
Prof. Onur Mutlu
ETH Zürich
Fall 2018

28 November 2018

Computer Architecture
Lecture 19a:

Multi-Core Cache Management II

Efficient Cache Utilization: Examples
n Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA

2005.

n Qureshi et al., “Adaptive Insertion Policies for High Performance
Caching,” ISCA 2007.

n Seshadri et al., �The Evicted-Address Filter: A Unified Mechanism to
Address both Cache Pollution and Thrashing,� PACT 2012.

n Pekhimenko et al., �Base-Delta-Immediate Compression: Practical
Data Compression for On-Chip Caches,� PACT 2012.

2

Controlled Shared Caching

3

Hardware-Based Cache
Partitioning

4

Software-Based Shared Cache
Partitioning

5

Private/Shared Caching

6

Private/Shared Caching
n Goal: Achieve the benefits of private caches (low latency,

performance isolation) while sharing cache capacity across
cores

n Example: Adaptive spill/receive caching

n Idea: Start with a private cache design (for performance
isolation), but dynamically steal space from other cores that
do not need all their private caches
q Some caches can spill their data to other cores� caches

dynamically

n Qureshi, “Adaptive Spill-Receive for Robust High-
Performance Caching in CMPs,” HPCA 2009.

7

Revisiting Private Caches on Multi-Core

Private caches avoid the need for shared interconnect
++ fast latency, tiled design, performance isolation

Core A
I$ D$

CACHE A

Core B
I$ D$

CACHE B

Core C
I$ D$

CACHE C

Core D
I$ D$

CACHE D
Memory

Problem: When one core needs more cache and other core
has spare cache, private-cache based systems cannot share capacity

Cache Line Spilling – Cooperative Caching

Spill evicted line from one cache to neighbor cache

- Co-operative caching (CC) [Chang+ ISCA�06]

Problem with CC:
1. Performance depends on the parameter (spill probability)
2. All caches spill as well as receive è Limited improvement

Cache A Cache B Cache C Cache D

Spill

Goal: Robust High-Performance Capacity Sharing with Negligible Overhead

Chang and Sohi, “Cooperative Caching for Chip Multiprocessors,” ISCA 2006.

Spill-Receive Architecture

Each Cache is either a Spiller or Receiver but not both
- Lines from spiller cache are spilled to one of the receivers
- Evicted lines from receiver cache are discarded

What is the best N-bit binary string that maximizes the performance of Spill
Receive Architecture è Dynamic Spill Receive (DSR)

Cache A Cache B Cache C Cache D

Spill

S/R =1
(Spiller cache)

S/R =0
(Receiver cache)

S/R =1
(Spiller cache)

S/R =0
(Receiver cache)

Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in CMPs,” HPCA 2009.

11

Spiller-sets

Follower Sets

Receiver-sets

Dynamic Spill-Receive via �Set Dueling�

Divide the cache in three:
– Spiller sets
– Receiver sets
– Follower sets (winner of spiller,

receiver)

n-bit PSEL counter
misses to spiller-sets: PSEL--
misses to receiver-set: PSEL++

MSB of PSEL decides policy for
Follower sets:
– MSB = 0, Use spill
– MSB = 1, Use receive

PSEL
-

miss

+
miss

MSB = 0?
YES No

Use Recv Use spill

monitor è choose è apply
(using a single counter)

12

Dynamic Spill-Receive Architecture

Cache A Cache B Cache C Cache D
Set X

Set Y

AlwaysSpill

AlwaysRecv

-

+

Miss in Set X
in any cache
Miss in Set Y
in any cache

PSEL B PSEL C PSEL DPSEL A

Decides policy for all sets of Cache A (except X and Y)

Each cache learns whether it should act as a spiller or receiver

13

Experimental Setup

q Baseline Study:
n 4-core CMP with in-order cores
n Private Cache Hierarchy: 16KB L1, 1MB L2
n 10 cycle latency for local hits, 40 cycles for remote hits

q Benchmarks:
n 6 benchmarks that have extra cache: �Givers� (G)
n 6 benchmarks that benefit from more cache: �Takers� (T)
n All 4-thread combinations of 12 benchmarks: 495 total

Five types of workloads: G4T0 G3T1 G2T2 G1T3 G0T4

14

Results for Weighted Speedup

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Gmean-G4T0 Gmean-G3T1 Gmean-G2T2 Gmean-G1T3 Gmean-G0T4 Avg (All 495)

W
ei
gh

te
d
 S

pe
ed

up

Shared (LRU)
Baseline(NoSpill)
DSR
CC(Best)

On average, DSR improves weighted speedup by 13%

Distributed Caches

15

Caching for Parallel Applications

16

core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

Data placement determines performance
Goal: place data on chip close to where they are used

cache
slice

Handling Shared Data in Private Caches
n Shared data and locks ping-pong between processors if

caches are private
-- Increases latency to fetch shared data/locks
-- Reduces cache efficiency (many invalid blocks)
-- Scalability problem: maintaining coherence across a large

number of private caches is costly

n How to do better?
q Idea: Store shared data and locks only in one special core’s

cache. Divert all critical section execution to that core/cache.
n Essentially, a specialized core for processing critical sections
n Suleman et al., “Accelerating Critical Section Execution with

Asymmetric Multi-Core Architectures,” ASPLOS 2009.

17

Non-Uniform Cache Access
n Problem: Large caches take a long time to access
n Wire delay

q Closeby blocks can be accessed faster, but furthest blocks determine
the worst-case access time

n Idea: Variable latency access time in a single cache
n Partition cache into pieces

q Each piece has different latency
q Which piece does an address map to?

n Static: based on bits in address
n Dynamic: any address can map to any piece

q How to locate an address?
q Replacement and placement policies?

n Kim et al., “An adaptive, non-uniform cache structure for wire-delay
dominated on-chip caches,” ASPLOS 2002.

18

Multi-Core Cache Efficiency: Bandwidth Filters

n Caches act as a filter that reduce memory bandwidth
requirement
q Cache hit: No need to access memory
q This is in addition to the latency reduction benefit of caching
q GPUs use caches to reduce memory BW requirements

n Efficient utilization of cache space becomes more important
with multi-core
q Memory bandwidth is more valuable

n Pin count not increasing as fast as # of transistors
q 10%/year vs. 2x every 2 years

q More cores put more pressure on the memory bandwidth

n How to make the bandwidth filtering effect of caches better?
19

Efficient Cache Utilization

20

Efficient Cache Utilization: Examples
n Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA

2005.

n Qureshi et al., “Adaptive Insertion Policies for High Performance
Caching,” ISCA 2007.

n Seshadri et al., �The Evicted-Address Filter: A Unified Mechanism to
Address both Cache Pollution and Thrashing,� PACT 2012.

n Pekhimenko et al., �Base-Delta-Immediate Compression: Practical
Data Compression for On-Chip Caches,� PACT 2012.

21

Cache Compression

22

Motivation for Cache Compression
Significant redundancy in data:

23

0x00000000

How can we exploit this redundancy?
–Cache compression helps
–Provides effect of a larger cache without

making it physically larger

0x0000000B 0x00000003 0x00000004 …

Background on Cache Compression

• Key requirements:
– Fast (low decompression latency)
– Simple (avoid complex hardware changes)
– Effective (good compression ratio)

24

CPU
L2

Cache
UncompressedCompressedDecompressionUncompressed

L1
Cache

Hit

Summary of Major Works

25

Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero ü ü û

Summary of Major Works

26

Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero ü ü û
Frequent Value û û ü

Summary of Major Works

27

Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero ü ü û
Frequent Value û û ü
Frequent Pattern û û/ü ü

Summary of Major Works

28

Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero ü ü û
Frequent Value û û ü
Frequent Pattern û û/ü ü
BΔI ü ü ü

Base-Delta-Immediate
Cache Compression

Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Philip B. Gibbons,
Michael A. Kozuch, and Todd C. Mowry,

"Base-Delta-Immediate Compression: Practical Data Compression
for On-Chip Caches"

Proceedings of the 21st ACM International Conference on Parallel
Architectures and Compilation Techniques (PACT), Minneapolis, MN,

September 2012. Slides (pptx)
29

http://users.ece.cmu.edu/~omutlu/pub/bdi-compression_pact12.pdf
http://www.pactconf.org/
http://users.ece.cmu.edu/~omutlu/pub/pekhimenko_pact12_talk.pptx

Executive Summary
• Off-chip memory latency is high
– Large caches can help, but at significant cost

• Compressing data in cache enables larger cache at low
cost

• Problem: Decompression is on the execution critical path
• Goal: Design a new compression scheme that has

1. low decompression latency, 2. low cost, 3. high compression ratio
• Observation: Many cache lines have low dynamic range

data
• Key Idea: Encode cachelines as a base + multiple differences
• Solution: Base-Delta-Immediate compression with low

decompression latency and high compression ratio
– Outperforms three state-of-the-art compression mechanisms

30

Key Data Patterns in Real Applications

31

0x00000000 0x00000000 0x00000000 0x00000000 …

0x000000FF 0x000000FF 0x000000FF 0x000000FF …

0x00000000 0x0000000B 0x00000003 0x00000004 …

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 …

Zero Values: initialization, sparse matrices, NULL pointers

Repeated Values: common initial values, adjacent pixels

Narrow Values: small values stored in a big data type

Other Patterns: pointers to the same memory region

How Common Are These Patterns?

0%

20%

40%

60%

80%

100%

 l
ib

qu
an

tu
m

 l
bm

 m
cf

 t
pc

h1
7

 s
je

ng
 o

m
ne

tp
p

 t
pc

h2
 s

ph
in

x3
 x

al
an

cb
m

k
 b

zip
2

 t
pc

h6
 l

es
lie

3d
 a

pa
ch

e
 g

ro
m

ac
s

 a
st

ar
 g

ob
m

k
 s

op
le

x
 g

cc
 h

m
m

er
 w

rf
 h

26
4r

ef
 z

eu
sm

p
 c

ac
tu

sA
DM

 G
em

sF
DT

D

Av
er

ag
e

Ca
ch

e
Co

ve
ra

ge
 (%

)

Zero
Repeated Values
Other Patterns

32

SPEC2006, databases, web workloads, 2MB L2 cache
“Other Patterns” include Narrow Values

43% of the cache lines belong to key patterns

Key Data Patterns in Real Applications

33

0x00000000 0x00000000 0x00000000 0x00000000 …

0x000000FF 0x000000FF 0x000000FF 0x000000FF …

0x00000000 0x0000000B 0x00000003 0x00000004 …

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 …

Zero Values: initialization, sparse matrices, NULL pointers

Repeated Values: common initial values, adjacent pixels

Narrow Values: small values stored in a big data type

Other Patterns: pointers to the same memory region

Low Dynamic Range:

Differences between values are significantly
smaller than the values themselves

32-byte Uncompressed Cache Line

Key Idea: Base+Delta (B+Δ) Encoding

34

0xC04039C0 0xC04039C8 0xC04039D0 … 0xC04039F8

4 bytes

0xC04039C0
Base

0x00

1 byte

0x08

1 byte

0x10

1 byte

… 0x38 12-byte
Compressed Cache Line

20 bytes savedü Fast Decompression:
vector addition

ü Simple Hardware:
arithmetic and comparison

ü Effective: good compression ratio

Can We Do Better?

• Uncompressible cache line (with a single base):

• Key idea:
Use more bases, e.g., two instead of one

• Pro:

– More cache lines can be compressed

• Cons:

– Unclear how to find these bases efficiently

– Higher overhead (due to additional bases)

35

0x00000000 0x09A40178 0x0000000B 0x09A4A838 …

B+Δ with Multiple Arbitrary Bases

36

1

1.2

1.4

1.6

1.8

2

2.2

GeoMean

Co
m

pr
es

sio
n

Ra
tio

1 2 3 4 8 10 16

ü 2 bases – the best option based on evaluations

How to Find Two Bases Efficiently?
1. First base - first element in the cache line

2. Second base - implicit base of 0

Advantages over 2 arbitrary bases:
– Better compression ratio
– Simpler compression logic

37

ü Base+Delta part

ü Immediate part

Base-Delta-Immediate (BΔI) Compression

B+Δ (with two arbitrary bases) vs. BΔI

38

1

1.2

1.4

1.6

1.8

2

2.2

lb

m

w

rf

h

m
m

e
r

s
p

h
in

x
3

tp

c
h

1
7

li
b

q
u

a
n

tu
m

le

s
li

e
3

d

g

ro
m

a
c
s

s
je

n
g

m

c
f

h

2
6

4
re

f

tp

c
h

2

o

m
n

e
tp

p

a

p
a

c
h

e

b

z
ip

2

x
a

la
n

c
b

m
k

a

s
ta

r

tp

c
h

6

c
a
c
tu

s
A

D
M

g

c
c

s
o

p
le

x

g

o
b

m
k

z
e

u
s
m

p

G

e
m

s
F
D

T
D

G
e

o
M

e
a

nCo
m

pr
es

sio
n

Ra
tio

B+Δ (2 bases) BΔI

Average compression ratio is close, but BΔI is simpler

BΔI Cache Compression Implementation

• Decompressor Design
– Low latency

• Compressor Design
– Low cost and complexity

• BΔI Cache Organization
– Modest complexity

39

Δ0B0

BΔI Decompressor Design

40

Δ1 Δ2 Δ3

Compressed Cache Line

V0 V1 V2 V3

+ +

Uncompressed Cache Line

+ +

B0 Δ0

B0 B0 B0 B0

Δ1 Δ2 Δ3

V0 V1 V2 V3

Vector addition

BΔI Compressor Design

41

32-byte Uncompressed Cache Line

8-byte B0
1-byte Δ

CU

8-byte B0
2-byte Δ

CU

8-byte B0
4-byte Δ

CU

4-byte B0
1-byte Δ

CU

4-byte B0
2-byte Δ

CU

2-byte B0
1-byte Δ

CU

Zero
CU

Rep.
Values

CU

Compression Selection Logic (based on compr. size)

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

Compression Flag
& Compressed

Cache Line

CFlag &
CCL

Compressed Cache Line

BΔI Compression Unit: 8-byte B0 1-byte Δ

42

32-byte Uncompressed Cache Line

V0 V1 V2 V3

8 bytes

- - - -

B0=
V0

V0 B0 B0 B0 B0

V0 V1 V2 V3

Δ0 Δ1 Δ2 Δ3

Within 1-byte
range?

Within 1-byte
range?

Within 1-byte
range?

Within 1-byte
range?

Is every element within 1-byte range?

Δ0B0 Δ1 Δ2 Δ3B0 Δ0 Δ1 Δ2 Δ3

Yes No

BΔI Cache Organization

43

Tag0 Tag1

… …

… …

Tag Storage:
Set0

Set1

Way0 Way1

Data0

…

…

Set0

Set1

Way0 Way1

…

Data1

…

32 bytesData Storage:
Conventional 2-way cache with 32-byte cache lines

BΔI: 4-way cache with 8-byte segmented data

Tag0 Tag1

… …

… …

Tag Storage:

Way0 Way1 Way2 Way3

… …

Tag2 Tag3

… …

Set0

Set1

üTwice as many tags

üC - Compr. encoding bitsC

Set0

Set1

… … … … … … … …

S0S0 S1 S2 S3 S4 S5 S6 S7

… … … … … … … …

8 bytes

üTags map to multiple adjacent segments2.3% overhead for 2 MB cache

Qualitative Comparison with Prior Work
• Zero-based designs
– ZCA [Dusser+, ICS’09]: zero-content augmented cache
– ZVC [Islam+, PACT’09]: zero-value cancelling
– Limited applicability (only zero values)

• FVC [Yang+, MICRO’00]: frequent value compression
– High decompression latency and complexity

• Pattern-based compression designs
– FPC [Alameldeen+, ISCA’04]: frequent pattern compression

• High decompression latency (5 cycles) and complexity
– C-pack [Chen+, T-VLSI Systems’10]: practical implementation of

FPC-like algorithm
• High decompression latency (8 cycles)

44

Cache Compression Ratios

BΔI achieves the highest compression ratio

45

1
1.2
1.4
1.6
1.8

2
2.2

 l
bm w

rf
 h

m
m

er
 s

ph
in

x3
 t

pc
h1

7
 l

ib
qu

an
tu

m
 l

es
lie

3d
 g

ro
m

ac
s

 s
je

ng
 m

cf
 h

26
4r

ef
 t

pc
h2

 o
m

ne
tp

p
 a

pa
ch

e
 b

zip
2

 x
al

an
cb

m
k

 a
st

ar
 t

pc
h6

 c
ac

tu
sA

DM g
cc

 s
op

le
x

 g
ob

m
k

 z
eu

sm
p

 G
em

sF
DT

D

Ge
oM

ea
nCo

m
pr

es
sio

n
Ra

tio ZCA FVC FPC BΔI
1.53

SPEC2006, databases, web workloads, 2MB L2

Single-Core: IPC and MPKI

46

0.9
1

1.1
1.2
1.3
1.4
1.5

512kB
1M

B
2M

B
4M

B
8M

B
16M

B

No
rm

al
ize

d
IP

C

L2 cache size

Baseline (no compr.)
BΔI

8.1%
5.2%

5.1%
4.9%

5.6%
3.6%

0
0.2
0.4
0.6
0.8

1

512kB
2M

B
8M

BNo
rm

al
ize

d
M

PK
I

L2 cache size

Baseline (no compr.)
BΔI

16%

24%
21%

13%
19%

14%

BΔI achieves the performance of a 2X-size cache
Performance improves due to the decrease in MPKI

Multi-Core Workloads
• Application classification based on

Compressibility: effective cache size increase
(Low Compr. (LC) < 1.40, High Compr. (HC) >= 1.40)

Sensitivity: performance gain with more cache
(Low Sens. (LS) < 1.10, High Sens. (HS) >= 1.10; 512kB -> 2MB)

• Three classes of applications:
– LCLS, HCLS, HCHS, no LCHS applications

• For 2-core - random mixes of each possible class pairs
(20 each, 120 total workloads)

47

Multi-Core: Weighted Speedup

BΔI performance improvement is the highest (9.5%)

4.5%
3.4%

4.3%

10.9%

16.5%
18.0%

9.5%

0.95

1.00

1.05

1.10

1.15

1.20

LCLS - LCLS LCLS - HCLS HCLS - HCLS LCLS - HCHS HCLS - HCHS HCHS - HCHS

Low Sensitivity High Sensitivity GeoMean

No
rm

al
ize

d
W

ei
gh

te
d

Sp
ee

du
p ZCA FVC FPC BΔI

If at least one application is sensitive, then the
performance improves 48

Other Results in Paper

• IPC comparison against upper bounds
– BΔI almost achieves performance of the 2X-size cache

• Sensitivity study of having more than 2X tags
– Up to 1.98 average compression ratio

• Effect on bandwidth consumption
– 2.31X decrease on average

• Detailed quantitative comparison with prior work

• Cost analysis of the proposed changes
– 2.3% L2 cache area increase

49

Conclusion
• A new Base-Delta-Immediate compression mechanism
• Key insight: many cache lines can be efficiently

represented using base + delta encoding
• Key properties:
– Low latency decompression
– Simple hardware implementation
– High compression ratio with high coverage

• Improves cache hit ratio and performance of both single-
core and multi-core workloads
– Outperforms state-of-the-art cache compression techniques:

FVC and FPC

50

Readings on Memory Compression (I)
n Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Philip B. Gibbons,

Michael A. Kozuch, and Todd C. Mowry,
"Base-Delta-Immediate Compression: Practical Data
Compression for On-Chip Caches"
Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques (PACT), Minneapolis, MN,
September 2012. Slides (pptx) Source Code

51

http://users.ece.cmu.edu/~omutlu/pub/bdi-compression_pact12.pdf
http://www.pactconf.org/
http://users.ece.cmu.edu/~omutlu/pub/pekhimenko_pact12_talk.pptx
http://www.ece.cmu.edu/~safari/tools/compression.c

Readings on Memory Compression (II)
n Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur

Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"Linearly Compressed Pages: A Low-Complexity, Low-Latency
Main Memory Compression Framework"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning
Session Slides (pptx) (pdf)] Poster (pptx) (pdf)]

52

http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_pekhimenko_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_pekhimenko_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_pekhimenko_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_pekhimenko_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_pekhimenko_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_pekhimenko_micro13-poster.pdf

Readings on Memory Compression (III)
n Gennady Pekhimenko, Tyler Huberty, Rui Cai, Onur Mutlu, Phillip P.

Gibbons, Michael A. Kozuch, and Todd C. Mowry,
"Exploiting Compressed Block Size as an Indicator of Future
Reuse"
Proceedings of the 21st International Symposium on High-Performance
Computer Architecture (HPCA), Bay Area, CA, February 2015.
[Slides (pptx) (pdf)]

53

http://users.ece.cmu.edu/~omutlu/pub/compression-aware-cache-management_hpca15.pdf
http://darksilicon.org/hpca/
http://users.ece.cmu.edu/~omutlu/pub/compression-aware-cache-management_gennady-hpca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/compression-aware-cache-management_gennady-hpca15-talk.pdf

Readings on Memory Compression (IV)
n Gennady Pekhimenko, Evgeny Bolotin, Nandita Vijaykumar, Onur Mutlu,

Todd C. Mowry, and Stephen W. Keckler,
"A Case for Toggle-Aware Compression for GPU Systems"
Proceedings of the 22nd International Symposium on High-Performance
Computer Architecture (HPCA), Barcelona, Spain, March 2016.
[Slides (pptx) (pdf)]

54

https://users.ece.cmu.edu/~omutlu/pub/toggle-aware-compression-for-GPUs_hpca16.pdf
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/toggle-aware-compression-for-GPUs_pekhimenko-hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/toggle-aware-compression-for-GPUs_pekhimenko-hpca16-talk.pdf

Readings on Memory Compression (VI)
n Nandita Vijaykumar, Gennady Pekhimenko, Adwait Jog, Abhishek

Bhowmick, Rachata Ausavarungnirun, Chita Das, Mahmut Kandemir, Todd
C. Mowry, and Onur Mutlu,
"A Case for Core-Assisted Bottleneck Acceleration in GPUs:
Enabling Flexible Data Compression with Assist Warps"
Proceedings of the 42nd International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

55

http://users.ece.cmu.edu/~omutlu/pub/caba-gpu-assist-warps_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/caba-gpu-assist-warps_isca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/caba-gpu-assist-warps_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/caba-gpu-assist-warps_isca15-lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/caba-gpu-assist-warps_isca15-lightning-talk.pdf

Efficient Cache Utilization: Examples
n Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA

2005.

n Qureshi et al., “Adaptive Insertion Policies for High Performance
Caching,” ISCA 2007.

n Seshadri et al., �The Evicted-Address Filter: A Unified Mechanism to
Address both Cache Pollution and Thrashing,� PACT 2012.

n Pekhimenko et al., �Base-Delta-Immediate Compression: Practical
Data Compression for On-Chip Caches,� PACT 2012.

56

Revisiting Cache Placement (Insertion)
n Is inserting a fetched/prefetched block into the cache

(hierarchy) always a good idea?
q No allocate on write: does not allocate a block on write miss
q How about reads?

n Allocating on a read miss
-- Evicts another potentially useful cache block
+ Incoming block potentially more useful

n Ideally:
q we would like to place those blocks whose caching would be

most useful in the future
q we certainly do not want to cache never-to-be-used blocks

57

Revisiting Cache Placement (Insertion)
n Ideas:

q Hardware predicts blocks that are not going to be used
n Tyson et al., “A Modified Approach to Data Cache Management,”

MICRO 1995.
n Lai et al., “Dead Block Prediction,” ISCA 2001.

q Software (programmer/compiler) marks instructions that touch
data that is not going to be reused
n How does software determine this?

n Streaming versus non-streaming accesses
q If a program is streaming through data, reuse likely occurs only

for a limited period of time
q If such instructions are marked by the software, the hardware

can store them temporarily in a smaller buffer (L0 cache) instead
of the cache

58

Reuse at L2 Cache Level

59

DoA Blocks: Blocks unused between insertion and eviction

For the 1MB 16-way L2, 60% of lines are DoA
è Ineffective use of cache space

(%
) D

oA
 L

in
es

Why Dead on Arrival Blocks?

60

q Streaming data è Never reused. L2 caches don’t help.

q Working set of application greater than cache size

Solution: if working set > cache size, retain some working set

art

M
is

se
s

pe
r 1

00
0

in
st

ru
ct

io
ns

Cache size in MB

mcf

M
is

se
s

pe
r 1

00
0

in
st

ru
ct

io
ns

Cache size in MB

Cache Insertion Policies: MRU vs. LRU

61

a b c d e f g h
MRU LRU

i a b c d e f g

Reference to ‘i’ with traditional LRU policy:

a b c d e f g i

Reference to ‘i’ with LIP (LRU Insertion Policy):

Choose victim. Do NOT promote to MRU

Lines do not enter non-LRU positions unless reused

Other Insertion Policies: Bimodal Insertion

62

if (rand() < e)
Insert at MRU position;

else
Insert at LRU position;

LIP does not age older lines

Infrequently insert lines in MRU position

Let e = Bimodal throttle parameter

For small e , BIP retains thrashing protection of LIP
while responding to changes in working set

Analysis with Circular Reference Model

63

For small e , BIP retains thrashing protection of LIP
while adapting to changes in working set

Policy (a1 a2 a3 … aT)N (b1 b2 b3 … bT)N

LRU 0 0
OPT (K-1)/T (K-1)/T
LIP (K-1)/T 0

BIP (small e) ≈ (K-1)/T ≈ (K-1)/T

Reference stream has T blocks and repeats N times.
Cache has K blocks (K<T and N>>T)

Cache hit rates of two consecutive reference streams:

Analysis with Circular Reference Model

64

LIP and BIP Performance vs. LRU

65

Changes to insertion policy increases misses for
LRU-friendly workloads

LIP BIP(e=1/32)

(%
) R

ed
uc

tio
n

in
 L

2
M

PK
I

Dynamic Insertion Policy (DIP)
n Qureshi et al., “Adaptive Insertion Policies for High-

Performance Caching,” ISCA 2007.

66

Two types of workloads: LRU-friendly or BIP-friendly

DIP can be implemented by:

1. Monitor both policies (LRU and BIP)

2. Choose the best-performing policy

3. Apply the best policy to the cache

Need a cost-effective implementation è Set Sampling

Dynamic Insertion Policy Miss Rate

67

DIP (32 dedicated sets)BIP

(%
) R

ed
uc

tio
n

in
 L

2
M

PK
I

DIP vs. Other Policies

n Qureshi et al., “Adaptive Insertion Policies for High-
Performance Caching,” ISCA 2007.

68

0

5

10

15

20

25

30

35

 (LRU+RND) (LRU+LFU) (LRU+MRU) DIP OPT Double

%
 R

ed
uc

ti
on

 i
n

av
er

ag
e

M
PK

I

DIP OPT Double(2MB)(LRU+RND) (LRU+LFU) (LRU+MRU)

Efficient Cache Utilization: Examples
n Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA

2005.

n Qureshi et al., “Adaptive Insertion Policies for High Performance
Caching,” ISCA 2007.

n Seshadri et al., �The Evicted-Address Filter: A Unified Mechanism to
Address both Cache Pollution and Thrashing,� PACT 2012.

n Pekhimenko et al., �Base-Delta-Immediate Compression: Practical
Data Compression for On-Chip Caches,� PACT 2012.

69

The Evicted-Address Filter

Vivek Seshadri, Onur Mutlu, Michael A. Kozuch, and Todd C. Mowry,
"The Evicted-Address Filter: A Unified Mechanism to Address Both

Cache Pollution and Thrashing"
Proceedings of the 21st ACM International Conference on Parallel

Architectures and Compilation Techniques (PACT), Minneapolis, MN,
September 2012. Slides (pptx)

70

http://users.ece.cmu.edu/~omutlu/pub/eaf-cache_pact12.pdf
http://www.pactconf.org/
http://users.ece.cmu.edu/~omutlu/pub/seshadri_pact12_talk.pptx

Cache Utilization is Important

Core Last-Level
Cache Memory

Core Core

Core Core

Increasing contention

Effective cache utilization is important

Large latency

71

Reuse Behavior of Cache Blocks

A B C A B C S T U V W X Y A B C

Different blocks have different reuse behavior

Access Sequence:

High-reuse block Low-reuse block

Z

Ideal Cache A B C

72

Cache Pollution

H G F E D C B AS H G F E D C BT S H G F E D CU T S H G F E D

MRU LRU

LRU Policy

Idea: Predict reuse behavior of missed blocks. Insert
low-reuse blocks at LRU position.

H G F E D C B ASTU

MRU LRU

AB AC B A

AS AT S A

Cache

Problem: Low-reuse blocks evict high-reuse blocks

73

Cache Thrashing

H G F E D C B AI H G F E D C BJ I H G F E D CK J I H G F E D

MRU LRU

LRU Policy A B C D E F G H I J KAB AC B A

Idea: Insert at MRU position with a very low

probability (Bimodal insertion policy)

Cache

H G F E D C B AIJK

MRU LRU

AI AJ I A
A fraction of

working set

stays in cache

Cache

Problem: High-reuse blocks evict each other

74
Qureshi+, “Adaptive insertion policies for high performance caching,” ISCA 2007.

Handling Pollution and Thrashing
Need to address both pollution and thrashing
concurrently

Cache Thrashing
Need to control the number of blocks inserted with
high priority into the cache

Cache Pollution
Need to distinguish high-reuse blocks from low-
reuse blocks

75

Reuse Prediction

Miss Missed-block
High reuse

Low reuse

?

Keep track of the reuse behavior of every cache
block in the system

Impractical
1. High storage overhead
2. Look-up latency

76

Approaches to Reuse Prediction
Use program counter or memory region information.

BA TS

PC 1 PC 2

BA TS

PC 1 PC 2 PC 1

PC 2

C C

U U

1. Group Blocks 2. Learn group
behavior 3. Predict reuse

1. Same group → same reuse behavior
2. No control over number of high-reuse blocks

77

Per-block Reuse Prediction
Use recency of eviction to predict reuse

A
Time

Time of eviction

A

Accessed soon
after eviction

S
Time

S

Accessed long time
after eviction

78

Evicted-Address Filter (EAF)

Cache

EAF
(Addresses of recently evicted blocks)

Evicted-block address

Miss Missed-block address

In EAF?Yes No
MRU LRU

High Reuse Low Reuse

79

Naïve Implementation: Full Address Tags

EAF

1. Large storage overhead
2. Associative lookups – High energy

Recently
evicted address

Need not be
100% accurate

?

80

Low-Cost Implementation: Bloom Filter

EAF

Implement EAF using a Bloom Filter
Low storage overhead + energy

Need not be
100% accurate

?

81

Bloom Filters (From Lecture 1)

82Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Y

Bloom Filter
Compact representation of a set

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

1. Bit vector
2. Set of hash functions

H1 H2

H1 H2

X

1 11

InsertTest
ZW

Remove

X Y

May remove
multiple addressesClearüû False positive

83

Inserted Elements: X Y

EAF using a Bloom Filter

EAF

Insert

Test

Evicted-block
address

Remove
FIFO address

Missed-block address

Bloom Filter

Remove
If present

when full

Clear

ü û

ü

û1

2
when full

Bloom-filter EAF: 4x reduction in storage overhead,
1.47% compared to cache size 84

EAF-Cache: Final Design

Cache
Bloom Filter

Counter

1

2

3

Cache eviction

Cache miss

Counter reaches max

Insert address into filter
Increment counter

Test if address is present in filter
Yes, insert at MRU. No, insert with BIP

Clear filter and counter

85

EAF: Advantages

Cache
Bloom Filter

Counter

1. Simple to implement

2. Easy to design and verify

3. Works with other techniques (replacement policy)

Cache eviction

Cache miss

86

EAF Performance – Summary

0%

5%

10%

15%

20%

25%

1-Core 2-Core 4-Core

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t o
ve

r L
RU TA-DIP TA-DRRIP RTB MCT

SHIP EAF D-EAF

87

Comparison with Prior Works
Addressing Cache Pollution

- No control on number of blocks inserted with high
priority ⟹	Thrashing

Run-time Bypassing (RTB) – Johnson+ ISCA’97
- Memory region based reuse prediction

Single-usage Block Prediction (SU) – Piquet+ ACSAC’07
Signature-based Hit Prediction (SHIP) – Wu+ MICRO’11
- Program counter based reuse prediction

Miss Classification Table (MCT) – Collins+ MICRO’99
- One most recently evicted block

88

Comparison with Prior Works
Addressing Cache Thrashing

- No mechanism to filter low-reuse blocks ⟹	Pollution

TA-DIP – Qureshi+ ISCA’07, Jaleel+ PACT’08
TA-DRRIP – Jaleel+ ISCA’10
- Use set dueling to determine thrashing applications

89

-10%

0%

10%

20%

30%

40%

50%

60%

W
ei

gh
te

d
Sp

ee
du

p
Im

pr
ov

em
en

t o
ve

r
LR

U

Workload Number (135 workloads)

LRU

EAF

SHIP

D-EAF

4-Core: Performance

90

Effect of Cache Size

0%

5%

10%

15%

20%

25%

1MB 2MB 4MB 8MB 2MB 4MB 8MB 16MB

2-Core 4-Core

W
ei

gh
te

d
Sp

ee
du

p
Im

pr
ov

em
en

t
ov

er
 LR

U

SHIP EAF D-EAF

91

Effect of EAF Size

0%

5%

10%

15%

20%

25%

30%

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6W
ei

gh
te

d
Sp

ee
du

p
 Im

pr
ov

em
en

t O
ve

r L
RU

Addresses in EAF / # Blocks in Cache

1 Core 2 Core 4 Core

92

Other Results in Paper

• EAF orthogonal to replacement policies

– LRU, RRIP – Jaleel+ ISCA’10

• Performance improvement of EAF increases with

increasing memory latency

• EAF performs well on four different metrics

– Performance and fairness

• Alternative EAF-based designs perform comparably

– Segmented EAF

– Decoupled-clear EAF

93

More on Evicted Address Filter Cache
n Vivek Seshadri, Onur Mutlu, Michael A. Kozuch, and Todd C. Mowry,

"The Evicted-Address Filter: A Unified Mechanism to Address
Both Cache Pollution and Thrashing"
Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques (PACT), Minneapolis, MN,
September 2012. Slides (pptx) Source Code

94

https://people.inf.ethz.ch/omutlu/pub/eaf-cache_pact12.pdf
http://www.pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/seshadri_pact12_talk.pptx
https://github.com/CMU-SAFARI/memsim

Predictable Performance Again:
Strong Memory Service Guarantees

95

Remember MISE?
n Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,

and Onur Mutlu,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

96

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

Extending Slowdown Estimation to Caches
n How do we extend the MISE model to include shared cache

interference?

n Answer: Application Slowdown Model

n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

97

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

Quantifying and Controlling Impact of
Interference at Shared Caches and Main Memory

Lavanya Subramanian, Vivek Seshadri,
Arnab Ghosh, Samira Khan, Onur Mutlu

98

Application Slowdown Model

Shared Cache and Memory Contention

99

Main
Memory

Shared
Cache

Capacity

CoreCore

CoreCore

Slowdown = Request Service Rate Alone

Request Service Rate Shared

MISE [HPCA’13]

Cache Capacity Contention

100

Main
Memory

Shared
Cache

Cache
Access Rate

Priority

Core

Core

Applications evict each others’ blocks
from the shared cache

Estimating Cache and Memory Slowdowns

101

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Service Rate

Memory
Service Rate

Service Rates vs. Access Rates

102

Request service and access rates
are tightly coupled

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Service Rate

Cache Access
Rate

The Application Slowdown Model

103

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Shared

Alone

 Rate Access Cache
 Rate Access CacheSlowdown =

Cache Access
Rate

Real System Studies:
Cache Access Rate vs. Slowdown

104

1
1.2
1.4
1.6
1.8

2
2.2

1 1.2 1.4 1.6 1.8 2 2.2

Sl
ow

do
w

n

Cache Access Rate Ratio

astar
lbm
bzip2

Challenge

How to estimate alone cache access rate?

105

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Access Rate

Auxiliary
Tag Store

Priority

Auxiliary Tag Store

106

Main
Memory

Shared
Cache

Cache
Access Rate

Auxiliary
Tag Store

Priority

Core

Core

Still in auxiliary
tag storeAuxiliary

Tag StoreAuxiliary tag store tracks such contention misses

Accounting for Contention Misses

• Revisiting alone memory request service rate

Cycles serving contention misses should not
count as high priority cycles

107

 CyclesPriority High #
EpochsPriority High During Requests #

nApplicatioan of Rate ServiceRequest Alone

=

Alone Cache Access Rate Estimation

108

Cycles Contention Cache# - CyclesPriority High #
EpochsPriority High During Requests #

nApplicatioan of Rate Access Cache

Alone =

Cache Contention Cycles: Cycles spent serving contention misses

Time ServiceMemory Average
 x Misses Contention # Cycles Contention Cache =

From auxiliary tag store
when given high priority

Measured when given
high priority

Application Slowdown Model (ASM)

109

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Access Rate

Shared

Alone

 Rate Access Cache
 Rate Access CacheSlowdown =

Previous Work on Slowdown
Estimation

• Previous work on slowdown estimation
– STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ’07]

– FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ’10]

– Per-thread Cycle Accounting [Du Bois et al., HiPEAC ’13]

• Basic Idea:

Shared

Alone

 TimeExecution
 TimeExecution Slowdown =

Count interference experienced by each request à Difficult

110

ASM’s estimates are much more coarse grained à Easier

Model Accuracy Results

Average error of ASM’s slowdown estimates: 10%
111

Select applications

0

20

40

60

80

100

120

140

160

ca
lc

ul
ix

po
vr

ay
to

nt
o

na
m

d
de

al
II

sj
en

g
pe

rlb
en

…
go

bm
k

xa
la

nc
b…

sp
hi

nx
3

G
em

sF
…

om
ne

tp
p

lb
m

le
sl

ie
3d

so
pl

ex
m

ilc
lib

q
m

cf

N
PB

bt
N

PB
ft

N
PB

is
N

PB
ua

Av
er

ag
e

Sl
ow

do
w

n
Es

tim
at

io
n

Er
ro

r (
in

 %
)

FST PTCA ASM

Leveraging ASM’s Slowdown Estimates

• Slowdown-aware resource allocation for high
performance and fairness

• Slowdown-aware resource allocation to bound
application slowdowns

• VM migration and admission control schemes
[VEE ’15]

• Fair billing schemes in a commodity cloud

112

Cache Capacity Partitioning

113

Main
Memory

Shared
Cache

Cache
Access Rate

Core

Core

Goal: Partition the shared cache among
applications to mitigate contention

Cache Capacity Partitioning

114

Main
Memory

Core

Core

Way
2

Set 0
Set 1
Set 2
Set 3

..
Set N-1

Way
0

Way
1

Way
3

Previous partitioning schemes optimize for miss count
Problem: Not aware of performance and slowdowns

ASM-Cache: Slowdown-aware
Cache Way Partitioning

• Key Requirement: Slowdown estimates for all
possible way partitions

• Extend ASM to estimate slowdown for all
possible cache way allocations

• Key Idea: Allocate each way to the application
whose slowdown reduces the most

115

Memory Bandwidth Partitioning

116

Main
Memory

Shared
Cache

Cache
Access Rate

Core

Core

Goal: Partition the main memory bandwidth
among applications to mitigate contention

ASM-Mem: Slowdown-aware
Memory Bandwidth Partitioning

• Key Idea: Allocate high priority proportional to
an application’s slowdown

• Application i’s requests given highest priority
at the memory controller for its fraction

117

å
=

j
j

i
i Slowdown

Slowdown FractionPriority High

Coordinated Resource
Allocation Schemes

118

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache capacity-aware
bandwidth allocation

1. Employ ASM-Cache to partition cache capacity
2. Drive ASM-Mem with slowdowns from ASM-Cache

Fairness and Performance Results

119

16-core system
100 workloads

Significant fairness benefits across different channel counts

4
5
6
7
8
9

10
11

1 2

Fa
irn

es
s

(L
ow

er
 is

 b
et

te
r)

Number of Channels

0

0.05

0.1

0.15

0.2

0.25
0.3

0.35

1 2

Pe
rfo

rm
an

ce

Number of Channels

FRFCFS-NoPart
FRFCFS+UCP
TCM+UCP
PARBS+UCP
ASM-Cache-Mem

Summary

• Problem: Uncontrolled memory interference cause high
and unpredictable application slowdowns

• Goal: Quantify and control slowdowns
• Key Contribution:

– ASM: An accurate slowdown estimation model
– Average error of ASM: 10%

• Key Ideas:
– Shared cache access rate is a proxy for performance
– Cache Access Rate Alone can be estimated by minimizing memory

interference and quantifying cache interference
• Applications of Our Model

– Slowdown-aware cache and memory management to achieve
high performance, fairness and performance guarantees

• Source Code Released in January 2016
120

More on Application Slowdown Model
n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and

Onur Mutlu,

"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture

(MICRO), Waikiki, Hawaii, USA, December 2015.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster

(pptx) (pdf)]

[Source Code]

121

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

Prof. Onur Mutlu
ETH Zürich
Fall 2018

28 November 2018

Computer Architecture
Lecture 19a:

Multi-Core Cache Management II

