summary

• Problem: Uncontrolled memory interference cause high 
and unpredictable application slowdowns

• Goal: Quantify and control slowdowns
• Key Contribution:

– ASM: An accurate slowdown estimation model
– Average error of ASM: 10%

• Key Ideas:
– Shared cache access rate is a proxy for performance
– Cache Access Rate Alone can be estimated by minimizing memory 

interference and quantifying cache interference
• Applications of Our Model

– Slowdown-aware cache and memory management to achieve 
high performance, fairness and performance guarantees

• Source Code Released in January 2016
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More on Application Slowdown Model
n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and 

Onur Mutlu,

"The Application Slowdown Model: Quantifying and Controlling 
the Impact of Inter-Application Interference at Shared Caches 
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture

(MICRO), Waikiki, Hawaii, USA, December 2015. 

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 

(pptx) (pdf)] 

[Source Code] 
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Interconnect QoS/Performance Ideas
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Application-Aware Prioritization in NoCs
n Das et al., “Application-Aware Prioritization Mechanisms for 

On-Chip Networks,” MICRO 2009.
q https://users.ece.cmu.edu/~omutlu/pub/app-aware-

noc_micro09.pdf
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Slack-Based Packet Scheduling
n Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das,

"Aergia: Exploiting Packet Latency Slack in On-Chip Networks"
Proceedings of the 37th International Symposium on Computer 
Architecture (ISCA), pages 106-116, Saint-Malo, France, June 
2010. Slides (pptx)
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http://isca2010.inria.fr/
https://people.inf.ethz.ch/omutlu/pub/moscibroda_isca10_talk.pptx


Low-Cost QoS in On-Chip Networks (I)
n Boris Grot, Stephen W. Keckler, and Onur Mutlu,

"Preemptive Virtual Clock: A Flexible, Efficient, and Cost-
effective QOS Scheme for Networks-on-Chip"
Proceedings of the 42nd International Symposium on 
Microarchitecture (MICRO), pages 268-279, New York, NY, December 
2009. Slides (pdf)
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Low-Cost QoS in On-Chip Networks (II)
n Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,

"Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for 
Scalability and Service Guarantees"
Proceedings of the 38th International Symposium on Computer 
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)
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Throttling Based Fairness in NoCs
n Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,

"HAT: Heterogeneous Adaptive Throttling for On-Chip 
Networks"
Proceedings of the 24th International Symposium on Computer 
Architecture and High Performance Computing (SBAC-PAD), New 
York, NY, October 2012. Slides (pptx) (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pptx
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Scalability: Express Cube Topologies
n Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,

"Express Cube Topologies for On-Chip Interconnects"
Proceedings of the 15th International Symposium on High-
Performance Computer Architecture (HPCA), pages 163-174, 
Raleigh, NC, February 2009. Slides (ppt)
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Scalability: Slim NoC
n Maciej Besta, Syed Minhaj Hassan, Sudhakar Yalamanchili, 

Rachata Ausavarungnirun, Onur Mutlu, Torsten Hoefler,
"Slim NoC: A Low-Diameter On-Chip Network Topology 
for High Energy Efficiency and Scalability"
Proceedings of the 23rd International Conference on 
Architectural Support for Programming Languages and Operating 
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] 
[Poster (pdf)]
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Bufferless Routing in NoCs
n Moscibroda and Mutlu, “A Case for Bufferless Routing in On-

Chip Networks,” ISCA 2009.
q https://users.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf
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CHIPPER: Low-Complexity Bufferless
n Chris Fallin, Chris Craik, and Onur Mutlu,

"CHIPPER: A Low-Complexity Bufferless Deflection 
Router"
Proceedings of the 17th International Symposium on High-
Performance Computer Architecture (HPCA), pages 144-155, 
San Antonio, TX, February 2011. Slides (pptx)
An extended version as SAFARI Technical Report, TR-SAFARI-
2010-001, Carnegie Mellon University, December 2010.
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Minimally-Buffered Deflection Routing
n Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata

Ausavarungnirun, and Onur Mutlu,
"MinBD: Minimally-Buffered Deflection Routing for Energy-
Efficient Interconnect"
Proceedings of the 6th ACM/IEEE International Symposium on 
Networks on Chip (NOCS), Lyngby, Denmark, May 2012. Slides 
(pptx) (pdf)
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“Bufferless” Hierarchical Rings
n Ausavarungnirun et al., “Design and Evaluation of Hierarchical 

Rings with Deflection Routing,” SBAC-PAD 2014.
q http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-

deflection_sbacpad14.pdf

n Discusses the design and implementation of a mostly-
bufferless hierarchical ring

237

http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-deflection_sbacpad14.pdf


“Bufferless” Hierarchical Rings (II)
n Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Chang, 

Greg Nazario, Reetuparna Das, Gabriel Loh, and Onur Mutlu,
"A Case for Hierarchical Rings with Deflection Routing: An 
Energy-Efficient On-Chip Communication Substrate"
Parallel Computing (PARCO), to appear in 2016.
q arXiv.org version, February 2016.
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Summary of Six Years of Research
n Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata

Ausavarungnirun, and Onur Mutlu,
"Bufferless and Minimally-Buffered Deflection Routing"
Invited Book Chapter in Routing Algorithms in Networks-on-Chip, pp. 
241-275, Springer, 2014.
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On-Chip vs. Off-Chip Tradeoffs
n George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu, 

and Srinivasan Seshan,

"On-Chip Networks from a Networking Perspective: 
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM 

Conference (SIGCOMM), Helsinki, Finland, August 2012. Slides 

(pptx)
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Slowdown Estimation in NoCs
n Xiyue Xiang, Saugata Ghose, Onur Mutlu, and Nian-Feng Tzeng,

"A Model for Application Slowdown Estimation in On-
Chip Networks and Its Use for Improving System 
Fairness and Performance"
Proceedings of the 34th IEEE International Conference on 
Computer Design (ICCD), Phoenix, AZ, USA, October 2016.
[Slides (pptx) (pdf)]
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Handling Multicast and Hotspot Issues
n Xiyue Xiang, Wentao Shi, Saugata Ghose, Lu Peng, Onur Mutlu, 

and Nian-Feng Tzeng,
"Carpool: A Bufferless On-Chip Network Supporting 
Adaptive Multicast and Hotspot Alleviation"
Proceedings of the International Conference on Supercomputing 
(ICS), Chicago, IL, USA, June 2017.
[Slides (pptx) (pdf)]
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