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Fundamental Interference Control Techniques

n Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling
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Fairness via Source Throttling

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-Performance 

Fairness Substrate for Multi-Core Memory Systems"
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)

FST ASPLOS 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf
file:///Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/ebrahimi_asplos10_talk.pdf
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The Problem with “Smart Resources”

n Independent interference control mechanisms in 
caches, interconnect, and memory can contradict 
each other

n Explicitly coordinating mechanisms for different 
resources requires complex implementation

n How do we enable fair sharing of the entire 
memory system by controlling interference in a 
coordinated manner?
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Source Throttling: A Fairness Substrate

n Key idea: Manage inter-thread interference at the cores 
(sources), not at the shared resources

n Dynamically estimate unfairness in the memory system 
n Feed back this information into a controller
n Throttle cores’ memory access rates accordingly

q Whom to throttle and by how much depends on performance 
target (throughput, fairness, per-thread QoS, etc)

q E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

n Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12.
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Fairness via Source Throttling (FST)

n Two components (interval-based)

n Run-time unfairness evaluation (in hardware)
q Dynamically estimates the unfairness (application slowdowns) 

in the memory system
q Estimates which application is slowing down which other

n Dynamic request throttling (hardware or software)
q Adjusts how aggressively each core makes requests to the 

shared resources
q Throttles down request rates of cores causing unfairness

n Limit miss buffers, limit injection rate
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Dynamic Request Throttling
n Goal: Adjust how aggressively each core makes requests to 

the shared memory system 

n Mechanisms:
q Miss Status Holding Register (MSHR) quota

n Controls the number of concurrent requests accessing shared 
resources from each application

q Request injection frequency
n Controls how often memory requests are issued to the last level 

cache from the MSHRs
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Dynamic Request Throttling
n Throttling level assigned to each core determines both 

MSHR quota and request injection rate
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Throttling level MSHR quota Request Injection Rate

100% 128 Every cycle

50% 64 Every other cycle

25% 32 Once every 4 cycles

10% 12 Once every 10 cycles

5% 6 Once every 20 cycles

4% 5 Once every 25 cycles

3% 3 Once every 30 cycles

2% 2 Once every 50 cycles
Total # of
MSHRs: 128



System Software Support

n Different fairness objectives can be configured by       
system software
q Keep maximum slowdown in check

n Estimated Max Slowdown < Target Max Slowdown
q Keep slowdown of particular applications in check to achieve a 

particular performance target
n Estimated Slowdown(i) < Target Slowdown(i)

n Support for thread priorities
q Weighted Slowdown(i) = 

Estimated Slowdown(i) x Weight(i)
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Source Throttling Results: Takeaways

n Source throttling alone provides better performance than a 
combination of “smart” memory scheduling and fair caching
q Decisions made at the memory scheduler and the cache 

sometimes contradict each other

n Neither source throttling alone nor “smart resources” alone 
provides the best performance

n Combined approaches are even more powerful 
q Source throttling and resource-based interference control
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Source Throttling: Ups and Downs
n Advantages

+ Core/request throttling is easy to implement: no need to 
change the memory scheduling algorithm

+ Can be a general way of handling shared resource 
contention

+ Can reduce overall load/contention in the memory system

n Disadvantages
- Requires slowdown estimations à difficult to estimate
- Thresholds can become difficult to optimize 

à throughput loss due to too much throttling
à can be difficult to find an overall-good configuration
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More on Source Throttling (I)
n Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,

"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory 
Systems"
Proceedings of the 15th International Conference on 
Architectural Support for Programming Languages and Operating 
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010. 
Slides (pdf)
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More on Source Throttling (II)
n Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,

"HAT: Heterogeneous Adaptive Throttling for On-Chip 
Networks"
Proceedings of the 24th International Symposium on Computer 
Architecture and High Performance Computing (SBAC-PAD), New 
York, NY, October 2012. Slides (pptx) (pdf)
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More on Source Throttling (III)
n George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu, 

and Srinivasan Seshan,

"On-Chip Networks from a Networking Perspective: 
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM Conference

(SIGCOMM), Helsinki, Finland, August 2012. Slides (pptx)
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Fundamental Interference Control Techniques
n Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling
Idea: Pick threads that do not badly interfere with each 

other to be scheduled together on cores sharing the memory 
system
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Application-to-Core Mapping to Reduce Interference

n Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory 
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance 
Computer Architecture (HPCA), Shenzhen, China, February 2013. 
Slides (pptx)

n Key ideas:
q Cluster threads to memory controllers (to reduce across chip interference)
q Isolate interference-sensitive (low-intensity) applications in a separate 

cluster (to reduce interference from high-intensity applications)
q Place applications that benefit from memory bandwidth closer to the 

controller
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Multi-Core to Many-Core

Multi-Core Many-Core

20



Many-Core On-Chip Communication
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Problem: Spatial Task Scheduling

Applications Cores

How to map applications to cores?
22



Challenges in Spatial Task Scheduling

Applications Cores

How to reduce destructive interference between applications? 

How to reduce communication distance? 
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How to prioritize applications to improve throughput? 



Application-to-Core Mapping
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Step 1 — Clustering
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Step 1 — Clustering

Improved Locality
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Reduced Interference
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System Performance
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System performance improves by 17%



Network Power
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More on App-to-Core Mapping
n Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh

Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory 
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance 
Computer Architecture (HPCA), Shenzhen, China, February 2013. 
Slides (pptx)
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Interference-Aware Thread Scheduling
n An example from scheduling in compute clusters (data 

centers)
n Data centers can be running virtual machines
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Virtualized Cluster
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Conventional DRM Policies
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Microarchitecture-level Interference
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Microarchitecture Unawareness
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Impact on Performance
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Impact on Performance
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A-DRM: Architecture-aware DRM

• Goal: Take into account microarchitecture-level 
shared resource interference
– Shared cache capacity
– Shared memory bandwidth

• Key Idea: 
– Monitor and detect microarchitecture-level shared 

resource interference
– Balance microarchitecture-level resource usage across 

cluster to minimize memory interference while 
maximizing system performance
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A-DRM: Architecture-aware DRM
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More on Architecture-Aware DRM
n Hui Wang, Canturk Isci, Lavanya Subramanian, Jongmoo Choi, 

Depei Qian, and Onur Mutlu,
"A-DRM: Architecture-aware Distributed Resource 
Management of Virtualized Clusters"
Proceedings of the 11th ACM SIGPLAN/SIGOPS International 
Conference on Virtual Execution Environments (VEE), Istanbul, 
Turkey, March 2015. 
[Slides (pptx) (pdf)] 
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Interference-Aware Thread Scheduling
n Advantages

+ Can eliminate/minimize interference by scheduling “symbiotic 
applications” together (as opposed to just managing the 
interference)
+ Less intrusive to hardware (less need to modify the hardware 
resources)

n Disadvantages and Limitations
-- High overhead to migrate threads and data between cores and 
machines
-- Does not work (well) if all threads are similar and they 
interfere 
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Summary
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Summary: Fundamental Interference Control Techniques

n Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling

Best is to combine all. How would you do that?
42



Summary: Memory QoS Approaches and Techniques

n Approaches: Smart vs. dumb resources
q Smart resources: QoS-aware memory scheduling
q Dumb resources: Source throttling; channel partitioning
q Both approaches are effective in reducing interference
q No single best approach for all workloads

n Techniques: Request/thread scheduling, source throttling, 
memory partitioning
q All approaches are effective in reducing interference
q Can be applied at different levels: hardware vs. software
q No single best technique for all workloads

n Combined approaches and techniques are the most powerful
q Integrated Memory Channel Partitioning and Scheduling [MICRO’11]

43MCP Micro 2011 Talk

file:///Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/subramanian_micro11_talk.pptx


Summary: Memory Interference and QoS

n QoS-unaware memory à
uncontrollable and unpredictable system

n Providing QoS awareness improves performance, 
predictability, fairness, and utilization of the memory system

n Discussed many new techniques to:
q Minimize memory interference
q Provide predictable performance

n Many new research ideas needed for integrated techniques 
and closing the interaction with software
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What Did We Not Cover?

n Prefetch-aware shared resource management
n DRAM-controller co-design
n Cache interference management
n Interconnect interference management
n Write-read scheduling
n DRAM designs to reduce interference
n Interference issues in near-memory processing
n …
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What the Future May Bring

n Simple yet powerful interference control and scheduling 
mechanisms
q memory scheduling + interconnect scheduling

n Real implementations and investigations
q SoftMC infrastructure, FPGA-based implementations

n Interference and QoS in the presence of even more 
heterogeneity
q PIM, accelerators, …

n Automated techniques for resource management
46



SoftMC: Open Source DRAM Infrastructure

n Hasan Hassan et al., “SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies,” HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source 

github.com/CMU-SAFARI/SoftMC 
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SoftMC

n https://github.com/CMU-SAFARI/SoftMC
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Some Other Ideas … 
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Decoupled DMA w/ Dual-Port DRAM
[PACT 2015]
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Isolating CPU and IO Traffic by 
Leveraging a Dual-Data-Port DRAM

Donghyuk Lee
Lavanya Subramanian, Rachata Ausavarungnirun, 

Jongmoo Choi, Onur Mutlu

Decoupled Direct Memory Access
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Executive Summary
• Problem

– CPU and IO accesses contend for the shared memory channel

• Our Approach: Decoupled Direct Memory Access (DDMA)
– Design new DRAM architecture with two independent data ports

àDual-Data-Port DRAM
– Connect one port to CPU and the other port to IO devices

àDecouple CPU and IO accesses

• Application
– Communication between compute units (e.g., CPU – GPU)
– In-memory communication (e.g., bulk in-memory copy/init.)  
– Memory-storage communication (e.g., page fault, IO prefetch)

• Result
– Significant performance improvement (20% in 2 ch. & 2 rank system) 
– CPU pin count reduction (4.5%)
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Outline
1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach
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We did not cover the following slides in lecture. 
These are for your benefit. 
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Integrating IO interface on the processor chip     
leads to high area cost
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Shared Memory Channel

• Memory channel contention for IO access 
and CPU access

• High area cost for integrating IO interfaces 
on processor chip
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Our Approach
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Our Approach
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Outline
1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach
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Problem: Single Data Port
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Three Data Transfer Modes

• CPU Access: Access through CPU channel
– DRAM read/write with CPU port selection

• IO Access: Access through IO channel
– DRAM read/write with IO port selection

• Port Bypass: Direct transfer between channels
– DRAM access with port bypass selection
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2. IO Access Mode
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3. Port Bypass Mode
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Outline
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Three Applications for DDMA

• Communication b/w Compute Units
– CPU-GPU communication

• In-Memory Communication and Initialization
– Bulk page copy/initialization

• Communication b/w Memory and Storage
– Serving page fault/file read & write
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Outline
1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach
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Evaluation Methods
• System

– Processor: 4 – 16 cores
– LLC: 16-way associative, 512KB private cache-slice/core
– Memory: 1 – 4 ranks and 1 – 4 channels

• Workloads
– Memory intensive:                                                           

SPEC CPU2006, TPC, stream (31 benchmarks)
– CPU-GPU communication intensive:                                                                                

polybench (8 benchmarks)
– In-memory communication intensive:                           

apache, bootup, compiler, filecopy, mysql, fork, 
shell, memcached (8 in total)
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Performance on Various Systems
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More on Decoupled DMA
n Donghyuk Lee, Lavanya Subramanian, Rachata

Ausavarungnirun, Jongmoo Choi, and Onur Mutlu,
"Decoupled Direct Memory Access: Isolating CPU and 
IO Traffic by Leveraging a Dual-Data-Port DRAM"
Proceedings of the 24th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), San 
Francisco, CA, USA, October 2015. 
[Slides (pptx) (pdf)] 
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Predictable Performance Again: 
Strong Memory Service Guarantees
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Remember MISE?
n Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, 

and Onur Mutlu,
"MISE: Providing Performance Predictability and 
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx


Extending Slowdown Estimation to Caches
n How do we extend the MISE model to include shared cache 

interference?

n Answer: Application Slowdown Model

n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and 
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling 
the Impact of Inter-Application Interference at Shared Caches 
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 
(pptx) (pdf)] 
[Source Code]
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https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim


Quantifying and Controlling Impact of 
Interference at Shared Caches and Main Memory

Lavanya Subramanian, Vivek Seshadri, 
Arnab Ghosh, Samira Khan, Onur Mutlu
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Application Slowdown Model



Shared Cache and Memory Contention
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Cache Capacity Contention
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Estimating Cache and Memory Slowdowns
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Service Rates vs. Access Rates
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Request service and access rates 
are tightly coupled 
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The Application Slowdown Model

96

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main 
Memory

Shared 
Cache

Shared

Alone

 Rate Access Cache
 Rate Access CacheSlowdown =

Cache Access 
Rate



Real System Studies:
Cache Access Rate vs. Slowdown 
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Challenge

How to estimate alone cache access rate?
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Auxiliary Tag Store
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Accounting for Contention Misses

• Revisiting alone memory request service rate

Cycles serving contention misses should not 
count as high priority cycles

100

 CyclesPriority High  #
EpochsPriority High  During Requests #

nApplicatioan  of Rate ServiceRequest  Alone
           

=



Alone Cache Access Rate Estimation
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Cycles Contention Cache# - CyclesPriority High  #
EpochsPriority High  During Requests #

nApplicatioan  of  Rate Access Cache                  
           

Alone =

Cache Contention Cycles: Cycles spent serving contention misses

Time ServiceMemory  Average                                            
 x Misses Contention #  Cycles Contention Cache =

From auxiliary tag store
when given high priority

Measured when given 
high priority



Application Slowdown Model (ASM)
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Previous Work on Slowdown 
Estimation

• Previous work on slowdown estimation
– STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ’07] 

– FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ’10]

– Per-thread Cycle Accounting [Du Bois et al., HiPEAC ’13]

• Basic Idea:

Shared

Alone

 TimeExecution 
 TimeExecution  Slowdown =

Count interference experienced by each request à Difficult
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ASM’s estimates are much more coarse grained à Easier



Model Accuracy Results

Average error of ASM’s slowdown estimates: 10% 
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Leveraging ASM’s Slowdown Estimates

• Slowdown-aware resource allocation for high 
performance and fairness

• Slowdown-aware resource allocation to bound 
application slowdowns

• VM migration and admission control schemes 
[VEE ’15]

• Fair billing schemes in a commodity cloud
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Cache Capacity Partitioning
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Cache Capacity Partitioning
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ASM-Cache: Slowdown-aware 
Cache Way Partitioning

• Key Requirement: Slowdown estimates for all 
possible way partitions

• Extend ASM to estimate slowdown for all 
possible cache way allocations

• Key Idea: Allocate each way to the application 
whose slowdown reduces the most
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Memory Bandwidth Partitioning
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ASM-Mem: Slowdown-aware 
Memory Bandwidth Partitioning

• Key Idea: Allocate high priority proportional to 
an application’s slowdown

• Application i’s requests given highest priority 
at the memory controller for its fraction
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Coordinated Resource 
Allocation Schemes
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Fairness and Performance Results
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Summary

• Problem: Uncontrolled memory interference cause high 
and unpredictable application slowdowns

• Goal: Quantify and control slowdowns
• Key Contribution:

– ASM: An accurate slowdown estimation model
– Average error of ASM: 10%

• Key Ideas:
– Shared cache access rate is a proxy for performance
– Cache Access Rate Alone can be estimated by minimizing memory 

interference and quantifying cache interference
• Applications of Our Model

– Slowdown-aware cache and memory management to achieve 
high performance, fairness and performance guarantees

• Source Code Released in January 2016
113



More on Application Slowdown Model
n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and 

Onur Mutlu,

"The Application Slowdown Model: Quantifying and Controlling 
the Impact of Inter-Application Interference at Shared Caches 
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture

(MICRO), Waikiki, Hawaii, USA, December 2015. 

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 

(pptx) (pdf)] 

[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim


Interconnect QoS/Performance Ideas
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Application-Aware Prioritization in NoCs
n Das et al., “Application-Aware Prioritization Mechanisms for 

On-Chip Networks,” MICRO 2009.
q https://users.ece.cmu.edu/~omutlu/pub/app-aware-

noc_micro09.pdf
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https://users.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf


Slack-Based Packet Scheduling
n Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das,

"Aergia: Exploiting Packet Latency Slack in On-Chip Networks"
Proceedings of the 37th International Symposium on Computer 
Architecture (ISCA), pages 106-116, Saint-Malo, France, June 
2010. Slides (pptx)
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https://people.inf.ethz.ch/omutlu/pub/aergia_isca10.pdf
http://isca2010.inria.fr/
https://people.inf.ethz.ch/omutlu/pub/moscibroda_isca10_talk.pptx


Low-Cost QoS in On-Chip Networks (I)
n Boris Grot, Stephen W. Keckler, and Onur Mutlu,

"Preemptive Virtual Clock: A Flexible, Efficient, and Cost-
effective QOS Scheme for Networks-on-Chip"
Proceedings of the 42nd International Symposium on 
Microarchitecture (MICRO), pages 268-279, New York, NY, December 
2009. Slides (pdf)
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https://people.inf.ethz.ch/omutlu/pub/pvc-qos_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/grot_micro09_talk.pdf


Low-Cost QoS in On-Chip Networks (II)
n Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,

"Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for 
Scalability and Service Guarantees"
Proceedings of the 38th International Symposium on Computer 
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)
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https://people.inf.ethz.ch/omutlu/pub/kilonoc_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/grot_isca11_talk.pptx


Throttling Based Fairness in NoCs
n Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,

"HAT: Heterogeneous Adaptive Throttling for On-Chip 
Networks"
Proceedings of the 24th International Symposium on Computer 
Architecture and High Performance Computing (SBAC-PAD), New 
York, NY, October 2012. Slides (pptx) (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://www.sbc.org.br/sbac/2012/
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pdf


Scalability: Express Cube Topologies
n Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,

"Express Cube Topologies for On-Chip Interconnects"
Proceedings of the 15th International Symposium on High-
Performance Computer Architecture (HPCA), pages 163-174, 
Raleigh, NC, February 2009. Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/mecs_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
https://people.inf.ethz.ch/omutlu/pub/grot_hpca09_talk.ppt


Scalability: Slim NoC
n Maciej Besta, Syed Minhaj Hassan, Sudhakar Yalamanchili, 

Rachata Ausavarungnirun, Onur Mutlu, Torsten Hoefler,
"Slim NoC: A Low-Diameter On-Chip Network Topology 
for High Energy Efficiency and Scalability"
Proceedings of the 23rd International Conference on 
Architectural Support for Programming Languages and Operating 
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] 
[Poster (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18.pdf
https://www.asplos2018.org/
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-poster.pdf


Bufferless Routing in NoCs
n Moscibroda and Mutlu, “A Case for Bufferless Routing in On-

Chip Networks,” ISCA 2009.
q https://users.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf
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https://users.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf


CHIPPER: Low-Complexity Bufferless
n Chris Fallin, Chris Craik, and Onur Mutlu,

"CHIPPER: A Low-Complexity Bufferless Deflection 
Router"
Proceedings of the 17th International Symposium on High-
Performance Computer Architecture (HPCA), pages 144-155, 
San Antonio, TX, February 2011. Slides (pptx)
An extended version as SAFARI Technical Report, TR-SAFARI-
2010-001, Carnegie Mellon University, December 2010.
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https://people.inf.ethz.ch/omutlu/pub/chipper_hpca11.pdf
http://hpca17.ac.upc.edu/web/
https://people.inf.ethz.ch/omutlu/pub/fallin_hpca11_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/chipper-TR-SAFARI-2010-001.pdf
http://www.ece.cmu.edu/~safari/tr.html


Minimally-Buffered Deflection Routing
n Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata

Ausavarungnirun, and Onur Mutlu,
"MinBD: Minimally-Buffered Deflection Routing for Energy-
Efficient Interconnect"
Proceedings of the 6th ACM/IEEE International Symposium on 
Networks on Chip (NOCS), Lyngby, Denmark, May 2012. Slides 
(pptx) (pdf)
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https://people.inf.ethz.ch/omutlu/pub/minimally-buffered-deflection-router_nocs12.pdf
http://www2.imm.dtu.dk/projects/nocs_2012/nocs/Home.html
https://people.inf.ethz.ch/omutlu/pub/fallin_nocs12_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/fallin_nocs12_talk.pdf


“Bufferless” Hierarchical Rings
n Ausavarungnirun et al., “Design and Evaluation of Hierarchical 

Rings with Deflection Routing,” SBAC-PAD 2014.
q http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-

deflection_sbacpad14.pdf

n Discusses the design and implementation of a mostly-
bufferless hierarchical ring
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http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-deflection_sbacpad14.pdf


“Bufferless” Hierarchical Rings (II)
n Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Chang, 

Greg Nazario, Reetuparna Das, Gabriel Loh, and Onur Mutlu,
"A Case for Hierarchical Rings with Deflection Routing: An 
Energy-Efficient On-Chip Communication Substrate"
Parallel Computing (PARCO), to appear in 2016.
q arXiv.org version, February 2016.

127

http://dx.doi.org/10.1016/j.parco.2016.01.009
http://arxiv.org/pdf/1602.06005.pdf


Summary of Six Years of Research
n Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata

Ausavarungnirun, and Onur Mutlu,
"Bufferless and Minimally-Buffered Deflection Routing"
Invited Book Chapter in Routing Algorithms in Networks-on-Chip, pp. 
241-275, Springer, 2014.
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https://people.inf.ethz.ch/omutlu/pub/bufferless-and-minimally-buffered-deflection-routing_springer14.pdf
http://www.springer.com/engineering/circuits+&+systems/book/978-1-4614-8273-4


On-Chip vs. Off-Chip Tradeoffs
n George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu, 

and Srinivasan Seshan,

"On-Chip Networks from a Networking Perspective: 
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM 

Conference (SIGCOMM), Helsinki, Finland, August 2012. Slides 

(pptx)
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https://people.inf.ethz.ch/omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://conferences.sigcomm.org/sigcomm/2012/
https://people.inf.ethz.ch/omutlu/pub/nychis_sigcomm12_talk.pptx


Slowdown Estimation in NoCs
n Xiyue Xiang, Saugata Ghose, Onur Mutlu, and Nian-Feng Tzeng,

"A Model for Application Slowdown Estimation in On-
Chip Networks and Its Use for Improving System 
Fairness and Performance"
Proceedings of the 34th IEEE International Conference on 
Computer Design (ICCD), Phoenix, AZ, USA, October 2016.
[Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/on-chip-network-application-slowdown-estimation_iccd16.pdf
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/on-chip-network-application-slowdown-estimation_xiyue_iccd16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/on-chip-network-application-slowdown-estimation_xiyue_iccd16-talk.pdf


Handling Multicast and Hotspot Issues
n Xiyue Xiang, Wentao Shi, Saugata Ghose, Lu Peng, Onur Mutlu, 

and Nian-Feng Tzeng,
"Carpool: A Bufferless On-Chip Network Supporting 
Adaptive Multicast and Hotspot Alleviation"
Proceedings of the International Conference on Supercomputing 
(ICS), Chicago, IL, USA, June 2017.
[Slides (pptx) (pdf)]
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