
Computer Architecture
Lecture 18a: Memory Interference

and Quality of Service III

Prof. Onur Mutlu
ETH Zürich
Fall 2018

22 November 2018

Lecture Announcement
n Monday, November 26, 2018
n 16:15-17:15
n CAB G 61
n Apéro after the lecture J

n Prof. Arvind (Massachusetts Institute of Technology)

n D-INFK Distinguished Colloquium
n The Riscy Expedition

n https://www.inf.ethz.ch/news-and-
events/colloquium/event-detail.html?eventFeedId=42658

2

https://www.inf.ethz.ch/news-and-events/colloquium/event-detail.html?eventFeedId=42658

Fundamental Interference Control Techniques

n Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

3

Fairness via Source Throttling

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-Performance

Fairness Substrate for Multi-Core Memory Systems"
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS),

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)

FST ASPLOS 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf
file:///Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/ebrahimi_asplos10_talk.pdf

Many Shared Resources

Core 0 Core 1 Core 2 Core N

Shared Cache

Memory Controller

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

... DRAM
Bank K

...

Shared Memory
Resources

Chip BoundaryOn-chip
Off-chip

5

The Problem with “Smart Resources”

n Independent interference control mechanisms in
caches, interconnect, and memory can contradict
each other

n Explicitly coordinating mechanisms for different
resources requires complex implementation

n How do we enable fair sharing of the entire
memory system by controlling interference in a
coordinated manner?

6

Source Throttling: A Fairness Substrate

n Key idea: Manage inter-thread interference at the cores
(sources), not at the shared resources

n Dynamically estimate unfairness in the memory system
n Feed back this information into a controller
n Throttle cores’ memory access rates accordingly

q Whom to throttle and by how much depends on performance
target (throughput, fairness, per-thread QoS, etc)

q E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

n Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12.

7

Fairness via Source Throttling (FST)

n Two components (interval-based)

n Run-time unfairness evaluation (in hardware)
q Dynamically estimates the unfairness (application slowdowns)

in the memory system
q Estimates which application is slowing down which other

n Dynamic request throttling (hardware or software)
q Adjusts how aggressively each core makes requests to the

shared resources
q Throttles down request rates of cores causing unfairness

n Limit miss buffers, limit injection rate

8

9

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
1-Throttle down App-interfering

(limit injection rate and parallelism)
2-Throttle up App-slowest

}

FST
Unfairness Estimate

App-slowest
App-interfering

⎪ ⎨ ⎪ ⎧⎩

Slowdown
Estimation

Time
Interval 1 Interval 2 Interval 3

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

Fairness via Source Throttling (FST) [ASPLOS’10]

Dynamic Request Throttling
n Goal: Adjust how aggressively each core makes requests to

the shared memory system

n Mechanisms:
q Miss Status Holding Register (MSHR) quota

n Controls the number of concurrent requests accessing shared
resources from each application

q Request injection frequency
n Controls how often memory requests are issued to the last level

cache from the MSHRs

10

Dynamic Request Throttling
n Throttling level assigned to each core determines both

MSHR quota and request injection rate

11

Throttling level MSHR quota Request Injection Rate

100% 128 Every cycle

50% 64 Every other cycle

25% 32 Once every 4 cycles

10% 12 Once every 10 cycles

5% 6 Once every 20 cycles

4% 5 Once every 25 cycles

3% 3 Once every 30 cycles

2% 2 Once every 50 cycles
Total # of
MSHRs: 128

System Software Support

n Different fairness objectives can be configured by
system software
q Keep maximum slowdown in check

n Estimated Max Slowdown < Target Max Slowdown
q Keep slowdown of particular applications in check to achieve a

particular performance target
n Estimated Slowdown(i) < Target Slowdown(i)

n Support for thread priorities
q Weighted Slowdown(i) =

Estimated Slowdown(i) x Weight(i)

12

Source Throttling Results: Takeaways

n Source throttling alone provides better performance than a
combination of “smart” memory scheduling and fair caching
q Decisions made at the memory scheduler and the cache

sometimes contradict each other

n Neither source throttling alone nor “smart resources” alone
provides the best performance

n Combined approaches are even more powerful
q Source throttling and resource-based interference control

13

Source Throttling: Ups and Downs
n Advantages

+ Core/request throttling is easy to implement: no need to
change the memory scheduling algorithm

+ Can be a general way of handling shared resource
contention

+ Can reduce overall load/contention in the memory system

n Disadvantages
- Requires slowdown estimations à difficult to estimate
- Thresholds can become difficult to optimize

à throughput loss due to too much throttling
à can be difficult to find an overall-good configuration

14

More on Source Throttling (I)
n Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,

"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory
Systems"
Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010.
Slides (pdf)

15

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf

More on Source Throttling (II)
n Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,

"HAT: Heterogeneous Adaptive Throttling for On-Chip
Networks"
Proceedings of the 24th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), New
York, NY, October 2012. Slides (pptx) (pdf)

16

http://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://www.sbc.org.br/sbac/2012/
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pdf

More on Source Throttling (III)
n George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu,

and Srinivasan Seshan,

"On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM Conference

(SIGCOMM), Helsinki, Finland, August 2012. Slides (pptx)

17

http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://conferences.sigcomm.org/sigcomm/2012/
http://users.ece.cmu.edu/~omutlu/pub/nychis_sigcomm12_talk.pptx

Fundamental Interference Control Techniques
n Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling
Idea: Pick threads that do not badly interfere with each

other to be scheduled together on cores sharing the memory
system

18

Application-to-Core Mapping to Reduce Interference

n Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February 2013.
Slides (pptx)

n Key ideas:
q Cluster threads to memory controllers (to reduce across chip interference)
q Isolate interference-sensitive (low-intensity) applications in a separate

cluster (to reduce interference from high-intensity applications)
q Place applications that benefit from memory bandwidth closer to the

controller

19

http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx

Multi-Core to Many-Core

Multi-Core Many-Core

20

Many-Core On-Chip Communication

21

Memory
Controller

Shared
Cache Bank$

$

Light

Heavy

Applications

Problem: Spatial Task Scheduling

Applications Cores

How to map applications to cores?
22

Challenges in Spatial Task Scheduling

Applications Cores

How to reduce destructive interference between applications?

How to reduce communication distance?

23

How to prioritize applications to improve throughput?

Application-to-Core Mapping

24

Clustering

Balancing

Isolation

Radial
Mapping

Improve Locality
Reduce Interference

Improve Bandwidth
Utilization

Reduce Interference

Improve Bandwidth
Utilization

Step 1 — Clustering

25

Inefficient data mapping to memory and caches

Memory
Controller

Step 1 — Clustering

Improved Locality

26

Reduced Interference

Cluster 0 Cluster 2

Cluster 1 Cluster 3

System Performance

0.8

0.9

1.0

1.1

1.2

1.3

MPKI500 MPKI1000 MPKI1500 MPKI2000 Avg

N
or

m
al

iz
ed

 W
ei

gh
te

d
Sp

ee
du

p
BASE BASE+CLS A2C

27

System performance improves by 17%

Network Power

28

0.0

0.2

0.4

0.6

0.8

1.0

1.2

MPKI500 MPKI1000 MPKI1500 MPKI2000 Avg

N
or

m
al

iz
ed

 N
oC

 P
ow

er

BASE BASE+CLS A2C

Average network power consumption reduces by 52%

More on App-to-Core Mapping
n Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh

Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February 2013.
Slides (pptx)

29

http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx

Interference-Aware Thread Scheduling
n An example from scheduling in compute clusters (data

centers)
n Data centers can be running virtual machines

30

Virtualized Cluster

31

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

How to dynamically
schedule VMs onto

hosts?

Distributed Resource Management
(DRM) policies

Conventional DRM Policies

32

Core0 Core1

Host

LLC

DRAM

App App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

VM

App

Memory Capacity

CPU

Based on operating-system-level metrics
e.g., CPU utilization, memory capacity
demand

Microarchitecture-level Interference

33

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App
• VMs within a host compete for:
– Shared cache capacity
– Shared memory bandwidth

Can operating-system-level metrics capture the
microarchitecture-level resource interference?

Microarchitecture Unawareness

34

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

VM
Operating-system-level metrics

CPU Utilization Memory Capacity

92% 369 MB

93% 348 MBApp

App

STREAM

gromacs

Microarchitecture-level metrics

LLC Hit Ratio Memory Bandwidth

2% 2267 MB/s

98% 1 MB/s

VM

App

Memory Capacity

CPU

Impact on Performance

35

0.0

0.2

0.4

0.6

IPC
(Harmonic

Mean)

Conventional DRM with Microarchitecture Awareness

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

App

STREAM

gromacs

VM

App

Memory Capacity

CPU SWAP

Impact on Performance

36

0.0

0.2

0.4

0.6

IPC
(Harmonic

Mean)

Conventional DRM with Microarchitecture Awareness

49%

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

App

STREAM

gromacs

VM

App

Memory Capacity

CPU

We need microarchitecture-
level interference awareness in

DRM!

A-DRM: Architecture-aware DRM

• Goal: Take into account microarchitecture-level
shared resource interference
– Shared cache capacity
– Shared memory bandwidth

• Key Idea:
– Monitor and detect microarchitecture-level shared

resource interference
– Balance microarchitecture-level resource usage across

cluster to minimize memory interference while
maximizing system performance

37

A-DRM: Architecture-aware DRM

38

OS+Hypervisor

VM

App

VM

App

A-DRM: Global Architecture –
aware Resource Manager

Profiling Engine

Architecture-aware
Interference Detector

Architecture-aware
Distributed Resource
Management (Policy)

Migration Engine

Hosts Controller

CPU/Memory
Capacity

Profiler

Architectural
Resource

•••

Architectural
Resources

More on Architecture-Aware DRM
n Hui Wang, Canturk Isci, Lavanya Subramanian, Jongmoo Choi,

Depei Qian, and Onur Mutlu,
"A-DRM: Architecture-aware Distributed Resource
Management of Virtualized Clusters"
Proceedings of the 11th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE), Istanbul,
Turkey, March 2015.
[Slides (pptx) (pdf)]

39

http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15.pdf
http://www.cercs.gatech.edu/vee15/
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pdf

Interference-Aware Thread Scheduling
n Advantages

+ Can eliminate/minimize interference by scheduling “symbiotic
applications” together (as opposed to just managing the
interference)
+ Less intrusive to hardware (less need to modify the hardware
resources)

n Disadvantages and Limitations
-- High overhead to migrate threads and data between cores and
machines
-- Does not work (well) if all threads are similar and they
interfere

40

Summary

41

Summary: Fundamental Interference Control Techniques

n Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

Best is to combine all. How would you do that?
42

Summary: Memory QoS Approaches and Techniques

n Approaches: Smart vs. dumb resources
q Smart resources: QoS-aware memory scheduling
q Dumb resources: Source throttling; channel partitioning
q Both approaches are effective in reducing interference
q No single best approach for all workloads

n Techniques: Request/thread scheduling, source throttling,
memory partitioning
q All approaches are effective in reducing interference
q Can be applied at different levels: hardware vs. software
q No single best technique for all workloads

n Combined approaches and techniques are the most powerful
q Integrated Memory Channel Partitioning and Scheduling [MICRO’11]

43MCP Micro 2011 Talk

file:///Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/subramanian_micro11_talk.pptx

Summary: Memory Interference and QoS

n QoS-unaware memory à
uncontrollable and unpredictable system

n Providing QoS awareness improves performance,
predictability, fairness, and utilization of the memory system

n Discussed many new techniques to:
q Minimize memory interference
q Provide predictable performance

n Many new research ideas needed for integrated techniques
and closing the interaction with software

44

What Did We Not Cover?

n Prefetch-aware shared resource management
n DRAM-controller co-design
n Cache interference management
n Interconnect interference management
n Write-read scheduling
n DRAM designs to reduce interference
n Interference issues in near-memory processing
n …

45

What the Future May Bring

n Simple yet powerful interference control and scheduling
mechanisms
q memory scheduling + interconnect scheduling

n Real implementations and investigations
q SoftMC infrastructure, FPGA-based implementations

n Interference and QoS in the presence of even more
heterogeneity
q PIM, accelerators, …

n Automated techniques for resource management
46

SoftMC: Open Source DRAM Infrastructure

n Hasan Hassan et al., “SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies,” HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source

github.com/CMU-SAFARI/SoftMC

47

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

SoftMC

n https://github.com/CMU-SAFARI/SoftMC

48

https://github.com/CMU-SAFARI/SoftMC

Some Other Ideas …

49

Decoupled DMA w/ Dual-Port DRAM
[PACT 2015]

50

Isolating CPU and IO Traffic by
Leveraging a Dual-Data-Port DRAM

Donghyuk Lee
Lavanya Subramanian, Rachata Ausavarungnirun,

Jongmoo Choi, Onur Mutlu

Decoupled Direct Memory Access

52

processor

Logical System Organization

main
memory

IO devices

CPU access

IO access

Main memory connects processor and IO devices
as an intermediate layer

53

processor

Physical System Implementation

main
memory

IO devices

CPU access

IO access

IO access

High Pin Cost
in Processor

High Contention
in Memory Channel

54

processor

Our Approach

main
memory

IO devices

CPU access

Enabling IO channel,
decoupled & isolated from CPU channel

IO access

IO access

55

Executive Summary
• Problem

– CPU and IO accesses contend for the shared memory channel

• Our Approach: Decoupled Direct Memory Access (DDMA)
– Design new DRAM architecture with two independent data ports

àDual-Data-Port DRAM
– Connect one port to CPU and the other port to IO devices

àDecouple CPU and IO accesses

• Application
– Communication between compute units (e.g., CPU – GPU)
– In-memory communication (e.g., bulk in-memory copy/init.)
– Memory-storage communication (e.g., page fault, IO prefetch)

• Result
– Significant performance improvement (20% in 2 ch. & 2 rank system)
– CPU pin count reduction (4.5%)

56

Outline
1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach

1. Problem

Computer Architecture
Lecture 18a: Memory Interference

and Quality of Service III

Prof. Onur Mutlu
ETH Zürich
Fall 2018

22 November 2018

We did not cover the following slides in lecture.
These are for your benefit.

59

main
memory

CPU

DMA

graphics

network

storage

USB

IO interface
memory

controller

Memory Channel Contention
DRAM
Chip

Processor
Chip

Problem 1: Memory Channel Contention

DMA
IO interface

60

0%

20%

40%

60%

80%

100%

CORR
SY

R2K
GRAM

SC
HM

COVAR
SY

RK
FD

TD
2D

2M
M

3M
M

GEM
M

M
VT

GES
UM

M
V

BIC
G

ATA
X

3D
CONV

2D
CONV

Time Spent on CPU-GPU Communication

Benchmarks

33.5%
on average

Fr
ac

tio
n

of
 E

xe
cu

tio
n

Ti
m

e

A large fraction of the execution time
is spent on IO accesses

Problem 1: Memory Channel Contention

61

Integrating IO interface on the processor chip
leads to high area cost

Processor Pin Count
(w/o power pins)

power
memory

(2 ch)

IO interface
(10.6%)ot

he
rs

IO interface
(28.4%)

others

memory
(2 ch)

(w/ power pins)
Processor Pin Count

959 pins in total 359 pins in total

Problem 2: High Cost for IO Interfaces

62

Shared Memory Channel

• Memory channel contention for IO access
and CPU access

• High area cost for integrating IO interfaces
on processor chip

63

Outline
1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach

64

Our Approach

CPU

DMA

graphics

network

storage

USB

DRAM
Chip

main
memory

?

DMA
CTRL.

D
M

A
co

nt
ro

l

Processor
Chip

co
nt

ro
l c

ha
nn

el
Dual-Data-
Port DRAM

Port 1

Port 2

memory
controller IO interface

DMA
Chip DMA IO interface

65

Our Approach

?

CPU

graphics

network

storage

USB

DRAM
Chip

DMA
CTRL.

D
M

A
co

nt
ro

l

Processor
Chip

co
nt

ro
l c

ha
nn

el
Dual-Data-
Port DRAM

Port 1

Port 2

memory
controller

DMA
Chip DMA IO interface

IO ACCESS

Decoupled Direct Memory Access

CPU ACCESS

66

Outline
1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach

67

peripheral
logic

bank

Background: DRAM Operation

m
em

or
y

ch
an

ne
l

data channel control channel

co
nt

ro
l

po
rt

data
port

co
nt

ro
l

po
rt

data
port

bank

activateread

bankbank
READY

DRAM peripheral logic: i) controls banks, and
ii) transfers data over memory channel

memory controller at CPU

68

bank

Problem: Single Data Port

periphery

Requests are served serially
due to single data port

data channel control channel

co
nt

ro
l

po
rt

data
port

read

co
nt

ro
l

po
rt

data
port

bank
READY

bank
READY

data
port

read

Many
Banks

Single
Data Port

memory controller at CPU

69

Problem: Single Data Port

RD

DATA

RD

DATA

Control Port

Data Port

time

RD

DATA

RDControl Port

Data Port 1

time

DATAData Port 2

What about a DRAM with two data ports?

70

bank

periphery

twice the bandwidth & independent data ports
with low overhead

data channel control channel
data

port 1

bank

bank

co
nt

ro
l

po
rt

to Port 1 (upper)

to Port 2 (lower)

bank
data bus

po
rt

 s
el

ec
t s

ig
na

l

data
port 2

data channel

mux

mux

Overhead
Area: 1.6% ↑
Pins: 20 ↑

Dual-Data-Port DRAM

71

DDP-DRAM Memory System

bank

periphery

CPU channel control channel
with port selectdata

port 1

bank

bank

co
nt

ro
l

po
rt

data
port 2

IO channel

mux

mux

DDMA IO interface

memory controller at CPU

72

Three Data Transfer Modes

• CPU Access: Access through CPU channel
– DRAM read/write with CPU port selection

• IO Access: Access through IO channel
– DRAM read/write with IO port selection

• Port Bypass: Direct transfer between channels
– DRAM access with port bypass selection

73

1. CPU Access Mode

bank

periphery

CPU channel

bank

co
nt

ro
l

po
rt

data
port 2

IO channel

DDMA IO interface

control channel
with port select

mux

mux

data
port

bank
READY

memory controller at CPU

read

co
nt

ro
l

po
rt

CPU channel
data

port 1

control channel
with CPU channel

74

2. IO Access Mode

bank

periphery

CPU channel

bank

co
nt

ro
l

po
rt

IO channel

DDMA IO interface

control channel
with port select

mux

mux

data
port 1

control channel
with IO channel

memory controller at CPU

IO channel

data
port
data

port 2

bank
READY

read

co
nt

ro
l

po
rt

75

3. Port Bypass Mode

bank

periphery

CPU channel

bank

co
nt

ro
l

po
rt

IO channel

control channel
with port select

mux

mux

control channel
with port bypass

IO channel

bank

data
port

data
port

data
port 2

data
port 1

CPU channel

DDMA IO interface

memory controller at CPU

76

Outline
1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach

77

Three Applications for DDMA

• Communication b/w Compute Units
– CPU-GPU communication

• In-Memory Communication and Initialization
– Bulk page copy/initialization

• Communication b/w Memory and Storage
– Serving page fault/file read & write

78

ct
rl.

 c
ha

nn
el

D
D

M
A

ct
rl.

re
ad

w
ith

IO
 s

el
.

CP
U

 →
 G

PU

1. Compute Unit ↔ Compute Unit
CPU

DDMA
ctrl.

memory
controller

DDP-DRAM

DDMA IO interface

GPU

DDMA
ctrl.

memory
controller

DDP-DRAM

DDMA IO interface

ct
rl.

 c
ha

nn
el

D
D

M
A

ct
rl.

destination

DDMA IO interface

source Ac
k.destination

DDMA IO interface

w
rit

e
w

ith
IO

 s
el

.

Transfer data through DDMA
without interfering w/ CPU/GPU memory accesses

CPU

memory
controller

GPU

memory
controller

79

ct
rl.

 c
ha

n.
re

ad
w

ith
IO

 s
el

.
w

rit
e

w
ith

IO
 s

el
.

2. In-Memory Communication

D
D

M
A

ct
rl.

CPU

DDMA
ctrl.

memory
controller

DDP-DRAM

DDMA IO interface

source
destination

Transfer data in DRAM through DDAM
without interfering with CPU memory accesses

CPU

memory
controller

80

D
D

M
A

ct
rl.

Ac
c.

 S
to

ra
ge

Ac
k.

3. Memory ↔ Storage

ct
rl.

 c
ha

n.
w

rit
e

w
ith

IO
 s

el
.

CPU

DDMA
ctrl.

memory
controller

DDP-DRAM

DDMA IO interface StorageStorage (source)

destination

DDMA IO interface

Transfer data from storage through DDMA
without interfering with CPU memory accesses

destination

CPU

memory
controller

81

Outline
1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach

82

Evaluation Methods
• System

– Processor: 4 – 16 cores
– LLC: 16-way associative, 512KB private cache-slice/core
– Memory: 1 – 4 ranks and 1 – 4 channels

• Workloads
– Memory intensive:

SPEC CPU2006, TPC, stream (31 benchmarks)
– CPU-GPU communication intensive:

polybench (8 benchmarks)
– In-memory communication intensive:

apache, bootup, compiler, filecopy, mysql, fork,
shell, memcached (8 in total)

83

0%

5%

10%

15%

20%

25%

4-Core 8-Core 16-Core
0%

5%

10%

15%

20%

25%

4-Core 8-Core 16-Core

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t

CPU-GPU Comm.-Intensive In-Memory Comm.-Intensive

More performance improvement at higher core count
High performance improvement

Performance (2 Channel, 2 Rank)

84

Performance on Various Systems

0%
5%

10%
15%
20%
25%
30%
35%
40%

1 rank 2 rank 4 rank
0%
5%

10%
15%
20%
25%
30%
35%
40%

1 ch 2 ch 4 ch

Channel Count Rank Count

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t

Performance increases with rank count

85

0

200

400

600

800

1000

1200

1 ch 1 ch
DDMA

2 ch
0%

20%
40%
60%
80%

100%
120%
140%
160%
180%

1 ch 1 ch
DDMA

2 ch

Pe
rf

or
m

an
ce

Pr
oc

es
so

r P
in

 C
ou

nt

DDMA achieves higher performance
at lower processor pin count

959 915

1103

DDMA vs. Dual Channel

More on Decoupled DMA
n Donghyuk Lee, Lavanya Subramanian, Rachata

Ausavarungnirun, Jongmoo Choi, and Onur Mutlu,
"Decoupled Direct Memory Access: Isolating CPU and
IO Traffic by Leveraging a Dual-Data-Port DRAM"
Proceedings of the 24th International Conference on Parallel
Architectures and Compilation Techniques (PACT), San
Francisco, CA, USA, October 2015.
[Slides (pptx) (pdf)]

86

https://users.ece.cmu.edu/~omutlu/pub/decoupled-dma_pact15.pdf
https://sites.google.com/a/lbl.gov/pact2015/
https://users.ece.cmu.edu/~omutlu/pub/decoupled-dma_donghyuk_pact15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/decoupled-dma_donghyuk_pact15-talk.pdf

Computer Architecture
Lecture 18a: Memory Interference

and Quality of Service III

Prof. Onur Mutlu
ETH Zürich
Fall 2018

22 November 2018

Predictable Performance Again:
Strong Memory Service Guarantees

88

Remember MISE?
n Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,

and Onur Mutlu,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

89

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

Extending Slowdown Estimation to Caches
n How do we extend the MISE model to include shared cache

interference?

n Answer: Application Slowdown Model

n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

90

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

Quantifying and Controlling Impact of
Interference at Shared Caches and Main Memory

Lavanya Subramanian, Vivek Seshadri,
Arnab Ghosh, Samira Khan, Onur Mutlu

91

Application Slowdown Model

Shared Cache and Memory Contention

92

Main
Memory

Shared
Cache

Capacity

CoreCore

CoreCore

Slowdown = Request Service Rate Alone

Request Service Rate Shared

MISE [HPCA’13]

Cache Capacity Contention

93

Main
Memory

Shared
Cache

Cache
Access Rate

Priority

Core

Core

Applications evict each other’s blocks
from the shared cache

Estimating Cache and Memory Slowdowns

94

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Service Rate

Memory
Service Rate

Service Rates vs. Access Rates

95

Request service and access rates
are tightly coupled

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Service Rate

Cache Access
Rate

The Application Slowdown Model

96

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Shared

Alone

 Rate Access Cache
 Rate Access CacheSlowdown =

Cache Access
Rate

Real System Studies:
Cache Access Rate vs. Slowdown

97

1
1.2
1.4
1.6
1.8

2
2.2

1 1.2 1.4 1.6 1.8 2 2.2

Sl
ow

do
w

n

Cache Access Rate Ratio

astar
lbm
bzip2

Challenge

How to estimate alone cache access rate?

98

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Access Rate

Auxiliary
Tag Store

Priority

Auxiliary Tag Store

99

Main
Memory

Shared
Cache

Cache
Access Rate

Auxiliary
Tag Store

Priority

Core

Core

Still in auxiliary
tag storeAuxiliary

Tag StoreAuxiliary tag store tracks such contention misses

Accounting for Contention Misses

• Revisiting alone memory request service rate

Cycles serving contention misses should not
count as high priority cycles

100

 CyclesPriority High #
EpochsPriority High During Requests #

nApplicatioan of Rate ServiceRequest Alone

=

Alone Cache Access Rate Estimation

101

Cycles Contention Cache# - CyclesPriority High #
EpochsPriority High During Requests #

nApplicatioan of Rate Access Cache

Alone =

Cache Contention Cycles: Cycles spent serving contention misses

Time ServiceMemory Average
 x Misses Contention # Cycles Contention Cache =

From auxiliary tag store
when given high priority

Measured when given
high priority

Application Slowdown Model (ASM)

102

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Access Rate

Shared

Alone

 Rate Access Cache
 Rate Access CacheSlowdown =

Previous Work on Slowdown
Estimation

• Previous work on slowdown estimation
– STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ’07]

– FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ’10]

– Per-thread Cycle Accounting [Du Bois et al., HiPEAC ’13]

• Basic Idea:

Shared

Alone

 TimeExecution
 TimeExecution Slowdown =

Count interference experienced by each request à Difficult

103

ASM’s estimates are much more coarse grained à Easier

Model Accuracy Results

Average error of ASM’s slowdown estimates: 10%
104

Select applications

0

20

40

60

80

100

120

140

160

ca
lc

ul
ix

po
vr

ay
to

nt
o

na
m

d
de

al
II

sj
en

g
pe

rlb
en

…
go

bm
k

xa
la

nc
b…

sp
hi

nx
3

G
em

sF
…

om
ne

tp
p

lb
m

le
sl

ie
3d

so
pl

ex
m

ilc
lib

q
m

cf

N
PB

bt
N

PB
ft

N
PB

is
N

PB
ua

Av
er

ag
e

Sl
ow

do
w

n
Es

tim
at

io
n

Er
ro

r (
in

 %
)

FST PTCA ASM

Leveraging ASM’s Slowdown Estimates

• Slowdown-aware resource allocation for high
performance and fairness

• Slowdown-aware resource allocation to bound
application slowdowns

• VM migration and admission control schemes
[VEE ’15]

• Fair billing schemes in a commodity cloud

105

Cache Capacity Partitioning

106

Main
Memory

Shared
Cache

Cache
Access Rate

Core

Core

Goal: Partition the shared cache among
applications to mitigate contention

Cache Capacity Partitioning

107

Main
Memory

Core

Core

Way
2

Set 0
Set 1
Set 2
Set 3

..
Set N-1

Way
0

Way
1

Way
3

Previous partitioning schemes optimize for miss count
Problem: Not aware of performance and slowdowns

ASM-Cache: Slowdown-aware
Cache Way Partitioning

• Key Requirement: Slowdown estimates for all
possible way partitions

• Extend ASM to estimate slowdown for all
possible cache way allocations

• Key Idea: Allocate each way to the application
whose slowdown reduces the most

108

Memory Bandwidth Partitioning

109

Main
Memory

Shared
Cache

Cache
Access Rate

Core

Core

Goal: Partition the main memory bandwidth
among applications to mitigate contention

ASM-Mem: Slowdown-aware
Memory Bandwidth Partitioning

• Key Idea: Allocate high priority proportional to
an application’s slowdown

• Application i’s requests given highest priority
at the memory controller for its fraction

110

å
=

j
j

i
i Slowdown

Slowdown FractionPriority High

Coordinated Resource
Allocation Schemes

111

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache capacity-aware
bandwidth allocation

1. Employ ASM-Cache to partition cache capacity
2. Drive ASM-Mem with slowdowns from ASM-Cache

Fairness and Performance Results

112

16-core system
100 workloads

Significant fairness benefits across different channel counts

4
5
6
7
8
9

10
11

1 2

Fa
irn

es
s

(L
ow

er
 is

 b
et

te
r)

Number of Channels

0

0.05

0.1

0.15
0.2

0.25

0.3

0.35

1 2

Pe
rfo

rm
an

ce

Number of Channels

FRFCFS-NoPart
FRFCFS+UCP
TCM+UCP
PARBS+UCP
ASM-Cache-Mem

Summary

• Problem: Uncontrolled memory interference cause high
and unpredictable application slowdowns

• Goal: Quantify and control slowdowns
• Key Contribution:

– ASM: An accurate slowdown estimation model
– Average error of ASM: 10%

• Key Ideas:
– Shared cache access rate is a proxy for performance
– Cache Access Rate Alone can be estimated by minimizing memory

interference and quantifying cache interference
• Applications of Our Model

– Slowdown-aware cache and memory management to achieve
high performance, fairness and performance guarantees

• Source Code Released in January 2016
113

More on Application Slowdown Model
n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and

Onur Mutlu,

"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture

(MICRO), Waikiki, Hawaii, USA, December 2015.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster

(pptx) (pdf)]

[Source Code]

114

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

Interconnect QoS/Performance Ideas

115

Application-Aware Prioritization in NoCs
n Das et al., “Application-Aware Prioritization Mechanisms for

On-Chip Networks,” MICRO 2009.
q https://users.ece.cmu.edu/~omutlu/pub/app-aware-

noc_micro09.pdf

116

https://users.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf

Slack-Based Packet Scheduling
n Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das,

"Aergia: Exploiting Packet Latency Slack in On-Chip Networks"
Proceedings of the 37th International Symposium on Computer
Architecture (ISCA), pages 106-116, Saint-Malo, France, June
2010. Slides (pptx)

117

https://people.inf.ethz.ch/omutlu/pub/aergia_isca10.pdf
http://isca2010.inria.fr/
https://people.inf.ethz.ch/omutlu/pub/moscibroda_isca10_talk.pptx

Low-Cost QoS in On-Chip Networks (I)
n Boris Grot, Stephen W. Keckler, and Onur Mutlu,

"Preemptive Virtual Clock: A Flexible, Efficient, and Cost-
effective QOS Scheme for Networks-on-Chip"
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 268-279, New York, NY, December
2009. Slides (pdf)

118

https://people.inf.ethz.ch/omutlu/pub/pvc-qos_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/grot_micro09_talk.pdf

Low-Cost QoS in On-Chip Networks (II)
n Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,

"Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for
Scalability and Service Guarantees"
Proceedings of the 38th International Symposium on Computer
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)

119

https://people.inf.ethz.ch/omutlu/pub/kilonoc_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/grot_isca11_talk.pptx

Throttling Based Fairness in NoCs
n Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,

"HAT: Heterogeneous Adaptive Throttling for On-Chip
Networks"
Proceedings of the 24th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), New
York, NY, October 2012. Slides (pptx) (pdf)

120

http://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://www.sbc.org.br/sbac/2012/
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pdf

Scalability: Express Cube Topologies
n Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,

"Express Cube Topologies for On-Chip Interconnects"
Proceedings of the 15th International Symposium on High-
Performance Computer Architecture (HPCA), pages 163-174,
Raleigh, NC, February 2009. Slides (ppt)

121

https://people.inf.ethz.ch/omutlu/pub/mecs_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
https://people.inf.ethz.ch/omutlu/pub/grot_hpca09_talk.ppt

Scalability: Slim NoC
n Maciej Besta, Syed Minhaj Hassan, Sudhakar Yalamanchili,

Rachata Ausavarungnirun, Onur Mutlu, Torsten Hoefler,
"Slim NoC: A Low-Diameter On-Chip Network Topology
for High Energy Efficiency and Scalability"
Proceedings of the 23rd International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
[Poster (pdf)]

122

https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18.pdf
https://www.asplos2018.org/
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-poster.pdf

Bufferless Routing in NoCs
n Moscibroda and Mutlu, “A Case for Bufferless Routing in On-

Chip Networks,” ISCA 2009.
q https://users.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf

123

https://users.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf

CHIPPER: Low-Complexity Bufferless
n Chris Fallin, Chris Craik, and Onur Mutlu,

"CHIPPER: A Low-Complexity Bufferless Deflection
Router"
Proceedings of the 17th International Symposium on High-
Performance Computer Architecture (HPCA), pages 144-155,
San Antonio, TX, February 2011. Slides (pptx)
An extended version as SAFARI Technical Report, TR-SAFARI-
2010-001, Carnegie Mellon University, December 2010.

124

https://people.inf.ethz.ch/omutlu/pub/chipper_hpca11.pdf
http://hpca17.ac.upc.edu/web/
https://people.inf.ethz.ch/omutlu/pub/fallin_hpca11_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/chipper-TR-SAFARI-2010-001.pdf
http://www.ece.cmu.edu/~safari/tr.html

Minimally-Buffered Deflection Routing
n Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata

Ausavarungnirun, and Onur Mutlu,
"MinBD: Minimally-Buffered Deflection Routing for Energy-
Efficient Interconnect"
Proceedings of the 6th ACM/IEEE International Symposium on
Networks on Chip (NOCS), Lyngby, Denmark, May 2012. Slides
(pptx) (pdf)

125

https://people.inf.ethz.ch/omutlu/pub/minimally-buffered-deflection-router_nocs12.pdf
http://www2.imm.dtu.dk/projects/nocs_2012/nocs/Home.html
https://people.inf.ethz.ch/omutlu/pub/fallin_nocs12_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/fallin_nocs12_talk.pdf

“Bufferless” Hierarchical Rings
n Ausavarungnirun et al., “Design and Evaluation of Hierarchical

Rings with Deflection Routing,” SBAC-PAD 2014.
q http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-

deflection_sbacpad14.pdf

n Discusses the design and implementation of a mostly-
bufferless hierarchical ring

126

http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-deflection_sbacpad14.pdf

“Bufferless” Hierarchical Rings (II)
n Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Chang,

Greg Nazario, Reetuparna Das, Gabriel Loh, and Onur Mutlu,
"A Case for Hierarchical Rings with Deflection Routing: An
Energy-Efficient On-Chip Communication Substrate"
Parallel Computing (PARCO), to appear in 2016.
q arXiv.org version, February 2016.

127

http://dx.doi.org/10.1016/j.parco.2016.01.009
http://arxiv.org/pdf/1602.06005.pdf

Summary of Six Years of Research
n Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata

Ausavarungnirun, and Onur Mutlu,
"Bufferless and Minimally-Buffered Deflection Routing"
Invited Book Chapter in Routing Algorithms in Networks-on-Chip, pp.
241-275, Springer, 2014.

128

https://people.inf.ethz.ch/omutlu/pub/bufferless-and-minimally-buffered-deflection-routing_springer14.pdf
http://www.springer.com/engineering/circuits+&+systems/book/978-1-4614-8273-4

On-Chip vs. Off-Chip Tradeoffs
n George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu,

and Srinivasan Seshan,

"On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM

Conference (SIGCOMM), Helsinki, Finland, August 2012. Slides

(pptx)

129

https://people.inf.ethz.ch/omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://conferences.sigcomm.org/sigcomm/2012/
https://people.inf.ethz.ch/omutlu/pub/nychis_sigcomm12_talk.pptx

Slowdown Estimation in NoCs
n Xiyue Xiang, Saugata Ghose, Onur Mutlu, and Nian-Feng Tzeng,

"A Model for Application Slowdown Estimation in On-
Chip Networks and Its Use for Improving System
Fairness and Performance"
Proceedings of the 34th IEEE International Conference on
Computer Design (ICCD), Phoenix, AZ, USA, October 2016.
[Slides (pptx) (pdf)]

130

https://people.inf.ethz.ch/omutlu/pub/on-chip-network-application-slowdown-estimation_iccd16.pdf
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/on-chip-network-application-slowdown-estimation_xiyue_iccd16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/on-chip-network-application-slowdown-estimation_xiyue_iccd16-talk.pdf

Handling Multicast and Hotspot Issues
n Xiyue Xiang, Wentao Shi, Saugata Ghose, Lu Peng, Onur Mutlu,

and Nian-Feng Tzeng,
"Carpool: A Bufferless On-Chip Network Supporting
Adaptive Multicast and Hotspot Alleviation"
Proceedings of the International Conference on Supercomputing
(ICS), Chicago, IL, USA, June 2017.
[Slides (pptx) (pdf)]

131

https://people.inf.ethz.ch/omutlu/pub/carpool-bufferless-network_ics17.pdf
https://people.inf.ethz.ch/omutlu/pub/carpool-bufferless-network_ics17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/carpool-bufferless-network_ics17-talk.pdf

