Computer Architecture
Lecture 17: Memory Interference
and Quality of Service 11

Prof. Onur Mutlu
ETH Zurich
Fall 2018
21 November 2018

Lecture Announcement

= Monday, November 26, 2018
= 16:15-17:15

= CABG61

= Apéro after the lecture ©

= Prof. Arvind (Massachusetts Institute of Technology)
= D-INFK Distinguished Colloquium
= The Riscy Expedition

s https://www.inf.ethz.ch/news-and-
events/colloquium/event-detail.html?eventFeedld=42658

https://www.inf.ethz.ch/news-and-events/colloquium/event-detail.html?eventFeedId=42658

Memory System is the Major Shared Resource

Core 0 Core | Core 2 Core N
threads’ requests R
interfere (~ , v v y A
\ - Shared Memory
Shared Cache Resources
Memory Controller
On-chip 3

....... Do temseeeeesie e eee e eeeoo 1= Chip Boundary

DRAM
Bank |

Much More of a Shared Resource in Future

Shared
Interconnect

N

/@Wm{s /

Shared Memory

Shared
Memory
Control

Shared
Memory
Control

Shared
Memory
Control

Shared
Memory
Control

AIOURA] pPdaeys

Shared Memory

Memory System Shared by Heterogeneous Agents

Shared Cache HWA HWA

y v
DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

= Heterogeneous agents: CPUs, GPUs, and HWAs
= Main memory interference between CPUs, GPUs, HWAs

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance?

SAFARI >

Staged Memory Scheduling

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu,
"Staged Memory Scheduling: Achieving High Performance
and Scalability in Heterogeneous Systems”
39th International Symposium on Computer Architecture (ISCA),
Portland, OR, June 2012.

SMS ISCA 2012 Talk

http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://isca2012.ittc.ku.edu/
file:///Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/rachata_isca12_talk.pptx

SMS: Executive Summary

Observation: Heterogeneous CPU-GPU systems require
memory schedulers with large request buffers

Problem: Existing monolithic application-aware memory
scheduler designs are hard to scale to large request buffer sizes

Solution: Staged Memory Scheduling (SMS)

decomposes the memory controller into three simple stages:
1) Batch formation: maintains row buffer locality

2) Batch scheduler: reduces interference between applications
3) DRAM command scheduler: issues requests to DRAM

Compared to state-of-the-art memory schedulers:
o SMS is significantly simpler and more scalable
o SMS provides higher performance and fairness

SAFARI

SMS: Staged Memory Scheduling
Core 1 Core 2 Core3 Core4 GPU

A
[]
[]
S —
St 3 [] :.- el
DRAg -IS 1]
Commpand _ Bankl an@- _Bank4
Scheduler
To DRAM

SAFARI

SMS: Staged Memory Scheduling

Stage 1

Batch
Formation

Core 1

g

Core 2 Core 3 Core 4 GPU
1
[.
[.
____________________ T __

SAFARI

D

Putting Everything Together

Corel Core2 Core3 4 GPU
e e R

Stage 1. N
Batch _—
Formation |mmml| ==3| (s | ___
[=
Stage 2 ‘ Batch Scheduler
Stage 3:
DRAM []
Command - RR
Scheduler Bank 1 Bank 2 Bank 3 Bank 4

SAFARI

Complexity

Compared to a row hit first scheduler, SMS consumes*

Q

Q

66% less area
46% less static power

Reduction comes from:

Q

Q

Monolithic scheduler - stages of simpler schedulers

Each stage has a simpler scheduler (considers fewer
properties at a time to make the scheduling decision)

Each stage has simpler buffers (FIFO instead of out-of-order)

Each stage has a portion of the total buffer size (buffering is
distributed across stages)

SAFARI * Based on a Verilog model using 180nm library 11

Performance at Ditferent GPU Weights

)] 1 '

e 0.8 - Best Previous

m n

= Scheduler

“g 0.6

g_’ 0.4

£ 0.2 Y Y Y |

7 ATLAS TCM FR-FCFS

m> O I T TTTTT I T T TTTT I T T TTTTIT
0.001 0.1 10 1000

GPUweight

SAFARI

Performance at Ditferent GPU Weights

1 |

0.8 - Best Previous
Scheduler
- SMS

0.6
0.4
0.2

O T T TTTTd T T TTTITI T T TTITT

0.001 0.1 10 1000
GPUweight

= At every GPU weight, SMS outperforms the best previous
scheduling algorithm for that weight

System Performance

SAFARI

More on SMS

= Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian,
Gabriel Loh, and Onur Mutlu,
"Staged Memory Scheduling: Achieving High
Performance and Scalability in Heterogeneous Systems"
Proceedings of the 39th International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)

Staged Memory Scheduling: Achieving High Performance and Scalability
in Heterogeneous Systems
Rachata Ausavarungnirun’ Kevin Kai-Wei Chang’ Lavanya Subramanian” Gabriel H. Loh* Onur Mutlu’

"Carnegie Mellon University *Advanced Micro Devices, Inc.
{rachata,kevincha,lsubrama,onur} @cmu.edu gabe.loh@amd.com

SAFARI 14

http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/rachata_isca12_talk.pptx

DASH Memory Scheduler
[TACO 2016]

Current SoC Architectures

CPU CPU CPU CP

U
|

DRAM Controller I

DRAM

= Heterogeneous agents: CPUs and HWAs
o HWA : Hardware Accelerator

= Main memory is shared by CPUs and HWAs - Interference

How to schedule memory requests from CPUs and HWAs
to mitigate interference?

SAFARI 16

Example Heterogeneous SoC

[cru |[cpu][ePu |[psp | [“eavarec | (A iocetec | [—oma | |
| et 0 $ ¢ _$ { ,
$ $ $) $ Interconnect |
i | video/o |[USB WLAN |[Modem || otherirs || DRAM Controller '
DRAM
Fig. 1. Example heterogeneous SoC architecture.

SAFARI

17

DASH Scheduler: Executive Summary

Problem: Hardware accelerators (HWAs) and CPUs share the same
memory subsystem and interfere with each other in main memory

Goal: Design a memory scheduler that improves CPU performance while
meeting HWASs' deadlines

Challenge: Different HWAs have different memory access characteristics
and different deadlines, which current schedulers do not smoothly handle

o Memory-intensive and long-deadline HWAs significantly degrade CPU
performance when they become high priority (due to slow progress)

o Short-deadline HWAs sometimes miss their deadlines despite high priority

Solution: DASH Memory Scheduler
o Prioritize HWAs over CPU anytime when the HWA is not making good progress
o Application-aware scheduling for CPUs and HWAs

Key Results:

1) Improves CPU performance for a wide variety of workloads by 9.5%
2) Meets 100% deadline met ratio for HWAs

DASH source code freely available on our GitHub

SAFARI 18

Goal of Our Scheduler (DASH)

* Goal: Design a memory scheduler that
— Meets GPU/accelerators’ frame rates/deadlines and
— Achieves high CPU performance

e Basic ldea:

— Different CPU applications and hardware accelerators
have different memory requirements

— Track progress of different agents and prioritize
accordingly

Key Observation:
Distribute Priority for Accelerators

 GPU/accelerators need priority to meet deadlines
* Worst case prioritization not always the best

* Prioritize when they are not on track to meet a
deadline

Distributing priority over time mitigates impact
of accelerators on CPU cores’ requests

Existing QoS-Aware Scheduling Scheme

Dynamic Prioritization for a CPU-GPU System [Jeong et al., DAC 2012]
o Dynamically adjust GPU priority based on its progress

o Lower GPU priority if GPU is making a good progress to achieve its
target frame rate

We apply this scheme for a wide variety of HWAs

o Compare HWA's current progress against expected progress

(The number of finished memory requests for a period)
(The number of total memory requests for a period)

(Elapsed cycles in a period)
(Total cycles in a period)

o Every scheduling unit, dynamically adjust HWA priority
If Expected Progress > EmergentThreshold (=0.9) : HWA > CPU
If (Current Progress) > (Expected Progress) : HWA < CPU

If (Current Progress) <= (Expected Progress) : HWA = CPU

Current Progress :

Expected Progress :

SAFARI 21

Problems in Dynamic Prioritization

Dynamic Prioritization for a CPU-HWA system

o Compares HWA's current progress against expected progress

(The number of finished memory requests for a period)
(The number of total memory requests for a period)

(Elapsed cycles in a period)
(Total cycles in a period)

o Every scheduling unit, dynamically adjust HWA priority

If Expected Progress > EmergentThreshold (=0.9) : HWA > CPU
If (Current Progress) > (Expected Progress) : HWA < CPU

If (Current Progress) <= (Expected Progress) : HWA = CPU

Current Progress :

Expected Progress :

1. An HWA is prioritized over CPU cores only when it is closed to HWA's deadline
The HWA often misses deadlines

2. This scheme does not consider the diverse memory access characteristics of
CPUs and HWAs
« It treats each CPU and each HWA equally

— Missing opportunities to improve system performance

SAFARI 22

Key Idea 1: Distributed Priority

Problem 1: An HWA is prioritized over CPU cores onl/y when it is close
to HWA's deadline

Key Idea 1: Distributed Prioritization for a CPU-HWA system

o Compares HWA's current progress against expected progress

(The number of finished memory requests for a period)
(The number of total memory requests for a period)

(Elapsed cycles in a period)
(Total cycles in a period)

o Dynamically adjust HWA priority based on its progress every scheduling unit
If Expected Progress > EmergentThreshold (=0.9) : HWA > CPU

If (Current Progress) > (Expected Progress) : HWA < CPU
If (Current Progress) <= (Expected Progress) : HWA > CPU

Current Progress :

Expected Progress :

Prioritize HWAs over CPU anytime when the HWA is not making good progress

SAFARI 23

Example: Scheduling HWA and CPU Requests

Scheduling requests from 2 CPU applications and a HWA
o CPU-A : memory non-intensive application

o CPU-B : memory intensive application

Alone Execution Timeline

time
>

CPU-A [cowe. | | cCOMP. |

[comp. | | 4%/Computation

\LReq x1 Req x1 \LReq x1
pram (| [A] [[[al [| [al |]
cpu-B | cowp. | STALL] comp. | T

¢Reqx7

pram ([JBJ8efB]B]B[B] []

Deadline for 10 Requests

HWA [cowp.

COMPUTATION

1

Req x10

prRAM | JH[H]R[H[H][H[a]a]u]a []]

[

LT]

I
SAFARI

Period = 20T

24

DASH: Distributed Priority

= Distributed Priority (Scheduling unit = 4T)

CPU-A (cowe. [STALL

\1' Req x1

cpu-B [cove. [STALL

{ Req x7

HWA (cowe | COMP. |
Req x10

DRAM [| |H[H[H]H]

HWA>CPU
Current: 0/ 10
Expected : 0 / 20

SAFARI

25

DASH: Distributed Priority

Distributed Priority (Scheduling unit = 4T)

cPu-A (cove. | STALL |] comp |
v Req x1 . l

cpu-g corp. | STALL
{ Req x7 | |

HWA [cowp. COMPUTATION }
Req x10 '

DRAM [] HIHIHIHiA]BIBIB]

HWA<CPU
Current : 4/ 10
Expected : 5/ 20

SAFARI

DASH: Distributed Priority

Distributed Priority (Scheduling unit = 4T)

CPU-A [covp. | STALLE | COMP.i STALL]

) Req x1 | l« Req x1
cpu-g [comp. | . STALL .
{ Req x7 ' |
HWA [comp. COMPUTATION }
Req x10

oram (] HIHIHIHiA]BIBIBIHI IHIH]

HWA>CPU
Current: 4/ 10
Expected : 8 / 20

SAFARI

27

DASH: Distributed Priority

Distributed Priority (Scheduling unit = 4T)

cPu-A (covr. | STALL |] coMP. | STALL |] comp

l«' Req x1

) Req x1 | l« Req x1 .
cpu-g [_core. [; STALL |
{ Req x7 | |
HWA | covp. : COMPU'TATION
Req x10 '

oram (] HIHIHIHiA]BIBIBIHI IHIHIAI O

HWA<CPU
Current : 8 /10
Expected : 12 / 20

SAFARI

]

DASH: Distributed Priority

Distributed Priority (Scheduling unit = 4T)

CPU-A [cowe. | STALL |] cowmPp. I STALL |] comp. | cowe.]
) Req x1 l« Req x1 l« Req x1
cpu-B [covp. | ; . STALL | ; | comp. |
{ Req x7 | | ; :
HWA | covp. : 'COMPUTATION'
Req x10 '

oram (] HIHIHIHiA]BIBIBIHI IHIHIAI DonOnD

HWA>CPU
Current : 8/ 10
Expected : 16 / 20

SAFARI

Key Observation:
Not All Accelerators are Equal

* Long-deadline accelerators are more likely to
meet their deadlines

* Short-deadline accelerators are more likely to
miss their deadlines

Schedule short-deadline accelerators
based on worst-case memory access time

Key Observation:
Not All CPU cores are Equal

 Memory-intensive cores are much less
vulnerable to interference

 Memory non-intensive cores are much more
vulnerable to interference

Prioritize accelerators over memory-intensive cores
to ensure accelerators do not become urgent

DASH Summary:
Key Ideas and Results

* Distribute priority for HWAs

* Prioritize HWAs over memory-intensive CPU
cores even when not urgent

* Prioritize short-deadline-period HWAs based
on worst case estimates

Improves CPU performance by 7-21%
Meets (almost) 100% of deadlines for HWASs

DASH: Scheduling Policy

= DASH scheduling policy
1. Short-deadline-period HWAs with high priority
2. Long-deadline-period HWAs with high priority
3. Memory non-intensive CPU applications
4. Long-deadline-period HWAs with low priority | ¢«
5. Memory-intensive CPU applications probabilistically
6. Short-deadline-period HWAs with low priority

SAFARI 53

Experimental Methodology (1/2)

New Heterogeneous System Simulator
o We have released this at GitHub (https://github.com/CMU-SAFARI/HWASIm)

Configurations
o 8 CPUs (2.66GHz), 32KB/L1, 4MB Shared/L2
o 4 HWAs
o DDR3 1333 DRAM x 2 channels
Workloads
o CPUs: 80 multi-programmed workloads
SPEC CPU2006, TPC, NAS parallel benchmark
o HWAs:
Image processing
Image recognition [Lee+ ICCD 2009] [Viola and Jones CVPR 2001]
Metrics
o CPUs : Weighted Speedup
o HWAs : Deadline met ratio (%)

SAFARI 34

Experimental Methodology (2/2)

Parameters of the HWAs

Period Bandwidth Deadline
Group
IMG : Image Processing | 33 ms 360MB/s Long
HES : Hessian 2 US 478MB/s Short
MAT : Matching (1) 20fps | 35.4 us 8.32 GB/s Long
MAT : Matching (2) 30fps | 23.6 us 5.55 GB/s Long
RSZ : Resize 46.5 -5183 us | 2.07 — 3.33 GB/s Long
DET : Detect 0.8 —9.6 us 1.60 — 1.86 GB/s Short

Configurations of 4 HWAs

Configuration
Config-A IMG x 2, HES, MAT(2)
Config-B HES, MAT(1), RSZ, DET

SAFARI

Evaluated Memory Schedulers

FRFCFS-St, TCM-St: FRFCFS or TCM with static priority for HWASs
o HWAs a/ways have higher priority than CPUs

o FRFCFS-St: FRFCFS [zuravieff and Robinson US Patent 1997, Rixner et al. 1SCA 2000] for CPUs
Prioritizes row-buffer hits and older requests

o TCM-St: TCM [Kim+ MICRO 2010] for CPUs
Always prioritizes memory-non-intensive applications
Shuffles thread ranks of memory-intensive applications

FRFCFS-Dyn: FRFCFS with dynamic priority for HWAS [Jeong et al., DAC 2012]

o HWA's priority is dynamically adjusted based on its progress

FRFCFS-Dyn0.9: EmergentThreshold = 0.9 for all HWAs (Only after 90% of the HWA's period
elapsed, the HWA has higher priority than CPUs)

FRFCFS-DynOpt: Each HWA has different EmergentThreshold to meet its deadline

Config-A Config-B
IMG HES MAT HES MAT RSZ DET
0.9 0.2 0.2 0.5 0.4 0.7 0.5

DASH: Distributed Priority + Application-aware scheduling for CPUs + HWAs
o TCMis used for CPUs to classify memory intensity of CPUs
o EmergentThreshold = 0.8 for all HWAs

SAFARI 36

Performance and Deadline Met Ratio
Weighted Speedup for CPUs

s

FRFCFS-St
TCM-St

FRFCFS-Dyn0.9

FRFCFS-DynOpt

DASH

1.5

2 2.5

Weighted Speedup

3.5

4.5

Deadline Met Ratio (%) for HWAs

FRFCFS-St

TCM-St 100 100 100 100 100
FRFCFS-Dyn0.9 100 99.4 46.01 97.98 97.14
FRFCFS-DynOpt 100 100 99.997 100 99.99
DASH 100 100 100 100 100

SAFARI

37

Performance and Deadline Met Ratio
Weighted Speedup for CPUs

FRFCFS-St
TCM-St
FRFCFS-Dyn0.9
FRFCFS-DynOpt

DASH l

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

1. DASH achieves 100% deadline met ratio [P
Deadline Met Ratio (%) for HWAs

FRFCFS-St
TCM-St 100 100 100 100 100
FRFCFS-Dyn0.9 100 99.4 46.01 97.98 97.14
FRFCFS-DynOpt 100 100 99.997 100 99.99

[DASH 100 100 100 100 100]

SAFARI 58

Performance and Deadline Met Ratio

Weighted Speedup for CPUs

FRFCFS-St
TCM-St
FRFCFS-Dyn0.9
FRFCFS-DynOpt

) 9 50/

1.5

2.5

DASH | l

0 0.5

3 3.5 4

4.5

1. DASH achieves 100% deadline met ratio
2. DASH achieves better performance (+9.5%) than FRFCFS-DynOpt
that meets the most of HWAs' deadlines (Optimized for HWAS)

FRFCFS-St 100 100 100 100 100
TCM-St 100 100 100 100 100
FRFCFS-Dyn0.9 100 99.4 46.01 97.98 97.14
FRFCFS-DynOpt 100 100 99.997 100 99.99

[DASH 100 100 100 100 100]

SAFARI

39

Performance and Deadline Met Ratio
Weighted Speedup for CPUs

FRFCFS-St
TCM-St
FRFCFS-Dyn0.9
FRFCFS-DynOpt e +9.5%

DASH | l

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

1. DASH achieves 100% deadline met ratio

2. DASH achieves better performance (+9.5%) than FRFCFS-DynOpt
that meets the most of HWAs' deadlines (Optimized for HWAS)

3. DASH achieves comparable performance to FRFCFS-Dyn0.9
that frequently misses HWAs' deadlines (Optimized for CPUs)

1 4 UV 4 UV ESAYAYJ ESAYAYJ ESAAYJ

FRFCFS-Dyn0.9 100 99.4 46.01 97.98 97.14
FRFCFS-DynOpt 100 100 99.997 100 99.99
[DASH 100 100 100 100 100]

SAFARI 40

More on DASH

= Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, and
Onur Mutluy,
"DASH: Deadline-Aware High-Performance Memory
Scheduler for Heterogeneous Systems with Hardware
Accelerators”
ACM Transactions on Architecture and Code Optimization (TACO),
Vol. 12, January 2016.
Presented at the 11th HIPEAC Conference, Prague, Czech Republic,
January 2016.

Slides (pptx) (pdf)]

[Source Code]

DASH: Deadline-Aware High-Performance Memory Scheduler
for Heterogeneous Systems with Hardware Accelerators

HIROYUKI USUI, LAVANYA SUBRAMANIAN, KEVIN KAI-WEI CHANG,
and ONUR MUTLU, Carnegie Mellon University

SAFARI

41

https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
http://taco.acm.org/
https://www.hipeac.net/2016/prague/
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pdf
https://github.com/CMU-SAFARI/HWASim

Predictable Performance:
Strong Memory Service Guarantees

42

Goal: Predictable Performance in Complex Systems

Shared Cache HWA HWA

y v
DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

= Heterogeneous agents: CPUs, GPUs, and HWAs
= Main memory interference between CPUs, GPUs, HWAs

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance?

SAFARI S

Strong Memory Service Guarantees

Goal: Satisfy performance/SLA requirements in the
presence of shared main memory, heterogeneous agents,
and hybrid memory/storage

Approach:

o Develop techniques/models to accurately estimate the
performance loss of an application/agent in the presence of
resource sharing

o Develop mechanisms (hardware and software) to enable the
resource partitioning/prioritization needed to achieve the
required performance levels for all applications

o All the while providing high system performance

Subramanian et al., "MISE: Providing Performance Predictability and Improving Fairness
in Shared Main Memory Systems,” HPCA 2013.

Subramanian et al., “"The Application Slowdown Model,” MICRO 2015.
SAFARI 44

Predictable Performance Readings (I)

= Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory
Systems"”
Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010.
Slides (pdf)

Fairness via Source Throttling: A Configurable and High-Performance
Fairness Substrate for Multi-Core Memory Systems

Eiman Ebrahimi{ Chang Joo Leef Onur Mutlug Yale N. Pattf

fDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University
{ebrahimi, cjlee, patt} @ece.utexas.edu onur@cmu.edu

SAFARI 45

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf

Predictable Performance Readings (II)

= Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,
and Onur Mutlu,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems”
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

MISE: Providing Performance Predictability and Improving Fairness
in Shared Main Memory Systems

Lavanya Subramanian =~ Vivek Seshadri ~ Yoongu Kim Ben Jaiyen =~ Onur Mutlu

Carnegie Mellon University

SAFARI 46

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

Predictable Performance Readings (111)

= Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO) Waikiki, Hawaii, USA, December 2015.

Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster

(pptx) (pdf)]
[Source Code]

The Application Slowdown Model: Quantifying and Controlling the Impact
of Inter-Application Interference at Shared Caches and Main Memory

Lavanya Subramanian*§ Vivek Seshadri* Arnab Ghosh*T
Samira Khan* Onur Mutlu*

*Carnegie Mellon University §Intel Labs TIIT Kanpur *University of Virginia

47

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

MISE:
Providing Performance Predictability
in Shared Main Memory Systems

Lavanya Subramanian, Vivek Seshadri,
Yoongu Kim, Ben Jaiyen, Onur Mutlu

SAFARI Carnegie Mellon

48

Unpredictable Application Slowdowns

Ul

AN

Slowdown

—
|

Slowdown

—
|

AN
|

N
|

.

gcc (core 1)

o
o
|

eslie3d (core Q

An application’s performance depends on
which application it is running with

mcf (core 1)

SAFARI ®

Need for Predictable Performance

Our Goal: Predictable performance
in the presence of memory interference

SAFARI

50

Outline

1. Estimate Slowdown

2. Control Slowdown

SAFARI

51

Outline

1. Estimate Slowdown
o Key Observations
Q
Q

Q

2. Control Slowdown

Q

Q

SAFARI

52

Slowdown: Definition

Performance Alone

Slowdown =
Performance shared

SAFARI

53

Key Observation 1

For a memory bound application,
Performance «« Memory request service rate

Slowdo

o O
w b

Normalized I&rformance
© o o o

SAFARI

==omnetpp

e i/, 4 cores

idth: 8.5 GB/s

~

S Easy

0.3

04 05 06 07 08 09 1

Normalized Request Service Rate

54

Key Observation 2

Request Service Rate 5. (RSRy.qe) Of @an application can be
estimated by giving the application highest priority in
accessing memory

Highest priority - Little interference
(almost as if the application were run alone)

SAFARI >

Key Observation 2

1. Run alone
Request Buffer State

Request Buffer State

2. Run with another application' i

Main
Memory

Main
Memory

Time(units Service order

T|me unlts SerV|ce order

Main
Memory

3. Run with another application: h|ghESt priority

Request Buffer State

SAFARI

Main
Memory

T|me units ! SerV|ce order

Main
Memory

) ‘ .

Main
Memory

56

Memory Interference-induced Slowdown Estimation
(MISE) model for memory bound applications

Request Service Rate alone (RSR Alone)

Slowdown = :
Request Service Rate shared (RSR shared)

SAFARI >7

Key Observation 3

= Memory-bound application
Compute Phase

Memory Phase

e [
interference fime
e
interference

—>time

Memory phase slowdown dominates overall slowdown

SAFARI o8

Key Observation 3

Memory Interference-induced Slowdown Estimation
(MISE) model for non-memory bound applications

RS RAlone
RS RShared

Slowdown=(1-a)+ «

SAFARI >

Outline

1. Estimate Slowdown
a Key Observations
o Implementation
a MISE Model: Putting it All Together
a Evaluating the Model

2. Control Slowdown
a Providing Soft Slowdown Guarantees
a Minimizing Maximum Slowdown

SAFARI

60

Interval Based Operation

Interval
A

Interval
A

(

Y

A

————————————————————> { | 1| €

) | E

Measure RSRq . 1eds &
Estimate RSRyone

Measure RSRq; . d, &
Estimate RSR e

\ 4 4
Estimate Estimate
slowdown slowdown

SAFARI

01

Measuring RSRg, _ and «

Request Service Rate ¢t .eq (RSRshared)
a Per-core counter to track number of requests serviced
o At the end of each interval, measure

Number of Requests Serviced

RS RShared —
Interval Length

Memory Phase Fraction (@X)
a Count number of stall cycles at the core
o Compute fraction of cycles stalled for memory

SAFARI

62

Estimating Request Service Rate ;.. (RSR,;...)

= Divide each interval into shorter epochs

= At the beginning of each epoch

o Memory llefr ' n application as the
highest p@@ﬁl'amvepﬁgﬁ“one

How: Periodically give each application
= At g st P HEFiEs 101 eRetardiaEr hrRSABTsy

Number of Requests During High Priority Epochs
Number of Cycles Application Given High Priority

RSRAlone —

SAFARI 63

Inaccuracy 1n Estimating RSR ,

lone

Reqiiiienn application haghighestsrietityier I High Priority

8l exie riences 'somf |ﬁtere|2enre1 Main
Memory Memory
Request Buffer Time units Service order
State Main 3 2 1 Main
- Memory ‘ -. - Memory
Request Buffer Time< units Service order
State

3 2 1
| e
Memory
Time(units Service order
3 2 1
| e
Memory
<>

Interference Cycles

B o
Memory

SAFARI 64

Accounting for Interference in RSR,,, . Estimation

lone
Solution: Determine and remove interference cycles from
RSR, e Calculation

Number of Requests During High Priority Epochs

RSRAlone =
Number of Cycles Application Given High Prioritynterference Cycles>

A cycle is an interference cycle if

o a request from the highest priority application is
waiting in the request buffer and

o another application’s request was issued previously

SAFARI 65

Outline

1. Estimate Slowdown
a Key Observations
a Implementation
o MISE Model: Putting it All Together
a Evaluating the Model

2. Control Slowdown
a Providing Soft Slowdown Guarantees
a Minimizing Maximum Slowdown

SAFARI

66

MISE Model: Putting it All Together

Interval
A

Interval
A

(

Y

A

————————————————————> { | 1| €

) | E

Measure RSRq . 1eds &
Estimate RSRyone

Measure RSRq; . d, &
Estimate RSR e

\ 4 4
Estimate Estimate
slowdown slowdown

SAFARI

67

Outline

1. Estimate Slowdown
a Key Observations
a Implementation
a MISE Model: Putting it All Together
o Evaluating the Model

2. Control Slowdown
a Providing Soft Slowdown Guarantees
a Minimizing Maximum Slowdown

SAFARI

68

Previous Work on Slowdown E.stimation

Previous work on slowdown estimation

o <STFM (Stall Time Fair Memory) Scheduling [Mutlu+, MICRO 07}
o FST (Fairness via Source Throttling) [Ebrahimi+, ASPLOS ‘10]

o Per-thread Cycle Accounting [Du Bois+, HIPEAC '13]

Basic Idea:
@l Time S e
Slowdown %ﬁ
d 1IMC Share
d\ Easy

Count number of cycles application receives interference

SAFARI 69

Two Major Advantages of MISE Over STFM

= Advantage 1:

o STFM estimates alone performance while an
application is receiving interference > Hard

o MISE estimates alone performance while giving an
application the highest priority = Easier

= Advantage 2:

o STFM does not take into account compute phase for
non-memory-bound applications

a MISE accounts for compute phase - Better accuracy

SAFARI 70

Methodology

Configuration of our simulated system
o 4 cores

o 1 channel, 8 banks/channel

o DDR3 1066 DRAM

o 512 KB private cache/core

Workloads
o SPEC CPU2006

o 300 multi programmed workloads

SAFARI

71

Quantitative Comparison

SPEC CPU 2006 application

leslie3d
4
3.5
c
S 3
(@)
© 25 —Actual
S
o
m w
1.5
1 I I I I]
0 20 40 60 80 100

Million Cycles

SAFARI 72

Comparison to STFM

4 N
Average error of MISE: 8.2%
_____Average error of STEM: 29.4% /
s (across 300 workloads) A
N /

SAFARI

73

Outline

1. Estimate Slowdown
a Key Observations
a Implementation
a MISE Model: Putting it All Together
a Evaluating the Model

2. Control Slowdown
a Providing Soft Slowdown Guarantees
a Minimizing Maximum Slowdown

SAFARI

74

Providing “Soft” Slowdown Guarantees

= Goal

1. Ensure QoS-critical applications meet a prescribed
slowdown bound

2. Maximize system performance for other applications

= Basic Idea

o Allocate just enough bandwidth to QoS-critical
application

o Assign remaining bandwidth to other applications

SAFARI 75

MISE-QoS: Mechanism to Provide Soft QoS

= Assign an initial bandwidth allocation to QoS-critical application

= Estimate slowdown of QoS-critical application using the MISE
model

= After every N intervals
a If slowdown > bound B +/- €, increase bandwidth allocation
o If slowdown < bound B +/- €, decrease bandwidth allocatior
= When slowdown bound not met for N intervals
a Notify the OS so it can migrate/de-schedule jobs

SAFARI 76

Methodology

Each application (25 applications in total) considered the
QoS-critical application

Run with 12 sets of co-runners of different memory
Intensities

Total of 300 multiprogrammed workloads
Each workload run with 10 slowdown bound values

Baseline memory scheduling mechanism
a Always prioritize QoS-critical application
[Iyer+, SIGMETRICS 2007]
o Other applications’ requests scheduled in FRFCFS order

[Zuravleff +, US Patent 1997, Rixner+, ISCA 2000]

SAFARI

77

A Look at One Workload

Slgwdown Baund T2 33
3 S own Bound =2

/

MISE is effective in
1. meeting the slowdown bound for the QoS-

critical application
2. improving performance of non-QoS-critical

applications
(Iesljg3d> Qmmer Ibm omnetpp>
QoS-critical non-QoS-critical

SAFARI

78

Ettectiveness of MISE in Enforcing QoS

Across 3000 data
Predicted

points

Predicted

Not Met

Ll < 78.6% O 21% >

QoS Bound

Not Met

T 16.9% O

's whether or not

MISE-QoS correctly predic

the bound is met for 95.7% of workloads

SAFARI

Pertormance of Non-QoS-Critical Applications

1.4

S1.2

L™

Q 1

8_ m AlwaysPrioritize

»n 0.8 m MISE-Qo0S-10/1

= 0.6 = MISE-Q0S-10/3

= m MISE-Q0S-10/5

£04 = MISE-Q0S-10/7

T 0.2 = MISE-Q0S-10/9
0

When slowdown bound is 10/3
MISE-QoS improves system performance by 10%

SAFARI 80

Outline

1. Estimate Slowdown
a Key Observations
a Implementation
a MISE Model: Putting it All Together
a Evaluating the Model

2. Control Slowdown
a Providing Soft Slowdown Guarantees
o Minimizing Maximum Slowdown

SAFARI

81

Other Results 1n the Paper

Sensitivity to model parameters
o Robust across different values of model parameters

Comparison of STFM and MISE models in enforcing soft
slowdown guarantees

o MISE significantly more effective in enforcing guarantees

Minimizing maximum slowdown
o MISE improves fairness across several system configurations

SAFARI 82

Summary

= Uncontrolled memory interference slows down
applications unpredictably

= Goal: Estimate and control slowdowns

= Key contribution
o MISE: An accurate slowdown estimation model
a Average error of MISE: 8.2%

= Key Idea
o Request Service Rate is a proxy for performance
o Request Service Rate ,,,. estimated by giving an application highest
priority in accessing memory
= Leverage slowdown estimates to control slowdowns
a Providing soft slowdown guarantees
a Minimizing maximum slowdown

SAFARI 83

MISE: Pros and Cons

Upsides:
o Simple new insight to estimate slowdown

o Much more accurate slowdown estimations than prior
techniques (STFM, FST)

o Enables a number of QoS mechanisms that can use slowdown
estimates to satisfy performance requirements

Downsides:
o Slowdown estimation is not perfect - there are still errors

o Does not take into account caches and other shared resources
in slowdown estimation

SAFARI 84

More on MISE

= Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,
and Onur Mutlu,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems”
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

MISE: Providing Performance Predictability and Improving Fairness
in Shared Main Memory Systems

Lavanya Subramanian =~ Vivek Seshadri ~ Yoongu Kim Ben Jaiyen =~ Onur Mutlu

Carnegie Mellon University

SAFARI 85

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

Extending MISE to Shared Caches: ASM

= Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO) Waikiki, Hawaii, USA, December 2015.

Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster

(pptx) (pdf)]
[Source Code]

The Application Slowdown Model: Quantifying and Controlling the Impact
of Inter-Application Interference at Shared Caches and Main Memory

Lavanya Subramanian*§ Vivek Seshadri* Arnab Ghosh*T
Samira Khan* Onur Mutlu*

*Carnegie Mellon University §Intel Labs TIIT Kanpur *University of Virginia

SAFARI 86

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

Handling Memory Interterence
In Multithreaded Applications

Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin,
Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Parallel Application Memory Scheduling"
Proceedings of the 44th International Symposium on Microarchitecture (MICRO),
Porto Alegre, Brazil, December 2011. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx

Multithreaded (Parallel) Applications

Threads in a multi-threaded application can be inter-
dependent

o As opposed to threads from different applications

Such threads can synchronize with each other

o Locks, barriers, pipeline stages, condition variables,
semaphores, ...

Some threads can be on the critical path of execution due
to synchronization; some threads are not

Even within a thread, some “code segments” may be on
the critical path of execution; some are not

38

Critical Sections

Enforce mutually exclusive access to shared data

Only one thread can be executing it at a time

Contended critical sections make threads wait = threads
causing serialization can be on the critical path

Each thread:

loop {
Compute N
lock(A)
Update shared datd
unlock(A) C

}

89

Barriers

Synchronization point
Threads have to wait until all threads reach the barrier
Last thread arriving at the barrier is on the critical path

Each thread: dle barrier
loop1 {) = eecs
Compute e Ll
} T2 ¢)
barrier
I 2 i ! o
00p2 { | time

Compute

}

90

Stages of Pipelined Programs

= Loop iterations are statically divided into code segments called stages
= Threads execute stages on different cores
= Thread executing the slowest stage is on the critical path

loop {
Computel| A
Compute2 | B

e ® ®
Compute3| C oo T2 B X (8) | R
} T3 ©

91

Handling Interference in Parallel Applications

Threads in a multithreaded application are inter-dependent

Some threads can be on the critical path of execution due
to synchronization; some threads are not

How do we schedule requests of inter-dependent threads
to maximize multithreaded application performance?

Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO11]

Hardware/software cooperative limiter thread estimation:
Thread executing the most contended critical section
Thread executing the slowest pipeline stage
Thread that is falling behind the most in reaching a barrier

PAMS Micro 2011 Talk 92

file:///Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/ebrahimi_micro2011_talk.pptx

Prioritizing Requests from Limiter Threads

Non-Critical Section Critical Section 1 mmmmm g ricr |

Waiting for Sync == 1 Critical Section 2 mmm Critical Path
or Lock
Barrier
Thread A e — —
Thread B N —
Thread C — —— N ———— — -]
1 (=- Lo [I S— g N ————
Time
ELimiter Thread IdentificatioE‘ |BarH|er
1
Thread A - — ——-F ! Most Contended
Thread B — _ﬁ:__ — (;\7; Critical Section: 1
Thread G —— I Cycies [Limiter Thread: B]
Thread D= == s = - -] i
] Time

93

Parallel App Mem Scheduling: Pros and Cons

Upsides:
o Improves the performance of multi-threaded applications
o Provides a mechanism for estimating "“limiter threads”

o Opens a path for slowdown estimation for multi-threaded
applications

Downsides:

o What if there are multiple multi-threaded applications running
together?

o Limiter thread estimation can become complex

94

More on PAMS

= Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo
Lee, Onur Mutlu, and Yale N. Patt,
"Parallel Appllcatlon Memory Scheduling”
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011. Slides (pptx)

Parallel Application Memory Scheduling

Eiman Ebrahimit Rustam Miftakhutdinovi Chris Fallin§
Chang Joo Lee: José A. Joao; Onur Mutlu§ Yale N. Patt;

{Department of Electrical and Computer Engineering
The University of Texas at Austin
{ebrahimi, rustam, joao, patt}@ece.utexas.edu

§Carnegie Mellon University ilntel Corporation
{cfallin,onur }@cmu.edu chang.joo.lee@intel.com

95

http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx

Other Ways of
Handling Memory Interterence

Fundamental Interference Control Techniques

= Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

‘ 2. Data mapping to banks/channels/ranks ‘

3. Core/source throttling

4. Application/thread scheduling

97

Designing QoS-Aware Memory Systems: Approaches

Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

o QoS-aware memory controllers

o QoS-aware interconnects

o QoS-aware caches

Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data

mapping

o Source throttling to control access to memory system
o] QoS-aware data mapping to memory controllers

o QoS-aware thread scheduling to cores

98

Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning”
44th International Symposium on Microarchitecture (MICRO),

Porto Alegre, Brazil, December 2011. Slides (pptx)

MCP Micro 2011 Talk

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx
file:///Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/subramanian_micro11_talk.pptx

Observation: Modern Systems Have Multiple Channels

Core

Red Memory Channel 0 Memory

App Controller <:>
Core ><
Blue <}:{> Memory (Channel1) Memory

App Controller

A new degree of freedom
Mapping data across multiple channels

100
Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Data Mapping in Current Systems

Core

Page

Memor

Red Memory

App Controller

Blue <}:{> Memory
Controller

App

Core

=
=

Causes interference between applications’ requests

101
Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Partitioning Channels Between Applications

Core

Page

Memor

Red Memory

App Controller

<}:{> Memory
Controller

Memor

=
=

Eliminates interference between applications’ requests

102
Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Overview: Memory Channel Partitioning (MCP)

= Goal
o Eliminate harmful interference between applications

= Basic Idea

o Map the data of badly-interfering applications to different
channels

= Key Principles
a Separate low and high memory-intensity applications
a Separate low and high row-buffer locality applications

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11. 103

Key Insight 1: Separate by Memory Intensity

Map data of low and high memory-intensity applications
to different channels

104

Key Insight 2: Separate by Row-Buffer Locality

Map data of low and high row-buffer locality applications
to different channels

105

Memory Channel Partitioning (MCP) Mechanism

/ Hardware
1. Profile applications

2. Classify applications into groups

3. Partition channels between application groups
4. Assign a preferred channel to each application
5. Allocate application pages to preferred channel

N

System
Software

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11. 106

Interval Based Operation

Current AInterval

Next ‘Interval

[

|

|

_—

>

1. Profile applications

\4

time

>

5. Enforce channel preferences

2. Classify applications into groups
3. Partition channels between groups
4. Assign preferred channel to applications

107

Observations

= Applications with very low memory-intensity rarely
access memory
- Dedicating channels to them results in precious
memory bandwidth waste

= They have the most potential to keep their cores busy
- We would really like to prioritize them

= They interfere minimally with other applications
—> Prioritizing them does not hurt others

108

Integrated Memory Partitioning and Scheduling (IMPS)

= Always prioritize very low memory-intensity
applications in the memory scheduler

= Use memory channel partitioning to mitigate
interference between other applications

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11. 109

Hardware Cost

Memory Channel Partitioning (MCP)

o Only profiling counters in hardware

o No madifications to memory scheduling logic

o 1.5 KB storage cost for a 24-core, 4-channel system

Integrated Memory Partitioning and Scheduling (IMPS)

o A single bit per request
o Scheduler prioritizes based on this single bit

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11. 110

Performance of Channel Partitioning

Averaged over 240 workloads

1.15
5900
S 11 1 M FRFCFS
(¢0)
S £
g £ 1.05 W ATLAS
© T
-y HTCM
B = 1 -
Z [= MCP
£.0095 -
N = IMPS
0.9 -

Better system performance than the best previous scheduler
at lower hardware cost

111

Combining Multiple Interterence Control Techniques

Combined interference control techniques can mitigate

interference much more than a single technique alone can
do

The key challenge is:
o Deciding what technique to apply when

o Partitioning work appropriately between software and
hardware

112

MCP and IMPS: Pros and Cons

Upsides:

Q

Q

Q

Keeps the memory scheduling hardware simple
Combines multiple interference reduction techniques

Can provide performance isolation across applications mapped
to different channels

General idea of partitioning can be extended to smaller
granularities in the memory hierarchy: banks, subarrays, etc.

Downsides:

Q

Reacting is difficult if workload changes behavior after
profiling

o Overhead of moving pages between channels restricts benefits

113

More on Memory Channel Partitioning

= Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu,
Mahmut Kandemir, and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning”
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011. Slides (pptx)

Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning

Sai Prashanth Muralidhara Lavanya Subramanian Onur Mutlu
Pennsylvania State University Carnegie Mellon University Carnegie Mellon University

smuralid@cse.psu.edu Isubrama@ece.cmu.edu onur@cmu.edu

Mahmut Kandemir Thomas Moscibroda
Pennsylvania State University Microsoft Research Asia
kandemir@cse.psu.edu moscitho@microsoft.com

114

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx

Computer Architecture
Lecture 17: Memory Interference
and Quality of Service 11

Prof. Onur Mutlu
ETH Zurich
Fall 2018
21 November 2018

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

Fundamental Interference Control Techniques

Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

‘ 3. Core/source throttling ‘

4. Application/thread scheduling

117

Fairness via Source Throttling

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-Performance

Fairness Substrate for Multi-Core Memory Systems"
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS),

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)

FST ASPLOS 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf
file:///Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/ebrahimi_asplos10_talk.pdf

Many Shared Resources

Shared Memory
Resources

.. Chip Boundary

SAFARI 119

The Problem with “Smart Resources’

Independent interference control mechanisms in
caches, interconnect, and memory can contradict
each other

Explicitly coordinating mechanisms for different
resources requires complex implementation

How do we enable fair sharing of the entire
memory system by controlling interference in a
coordinated manner?

SAFARI 120

Source Throttling: A Fairness Substrate

Key idea: Manage inter-thread interference at the cores
(sources), not at the shared resources

Dynamically estimate unfairness in the memory system
Feed back this information into a controller

Throttle cores’ memory access rates accordingly

o Whom to throttle and by how much depends on performance
target (throughput, fairness, per-thread QoS, etc)

o E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS'10, TOCS'12.

121

Fairness via Source Throttling (FST)

Two components (interval-based)

Run-time unfairness evaluation (in hardware)

o Dynamically estimates the unfairness (application slowdowns)
in the memory system

o Estimates which application is slowing down which other

Dynamic request throttling (hardware or software)

o Adjusts how aggressively each core makes requests to the
shared resources

o Throttles down request rates of cores causing unfairness
Limit miss buffers, limit injection rate

122

Fairness via Source Throttling (FST) raspLos’10]

‘ Interval 1’ Interval 2 ‘ Interval 3’

Tim)e
———

Slowdown

Estimation
L

m— Unfairness Estimate
. App-interfering Request Throttling
Evaluation

1- Estimating system unfairness if (Unfairness Estimate >Target)
2- Find app. with the highest {
slowdown (App-slowest) 1-Throttle down App-interfering
3- Find app. causing most (limit injection rate and parallelism)
interference for App-slowest 2-Throttle up App-slowest
(App-interfering) +

Dynamic Request Throttling

Goal: Adjust how aggressively each core makes requests to
the shared memory system

Mechanisms:
o Miss Status Holding Register (MSHR) quota

Controls the number of concurrent requests accessing shared
resources from each application

o Request injection frequency

Controls how often memory requests are issued to the last level
cache from the MSHRs

124

Dynamic Request Throttling

Throttling level assigned to each core determines both
MSHR quota and request injection rate

Throttling level MSHR quota |Request Injection Rate
100% 128 Every cycle
50% 64 Every other cycle
25% 32 Once every 4 cycles
< 10% 12 Once every 10 cycles '
5% 6 Once every 20 cycles
4% 5 Once every 25 cycles
3% 3 Once every 30 cycles
I,%ﬂ:ﬂ od 2% 2 Once every 50 cycles

125

System Software Support

Different fairness objectives can be configured by
system software
o Keep maximum slowdown in check

Estimated Max Slowdown < Target Max Slowdown

o Keep slowdown of particular applications in check to achieve a
particular performance target

Estimated Slowdown(i) < Target Slowdown(i)

Support for thread priorities

o Weighted Slowdown(i) =
Estimated Slowdown(i) x Weight(i)

SAFARI 126

Source Throttling Results: Takeaways

Source throttling alone provides better performance than a
combination of “smart” memory scheduling and fair caching

o Decisions made at the memory scheduler and the cache
sometimes contradict each other

Neither source throttling alone nor “smart resources” alone
provides the best performance

Combined approaches are even more powerful
o Source throttling and resource-based interference control

SAFARI 127

Source Throttling: Ups and Downs

Advantages

+ Core/request throttling is easy to implement: no need to
change the memory scheduling algorithm

+ Can be a general way of handling shared resource
contention

+ Can reduce overall load/contention in the memory system

Disadvantages
- Requires slowdown estimations - difficult to estimate
- Thresholds can become difficult to optimize

- throughput loss due to too much throttling

- can be difficult to find an overall-good configuration

128

More on Source Throttling (I)

= Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory
Systems"”
Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010.
Slides (pdf)

Fairness via Source Throttling: A Configurable and High-Performance
Fairness Substrate for Multi-Core Memory Systems

Eiman Ebrahimi{ Chang Joo Leef Onur Mutlug Yale N. Pattf

fDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University
{ebrahimi, cjlee, patt} @ece.utexas.edu onur@cmu.edu

SAFARI 129

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf

More on Source Throttling (1)

= Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,
"HAT: Heterogeneous Adaptive Throttling for On-Chip
Networks"
Proceedings of the 24th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), New
York, NY, October 2012. Slides (pptx) (pdf)

HAT: Heterogeneous Adaptive Throttling for On-Chip Networks

Kevin Kai-Wei Chang, Rachata Ausavarungnirun, Chris Fallin, Onur Mutlu
Carnegie Mellon University
{kevincha,rachata,cfallin,onur}@cmu.edu

SAFARI 130

http://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://www.sbc.org.br/sbac/2012/
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pdf

More on Source Throttling (I11)

= George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu,
and Srinivasan Seshan,
"On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-core Interconnects"”
Proceedings of the 2012 ACM SIGCOMM Conference
(SIGCOMM), Helsinki, Finland, August 2012. Slides (pptx)

On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-Core Interconnects

George Nychist, Chris Fallint, Thomas Moscibrodag, Onur Mutlut, Srinivasan Seshan+

t Carnegie Mellon University § Microsoft Research Asia
{gnychis,cfallin,onur,srini}@cmu.edu moscitho@microsoft.com

SAFARI 131

http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://conferences.sigcomm.org/sigcomm/2012/
http://users.ece.cmu.edu/~omutlu/pub/nychis_sigcomm12_talk.pptx

Fundamental Interference Control Techniques

= Goal: to reduce/control interference

1. Prioritization or request scheduling
2. Data mapping to banks/channels/ranks

3. Core/source throttling

‘ 4. Application/thread scheduling

Idea: Pick threads that do not badly interfere with each
other to be scheduled together on cores sharing the memory
system

132

Application-to-Core Mapping to Reduce Interference

= Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February 2013.
Slides (pptx)

= Key ideas:
o Cluster threads to memory controllers (to reduce across chip interference)

o Isolate interference-sensitive (low-intensity) applications in a separate
cluster (to reduce interference from high-intensity applications)

o Place applications that benefit from memory bandwidth closer to the
controller

SAFARI 133

http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx

Multi-Core to Many-Core

Multi-Core Many-Core

HE

134

Many-Core On-Chip Communication

Applications

A

A

>4 e

P €

Memory
A Controller

Shared
$ Cache Bank

135

Problem: Spatial Task Scheduling

Applications Cores

'z

How to map applications to cores?

136

Challenges in Spatial Task Scheduling

Applications Cores

=

How to reduce communication distance?

How to reduce destructive interference between applications?

\\

How to prioritize applications to improve throughput?

137

Application-to-Core Mapping

Improve Bandwidth Improve Bandwidth
Utilization Utilization

A\ zpoing

2] A
. -
A A
< L /

Yy \

=

Improve Locality Reduce Interference
Reduce Interference

SAFARI 138

Step 1 — Clustering

A A

L Memory

\ A Controller

A A

Inefficient data mapping to memory and caches

SAFARI 139

Step 1 — Clustering

A A)g A
Cluster 0 Cluster 2
N
Cluster 1 ﬂ < Cluster 3
\ \
A R

Improved Locality

Reduced Interference

SAFARI

140

System Performance

1.3

w BASE m BASE+CLS

Normalized Weighted
Speedup

MPKI1000 MPKI1500

System performance improves by 17%

141

Network Power

Normalized NoC Power

1.2
m BASE m BASE+CLS “A2C

1.0

0.8

0.6 -

0.4 -

0.2 -

0.0 -

MPKI500 MPKI1000 MPKI1500 MPKI2000 Avg

Average network power consumption reduces by 52%

142

More on App-to-Core Mapping

= Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"”
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February 2013.
Slides (pptx)

Application-to-Core Mapping Policies
to Reduce Memory System Interference in Multi-Core Systems

Reetuparna Dasx Rachata Ausavarungnirun{ Onur Mutluf Akhilesh Kumari Mani Azimiz
University of Michiganx Carnegie Mellon Universityt Intel Labs:

143

http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx

Interference-Aware Thread Scheduling

An example from scheduling in compute clusters (data
centers)

Data centers can be running virtual machines

144

Virtualized Cluster

- Distributed Resource Management
(DRM) policies
f AY4 \\ : /f AY4 “

SAFARI 145

Conventional DRM Policies

Bas
e.g.,

operating-system-level

-ation, memor

demand
Memory Capacity Host Host
— % Y4 x % Y4 x

CPUT.

SAFARI

146

Microarchitecture-level Interference

* VMs within a host compete for:

— Shared cache capacity

— Shared memory bandwidth

Can operating-system-level metrics capture the

microarchitecture-level resource interference?
SAFARI 147

Microarchitecture Unawareness

Operating-system-level metrics

Microarchitecture-level metrics

VM
CPU Utilization | Memory Capacity LLC Hit Ratio Memory Bandwidth
- 92% 369 MB 2% 2267 MB/s
App 93% 348 MB 98% 1 MB/s
Host

Memory Capacity % \ 7/ }
S

CPU

Core0O Corel

B o | T

LLC
gromacs

SAFARI N e =/

148

Impact on Performance

0.6
IPC 0.4

(Harmonic
0.0

m Conventional DRM

Host

Memory Capacity

149

SAFARI

Impact on Performance

We need microarchitecture-
level interference awareness in
DRM!

pp

49%

Core0 1

k / 150

SAFARI

A-DRM: Architecture-aware DRM

e Goal: Take into account microarchitecture-level
shared resource interference

— Shared cache capacity
— Shared memory bandwidth

e Key Idea:

— Monitor and detect microarchitecture-level shared
resource interference

— Balance microarchitecture-level resource usage across
cluster to minimize memory interference while

maximizing system performance
SAFARI 151

A-DRM: Architecture-aware DRM

Hosts Controller
' | A-DRM: Global Architecture —
OS+Hypervisor aware Resource Manager
| > Profiling Engine
VM VM .

ooe Architecture-aware
Interference Detector

——

\ y \ / Architecture-aware

Distributed Resource
Management (Polic

7,

.‘[CPU/Memory

Capacity

— |\ Profil€ < Migration Engine

SAFARI 152

More on Architecture-Aware DRM

= Hui Wang, Canturk Isci, Lavanya Subramanian, Jongmoo Choi,
Depei Qian, and Onur Mutlu,
"A-DRM: Architecture-aware Distributed Resource
Management of Virtualized Clusters”
Proceedings of the 11th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE), Istanbul,
Turkey, March 2015.

[Slides (pptx) (pdf)]

A-DRM: Architecture-aware Distributed Resource Management
of Virtualized Clusters

Hui Wang'*, Canturk Iscif, Lavanya Subramanian*, Jongmoo Choi®*, Depei Qian’, Onur Mutlu*

"Beihang University, ¥IBM Thomas J. Watson Research Center, *Carnegie Mellon University, “Dankook University
{hui.wang, depeiq}@buaa.edu.cn, canturk@us.ibm.com, {Isubrama, onur}@cmu.edu, choijm@dankook.ac.kr

153

http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15.pdf
http://www.cercs.gatech.edu/vee15/
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pdf

Interference-Aware Thread Scheduling

Advantages

+ Can eliminate/minimize interference by scheduling “symbiotic
applications” together (as opposed to just managing the
interference)

+ Less intrusive to hardware (less need to modify the hardware
resources)

Disadvantages and Limitations

-- High overhead to migrate threads and data between cores and
machines

-- Does not work (well) if all threads are similar and they
interfere

154

Summary

155

Summary: Fundamental Interference Control Techniques

= Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks
3. Core/source throttling

4. Application/thread scheduling

Best is to combine all. How would you do that?

156

Summary: Memory QoS Approaches and Techniques

Approaches: Smart vs. dumb resources

o Smart resources: QoS-aware memory scheduling

o Dumb resources: Source throttling; channel partitioning
o Both approaches are effective in reducing interference
o No single best approach for all workloads

Techniques: Request/thread scheduling, source throttling,
memory partitioning

o All approaches are effective in reducing interference

o Can be applied at different levels: hardware vs. software

o No single best technique for all workloads

Combined approaches and techniques are the most powerful
o Integrated Memory Channel Partitioning and Scheduling [MICRO'11]

SAFARI MCP Micro 2011 Talk 157

file:///Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/subramanian_micro11_talk.pptx

Summary: Memory Interference and QoS

QoS-unaware memory -
uncontrollable and unpredictable system

Providing QoS awareness improves performance,
predictability, fairness, and utilization of the memory system

Discussed many new techniques to:
o Minimize memory interference
o Provide predictable performance

Many new research ideas needed for integrated techniques
and closing the interaction with software

SAFARI 158

What Did We Not Cover?

Prefetch-aware shared resource management
DRAM-controller co-design

Cache interference management
Interconnect interference management
Write-read scheduling

DRAM designs to reduce interference
Interference issues in hear-memory processing

SAFARI 159

What the Future May Bring

Simple yet powerful interference control and scheduling
mechanisms

o memory scheduling + interconnect scheduling

Real implementations and investigations
o SoftMC infrastructure, FPGA-based implementations

Interference and QoS in the presence of even more
heterogeneity

o PIM, accelerators, ...

SAFARI 160

SoftMC: Open Source DRAM Infrastructure

= Hasan Hassan et al., "SoftMC: A o H;at/

Flexible and Practical Open- Chamber '

|

Source Infrastructure for
Enabling Experimental DRAM
Studies,” HPCA 2017.

“—

1N | Host
— Machme
= Flexible | i Te'ﬁ* /, ,
= Fasy to Use (C++ API) . Cor’mtroﬁler "
= Open-source --;f ‘;gi

\@ \ /

github.com/CMU-SAFARI/SoftMC

SAFARI tol

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

SoftMC

= https://github.com/CMU-SAFARI/SoftMC

SoftMC: A Flexible and Practical Open-Source Infrastructure
for Enabling Experimental DRAM Studies

1,2,3 3 4,3 3

Samira Khan Saugata Ghose® Kevin Chang?
6.3 OguzErgin? Onur Mutlu!-3

Hasan Hassan Nandita Vijaykumar
Gennady Pekhimenko®3 Donghyuk Lee

\ETH Ziirich ~ >TOBB University of Economics & Technology 3Carnegie Mellon University
YUniversity of Virginia > Microsoft Research ~ SNVIDIA Research

SAFARI 162

https://github.com/CMU-SAFARI/SoftMC

Some Other Ideas ...

Decoupled DMA w/ Dual-Port DRAM
[PACT 2015]

Isolating CPU and 10 Traffic by
Leveraging a Dual-Data-Port DRAM

Decoupled Direct Memory Access

Donghyuk Lee

Lavanya Subramanian, Rachata Ausavarungnirun,
Jongmoo Choi, Onur Mutlu

SAFARI Carnegie Mellon

Logical System Organization

Processor

CPU access ‘

main
memory

|O access I

|O devices

Main memory connects processor and |O devices

as an intermediate layer
SAFARI 166

Physical System Implementation

High Pin Cost
in Processor

|O access

processor*

CPU access

High Contention greics
in Memory Channe/ SSSuEl

|O access ‘

|O devices

SAFARI 167

Our Approach

Processor

CPU access ‘

main
memory

|O access

|O access

|O devices

Enabling 10 channel,
decoupled & isolated from CPU channel

SAFARI 168

Executive Summary

* Problem
— CPU and |0 accesses contend for the shared memory channel

e Our Approach: Decoupled Direct Mlemory Access (DDMA)
— Design new DRAM architecture with two independent data ports
=> Dual-Data-Port DRAM
— Connect one port to CPU and the other port to IO devices
=> Decouple CPU and 10 accesses

e Application
— Communication between compute units (e.g., CPU —GPU)
— In-memory communication (e.g., bulk in-memory copy/init.)
— Memory-storage communication (e.g., page fault, 10 prefetch)

Result

— Significant performance improvement (20% in 2 ch. & 2 rank system)
— CPU pin count reduction (4.5%)

SAFARI

169

Outline

1. Problem
2. Our Approach

3. Dual-Data-Port DRAM

4. Applications for DDMA

5. Evaluation

SAFARI 170

Problem 1: Memory Channel Contention

--

Processor | [T |
Chlp E controller 10 interface |

--

Memory Channel Contention

DRAM
Chip

graphics

network

storage

SAFARI 171

Problem 1: Memory Channel Contention

100% === === o
—Time Spent on CPU-GPU Communication
80% o ------mmm oo
33.5%
60% o ----- - mmm e T
OoNn avera
40% -

20% A

Fraction of Execution Time

Benchmarks

A large fraction of the execution time

IS spent on |O accesses
SAFARI 172

Problem 2: High Cost for IO Interfaces

|0 interface
'(10.6%)

|0 interface
(28.4%)
959 pins in total 359 pins in total
Processor Pin Count Processor Pin Count
(w/ power pins) (w/o power pins)

Integrating 10 interface on the processor chip

leads to high area cost
SAFARI 173

Shared Memory Channel

* Memory channel contention for 10 access
and CPU access

* High area cost for integrating 10 interfaces
on processor chip

SAFARI 174

Outline

1. Problem
2. Our Approach

3. Dual-Data-Port DRAM

4. Applications for DDMA

5. Evaluation

SAFARI 175

Our Approach

__

Processor memory DI\/IA
o [l controller MO interface]

——

Port 1

DRAM Dual-Data-

Chip Port DRAM
Port 2

graphics

DMA control

network

G L T T T T ———

storage
DMA
Chip

DMA 1O interface USB
SAFARI 176

Our Approach

Decoupled Direct Memory Access

Processor |t s
Chip | [eelgdgelll=ls

CPU ACCESS
Port 1

DRAM Dual-Data- |
Chip Port DRAM &

Port 2 i
10 ACCESS

DMA
Chip

graphics

" DMAcontrol |

network

~ control channel

storage

Vv <

DMA |0 interface USB
SAFARI 177

Outline

1. Problem

2. Our Approach

3. Dual-Data-Port DRAM
4. Applications for DDMA

5. Evaluation

SAFARI 178

Background: DRAM Operation

control channel

bank

DRAM peripheral logic: i) controls banks, and

/i) transfers data over memory channel
SAFARI 179

Problem: Single Data Port

Many
Banks

Req uests are servec

control channel

Single
Data Port

serially

due to single data port

SAFARI

180

Problem: Single Data Port

t/'rr]e

Control Port

D—©

What about a DRAM with two data ports”?

time
Control Port RD RD)

Data Port 1
Data Port 2

SAFARI 181

Dual-Data-Port DRAM

al

data channel Sp control channel
(%))
dat e
poartal §
8
bank MuX ‘g
Q

- to Port 1 (upper)

-~
-~
~

. data bus!
~~~~~~ A\rea: 1. _65/\:[1_/1\
P n%é lgort (lower)

twice the bandwidth & independent data ports
with low overhead
SAFARI 182

data channel



DDP-DRAM Memory System

memory controller at CPU
CPU channel ‘
port 1

control channel
with port select

bank

10 channel

DDMA 10 interface

SAFARI 183



Three Data Transfer Modes

* CPU Access: Access through CPU channel
— DRAM read/write with CPU port selection

* |O Access: Access through 10 channel
— DRAM read/write with 10 port selection

e Port Bypass: Direct transfer between channels
— DRAM access with port bypass selection

SAFARI



SAFARI

1. CPU Access Mode

memory controller at CPU

control channel

data with CPU channel
port 1

CPU channel

bank
READY

- IX

bank

data
port 2

10 channel

DDMA IO interface

185



2. 10 Access Mode

memory controller at CPU

CPU channel ‘ control channel

with forseiect
port 1

bank
READY

bank mi

data
port 2

10 channel

DDMA IO interface

SAFARI 186



3. Port Bypass Mode

memory controller at CPU

control channel

with port belerts

CPU channel

10 channel

DDMA IO interface

SAFARI 187



Outline

1. Problem
2. Our Approach

3. Dual-Data-Port DRAM

4. Applications for DDMA

5. Evaluation

SAFARI 188



Three Applications for DDMA

 Communication b/w Compute Units
— CPU-GPU communication

* In-Memory Communication and Initialization
— Bulk page copy/initialization

 Communication b/w Memory and Storage
— Serving page fault/file read & write

SAFARI



1. Compute Unit <> Compute Unit

memory memory
controller controller

>

source destination 2

T rengmer
with 10 sel
CRUAS GPU
TTvetitemer
with 10 sel.
ek

DDMA 10 interface DDMA 10 interface

Transfer data through DDMA
without interfering w/ CPU/GPU memory accesses

SAFARI 190



2. In-Memory Communication

memory [PDMA
destination controller ctrl.

source .

- -~
~< ~
~< -~
~o -~
-~ ~
~
~
-~
~
~

DDMA ctrl.

Ctrhadl@ .

with 10 sel.

DDMA IO interfae

Transfer data in DRAM through DDAM

without interfering with CPU memory accesses
SAFARI 191



3. Memory <> Storage

memory
controller

destination =4

write
with 10 sel.
Aco./Stbrage

“

DDMA 10 interface Storage (source)

Transfer data from storage through DDMA

without interfering with CPU memory accesses
SAFARI 192



Outline

1. Problem
2. Our Approach

3. Dual-Data-Port DRAM

4. Applications for DDMA

5. Evaluation

SAFARI 193



Evaluation Methods

* System
— Processor: 4 — 16 cores
— LLC: 16-way associative, 512KB private cache-slice/core
— Memory: 1 -4 ranks and 1 —4 channels

 Workloads

— Memory intensive:
SPEC CPU2006, TPC, stream (31 benchmarks)

— CPU-GPU communication intensive:
polybench (8 benchmarks)

— In-memory communication intensive:
apache, bootup, compiler, filecopy, mysal, fork,

shell, memcached (8 in total)
SAFARI



Performance (2 Channel, 2 Rank)

B2 QG0 e € 25%
2 =
o 20% v 20%
= >
O O
o 159 Q 9
S S0, E 15%
S 10% S 10%
c (@
© (O
S 5% - =
9 £
I 0% & 0%

4-Core 8-Core 16-Core
CPU-GPU Comm.-Intensive  In-Memory Comm.-Intensive

5% -

4-Core 8-Core 16-Core

High performance improvement
More performance improvement at higher core count

SAFARI

195



Performance on Various Systems

% L % AQ% oo
qg) 35% qE) 35% e
5 30% e 5 30%
Q. 25% o 25%
% 20% -+ 20%
c 15% - 15%
S 10% - 10%
L.é 5% - 5%
& 0% 0%
1ch 2 ch 4 ch lrank 2rank 4rank

Channel Count Rank Count

Performance increases with rank count

SAFARI 196



DDMA vs. Dual Channel

A0 — A0
160%
° < 1000 -
140% >
(D] @)
Q 120% O 800 -
T 100% =
= 80; % 600 -
O 0 o
5 60% S 400 -
0% S
< 200 -
20% o
0% 0 A
1 ch 1 ch 2 ch 1 ch 1 ch 2 ch
DDMA DDMA

DDMA achieves higher performance

at lower processor pin count
SAFARI 197



More on Decoupled DMA

= Donghyuk Lee, Lavanya Subramanian, Rachata
Ausavarungnirun, Jongmoo Choi, and Onur Mutlu,
"Decoupled Direct Memory Access: Isolating CPU and
10 Traffic by Leveraging a Dual-Data-Port DRAM"
Proceedings of the 24th International Conference on Parallel
Architectures and Compilation Technigues (PACT), San
Francisco, CA, USA, October 2015.
[Slides (pptx) (pdf)]

Decoupled Direct Memory Access:
Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM

Donghyuk Lee* Lavanya Subramanian* Rachata Ausavarungnirun®* Jongmoo Choi!  Onur Mutlu*

*Carnegie Mellon University TDankook University
{donghyul, Isubrama, rachata, onur}@cmu.edu choijm@dankook.ac.kr

SAFARI 198



https://users.ece.cmu.edu/~omutlu/pub/decoupled-dma_pact15.pdf
https://sites.google.com/a/lbl.gov/pact2015/
https://users.ece.cmu.edu/~omutlu/pub/decoupled-dma_donghyuk_pact15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/decoupled-dma_donghyuk_pact15-talk.pdf

Predictable Performance Again:
Strong Memory Service Guarantees

199




Remember MISE?

= Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,
and Onur Mutlu,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems”
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

MISE: Providing Performance Predictability and Improving Fairness
in Shared Main Memory Systems

Lavanya Subramanian =~ Vivek Seshadri ~ Yoongu Kim  Ben Jaiyen =~ Onur Mutlu

Carnegie Mellon University

SAFARI 200


http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

Extending Slowdown Estimation to Caches

= How do we extend the MISE model to include shared cache
interference?

= Answer: Application Slowdown Model

= Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO) Waikiki, Hawaii, USA, December 2015.

Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster

(pptx) (pdf)]

[Source Code]

SAFARI 201


https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

Application Slowdown Model

Quantifying and Controlling Impact of
Interference at Shared Caches and Main Memory

Lavanya Subramanian, Vivek Seshadri,
Arnab Ghosh, Samira Khan, Onur Mutlu

SAFARI  CarnegieMellon (intel)




Shared Cache and Memory Contention

H
H

Request Service Rate Aone

Slowdown =

Request Service Rate shared
MISE [HPCA’13]



Cache Capacity Contention

Cache

Access Rate -
é Main

<:I Memory

Priority

Applications evict each other’s blocks
from the shared cache

204




Estimating Cache and Memory Slowdowns

Core

Core Core Core

Shared
Cache

Core Core Core

core | Cache Memory
Service Rate Service Rate

Core Core Core

@)
=
(0]



Service Rates vs. Access Rates

Cache Access
FEEE
I e
<:| Memory

Cache
Core Core Core Core
Service Rate

Request service and access rates
are tightly coupled




The Application Slowdown Model

Cache Access
CEEE
EIEEE N e [2]
<:| Memory

Cache
Core Core Core Core

Cache Access Rate alone
Slowdown =

Cache Access Rate shared



Real System Studies:
Cache Access Rate vs. Slowdown

2.2 -
2 _
$18 -
B 16 -
3
o 14 -
1.2 - /
1 1.2 14 16 18 2 2.2
Cache Access Rate Ratio

--astar
=|bm
bzip2

208



Challenge

How to estimate alone cache access rate?

. Cache
Core Core
Access Rate

Core

Core H Auxiliary
lag Store

Core Core

Core Core Core

Shared Main
Cache

Core Core

Priority

Core Core




Auxiliary Tag Store

Cache

Access Rate -
- 5 Main

M
<: <: emory

Priority
Auxiliary
7ag Store
Still in auxiliary

PR tag store

Auxiliary tag store tracks such contention misses

210



Accounting for Contention Misses

e Revisiting alone memory request service rate

Alone Request Service Rate of an Application =
# Requests During High Priority Epochs
# High Priority Cycles

Cycles serving contention misses should not
count as high priority cycles



Alone Cache Access Rate Estimation

Cache Access Rate aione 0f an Application =
# Requests During High Priority Epochs
# High Priority Cycles @he Contention Cycl

Cache Contention Cycles: Cycles spent serving contention misses

Cache Contention Cycles =# Contention Misses x

/46&1 e Memory Service Time

From auxiliary tag store

, : _ Measured when given
when given high priority

high priority



Application Slowdown Model (ASM)

coe | [ o | [ | ncces

Core | | Core J | Core | ) Core | 1 -oss Rate

Shared (51 main
<:I Memory

Cache
Core Core Core Core

Cache Access Rate alone
Slowdown =

Cache Access Rate shared



Previous Work on Slowdown

Estimation

* Previous work on slowdown estimation
— STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO '07]

T (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS 'T
er-thread Cycle Accounting [Du Bois et al., HIPEAC ’13]
* Basic Idea:

xecution Time al
Slowdown = : .
Execution Time shared

Count interference experienced by each request = Difficult
ASM'’s estimates are much more coarse grained = Easier



Slowdown Estimation

Error (in %)

Model Accuracy Results

W FST m PTCA B ASM
160

140

=
N B O 0 O DN
O O O O O o o

Average error of ASM’s slowdown estimates:

Averagew ‘ ‘ ‘ ‘ ‘ ‘

10%

215



Leveraging ASM’s Slowdown Estimates

* [Slowdown-aware resource allocation for high
performance and fairness

e Slowdown-aware resource allocation to bound
application slowdowns

VM migration and admission control schemes
[VEE ’15]

Fair billing schemes in a commodity cloud



Cache Capacity Partitioning

Goal: Partition the shared cache among
applications to mitigate contention

217



Cache Capacity Partitioning

Way Way Way Way

0 1 2 3
Set 1 .
Set 2 Main

Set 3
“ Memory

Core : Set N-1

Previous partitioning schemes optimize for miss count
Problem: Not aware of performance and slowdowns

218



ASM-Cache: Slowdown-aware
Cache Way Partitioning

e Key Requirement: Slowdown estimates for all
possible way partitions

* Extend ASM to estimate slowdown for all
possible cache way allocations

* Key Idea: Allocate each way to the application
whose slowdown reduces the most



Memory Bandwidth Partitioning

Cache
Access Rate

Goal: Partition the main memory bandwidth
among applications to mitigate contention

220



ASM-Mem: Slowdown-aware
Memory Bandwidth Partitioning

* Key Idea: Allocate high priority proportional to
an application’s slowdown

Slowdown.
2> Slowdown.

J

High Priority Fraction, =

* Application i’s requests given highest priority
at the memory controller for its fraction



Coordinated Resource
Allocation Schemes

Cache capacity-aware

bandwidth allocation
A

1. Employ ASM-Cache to partition cache capacity
2. Drive ASM-Mem with slowdowns from ASM-Cache




Fairness and Performance Results

16-core system

100 workloads
11 0.35
10 03 B FRFCFS-NoPart
5 9 0 0.25 ® FRFCFS+UCP
29 o £ 0 H TCM+UCP
() .
c v £ m PARBS+UCP
s 5 7/ S 0.15
- g 6 o 01 W ASM-Cache-Mem
a.
2 .
5 0.05
4 0
1 2 1 2

Number of Channels Number of Channels

Significant fairness benefits across different channel counts

223



Summary

Problem: Uncontrolled memory interference cause high
and unpredictable application slowdowns

Goal: Quantify and control slowdowns

Key Contribution:

— ASM: An accurate slowdown estimation model

— Average error of ASM: 10%

Key ldeas:

— Shared cache access rate is a proxy for performance

— Cache Access Rate ,,,. can be estimated by minimizing memory
interference and quantifying cache interference

Applications of Our Model

— Slowdown-aware cache and memory management to achieve
high performance, fairness and performance guarantees

Source Code Released in January 2016

224



More on Application Slowdown Model

= Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO) Waikiki, Hawaii, USA, December 2015.

Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster

(pptx) (pdf)]
[Source Code]

The Application Slowdown Model: Quantifying and Controlling the Impact
of Inter-Application Interference at Shared Caches and Main Memory

Lavanya Subramanian*§ Vivek Seshadri* Arnab Ghosh*T
Samira Khan* Onur Mutlu*

*Carnegie Mellon University §Intel Labs TIIT Kanpur *University of Virginia

225


https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

Interconnect QoS/Performance Ideas

226




Application-Aware Prioritization in NoCs

Das et al., "Application-Aware Prioritization Mechanisms for
On-Chip Networks,” MICRO 20009.

a https://users.ece.cmu.edu/~omutlu/pub/app-aware-
noc microQ09.pdf

Application-Aware Prioritization Mechanisms
for On-Chip Networks

Reetuparna Das® Onur Mutlu® Thomas Moscibroda* Chita R. Das?
§Pennsylvania State University tCarnegie Mellon University {Microsoft Research
{rdas,das}@cse.psu.edu onur@cmu.edu moscitho@microsoft.com

227


https://users.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf

Slack-Based Packet Scheduling

Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das,
"Aergia: Exploiting Packet Latency Slack in On-Chip Networks
Proceedings of the 3/th International Symposium on Computer
Architecture (ISCA), pages 106-116, Saint-Malo, France, June

2010. Slides (pptx)

Aérgia: Exploiting Packet Latency Slack
in On-Chip Networks

Reetuparna Das® Onur Mutlut Thomas Moscibroda* Chita R. Das®

§Pennsylvania State University tCarnegie Mellon University tMicrosoft Research
{rdas,das}@cse.psu.edu onur@cmu.edu moscitho@microsoft.com

228


https://people.inf.ethz.ch/omutlu/pub/aergia_isca10.pdf
http://isca2010.inria.fr/
https://people.inf.ethz.ch/omutlu/pub/moscibroda_isca10_talk.pptx

Low-Cost QoS in On-Chip Networks (I)

= Boris Grot, Stephen W. Keckler, and Onur Mutlu,
"Preemptive Virtual Clock: A Flexible, Efficient, and Cost-
effective QOS Scheme for Networks-on-Chip"
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 268-279, New York, NY, December
20009. Slides (pdf)

Preemptive Virtual Clock: A Flexible, Efficient, and
Cost-effective QOS Scheme for Networks-on-Chip

Boris Grot Stephen W. Keckler Onur Mutlut
Department of Computer Sciences TComputer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University

{bgrot, skeckler@cs.utexas.edu} onur@cmu.edu

229


https://people.inf.ethz.ch/omutlu/pub/pvc-qos_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/grot_micro09_talk.pdf

Low-Cost QoS in On-Chip Networks (II)

= Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,
"Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for
Scalability and Service Guarantees”
Proceedings of the 38th International Symposium on Computer
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)

Kilo-NOC: A Heterogeneous Network-on-Chip Architecture
for Scalability and Service Guarantees

Boris Grot! Joel Hestness! Stephen W. Keckler'? Onur Mutlu?
bgrot@cs.utexas.edu hestness@cs.utexas.edu skeckler@nvidia.com onur@cmu.edu
!The University of Texas at Austin 2NVIDIA 3Carnegie Mellon University

Austin, TX Santa Clara, CA Pittsburgh, PA

230


https://people.inf.ethz.ch/omutlu/pub/kilonoc_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/grot_isca11_talk.pptx

Throttling Based Fairness in NoCs

= Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,
"HAT: Heterogeneous Adaptive Throttling for On-Chip
Networks"
Proceedings of the 24th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), New
York, NY, October 2012. Slides (pptx) (pdf)

HAT: Heterogeneous Adaptive Throttling for On-Chip Networks

Kevin Kai-Wei Chang, Rachata Ausavarungnirun, Chris Fallin, Onur Mutlu
Carnegie Mellon University
{kevincha,rachata,cfallin,onur}@cmu.edu

SAFARI 231


http://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://www.sbc.org.br/sbac/2012/
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pdf

Scalability: Express Cube Topologies

= Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,
"Express Cube Topologies for On-Chip Interconnects”
Proceedings of the 15th International Symposium on High-
Performance Computer Architecture (HPCA ), pages 163-174,
Raleigh, NC, February 2009. Slides (ppt)

Express Cube Topologies for On-Chip Interconnects

Boris Grot Joel Hestness Stephen W. Keckler Onur Mutlu'
Department of Computer Sciences fComputer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University

{bgrot, hestness, skeckler} @cs.utexas.edu onur @cmu.edu

232


https://people.inf.ethz.ch/omutlu/pub/mecs_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
https://people.inf.ethz.ch/omutlu/pub/grot_hpca09_talk.ppt

Scalability: Slim NoC

= Maciej Besta, Syed Minhaj Hassan, Sudhakar Yalamanchili,
Rachata Ausavarungnirun, Onur Mutlu, Torsten Hoefler,
"Slim NoC: A Low-Diameter On-Chip Network Topology
for High Energy Efficiency and Scalability”
Proceedings of the 23rd International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

[Poster (pdf)]

Slim NoC: A Low-Diameter On-Chip Network Topology
for High Energy Efficiency and Scalability

Maciej Besta! Syed Minhaj Hassan? Sudhakar Yalamanchili
Rachata Ausavarungnirun’ Onur Mutlu'-’ Torsten Hoefler!

'ETH Ziirich 2Georgia Institute of Technology 3Carnegie Mellon University

233


https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18.pdf
https://www.asplos2018.org/
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-poster.pdf

Butterless Routing in NoCs

Moscibroda and Mutlu, “A Case for Bufferless Routing in On-
Chip Networks,” ISCA 2009.

a https://users.ece.cmu.edu/~omutlu/pub/bless isca09.pdf

A Case for Bufferless Routing in On-Chip Networks

Thomas Moscibroda Onur Mutlu
Microsoft Research Carnegie Mellon University
moscitho@microsoft.com onur@cmu.edu

234


https://users.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf

CHIPPER: Low-Complexity Butterless

= Chris Fallin, Chris Craik, and Onur Mutlu,
"CHIPPER: A Low-Complexity Bufferless Deflection
Router”
Proceedings of the 1/th International Symposium on High-
Performance Computer Architecture (HPCA ), pages 144-155,
San Antonio, TX, February 2011. Slides (pptx)
An extended version as SAFARI Technical Report, TR-SAFARI-
2010-001, Carnegie Mellon University, December 2010.

CHIPPER: A Low-complexity Bufferless Deflection Router

Chris Fallin Chris Craik Onur Mutlu
cfallin@cmu.edu craik@cmu.edu onur@cmu.edu

Computer Architecture Lab (CALCM)
Carnegie Mellon University

235


https://people.inf.ethz.ch/omutlu/pub/chipper_hpca11.pdf
http://hpca17.ac.upc.edu/web/
https://people.inf.ethz.ch/omutlu/pub/fallin_hpca11_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/chipper-TR-SAFARI-2010-001.pdf
http://www.ece.cmu.edu/~safari/tr.html

Minimally-Buttered Detlection Routing

= Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata
Ausavarungnirun, and Onur Mutlu,
"MinBD: Minimally-Buffered Deflection Routing for Energy-
Efficient Interconnect”
Proceedings of the 6th ACM/IEEE International Symposium on
Networks on Chip (NOCS), Lyngby, Denmark, May 2012. Slides
(pptx) (pdf)

MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient Interconnect

Chris Fallin, Greg Nazario, Xiangyao Yu', Kevin Chang, Rachata Ausavarungnirun, Onur Mutlu

Carnegie Mellon University
{cfallin,gnazario,kevincha,rachata,onur} @cmu.edu

TTsinghua University & Carnegie Mellon University
yxythu@gmail.com

236


https://people.inf.ethz.ch/omutlu/pub/minimally-buffered-deflection-router_nocs12.pdf
http://www2.imm.dtu.dk/projects/nocs_2012/nocs/Home.html
https://people.inf.ethz.ch/omutlu/pub/fallin_nocs12_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/fallin_nocs12_talk.pdf

“Butterless” Hierarchical Rings

Ausavarungnirun et al., "Design and Evaluation of Hierarchical
Rings with Deflection Routing,” SBAC-PAD 2014.

o http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-
deflection sbacpadil4.pdf

Discusses the design and implementation of a mostly-
bufferless hierarchical ring

Design and Evaluation of Hierarchical Rings

with Deflection Routing

Rachata Ausavarungnirun  Chris Fallin  Xiangyao Yuf Kevin Kai-Wei Chang
Greg Nazario Reetuparna Das§  Gabriel H. Lohf  Onur Mutlu

Carnegie Mellon University  §University of Michigan {MIT  fAdvanced Micro Devices, Inc.

237


http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-deflection_sbacpad14.pdf

“Butterless” Hierarchical Rings (II)

Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Chang,
Greg Nazario, Reetuparna Das, Gabriel Loh, and Onur Mutlu,

"A Case for Hierarchical Rings with Deflection Routing: An
Energy-Efficient On-Chip Communication Substrate”
Parallel Computing (PARCO), to appear in 2016.

o arXiv.org version, February 2016.

Achieving both High Energy Efficiency
and High Performance in On-Chip Communication
using Hierarchical Rings with Deflection Routing

Rachata Ausavarungnirun  Chris Fallin  Xiangyao Yuf Kevin Kai-Wei Chang
Greg Nazario Reetuparna Das§ Gabriel H. Lohf Onur Mutlu

Carnegie Mellon University  §University of Michigan ftMIT $AMD

238


http://dx.doi.org/10.1016/j.parco.2016.01.009
http://arxiv.org/pdf/1602.06005.pdf

Summary of Six Years of Research

= Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata
Ausavarungnirun, and Onur Mutlu,
"Bufferless and Minimally-Buffered Deflection Routing”
Invited Book Chapter in Routing Algorithms in Networks-on-Chip, pp.
241-275, Springer, 2014.

Chapter 1

Bufferless and Minimally-Buffered
Deflection Routing

Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata
Ausavarungnirun, Onur Mutlu

239


https://people.inf.ethz.ch/omutlu/pub/bufferless-and-minimally-buffered-deflection-routing_springer14.pdf
http://www.springer.com/engineering/circuits+&+systems/book/978-1-4614-8273-4

On-Chip vs. Ott-Chip Tradeoffs

= George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu,
and Srinivasan Seshan,
"On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-core Interconnects”
Proceedings of the 2012 ACM SIGCOMM
Conference (SIGCOMM), Helsinki, Finland, August 2012. Slides

(pptx)

On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-Core Interconnects

George Nychis+, Chris Fallin+, Thomas Moscibrodas, Onur Mutlu+, Srinivasan Seshany

t Carnegie Mellon University § Microsoft Research Asia
{gnychis,cfallin,onur,srinij@cmu.edu moscitho@microsoft.com

240


https://people.inf.ethz.ch/omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://conferences.sigcomm.org/sigcomm/2012/
https://people.inf.ethz.ch/omutlu/pub/nychis_sigcomm12_talk.pptx

Slowdown Estimation in NoCs

= Xiyue Xiang, Saugata Ghose, Onur Mutlu, and Nian-Feng Tzeng,
"A Model for Application Slowdown Estimation in On-
Chip Networks and Its Use for Improving System
Fairness and Performance”
Proceedings of the 34th IEEE International Conference on

Computer Design (ICCD), Phoenix, AZ, USA, October 2016.
[Slides (pptx) (pdf)]

A Model for Application Slowdown Estimation in On-Chip Networks
and Its Use for Improving System Fairness and Performance

Xiyue Xiang' Saugata Ghose* Onur Mutlu’* Nian-Feng Tzeng'
"University of Louisiana at Lafayette *Carnegie Mellon University SETH Ziirich

241


https://people.inf.ethz.ch/omutlu/pub/on-chip-network-application-slowdown-estimation_iccd16.pdf
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/on-chip-network-application-slowdown-estimation_xiyue_iccd16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/on-chip-network-application-slowdown-estimation_xiyue_iccd16-talk.pdf

Handling Multicast and Hotspot Issues

= Xiyue Xiang, Wentao Shi, Saugata Ghose, Lu Peng, Onur Mutlu,
and Nian-Feng Tzeng,
"Carpool: A Bufferless On-Chip Network Supporting
Adaptive Multicast and Hotspot Alleviation”
Proceedings of the International Conference on Supercomputing
(ICS), Chicago, IL, USA, June 2017.
[Slides (pptx) (pdf)]

Carpool: A Bufferless On-Chip Network
Supporting Adaptive Multicast and Hotspot Alleviation

Xiyue Xiang' Wentao Shi*  Saugata Ghose* LuPeng* Onur Mutlu’* Nian-Feng Tzeng'

TUniversity of Louisiana at Lafayette ~ *Louisiana State University ~ *Carnegie Mellon University ~ SETH Ziirich

242


https://people.inf.ethz.ch/omutlu/pub/carpool-bufferless-network_ics17.pdf
https://people.inf.ethz.ch/omutlu/pub/carpool-bufferless-network_ics17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/carpool-bufferless-network_ics17-talk.pdf

