
Computer Architecture
Lecture 17: Memory Interference

and Quality of Service II

Prof. Onur Mutlu
ETH Zürich
Fall 2018

21 November 2018

Lecture Announcement
n Monday, November 26, 2018
n 16:15-17:15
n CAB G 61
n Apéro after the lecture J

n Prof. Arvind (Massachusetts Institute of Technology)

n D-INFK Distinguished Colloquium
n The Riscy Expedition

n https://www.inf.ethz.ch/news-and-
events/colloquium/event-detail.html?eventFeedId=42658

2

https://www.inf.ethz.ch/news-and-events/colloquium/event-detail.html?eventFeedId=42658

Memory System is the Major Shared Resource

3

threads’ requests
interfere

Much More of a Shared Resource in Future

4

Memory System Shared by Heterogeneous Agents

n Heterogeneous agents: CPUs, GPUs, and HWAs
n Main memory interference between CPUs, GPUs, HWAs

5

CPU CPU CPU CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance?

Staged Memory Scheduling

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu,
"Staged Memory Scheduling: Achieving High Performance

and Scalability in Heterogeneous Systems”
39th International Symposium on Computer Architecture (ISCA),

Portland, OR, June 2012.

SMS ISCA 2012 Talk

http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://isca2012.ittc.ku.edu/
file:///Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/rachata_isca12_talk.pptx

SMS: Executive Summary
n Observation: Heterogeneous CPU-GPU systems require

memory schedulers with large request buffers

n Problem: Existing monolithic application-aware memory
scheduler designs are hard to scale to large request buffer sizes

n Solution: Staged Memory Scheduling (SMS)
decomposes the memory controller into three simple stages:
1) Batch formation: maintains row buffer locality
2) Batch scheduler: reduces interference between applications
3) DRAM command scheduler: issues requests to DRAM

n Compared to state-of-the-art memory schedulers:
q SMS is significantly simpler and more scalable
q SMS provides higher performance and fairness

7

SMS: Staged Memory Scheduling

8

Memory Scheduler

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req
Req

Req
Req

Req
Req Req

Req Req Req

ReqReqReq
Req Req

Req Req

Req Req Req
Req
Req Req

Req

Req
Req

Req
Req Req

Req Req Req
ReqReqReqReq Req Req

Req
Req
Req Req

Batch Scheduler

Stage 1

Stage 2

Stage 3

Req

M
on

ol
ith

ic
Sc

he
du

le
r

Batch
Formation

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Stage 1

Stage 2

SMS: Staged Memory Scheduling

9

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req ReqBatch Scheduler

Batch
Formation

Stage 3
DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Current Batch
Scheduling

Policy
SJF

Current Batch
Scheduling

Policy
RR

Batch Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Putting Everything Together

10

Core 1 Core 2 Core 3 Core 4

Stage 1:
Batch
Formation

Stage 3:
DRAM
Command
Scheduler

GPU

Stage 2:

Complexity
n Compared to a row hit first scheduler, SMS consumes*

q 66% less area
q 46% less static power

n Reduction comes from:
q Monolithic scheduler à stages of simpler schedulers
q Each stage has a simpler scheduler (considers fewer

properties at a time to make the scheduling decision)
q Each stage has simpler buffers (FIFO instead of out-of-order)
q Each stage has a portion of the total buffer size (buffering is

distributed across stages)

11* Based on a Verilog model using 180nm library

Performance at Different GPU Weights

12

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

Sy
st

em
 P

er
fo

rm
an

ce

GPUweight

Previous Best
Best Previous
Scheduler

ATLAS TCM FR-FCFS

n At every GPU weight, SMS outperforms the best previous
scheduling algorithm for that weight

Performance at Different GPU Weights

13

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

Sy
st

em
 P

er
fo

rm
an

ce

GPUweight

Previous Best

SMSSMS

Best Previous
Scheduler

More on SMS
n Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian,

Gabriel Loh, and Onur Mutlu,
"Staged Memory Scheduling: Achieving High
Performance and Scalability in Heterogeneous Systems"
Proceedings of the 39th International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)

14

http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/rachata_isca12_talk.pptx

DASH Memory Scheduler
[TACO 2016]

15

Current SoC Architectures

n Heterogeneous agents: CPUs and HWAs
q HWA : Hardware Accelerator

n Main memory is shared by CPUs and HWAs à Interference

16

CPU CPU CPU CPU

Shared Cache HWA HWA HWA

DRAM Controller

DRAM

How to schedule memory requests from CPUs and HWAs
to mitigate interference?

Example Heterogeneous SoC

17

DASH Scheduler: Executive Summary
n Problem: Hardware accelerators (HWAs) and CPUs share the same

memory subsystem and interfere with each other in main memory
n Goal: Design a memory scheduler that improves CPU performance while

meeting HWAs’ deadlines
n Challenge: Different HWAs have different memory access characteristics

and different deadlines, which current schedulers do not smoothly handle
q Memory-intensive and long-deadline HWAs significantly degrade CPU

performance when they become high priority (due to slow progress)
q Short-deadline HWAs sometimes miss their deadlines despite high priority

n Solution: DASH Memory Scheduler
q Prioritize HWAs over CPU anytime when the HWA is not making good progress
q Application-aware scheduling for CPUs and HWAs

n Key Results:
1) Improves CPU performance for a wide variety of workloads by 9.5%
2) Meets 100% deadline met ratio for HWAs

n DASH source code freely available on our GitHub
18

Goal of Our Scheduler (DASH)

• Goal: Design a memory scheduler that
– Meets GPU/accelerators’ frame rates/deadlines and
– Achieves high CPU performance

• Basic Idea:
– Different CPU applications and hardware accelerators

have different memory requirements
– Track progress of different agents and prioritize

accordingly

19

Key Observation:
Distribute Priority for Accelerators

• GPU/accelerators need priority to meet deadlines
• Worst case prioritization not always the best
• Prioritize when they are not on track to meet a

deadline

20

Distributing priority over time mitigates impact
of accelerators on CPU cores’ requests

Existing QoS-Aware Scheduling Scheme
n Dynamic Prioritization for a CPU-GPU System [Jeong et al., DAC 2012]

q Dynamically adjust GPU priority based on its progress
q Lower GPU priority if GPU is making a good progress to achieve its

target frame rate

n We apply this scheme for a wide variety of HWAs
q Compare HWA’s current progress against expected progress

n Current Progress : (The number of finished memory requests for a period)
(The number of total memory requests for a period)

n Expected Progress : (Elapsed cycles in a period)
(Total cycles in a period)

q Every scheduling unit, dynamically adjust HWA priority
n If Expected Progress > EmergentThreshold (=0.9) : HWA > CPU
n If (Current Progress) > (Expected Progress) : HWA < CPU
n If (Current Progress) <= (Expected Progress) : HWA = CPU

21

Problems in Dynamic Prioritization
n Dynamic Prioritization for a CPU-HWA system

q Compares HWA’s current progress against expected progress

n Current Progress : (The number of finished memory requests for a period)
(The number of total memory requests for a period)

n Expected Progress : (Elapsed cycles in a period)
(Total cycles in a period)

q Every scheduling unit, dynamically adjust HWA priority
n If Expected Progress > EmergentThreshold (=0.9) : HWA > CPU
n If (Current Progress) > (Expected Progress) : HWA < CPU
n If (Current Progress) <= (Expected Progress) : HWA = CPU

22

1. An HWA is prioritized over CPU cores only when it is closed to HWA’s deadline

2. This scheme does not consider the diverse memory access characteristics of
CPUs and HWAs
• It treats each CPU and each HWA equally

The HWA often misses deadlines

Missing opportunities to improve system performance

Key Idea 1: Distributed Priority
n Problem 1: An HWA is prioritized over CPU cores only when it is close

to HWA’s deadline

n Key Idea 1: Distributed Prioritization for a CPU-HWA system
q Compares HWA’s current progress against expected progress

n Current Progress : (The number of finished memory requests for a period)
(The number of total memory requests for a period)

n Expected Progress : (Elapsed cycles in a period)
(Total cycles in a period)

q Dynamically adjust HWA priority based on its progress every scheduling unit
n If Expected Progress > EmergentThreshold (=0.9) : HWA > CPU
n If (Current Progress) > (Expected Progress) : HWA < CPU
n If (Current Progress) <= (Expected Progress) : HWA > CPU

23

Prioritize HWAs over CPU anytime when the HWA is not making good progress

Example: Scheduling HWA and CPU Requests

24

Alone Execution Timeline time

n Scheduling requests from 2 CPU applications and a HWA

q CPU-A : memory non-intensive application

q CPU-B : memory intensive application

Period = 20T

COMP.

H H H HH HDRAM H H H H

COMPUTATION

Req x10
HWA

Deadline for 10 Requests

T

COMP. COMP. COMP.

A A A

Req x1 Req x1 Req x1
DRAM

CPU-A Computation

COMP.

B B B B

Req x7
STALL COMP.

BDRAM

CPU-B

B B

DASH: Distributed Priority

25

n Distributed Priority (Scheduling unit = 4T)

COMP.

Req x1
CPU-A

COMP.

Req x7
STALLCPU-B

COMP.

H H H HDRAM

COMP.
Req x10

HWA

STALL

HWA>CPU
Current : 0 / 10
Expected : 0 / 20

DASH: Distributed Priority

26

n Distributed Priority (Scheduling unit = 4T)

COMP. COMP.
Req x1

CPU-A

COMP.

Req x7
STALLCPU-B

COMP.

H H H HDRAM BA

COMPUTATION
Req x10

B B

HWA

STALL

HWA<CPU
Current : 4 / 10
Expected : 5 / 20

DASH: Distributed Priority

27

n Distributed Priority (Scheduling unit = 4T)

COMP. COMP.
Req x1 Req x1

CPU-A

COMP.

Req x7
STALLCPU-B

COMP.

H H H HH HDRAM H HBA

COMPUTATION
Req x10

B B

HWA

STALL STALL

HWA>CPU
Current : 4 / 10
Expected : 8 / 20

DASH: Distributed Priority

28

n Distributed Priority (Scheduling unit = 4T)

COMP. COMP. COMP.
Req x1 Req x1 Req x1

CPU-A

COMP.

Req x7
STALLCPU-B

COMP.

H H H HH HDRAM H HBA

COMPUTATION
Req x10

B B A B B B

HWA

STALL STALL

HWA<CPU
Current : 8 / 10
Expected : 12 / 20

DASH: Distributed Priority

29

n Distributed Priority (Scheduling unit = 4T)

COMP. COMP. COMP. COMP.

Req x1 Req x1 Req x1
CPU-A

COMP.

Req x7
STALL COMP.CPU-B

COMP.

H H H HH HDRAM H H HB HA

COMPUTATION
Req x10

B B A B B B A B

HWA

STALL STALL

HWA>CPU
Current : 8 / 10
Expected : 16 / 20

Key Observation:
Not All Accelerators are Equal

• Long-deadline accelerators are more likely to
meet their deadlines

• Short-deadline accelerators are more likely to
miss their deadlines

30

Schedule short-deadline accelerators
based on worst-case memory access time

Key Observation:
Not All CPU cores are Equal

• Memory-intensive cores are much less
vulnerable to interference

• Memory non-intensive cores are much more
vulnerable to interference

31

Prioritize accelerators over memory-intensive cores
to ensure accelerators do not become urgent

DASH Summary:
Key Ideas and Results

• Distribute priority for HWAs
• Prioritize HWAs over memory-intensive CPU

cores even when not urgent
• Prioritize short-deadline-period HWAs based

on worst case estimates

32

Improves CPU performance by 7-21%
Meets (almost) 100% of deadlines for HWAs

DASH: Scheduling Policy

n DASH scheduling policy
1. Short-deadline-period HWAs with high priority
2. Long-deadline-period HWAs with high priority
3. Memory non-intensive CPU applications
4. Long-deadline-period HWAs with low priority
5. Memory-intensive CPU applications
6. Short-deadline-period HWAs with low priority

33

Switch
probabilistically

Experimental Methodology (1/2)
n New Heterogeneous System Simulator

q We have released this at GitHub (https://github.com/CMU-SAFARI/HWASim)
n Configurations

q 8 CPUs (2.66GHz), 32KB/L1, 4MB Shared/L2
q 4 HWAs
q DDR3 1333 DRAM x 2 channels

n Workloads
q CPUs: 80 multi-programmed workloads

n SPEC CPU2006, TPC, NAS parallel benchmark
q HWAs:

n Image processing
n Image recognition [Lee+ ICCD 2009] [Viola and Jones CVPR 2001]

n Metrics
q CPUs : Weighted Speedup
q HWAs : Deadline met ratio (%)

34

Experimental Methodology (2/2)
n Parameters of the HWAs

n Configurations of 4 HWAs

35

Period Bandwidth Deadline
Group

IMG : Image Processing 33 ms 360MB/s Long

HES : Hessian 2 us 478MB/s Short

MAT : Matching (1) 20fps 35.4 us 8.32 GB/s Long

MAT : Matching (2) 30fps 23.6 us 5.55 GB/s Long

RSZ : Resize 46.5 – 5183 us 2.07 – 3.33 GB/s Long

DET : Detect 0.8 – 9.6 us 1.60 – 1.86 GB/s Short

Configuration
Config-A IMG x 2, HES, MAT(2)

Config-B HES, MAT(1), RSZ, DET

Evaluated Memory Schedulers
n FRFCFS-St, TCM-St: FRFCFS or TCM with static priority for HWAs

q HWAs always have higher priority than CPUs
q FRFCFS-St: FRFCFS [Zuravleff and Robinson US Patent 1997, Rixner et al. ISCA 2000] for CPUs

n Prioritizes row-buffer hits and older requests

q TCM-St: TCM [Kim+ MICRO 2010] for CPUs
n Always prioritizes memory-non-intensive applications
n Shuffles thread ranks of memory-intensive applications

n FRFCFS-Dyn: FRFCFS with dynamic priority for HWAs [Jeong et al., DAC 2012]

q HWA’s priority is dynamically adjusted based on its progress
n FRFCFS-Dyn0.9: EmergentThreshold = 0.9 for all HWAs (Only after 90% of the HWA’s period

elapsed, the HWA has higher priority than CPUs)
n FRFCFS-DynOpt: Each HWA has different EmergentThreshold to meet its deadline

n DASH: Distributed Priority + Application-aware scheduling for CPUs + HWAs
q TCM is used for CPUs to classify memory intensity of CPUs
q EmergentThreshold = 0.8 for all HWAs

36

Config-A Config-B
IMG HES MAT HES MAT RSZ DET

0.9 0.2 0.2 0.5 0.4 0.7 0.5

Performance and Deadline Met Ratio
n Weighted Speedup for CPUs

n Deadline Met Ratio (%) for HWAs

37

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

DASH
FRFCFS-DynOpt
FRFCFS-Dyn0.9

TCM-St
FRFCFS-St

Weighted Speedup

IMG HES MAT RSZ DET
FRFCFS-St 100 100 100 100 100
TCM-St 100 100 100 100 100
FRFCFS-Dyn0.9 100 99.4 46.01 97.98 97.14
FRFCFS-DynOpt 100 100 99.997 100 99.99
DASH 100 100 100 100 100

Performance and Deadline Met Ratio
n Weighted Speedup for CPUs

n Deadline Met Ratio (%) for HWAs

38

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

DASH
FRFCFS-DynOpt
FRFCFS-Dyn0.9

TCM-St
FRFCFS-St

Weighted Speedup

IMG HES MAT RSZ DET
FRFCFS-St 100 100 100 100 100
TCM-St 100 100 100 100 100
FRFCFS-Dyn0.9 100 99.4 46.01 97.98 97.14
FRFCFS-DynOpt 100 100 99.997 100 99.99
DASH 100 100 100 100 100

1. DASH achieves 100% deadline met ratio

Performance and Deadline Met Ratio
n Weighted Speedup for CPUs

n Deadline Met Ratio (%) for HWAs

39

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

DASH
FRFCFS-DynOpt
FRFCFS-Dyn0.9

TCM-St
FRFCFS-St

Weighted Speedup

IMG HES MAT RSZ DET
FRFCFS-St 100 100 100 100 100

TCM-St 100 100 100 100 100

FRFCFS-Dyn0.9 100 99.4 46.01 97.98 97.14

FRFCFS-DynOpt 100 100 99.997 100 99.99

DASH 100 100 100 100 100

+9.5%

1. DASH achieves 100% deadline met ratio
2. DASH achieves better performance (+9.5%) than FRFCFS-DynOpt

that meets the most of HWAs’ deadlines (Optimized for HWAs)

Performance and Deadline Met Ratio
n Weighted Speedup for CPUs

n Deadline Met Ratio (%) for HWAs

40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

DASH
FRFCFS-DynOpt
FRFCFS-Dyn0.9

TCM-St
FRFCFS-St

Weighted Speedup

IMG HES MAT RSZ DET
FRFCFS-St 100 100 100 100 100

TCM-St 100 100 100 100 100

FRFCFS-Dyn0.9 100 99.4 46.01 97.98 97.14

FRFCFS-DynOpt 100 100 99.997 100 99.99

DASH 100 100 100 100 100

+9.5%

1. DASH achieves 100% deadline met ratio
2. DASH achieves better performance (+9.5%) than FRFCFS-DynOpt

that meets the most of HWAs’ deadlines (Optimized for HWAs)
3. DASH achieves comparable performance to FRFCFS-Dyn0.9

that frequently misses HWAs’ deadlines (Optimized for CPUs)

More on DASH
n Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, and

Onur Mutlu,
"DASH: Deadline-Aware High-Performance Memory
Scheduler for Heterogeneous Systems with Hardware
Accelerators"
ACM Transactions on Architecture and Code Optimization (TACO),
Vol. 12, January 2016.
Presented at the 11th HiPEAC Conference, Prague, Czech Republic,
January 2016.
[Slides (pptx) (pdf)]
[Source Code]

41

https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
http://taco.acm.org/
https://www.hipeac.net/2016/prague/
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pdf
https://github.com/CMU-SAFARI/HWASim

Predictable Performance:
Strong Memory Service Guarantees

42

Goal: Predictable Performance in Complex Systems

n Heterogeneous agents: CPUs, GPUs, and HWAs
n Main memory interference between CPUs, GPUs, HWAs

43

CPU CPU CPU CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance?

Strong Memory Service Guarantees
n Goal: Satisfy performance/SLA requirements in the

presence of shared main memory, heterogeneous agents,
and hybrid memory/storage

n Approach:
q Develop techniques/models to accurately estimate the

performance loss of an application/agent in the presence of
resource sharing

q Develop mechanisms (hardware and software) to enable the
resource partitioning/prioritization needed to achieve the
required performance levels for all applications

q All the while providing high system performance

n Subramanian et al., “MISE: Providing Performance Predictability and Improving Fairness
in Shared Main Memory Systems,” HPCA 2013.

n Subramanian et al., “The Application Slowdown Model,” MICRO 2015.
44

Predictable Performance Readings (I)
n Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,

"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory
Systems"
Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010.
Slides (pdf)

45

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf

Predictable Performance Readings (II)
n Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,

and Onur Mutlu,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

46

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

Predictable Performance Readings (III)
n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and

Onur Mutlu,

"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture

(MICRO), Waikiki, Hawaii, USA, December 2015.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster

(pptx) (pdf)]

[Source Code]

47

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

MISE:
Providing Performance Predictability

in Shared Main Memory Systems

Lavanya Subramanian, Vivek Seshadri,
Yoongu Kim, Ben Jaiyen, Onur Mutlu

48

Unpredictable Application Slowdowns

49

0

1

2

3

4

5

6

leslie3d (core 0) gcc (core 1)

Sl
ow
do
w
n

0

1

2

3

4

5

6

leslie3d (core 0) mcf (core 1)

Sl
ow
do
w
n

An application’s performance depends on
which application it is running with

Need for Predictable Performance
n There is a need for predictable performance

q When multiple applications share resources
q Especially if some applications require performance

guarantees

n Example 1: In mobile systems
q Interactive applications run with non-interactive applications
q Need to guarantee performance for interactive applications

n Example 2: In server systems
q Different users’ jobs consolidated onto the same server
q Need to provide bounded slowdowns to critical jobs

50

Our Goal: Predictable performance
in the presence of memory interference

Outline

51

1. Estimate Slowdown
q Key Observations
q Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown

Outline

52

1. Estimate Slowdown
q Key Observations
q Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown
q Providing Soft Slowdown Guarantees
q Minimizing Maximum Slowdown

Slowdown: Definition

53

Shared

Alone

 ePerformanc
 ePerformanc

 Slowdown =

Key Observation 1
For a memory bound application,

Performance µ Memory request service rate

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1No
rm

al
ize

d
Pe

rfo
rm

an
ce

Normalized Request Service Rate

omnetpp

mcf

astar

54

Shared

Alone

 Rate ServiceRequest
 Rate ServiceRequest

Slowdown =
Shared

Alone

 ePerformanc
 ePerformanc

 Slowdown =

Easy

Harder

Intel Core i7, 4 cores
Mem. Bandwidth: 8.5 GB/s

Key Observation 2
Request Service Rate Alone (RSRAlone) of an application can be

estimated by giving the application highest priority in
accessing memory

Highest priority à Little interference
(almost as if the application were run alone)

55

Key Observation 2

56

Request Buffer State
Main

Memory

1. Run alone
Time units Service order

Main
Memory

12

Request Buffer State
Main

Memory

2. Run with another application
Service order

Main
Memory

123

Request Buffer State
Main

Memory

3. Run with another application: highest priority
Service order

Main
Memory

123

Time units

Time units

3

57

Memory Interference-induced Slowdown Estimation
(MISE) model for memory bound applications

)(RSR Rate ServiceRequest
)(RSR Rate ServiceRequest

Slowdown
SharedShared

AloneAlone
=

Key Observation 3
n Memory-bound application

58

No
interference

Compute Phase

Memory Phase

With
interference

Memory phase slowdown dominates overall slowdown

time

time
Req

Req

Req Req

Req Req

Key Observation 3
n Non-memory-bound application

59

time

time

No
interference

Compute Phase

Memory Phase

With
interference

Only memory fraction () slows down with interference

aa-1

a

a-1

Shared

Alone

RSR
RSRa

Shared

Alone

RSR
RSR

) - (1 Slowdown aa +=

Memory Interference-induced Slowdown Estimation
(MISE) model for non-memory bound applications

Outline

60

1. Estimate Slowdown
q Key Observations
q Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown
q Providing Soft Slowdown Guarantees
q Minimizing Maximum Slowdown

Interval Based Operation

61

time

Interval

a

Estimate
slowdown

Interval

Estimate
slowdown

n Measure RSRShared,
n Estimate RSRAlone

an Measure RSRShared,
n Estimate RSRAlone

Measuring RSRShared and α
n Request Service Rate Shared (RSRShared)

q Per-core counter to track number of requests serviced
q At the end of each interval, measure

n Memory Phase Fraction ()
q Count number of stall cycles at the core
q Compute fraction of cycles stalled for memory

Length Interval
Serviced Requests ofNumber

 RSRShared =

α

62

Estimating Request Service Rate Alone (RSRAlone)

n Divide each interval into shorter epochs

n At the beginning of each epoch
q Memory controller randomly picks an application as the

highest priority application

n At the end of an interval, for each application, estimate

PriorityHigh Given n Applicatio Cycles ofNumber
EpochsPriority High During Requests ofNumber RSR

Alone =

63

Goal: Estimate RSRAlone
How: Periodically give each application

highest priority in accessing memory

Inaccuracy in Estimating RSRAlone

64

Request Buffer
State

Main
Memory

Time units Service order

Main
Memory

123

n When an application has highest priority
q Still experiences some interference

Request Buffer
State

Main
Memory

Time units Service order

Main
Memory

123

Time units Service order

Main
Memory

123

Interference Cycles

High Priority

Main
Memory

Time units Service order

Main
Memory

123
Request Buffer

State

Accounting for Interference in RSRAlone Estimation

n Solution: Determine and remove interference cycles from
RSRAlone calculation

n A cycle is an interference cycle if
q a request from the highest priority application is

waiting in the request buffer and
q another application’s request was issued previously

65

Cycles ceInterferen -Priority High Given n Applicatio Cycles ofNumber
EpochsPriority High During Requests ofNumber RSR

Alone =

Outline

66

1. Estimate Slowdown
q Key Observations
q Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown
q Providing Soft Slowdown Guarantees
q Minimizing Maximum Slowdown

MISE Model: Putting it All Together

67

time

Interval

a

Estimate
slowdown

Interval

Estimate
slowdown

n Measure RSRShared,
n Estimate RSRAlone

an Measure RSRShared,
n Estimate RSRAlone

Outline

68

1. Estimate Slowdown
q Key Observations
q Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown
q Providing Soft Slowdown Guarantees
q Minimizing Maximum Slowdown

Previous Work on Slowdown Estimation
n Previous work on slowdown estimation

q STFM (Stall Time Fair Memory) Scheduling [Mutlu+, MICRO ‘07]

q FST (Fairness via Source Throttling) [Ebrahimi+, ASPLOS ‘10]

q Per-thread Cycle Accounting [Du Bois+, HiPEAC ‘13]

n Basic Idea:

69

Shared

Alone

 Time Stall
 Time Stall

 Slowdown =

Hard

Easy

Count number of cycles application receives interference

Two Major Advantages of MISE Over STFM

n Advantage 1:
q STFM estimates alone performance while an

application is receiving interference à Hard
q MISE estimates alone performance while giving an

application the highest priority à Easier

n Advantage 2:
q STFM does not take into account compute phase for

non-memory-bound applications
q MISE accounts for compute phase à Better accuracy

70

Methodology
n Configuration of our simulated system

q 4 cores
q 1 channel, 8 banks/channel
q DDR3 1066 DRAM
q 512 KB private cache/core

n Workloads
q SPEC CPU2006
q 300 multi programmed workloads

71

Quantitative Comparison

72

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

Sl
ow

do
w

n

Million Cycles

Actual
STFM
MISE

SPEC CPU 2006 application
leslie3d

Comparison to STFM

73

cactusADM

0

1

2

3

4

0 50 100

Sl
ow
do
w
n

0

1

2

3

4

0 50 100
Sl
ow
do
w
n

GemsFDTD

0

1

2

3

4

0 50 100

Sl
ow
do
w
n

soplex

0

1

2

3

4

0 50 100

Sl
ow
do
w
n

wrf

0

1

2

3

4

0 50 100

Sl
ow
do
w
n

calculix

0

1

2

3

4

0 50 100
Sl
ow
do
w
n

povray

Average error of MISE: 8.2%
Average error of STFM: 29.4%

(across 300 workloads)

Outline

74

1. Estimate Slowdown
q Key Observations
q Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown
q Providing Soft Slowdown Guarantees
q Minimizing Maximum Slowdown

Providing “Soft” Slowdown Guarantees
n Goal

1. Ensure QoS-critical applications meet a prescribed
slowdown bound

2. Maximize system performance for other applications

n Basic Idea
q Allocate just enough bandwidth to QoS-critical

application
q Assign remaining bandwidth to other applications

75

MISE-QoS: Mechanism to Provide Soft QoS
n Assign an initial bandwidth allocation to QoS-critical application
n Estimate slowdown of QoS-critical application using the MISE

model
n After every N intervals

q If slowdown > bound B +/- ε, increase bandwidth allocation
q If slowdown < bound B +/- ε, decrease bandwidth allocation

n When slowdown bound not met for N intervals
q Notify the OS so it can migrate/de-schedule jobs

76

Methodology
n Each application (25 applications in total) considered the

QoS-critical application
n Run with 12 sets of co-runners of different memory

intensities
n Total of 300 multiprogrammed workloads
n Each workload run with 10 slowdown bound values
n Baseline memory scheduling mechanism

q Always prioritize QoS-critical application
[Iyer+, SIGMETRICS 2007]

q Other applications’ requests scheduled in FRFCFS order
[Zuravleff +, US Patent 1997, Rixner+, ISCA 2000]

77

A Look at One Workload

78

0

0.5

1

1.5

2

2.5

3

leslie3d hmmer lbm omnetpp

Sl
ow
do
w
n AlwaysPrioritize

MISE-QoS-10/1
MISE-QoS-10/3
MISE-QoS-10/5
MISE-QoS-10/7
MISE-QoS-10/9

QoS-critical non-QoS-critical

MISE is effective in
1. meeting the slowdown bound for the QoS-

critical application
2. improving performance of non-QoS-critical

applications

Slowdown Bound = 10 Slowdown Bound = 3.33 Slowdown Bound = 2

Effectiveness of MISE in Enforcing QoS

79

Predicted
Met

Predicted
Not Met

QoS Bound
Met 78.8% 2.1%

QoS Bound
Not Met 2.2% 16.9%

Across 3000 data points

MISE-QoS meets the bound for 80.9% of workloads

AlwaysPrioritize meets the bound for 83% of workloads

MISE-QoS correctly predicts whether or not
the bound is met for 95.7% of workloads

Performance of Non-QoS-Critical Applications

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 Avg

H
ar

m
on

ic
 S

pe
ed

up

Number of Memory Intensive Applications

AlwaysPrioritize
MISE-QoS-10/1
MISE-QoS-10/3
MISE-QoS-10/5
MISE-QoS-10/7
MISE-QoS-10/9

80

Higher performance when bound is looseWhen slowdown bound is 10/3
MISE-QoS improves system performance by 10%

Outline

81

1. Estimate Slowdown
q Key Observations
q Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown
q Providing Soft Slowdown Guarantees
q Minimizing Maximum Slowdown

Other Results in the Paper
n Sensitivity to model parameters

q Robust across different values of model parameters

n Comparison of STFM and MISE models in enforcing soft
slowdown guarantees
q MISE significantly more effective in enforcing guarantees

n Minimizing maximum slowdown
q MISE improves fairness across several system configurations

82

Summary
n Uncontrolled memory interference slows down

applications unpredictably
n Goal: Estimate and control slowdowns
n Key contribution

q MISE: An accurate slowdown estimation model
q Average error of MISE: 8.2%

n Key Idea
q Request Service Rate is a proxy for performance
q Request Service Rate Alone estimated by giving an application highest

priority in accessing memory
n Leverage slowdown estimates to control slowdowns

q Providing soft slowdown guarantees
q Minimizing maximum slowdown

83

MISE: Pros and Cons

n Upsides:
q Simple new insight to estimate slowdown
q Much more accurate slowdown estimations than prior

techniques (STFM, FST)
q Enables a number of QoS mechanisms that can use slowdown

estimates to satisfy performance requirements

n Downsides:
q Slowdown estimation is not perfect - there are still errors
q Does not take into account caches and other shared resources

in slowdown estimation

84

More on MISE
n Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,

and Onur Mutlu,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

85

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

Extending MISE to Shared Caches: ASM
n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and

Onur Mutlu,

"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture

(MICRO), Waikiki, Hawaii, USA, December 2015.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster

(pptx) (pdf)]

[Source Code]

86

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

Handling Memory Interference
In Multithreaded Applications

Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin,
Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Parallel Application Memory Scheduling"

Proceedings of the 44th International Symposium on Microarchitecture (MICRO),
Porto Alegre, Brazil, December 2011. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx

Multithreaded (Parallel) Applications
n Threads in a multi-threaded application can be inter-

dependent
q As opposed to threads from different applications

n Such threads can synchronize with each other
q Locks, barriers, pipeline stages, condition variables,

semaphores, …

n Some threads can be on the critical path of execution due
to synchronization; some threads are not

n Even within a thread, some “code segments” may be on
the critical path of execution; some are not

88

Critical Sections

n Enforce mutually exclusive access to shared data
n Only one thread can be executing it at a time
n Contended critical sections make threads wait à threads

causing serialization can be on the critical path

89

Each thread:
loop {

Compute
lock(A)

Update shared data
unlock(A)

}

N

C

Barriers

n Synchronization point
n Threads have to wait until all threads reach the barrier
n Last thread arriving at the barrier is on the critical path

90

Each thread:
loop1 {

Compute
}
barrier
loop2 {

Compute
}

Stages of Pipelined Programs
n Loop iterations are statically divided into code segments called stages
n Threads execute stages on different cores
n Thread executing the slowest stage is on the critical path

91

loop {
Compute1

Compute2

Compute3
}

A

B

C

A B C

Handling Interference in Parallel Applications

n Threads in a multithreaded application are inter-dependent
n Some threads can be on the critical path of execution due

to synchronization; some threads are not
n How do we schedule requests of inter-dependent threads

to maximize multithreaded application performance?

n Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

n Hardware/software cooperative limiter thread estimation:
n Thread executing the most contended critical section
n Thread executing the slowest pipeline stage
n Thread that is falling behind the most in reaching a barrier

92PAMS Micro 2011 Talk

file:///Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/ebrahimi_micro2011_talk.pptx

Prioritizing Requests from Limiter Threads

93

Critical Section 1 BarrierNon-Critical Section

Waiting for Sync
or Lock

Thread D
Thread C

Thread B

Thread A

Time

Barrier

Time

Barrier

Thread D

Thread C

Thread B
Thread A

Critical Section 2 Critical Path

Saved
Cycles Limiter Thread: DBCA

Most Contended
Critical Section: 1

Limiter Thread Identification

Parallel App Mem Scheduling: Pros and Cons

n Upsides:
q Improves the performance of multi-threaded applications
q Provides a mechanism for estimating “limiter threads”
q Opens a path for slowdown estimation for multi-threaded

applications

n Downsides:
q What if there are multiple multi-threaded applications running

together?
q Limiter thread estimation can become complex

94

More on PAMS
n Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo

Lee, Onur Mutlu, and Yale N. Patt,
"Parallel Application Memory Scheduling"
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011. Slides (pptx)

95

http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx

Other Ways of
Handling Memory Interference

Fundamental Interference Control Techniques

n Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

97

Designing QoS-Aware Memory Systems: Approaches

n Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism
q QoS-aware memory controllers
q QoS-aware interconnects
q QoS-aware caches

n Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping
q Source throttling to control access to memory system
q QoS-aware data mapping to memory controllers
q QoS-aware thread scheduling to cores

98

Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda,

"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning”

44th International Symposium on Microarchitecture (MICRO),

Porto Alegre, Brazil, December 2011. Slides (pptx)

MCP Micro 2011 Talk

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx
file:///Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/subramanian_micro11_talk.pptx

Observation: Modern Systems Have Multiple Channels

A new degree of freedom
Mapping data across multiple channels

100

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Data Mapping in Current Systems

101

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Causes interference between applications’ requests

Page

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Partitioning Channels Between Applications

102

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Page

Eliminates interference between applications’ requests

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Overview: Memory Channel Partitioning (MCP)

n Goal
q Eliminate harmful interference between applications

n Basic Idea
q Map the data of badly-interfering applications to different

channels

n Key Principles
q Separate low and high memory-intensity applications
q Separate low and high row-buffer locality applications

103Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Key Insight 1: Separate by Memory Intensity
High memory-intensity applications interfere with low

memory-intensity applications in shared memory channels

104

Map data of low and high memory-intensity applications
to different channels

12345
Channel 0

Bank 1

Channel 1

Bank 0

Conventional Page Mapping

Red
App

Blue
App

Time Units

Core

Core

Bank 1

Bank 0

Channel Partitioning

Red
App

Blue
App

Channel 0
Time Units

12345

Channel 1

Core

Core

Bank 1

Bank 0

Bank 1

Bank 0

Saved Cycles

Saved Cycles

Key Insight 2: Separate by Row-Buffer Locality

105

High row-buffer locality applications interfere with low
row-buffer locality applications in shared memory channels

Conventional Page Mapping

Channel 0

Bank 1

Channel 1

Bank 0R1

R0R2R3R0

R4

Request Buffer
State

Bank 1

Bank 0

Channel 1

Channel 0

R0R0

Service Order
123456

R2R3

R4

R1

Time
units

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Channel 0

R0R0

Service Order
123456

R2R3

R4R1

Time
units

Bank 1

Bank 0

Bank 1

Bank 0

R0

Channel 0

R1

R2R3

R0

R4

Request Buffer
State

Channel Partitioning

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Saved
CyclesMap data of low and high row-buffer locality applications

to different channels

Memory Channel Partitioning (MCP) Mechanism

1. Profile applications
2. Classify applications into groups
3. Partition channels between application groups
4. Assign a preferred channel to each application
5. Allocate application pages to preferred channel

106

Hardware

System
Software

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Interval Based Operation

107

time

Current Interval Next Interval

1. Profile applications

2. Classify applications into groups
3. Partition channels between groups
4. Assign preferred channel to applications

5. Enforce channel preferences

Observations

n Applications with very low memory-intensity rarely
access memory
à Dedicating channels to them results in precious
memory bandwidth waste

n They have the most potential to keep their cores busy
à We would really like to prioritize them

n They interfere minimally with other applications
à Prioritizing them does not hurt others

108

Integrated Memory Partitioning and Scheduling (IMPS)

n Always prioritize very low memory-intensity
applications in the memory scheduler

n Use memory channel partitioning to mitigate
interference between other applications

109Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Hardware Cost
n Memory Channel Partitioning (MCP)

q Only profiling counters in hardware
q No modifications to memory scheduling logic
q 1.5 KB storage cost for a 24-core, 4-channel system

n Integrated Memory Partitioning and Scheduling (IMPS)
q A single bit per request
q Scheduler prioritizes based on this single bit

110Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Performance of Channel Partitioning

111

1%

5%

0.9

0.95

1

1.05

1.1

1.15
No

rm
al

ize
d

Sy
st

em
 P

er
fo

rm
an

ce FRFCFS

ATLAS

TCM

MCP

IMPS

7%

11%

Better system performance than the best previous scheduler
at lower hardware cost

Averaged over 240 workloads

Combining Multiple Interference Control Techniques

n Combined interference control techniques can mitigate
interference much more than a single technique alone can
do

n The key challenge is:
q Deciding what technique to apply when
q Partitioning work appropriately between software and

hardware

112

MCP and IMPS: Pros and Cons

n Upsides:
q Keeps the memory scheduling hardware simple
q Combines multiple interference reduction techniques
q Can provide performance isolation across applications mapped

to different channels
q General idea of partitioning can be extended to smaller

granularities in the memory hierarchy: banks, subarrays, etc.

n Downsides:
q Reacting is difficult if workload changes behavior after

profiling
q Overhead of moving pages between channels restricts benefits

113

More on Memory Channel Partitioning
n Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu,

Mahmut Kandemir, and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011. Slides (pptx)

114

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx

Computer Architecture
Lecture 17: Memory Interference

and Quality of Service II

Prof. Onur Mutlu
ETH Zürich
Fall 2018

21 November 2018

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

Fundamental Interference Control Techniques

n Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

117

Fairness via Source Throttling

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-Performance

Fairness Substrate for Multi-Core Memory Systems"
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS),

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)

FST ASPLOS 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf
file:///Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/ebrahimi_asplos10_talk.pdf

Many Shared Resources

Core 0 Core 1 Core 2 Core N

Shared Cache

Memory Controller

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

... DRAM
Bank K

...

Shared Memory
Resources

Chip BoundaryOn-chip
Off-chip

119

The Problem with “Smart Resources”

n Independent interference control mechanisms in
caches, interconnect, and memory can contradict
each other

n Explicitly coordinating mechanisms for different
resources requires complex implementation

n How do we enable fair sharing of the entire
memory system by controlling interference in a
coordinated manner?

120

Source Throttling: A Fairness Substrate

n Key idea: Manage inter-thread interference at the cores
(sources), not at the shared resources

n Dynamically estimate unfairness in the memory system
n Feed back this information into a controller
n Throttle cores’ memory access rates accordingly

q Whom to throttle and by how much depends on performance
target (throughput, fairness, per-thread QoS, etc)

q E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

n Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12.

121

Fairness via Source Throttling (FST)

n Two components (interval-based)

n Run-time unfairness evaluation (in hardware)
q Dynamically estimates the unfairness (application slowdowns)

in the memory system
q Estimates which application is slowing down which other

n Dynamic request throttling (hardware or software)
q Adjusts how aggressively each core makes requests to the

shared resources
q Throttles down request rates of cores causing unfairness

n Limit miss buffers, limit injection rate

122

123

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
1-Throttle down App-interfering

(limit injection rate and parallelism)
2-Throttle up App-slowest

}

FST
Unfairness Estimate

App-slowest
App-interfering

⎪ ⎨ ⎪ ⎧⎩

Slowdown
Estimation

Time
Interval 1 Interval 2 Interval 3

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

Fairness via Source Throttling (FST) [ASPLOS’10]

Dynamic Request Throttling
n Goal: Adjust how aggressively each core makes requests to

the shared memory system

n Mechanisms:
q Miss Status Holding Register (MSHR) quota

n Controls the number of concurrent requests accessing shared
resources from each application

q Request injection frequency
n Controls how often memory requests are issued to the last level

cache from the MSHRs

124

Dynamic Request Throttling
n Throttling level assigned to each core determines both

MSHR quota and request injection rate

125

Throttling level MSHR quota Request Injection Rate

100% 128 Every cycle

50% 64 Every other cycle

25% 32 Once every 4 cycles

10% 12 Once every 10 cycles

5% 6 Once every 20 cycles

4% 5 Once every 25 cycles

3% 3 Once every 30 cycles

2% 2 Once every 50 cycles
Total # of
MSHRs: 128

System Software Support

n Different fairness objectives can be configured by
system software
q Keep maximum slowdown in check

n Estimated Max Slowdown < Target Max Slowdown
q Keep slowdown of particular applications in check to achieve a

particular performance target
n Estimated Slowdown(i) < Target Slowdown(i)

n Support for thread priorities
q Weighted Slowdown(i) =

Estimated Slowdown(i) x Weight(i)

126

Source Throttling Results: Takeaways

n Source throttling alone provides better performance than a
combination of “smart” memory scheduling and fair caching
q Decisions made at the memory scheduler and the cache

sometimes contradict each other

n Neither source throttling alone nor “smart resources” alone
provides the best performance

n Combined approaches are even more powerful
q Source throttling and resource-based interference control

127

Source Throttling: Ups and Downs
n Advantages

+ Core/request throttling is easy to implement: no need to
change the memory scheduling algorithm

+ Can be a general way of handling shared resource
contention

+ Can reduce overall load/contention in the memory system

n Disadvantages
- Requires slowdown estimations à difficult to estimate
- Thresholds can become difficult to optimize

à throughput loss due to too much throttling
à can be difficult to find an overall-good configuration

128

More on Source Throttling (I)
n Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,

"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory
Systems"
Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010.
Slides (pdf)

129

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf

More on Source Throttling (II)
n Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,

"HAT: Heterogeneous Adaptive Throttling for On-Chip
Networks"
Proceedings of the 24th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), New
York, NY, October 2012. Slides (pptx) (pdf)

130

http://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://www.sbc.org.br/sbac/2012/
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pdf

More on Source Throttling (III)
n George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu,

and Srinivasan Seshan,

"On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM Conference

(SIGCOMM), Helsinki, Finland, August 2012. Slides (pptx)

131

http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://conferences.sigcomm.org/sigcomm/2012/
http://users.ece.cmu.edu/~omutlu/pub/nychis_sigcomm12_talk.pptx

Fundamental Interference Control Techniques
n Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling
Idea: Pick threads that do not badly interfere with each

other to be scheduled together on cores sharing the memory
system

132

Application-to-Core Mapping to Reduce Interference

n Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February 2013.
Slides (pptx)

n Key ideas:
q Cluster threads to memory controllers (to reduce across chip interference)
q Isolate interference-sensitive (low-intensity) applications in a separate

cluster (to reduce interference from high-intensity applications)
q Place applications that benefit from memory bandwidth closer to the

controller

133

http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx

Multi-Core to Many-Core

Multi-Core Many-Core

134

Many-Core On-Chip Communication

135

Memory
Controller

Shared
Cache Bank$

$

Light

Heavy

Applications

Problem: Spatial Task Scheduling

Applications Cores

How to map applications to cores?
136

Challenges in Spatial Task Scheduling

Applications Cores

How to reduce destructive interference between applications?

How to reduce communication distance?

137

How to prioritize applications to improve throughput?

Application-to-Core Mapping

138

Clustering

Balancing

Isolation

Radial
Mapping

Improve Locality
Reduce Interference

Improve Bandwidth
Utilization

Reduce Interference

Improve Bandwidth
Utilization

Step 1 — Clustering

139

Inefficient data mapping to memory and caches

Memory
Controller

Step 1 — Clustering

Improved Locality

140

Reduced Interference

Cluster 0 Cluster 2

Cluster 1 Cluster 3

System Performance

0.8

0.9

1.0

1.1

1.2

1.3

MPKI500 MPKI1000 MPKI1500 MPKI2000 Avg

N
or

m
al

iz
ed

 W
ei

gh
te

d
Sp

ee
du

p
BASE BASE+CLS A2C

141

System performance improves by 17%

Network Power

142

0.0

0.2

0.4

0.6

0.8

1.0

1.2

MPKI500 MPKI1000 MPKI1500 MPKI2000 Avg

N
or

m
al

iz
ed

 N
oC

 P
ow

er

BASE BASE+CLS A2C

Average network power consumption reduces by 52%

More on App-to-Core Mapping
n Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh

Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February 2013.
Slides (pptx)

143

http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx

Interference-Aware Thread Scheduling
n An example from scheduling in compute clusters (data

centers)
n Data centers can be running virtual machines

144

Virtualized Cluster

145

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

How to dynamically
schedule VMs onto

hosts?

Distributed Resource Management
(DRM) policies

Conventional DRM Policies

146

Core0 Core1

Host

LLC

DRAM

App App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

VM

App

Memory Capacity

CPU

Based on operating-system-level metrics
e.g., CPU utilization, memory capacity
demand

Microarchitecture-level Interference

147

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App
• VMs within a host compete for:
– Shared cache capacity
– Shared memory bandwidth

Can operating-system-level metrics capture the
microarchitecture-level resource interference?

Microarchitecture Unawareness

148

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

VM
Operating-system-level metrics

CPU Utilization Memory Capacity

92% 369 MB

93% 348 MBApp

App

STREAM

gromacs

Microarchitecture-level metrics

LLC Hit Ratio Memory Bandwidth

2% 2267 MB/s

98% 1 MB/s

VM

App

Memory Capacity

CPU

Impact on Performance

149

0.0

0.2

0.4

0.6

IPC
(Harmonic

Mean)

Conventional DRM with Microarchitecture Awareness

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

App

STREAM

gromacs

VM

App

Memory Capacity

CPU SWAP

Impact on Performance

150

0.0

0.2

0.4

0.6

IPC
(Harmonic

Mean)

Conventional DRM with Microarchitecture Awareness

49%

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

App

STREAM

gromacs

VM

App

Memory Capacity

CPU

We need microarchitecture-
level interference awareness in

DRM!

A-DRM: Architecture-aware DRM
• Goal: Take into account microarchitecture-level

shared resource interference
– Shared cache capacity
– Shared memory bandwidth

• Key Idea:
– Monitor and detect microarchitecture-level shared

resource interference
– Balance microarchitecture-level resource usage across

cluster to minimize memory interference while
maximizing system performance

151

A-DRM: Architecture-aware DRM

152

OS+Hypervisor

VM

App

VM

App

A-DRM: Global Architecture –
aware Resource Manager

Profiling Engine

Architecture-aware
Interference Detector

Architecture-aware
Distributed Resource
Management (Policy)

Migration Engine

Hosts Controller

CPU/Memory
Capacity

Profiler

Architectural
Resource

•••

Architectural
Resources

More on Architecture-Aware DRM
n Hui Wang, Canturk Isci, Lavanya Subramanian, Jongmoo Choi,

Depei Qian, and Onur Mutlu,
"A-DRM: Architecture-aware Distributed Resource
Management of Virtualized Clusters"
Proceedings of the 11th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE), Istanbul,
Turkey, March 2015.
[Slides (pptx) (pdf)]

153

http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15.pdf
http://www.cercs.gatech.edu/vee15/
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pdf

Interference-Aware Thread Scheduling
n Advantages

+ Can eliminate/minimize interference by scheduling “symbiotic
applications” together (as opposed to just managing the
interference)
+ Less intrusive to hardware (less need to modify the hardware
resources)

n Disadvantages and Limitations
-- High overhead to migrate threads and data between cores and
machines
-- Does not work (well) if all threads are similar and they
interfere

154

Summary

155

Summary: Fundamental Interference Control Techniques

n Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

Best is to combine all. How would you do that?
156

Summary: Memory QoS Approaches and Techniques

n Approaches: Smart vs. dumb resources
q Smart resources: QoS-aware memory scheduling
q Dumb resources: Source throttling; channel partitioning
q Both approaches are effective in reducing interference
q No single best approach for all workloads

n Techniques: Request/thread scheduling, source throttling,
memory partitioning
q All approaches are effective in reducing interference
q Can be applied at different levels: hardware vs. software
q No single best technique for all workloads

n Combined approaches and techniques are the most powerful
q Integrated Memory Channel Partitioning and Scheduling [MICRO’11]

157MCP Micro 2011 Talk

file:///Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/subramanian_micro11_talk.pptx

Summary: Memory Interference and QoS

n QoS-unaware memory à
uncontrollable and unpredictable system

n Providing QoS awareness improves performance,
predictability, fairness, and utilization of the memory system

n Discussed many new techniques to:
q Minimize memory interference
q Provide predictable performance

n Many new research ideas needed for integrated techniques
and closing the interaction with software

158

What Did We Not Cover?

n Prefetch-aware shared resource management
n DRAM-controller co-design
n Cache interference management
n Interconnect interference management
n Write-read scheduling
n DRAM designs to reduce interference
n Interference issues in near-memory processing
n …

159

What the Future May Bring

n Simple yet powerful interference control and scheduling
mechanisms
q memory scheduling + interconnect scheduling

n Real implementations and investigations
q SoftMC infrastructure, FPGA-based implementations

n Interference and QoS in the presence of even more
heterogeneity
q PIM, accelerators, …

160

SoftMC: Open Source DRAM Infrastructure

n Hasan Hassan et al., “SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies,” HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source

github.com/CMU-SAFARI/SoftMC

161

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

SoftMC

n https://github.com/CMU-SAFARI/SoftMC

162

https://github.com/CMU-SAFARI/SoftMC

Some Other Ideas …

163

Decoupled DMA w/ Dual-Port DRAM
[PACT 2015]

164

Isolating CPU and IO Traffic by
Leveraging a Dual-Data-Port DRAM

Donghyuk Lee
Lavanya Subramanian, Rachata Ausavarungnirun,

Jongmoo Choi, Onur Mutlu

Decoupled Direct Memory Access

166

processor

Logical System Organization

main
memory

IO devices

CPU access

IO access

Main memory connects processor and IO devices
as an intermediate layer

167

processor

Physical System Implementation

main
memory

IO devices

CPU access

IO access

IO access

High Pin Cost
in Processor

High Contention
in Memory Channel

168

processor

Our Approach

main
memory

IO devices

CPU access

Enabling IO channel,
decoupled & isolated from CPU channel

IO access

IO access

169

Executive Summary
• Problem

– CPU and IO accesses contend for the shared memory channel

• Our Approach: Decoupled Direct Memory Access (DDMA)
– Design new DRAM architecture with two independent data ports

àDual-Data-Port DRAM
– Connect one port to CPU and the other port to IO devices

àDecouple CPU and IO accesses

• Application
– Communication between compute units (e.g., CPU – GPU)
– In-memory communication (e.g., bulk in-memory copy/init.)
– Memory-storage communication (e.g., page fault, IO prefetch)

• Result
– Significant performance improvement (20% in 2 ch. & 2 rank system)
– CPU pin count reduction (4.5%)

170

Outline
1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach

1. Problem

171

main
memory

CPU

DMA

graphics

network

storage

USB

IO interface
memory

controller

Memory Channel Contention
DRAM
Chip

Processor
Chip

Problem 1: Memory Channel Contention

DMA
IO interface

172

0%

20%

40%

60%

80%

100%

CORR
SY

R2K
GRAM

SC
HM

COVAR
SY

RK
FD

TD
2D

2M
M

3M
M

GEM
M

M
VT

GES
UM

M
V

BIC
G

ATA
X

3D
CONV

2D
CONV

Time Spent on CPU-GPU Communication

Benchmarks

33.5%
on average

Fr
ac

tio
n

of
 E

xe
cu

tio
n

Ti
m

e

A large fraction of the execution time
is spent on IO accesses

Problem 1: Memory Channel Contention

173

Integrating IO interface on the processor chip
leads to high area cost

Processor Pin Count
(w/o power pins)

power
memory

(2 ch)

IO interface
(10.6%)ot

he
rs

IO interface
(28.4%)

others

memory
(2 ch)

(w/ power pins)
Processor Pin Count

959 pins in total 359 pins in total

Problem 2: High Cost for IO Interfaces

174

Shared Memory Channel

• Memory channel contention for IO access
and CPU access

• High area cost for integrating IO interfaces
on processor chip

175

Outline
1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach

176

Our Approach

CPU

DMA

graphics

network

storage

USB

DRAM
Chip

main
memory

?

DMA
CTRL.

D
M

A
co

nt
ro

l

Processor
Chip

co
nt

ro
l c

ha
nn

el
Dual-Data-
Port DRAM

Port 1

Port 2

memory
controller IO interface

DMA
Chip DMA IO interface

177

Our Approach

?

CPU

graphics

network

storage

USB

DRAM
Chip

DMA
CTRL.

D
M

A
co

nt
ro

l

Processor
Chip

co
nt

ro
l c

ha
nn

el
Dual-Data-
Port DRAM

Port 1

Port 2

memory
controller

DMA
Chip DMA IO interface

IO ACCESS

Decoupled Direct Memory Access

CPU ACCESS

178

Outline
1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach

179

peripheral
logic

bank

Background: DRAM Operation

m
em

or
y

ch
an

ne
l

data channel control channel

co
nt

ro
l

po
rt

data
port

co
nt

ro
l

po
rt

data
port

bank

activateread

bankbank
READY

DRAM peripheral logic: i) controls banks, and
ii) transfers data over memory channel

memory controller at CPU

180

bank

Problem: Single Data Port

periphery

Requests are served serially
due to single data port

data channel control channel

co
nt

ro
l

po
rt

data
port

read

co
nt

ro
l

po
rt

data
port

bank
READY

bank
READY

data
port

read

Many
Banks

Single
Data Port

memory controller at CPU

181

Problem: Single Data Port

RD

DATA

RD

DATA

Control Port

Data Port

time

RD

DATA

RDControl Port

Data Port 1

time

DATAData Port 2

What about a DRAM with two data ports?

182

bank

periphery

twice the bandwidth & independent data ports
with low overhead

data channel control channel
data

port 1

bank

bank

co
nt

ro
l

po
rt

to Port 1 (upper)

to Port 2 (lower)

bank
data bus

po
rt

 s
el

ec
t s

ig
na

l

data
port 2

data channel

mux

mux

Overhead
Area: 1.6% ↑
Pins: 20 ↑

Dual-Data-Port DRAM

183

DDP-DRAM Memory System

bank

periphery

CPU channel control channel
with port selectdata

port 1

bank

bank

co
nt

ro
l

po
rt

data
port 2

IO channel

mux

mux

DDMA IO interface

memory controller at CPU

184

Three Data Transfer Modes

• CPU Access: Access through CPU channel
– DRAM read/write with CPU port selection

• IO Access: Access through IO channel
– DRAM read/write with IO port selection

• Port Bypass: Direct transfer between channels
– DRAM access with port bypass selection

185

1. CPU Access Mode

bank

periphery

CPU channel

bank

co
nt

ro
l

po
rt

data
port 2

IO channel

DDMA IO interface

control channel
with port select

mux

mux

data
port

bank
READY

memory controller at CPU

read

co
nt

ro
l

po
rt

CPU channel
data

port 1

control channel
with CPU channel

186

2. IO Access Mode

bank

periphery

CPU channel

bank

co
nt

ro
l

po
rt

IO channel

DDMA IO interface

control channel
with port select

mux

mux

data
port 1

control channel
with IO channel

memory controller at CPU

IO channel

data
port
data

port 2

bank
READY

read

co
nt

ro
l

po
rt

187

3. Port Bypass Mode

bank

periphery

CPU channel

bank

co
nt

ro
l

po
rt

IO channel

control channel
with port select

mux

mux

control channel
with port bypass

IO channel

bank

data
port

data
port

data
port 2

data
port 1

CPU channel

DDMA IO interface

memory controller at CPU

188

Outline
1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach

189

Three Applications for DDMA

• Communication b/w Compute Units
– CPU-GPU communication

• In-Memory Communication and Initialization
– Bulk page copy/initialization

• Communication b/w Memory and Storage
– Serving page fault/file read & write

190

ct
rl.

 c
ha

nn
el

D
D

M
A

ct
rl.

re
ad

w
ith

IO
 s

el
.

CP
U

 →
 G

PU

1. Compute Unit ↔ Compute Unit
CPU

DDMA
ctrl.

memory
controller

DDP-DRAM

DDMA IO interface

GPU

DDMA
ctrl.

memory
controller

DDP-DRAM

DDMA IO interface

ct
rl.

 c
ha

nn
el

D
D

M
A

ct
rl.

destination

DDMA IO interface

source Ac
k.destination

DDMA IO interface

w
rit

e
w

ith
IO

 s
el

.

Transfer data through DDMA
without interfering w/ CPU/GPU memory accesses

CPU

memory
controller

GPU

memory
controller

191

ct
rl.

 c
ha

n.
re

ad
w

ith
IO

 s
el

.
w

rit
e

w
ith

IO
 s

el
.

2. In-Memory Communication

D
D

M
A

ct
rl.

CPU

DDMA
ctrl.

memory
controller

DDP-DRAM

DDMA IO interface

source
destination

Transfer data in DRAM through DDAM
without interfering with CPU memory accesses

CPU

memory
controller

192

D
D

M
A

ct
rl.

Ac
c.

 S
to

ra
ge

Ac
k.

3. Memory ↔ Storage

ct
rl.

 c
ha

n.
w

rit
e

w
ith

IO
 s

el
.

CPU

DDMA
ctrl.

memory
controller

DDP-DRAM

DDMA IO interface StorageStorage (source)

destination

DDMA IO interface

Transfer data from storage through DDMA
without interfering with CPU memory accesses

destination

CPU

memory
controller

193

Outline
1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach

194

Evaluation Methods
• System

– Processor: 4 – 16 cores
– LLC: 16-way associative, 512KB private cache-slice/core
– Memory: 1 – 4 ranks and 1 – 4 channels

• Workloads
– Memory intensive:

SPEC CPU2006, TPC, stream (31 benchmarks)
– CPU-GPU communication intensive:

polybench (8 benchmarks)
– In-memory communication intensive:

apache, bootup, compiler, filecopy, mysql, fork,
shell, memcached (8 in total)

195

0%

5%

10%

15%

20%

25%

4-Core 8-Core 16-Core
0%

5%

10%

15%

20%

25%

4-Core 8-Core 16-Core

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t

CPU-GPU Comm.-Intensive In-Memory Comm.-Intensive

More performance improvement at higher core count
High performance improvement

Performance (2 Channel, 2 Rank)

196

Performance on Various Systems

0%

5%

10%
15%

20%

25%
30%

35%

40%

1 rank 2 rank 4 rank
0%

5%
10%

15%

20%
25%

30%

35%
40%

1 ch 2 ch 4 ch

Channel Count Rank Count

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t

Performance increases with rank count

197

0

200

400

600

800

1000

1200

1 ch 1 ch
DDMA

2 ch
0%

20%
40%
60%
80%

100%
120%
140%
160%
180%

1 ch 1 ch
DDMA

2 ch

Pe
rf

or
m

an
ce

Pr
oc

es
so

r P
in

 C
ou

nt

DDMA achieves higher performance
at lower processor pin count

959 915

1103

DDMA vs. Dual Channel

More on Decoupled DMA
n Donghyuk Lee, Lavanya Subramanian, Rachata

Ausavarungnirun, Jongmoo Choi, and Onur Mutlu,
"Decoupled Direct Memory Access: Isolating CPU and
IO Traffic by Leveraging a Dual-Data-Port DRAM"
Proceedings of the 24th International Conference on Parallel
Architectures and Compilation Techniques (PACT), San
Francisco, CA, USA, October 2015.
[Slides (pptx) (pdf)]

198

https://users.ece.cmu.edu/~omutlu/pub/decoupled-dma_pact15.pdf
https://sites.google.com/a/lbl.gov/pact2015/
https://users.ece.cmu.edu/~omutlu/pub/decoupled-dma_donghyuk_pact15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/decoupled-dma_donghyuk_pact15-talk.pdf

Predictable Performance Again:
Strong Memory Service Guarantees

199

Remember MISE?
n Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,

and Onur Mutlu,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

200

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

Extending Slowdown Estimation to Caches
n How do we extend the MISE model to include shared cache

interference?

n Answer: Application Slowdown Model

n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

201

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

Quantifying and Controlling Impact of
Interference at Shared Caches and Main Memory

Lavanya Subramanian, Vivek Seshadri,
Arnab Ghosh, Samira Khan, Onur Mutlu

202

Application Slowdown Model

Shared Cache and Memory Contention

203

Main
Memory

Shared
Cache

Capacity

CoreCore

CoreCore

Slowdown = Request Service Rate Alone

Request Service Rate Shared

MISE [HPCA’13]

Cache Capacity Contention

204

Main
Memory

Shared
Cache

Cache
Access Rate

Priority

Core

Core

Applications evict each other’s blocks
from the shared cache

Estimating Cache and Memory Slowdowns

205

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Service Rate

Memory
Service Rate

Service Rates vs. Access Rates

206

Request service and access rates
are tightly coupled

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Service Rate

Cache Access
Rate

The Application Slowdown Model

207

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Shared

Alone

 Rate Access Cache
 Rate Access Cache

Slowdown =

Cache Access
Rate

Real System Studies:
Cache Access Rate vs. Slowdown

208

1
1.2
1.4
1.6
1.8

2
2.2

1 1.2 1.4 1.6 1.8 2 2.2

Sl
ow

do
w

n

Cache Access Rate Ratio

astar
lbm
bzip2

Challenge

How to estimate alone cache access rate?

209

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Access Rate

Auxiliary
Tag Store

Priority

Auxiliary Tag Store

210

Main
Memory

Shared
Cache

Cache
Access Rate

Auxiliary
Tag Store

Priority

Core

Core

Still in auxiliary
tag storeAuxiliary

Tag StoreAuxiliary tag store tracks such contention misses

Accounting for Contention Misses

• Revisiting alone memory request service rate

Cycles serving contention misses should not
count as high priority cycles

211

 CyclesPriority High #
EpochsPriority High During Requests #

nApplicatioan of Rate ServiceRequest Alone

=

Alone Cache Access Rate Estimation

212

Cycles Contention Cache# - CyclesPriority High #
EpochsPriority High During Requests #

nApplicatioan of Rate Access Cache

Alone =

Cache Contention Cycles: Cycles spent serving contention misses

Time ServiceMemory Average
 x Misses Contention # Cycles Contention Cache =

From auxiliary tag store
when given high priority

Measured when given
high priority

Application Slowdown Model (ASM)

213

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Access Rate

Shared

Alone

 Rate Access Cache
 Rate Access Cache

Slowdown =

Previous Work on Slowdown
Estimation

• Previous work on slowdown estimation
– STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ’07]

– FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ’10]

– Per-thread Cycle Accounting [Du Bois et al., HiPEAC ’13]

• Basic Idea:

Shared

Alone

 TimeExecution
 TimeExecution

 Slowdown =

Count interference experienced by each request à Difficult

214

ASM’s estimates are much more coarse grained à Easier

Model Accuracy Results

Average error of ASM’s slowdown estimates: 10%
215

Select applications

0

20

40
60

80

100
120

140

160

ca
lc

ul
ix

po
vr

ay
to

nt
o

na
m

d
de

al
II

sj
en

g
pe

rlb
en

…
go

bm
k

xa
la

nc
b…

sp
hi

nx
3

G
em

sF
…

om
ne

tp
p

lb
m

le
sli

e3
d

so
pl

ex
m

ilc
lib

q
m

cf

N
PB

bt
N

PB
ft

N
PB

is
N

PB
ua

Av
er

ag
e

Sl
ow

do
w

n
Es

tim
at

io
n

Er
ro

r (
in

 %
)

FST PTCA ASM

Leveraging ASM’s Slowdown Estimates

• Slowdown-aware resource allocation for high
performance and fairness

• Slowdown-aware resource allocation to bound
application slowdowns

• VM migration and admission control schemes
[VEE ’15]

• Fair billing schemes in a commodity cloud

216

Cache Capacity Partitioning

217

Main
Memory

Shared
Cache

Cache
Access Rate

Core

Core

Goal: Partition the shared cache among
applications to mitigate contention

Cache Capacity Partitioning

218

Main
Memory

Core

Core

Way
2

Set 0
Set 1
Set 2
Set 3

..
Set N-1

Way
0

Way
1

Way
3

Previous partitioning schemes optimize for miss count
Problem: Not aware of performance and slowdowns

ASM-Cache: Slowdown-aware
Cache Way Partitioning

• Key Requirement: Slowdown estimates for all
possible way partitions

• Extend ASM to estimate slowdown for all
possible cache way allocations

• Key Idea: Allocate each way to the application
whose slowdown reduces the most

219

Memory Bandwidth Partitioning

220

Main
Memory

Shared
Cache

Cache
Access Rate

Core

Core

Goal: Partition the main memory bandwidth
among applications to mitigate contention

ASM-Mem: Slowdown-aware
Memory Bandwidth Partitioning

• Key Idea: Allocate high priority proportional to
an application’s slowdown

• Application i’s requests given highest priority
at the memory controller for its fraction

221

å
=

j
j

i
i Slowdown

Slowdown FractionPriority High

Coordinated Resource
Allocation Schemes

222

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache capacity-aware
bandwidth allocation

1. Employ ASM-Cache to partition cache capacity
2. Drive ASM-Mem with slowdowns from ASM-Cache

Fairness and Performance Results

223

16-core system
100 workloads

Significant fairness benefits across different channel counts

4
5
6
7
8
9

10
11

1 2

Fa
irn

es
s

(L
ow

er
 is

 b
et

te
r)

Number of Channels

0

0.05
0.1

0.15

0.2

0.25

0.3

0.35

1 2

Pe
rfo

rm
an

ce

Number of Channels

FRFCFS-NoPart
FRFCFS+UCP
TCM+UCP
PARBS+UCP
ASM-Cache-Mem

Summary

• Problem: Uncontrolled memory interference cause high
and unpredictable application slowdowns

• Goal: Quantify and control slowdowns
• Key Contribution:

– ASM: An accurate slowdown estimation model
– Average error of ASM: 10%

• Key Ideas:
– Shared cache access rate is a proxy for performance
– Cache Access Rate Alone can be estimated by minimizing memory

interference and quantifying cache interference
• Applications of Our Model

– Slowdown-aware cache and memory management to achieve
high performance, fairness and performance guarantees

• Source Code Released in January 2016
224

More on Application Slowdown Model
n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and

Onur Mutlu,

"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture

(MICRO), Waikiki, Hawaii, USA, December 2015.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster

(pptx) (pdf)]

[Source Code]

225

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

Interconnect QoS/Performance Ideas

226

Application-Aware Prioritization in NoCs
n Das et al., “Application-Aware Prioritization Mechanisms for

On-Chip Networks,” MICRO 2009.
q https://users.ece.cmu.edu/~omutlu/pub/app-aware-

noc_micro09.pdf

227

https://users.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf

Slack-Based Packet Scheduling
n Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das,

"Aergia: Exploiting Packet Latency Slack in On-Chip Networks"
Proceedings of the 37th International Symposium on Computer
Architecture (ISCA), pages 106-116, Saint-Malo, France, June
2010. Slides (pptx)

228

https://people.inf.ethz.ch/omutlu/pub/aergia_isca10.pdf
http://isca2010.inria.fr/
https://people.inf.ethz.ch/omutlu/pub/moscibroda_isca10_talk.pptx

Low-Cost QoS in On-Chip Networks (I)
n Boris Grot, Stephen W. Keckler, and Onur Mutlu,

"Preemptive Virtual Clock: A Flexible, Efficient, and Cost-
effective QOS Scheme for Networks-on-Chip"
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 268-279, New York, NY, December
2009. Slides (pdf)

229

https://people.inf.ethz.ch/omutlu/pub/pvc-qos_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/grot_micro09_talk.pdf

Low-Cost QoS in On-Chip Networks (II)
n Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,

"Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for
Scalability and Service Guarantees"
Proceedings of the 38th International Symposium on Computer
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)

230

https://people.inf.ethz.ch/omutlu/pub/kilonoc_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/grot_isca11_talk.pptx

Throttling Based Fairness in NoCs
n Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,

"HAT: Heterogeneous Adaptive Throttling for On-Chip
Networks"
Proceedings of the 24th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), New
York, NY, October 2012. Slides (pptx) (pdf)

231

http://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://www.sbc.org.br/sbac/2012/
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pdf

Scalability: Express Cube Topologies
n Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,

"Express Cube Topologies for On-Chip Interconnects"
Proceedings of the 15th International Symposium on High-
Performance Computer Architecture (HPCA), pages 163-174,
Raleigh, NC, February 2009. Slides (ppt)

232

https://people.inf.ethz.ch/omutlu/pub/mecs_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
https://people.inf.ethz.ch/omutlu/pub/grot_hpca09_talk.ppt

Scalability: Slim NoC
n Maciej Besta, Syed Minhaj Hassan, Sudhakar Yalamanchili,

Rachata Ausavarungnirun, Onur Mutlu, Torsten Hoefler,
"Slim NoC: A Low-Diameter On-Chip Network Topology
for High Energy Efficiency and Scalability"
Proceedings of the 23rd International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
[Poster (pdf)]

233

https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18.pdf
https://www.asplos2018.org/
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-poster.pdf

Bufferless Routing in NoCs
n Moscibroda and Mutlu, “A Case for Bufferless Routing in On-

Chip Networks,” ISCA 2009.
q https://users.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf

234

https://users.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf

CHIPPER: Low-Complexity Bufferless
n Chris Fallin, Chris Craik, and Onur Mutlu,

"CHIPPER: A Low-Complexity Bufferless Deflection
Router"
Proceedings of the 17th International Symposium on High-
Performance Computer Architecture (HPCA), pages 144-155,
San Antonio, TX, February 2011. Slides (pptx)
An extended version as SAFARI Technical Report, TR-SAFARI-
2010-001, Carnegie Mellon University, December 2010.

235

https://people.inf.ethz.ch/omutlu/pub/chipper_hpca11.pdf
http://hpca17.ac.upc.edu/web/
https://people.inf.ethz.ch/omutlu/pub/fallin_hpca11_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/chipper-TR-SAFARI-2010-001.pdf
http://www.ece.cmu.edu/~safari/tr.html

Minimally-Buffered Deflection Routing
n Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata

Ausavarungnirun, and Onur Mutlu,
"MinBD: Minimally-Buffered Deflection Routing for Energy-
Efficient Interconnect"
Proceedings of the 6th ACM/IEEE International Symposium on
Networks on Chip (NOCS), Lyngby, Denmark, May 2012. Slides
(pptx) (pdf)

236

https://people.inf.ethz.ch/omutlu/pub/minimally-buffered-deflection-router_nocs12.pdf
http://www2.imm.dtu.dk/projects/nocs_2012/nocs/Home.html
https://people.inf.ethz.ch/omutlu/pub/fallin_nocs12_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/fallin_nocs12_talk.pdf

“Bufferless” Hierarchical Rings
n Ausavarungnirun et al., “Design and Evaluation of Hierarchical

Rings with Deflection Routing,” SBAC-PAD 2014.
q http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-

deflection_sbacpad14.pdf

n Discusses the design and implementation of a mostly-
bufferless hierarchical ring

237

http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-deflection_sbacpad14.pdf

“Bufferless” Hierarchical Rings (II)
n Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Chang,

Greg Nazario, Reetuparna Das, Gabriel Loh, and Onur Mutlu,
"A Case for Hierarchical Rings with Deflection Routing: An
Energy-Efficient On-Chip Communication Substrate"
Parallel Computing (PARCO), to appear in 2016.
q arXiv.org version, February 2016.

238

http://dx.doi.org/10.1016/j.parco.2016.01.009
http://arxiv.org/pdf/1602.06005.pdf

Summary of Six Years of Research
n Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata

Ausavarungnirun, and Onur Mutlu,
"Bufferless and Minimally-Buffered Deflection Routing"
Invited Book Chapter in Routing Algorithms in Networks-on-Chip, pp.
241-275, Springer, 2014.

239

https://people.inf.ethz.ch/omutlu/pub/bufferless-and-minimally-buffered-deflection-routing_springer14.pdf
http://www.springer.com/engineering/circuits+&+systems/book/978-1-4614-8273-4

On-Chip vs. Off-Chip Tradeoffs
n George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu,

and Srinivasan Seshan,

"On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM

Conference (SIGCOMM), Helsinki, Finland, August 2012. Slides

(pptx)

240

https://people.inf.ethz.ch/omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://conferences.sigcomm.org/sigcomm/2012/
https://people.inf.ethz.ch/omutlu/pub/nychis_sigcomm12_talk.pptx

Slowdown Estimation in NoCs
n Xiyue Xiang, Saugata Ghose, Onur Mutlu, and Nian-Feng Tzeng,

"A Model for Application Slowdown Estimation in On-
Chip Networks and Its Use for Improving System
Fairness and Performance"
Proceedings of the 34th IEEE International Conference on
Computer Design (ICCD), Phoenix, AZ, USA, October 2016.
[Slides (pptx) (pdf)]

241

https://people.inf.ethz.ch/omutlu/pub/on-chip-network-application-slowdown-estimation_iccd16.pdf
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/on-chip-network-application-slowdown-estimation_xiyue_iccd16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/on-chip-network-application-slowdown-estimation_xiyue_iccd16-talk.pdf

Handling Multicast and Hotspot Issues
n Xiyue Xiang, Wentao Shi, Saugata Ghose, Lu Peng, Onur Mutlu,

and Nian-Feng Tzeng,
"Carpool: A Bufferless On-Chip Network Supporting
Adaptive Multicast and Hotspot Alleviation"
Proceedings of the International Conference on Supercomputing
(ICS), Chicago, IL, USA, June 2017.
[Slides (pptx) (pdf)]

242

https://people.inf.ethz.ch/omutlu/pub/carpool-bufferless-network_ics17.pdf
https://people.inf.ethz.ch/omutlu/pub/carpool-bufferless-network_ics17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/carpool-bufferless-network_ics17-talk.pdf

