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Efficient Cache Utilization: Examples
n Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 

2005.

n Qureshi et al., “Adaptive Insertion Policies for High Performance 
Caching,” ISCA 2007.

n Seshadri et al., �The Evicted-Address Filter: A Unified Mechanism to 
Address both Cache Pollution and Thrashing,� PACT 2012.

n Pekhimenko et al., �Base-Delta-Immediate Compression: Practical 
Data Compression for On-Chip Caches,� PACT 2012. 
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Controlled Shared Caching
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Hardware-Based Cache 
Partitioning
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Software-Based Shared Cache 
Partitioning
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Private/Shared Caching
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Private/Shared Caching
n Goal: Achieve the benefits of private caches (low latency, 

performance isolation) while sharing cache capacity across 
cores

n Example: Adaptive spill/receive caching

n Idea: Start with a private cache design (for performance 
isolation), but dynamically steal space from other cores that 
do not need all their private caches
q Some caches can spill their data to other cores� caches 

dynamically

n Qureshi, “Adaptive Spill-Receive for Robust High-
Performance Caching in CMPs,” HPCA 2009.
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Revisiting Private Caches on Multi-Core

Private caches avoid the need for shared interconnect
++ fast latency, tiled design, performance isolation

Core A
I$ D$

CACHE A

Core B
I$ D$

CACHE B

Core C
I$ D$

CACHE C

Core D
I$ D$

CACHE D
Memory

Problem: When one core needs more cache and other core 
has spare cache, private-cache based systems cannot share capacity 



Cache Line Spilling – Cooperative Caching 

Spill evicted line from one cache to neighbor cache

- Co-operative caching (CC)  [ Chang+ ISCA�06]

Problem with CC: 
1. Performance depends on the parameter (spill probability)
2. All caches spill as well as receive è Limited improvement 

Cache A Cache B Cache C Cache D

Spill

Goal:  Robust High-Performance Capacity Sharing with Negligible Overhead

Chang and Sohi, “Cooperative Caching for Chip Multiprocessors,” ISCA 2006.



Spill-Receive Architecture

Each Cache is either a Spiller or Receiver but not both
- Lines from spiller cache are spilled to one of the receivers
- Evicted lines from receiver cache are discarded  

What is the best N-bit binary string that maximizes the performance of Spill 
Receive Architecture è Dynamic Spill Receive (DSR)

Cache A Cache B Cache C Cache D

Spill

S/R =1 
(Spiller cache)

S/R =0 
(Receiver cache)

S/R =1
(Spiller cache)

S/R =0 
(Receiver cache)

Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in CMPs,” HPCA 2009.
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Spiller-sets

Follower Sets

Receiver-sets

Dynamic Spill-Receive via �Set Dueling�

Divide the cache in three:
– Spiller sets
– Receiver sets
– Follower sets (winner of spiller, 

receiver) 

n-bit PSEL counter 
misses to spiller-sets: PSEL--
misses to receiver-set: PSEL++

MSB of PSEL decides policy for 
Follower sets:
– MSB = 0, Use spill
– MSB = 1, Use receive

PSEL
-

miss

+
miss

MSB = 0?
YES No

Use Recv Use spill

monitor è choose è apply
(using a single counter)
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Dynamic Spill-Receive Architecture 

Cache A Cache B Cache C Cache D
Set X

Set Y

AlwaysSpill

AlwaysRecv

-

+

Miss in Set X 
in any cache
Miss in Set Y 
in any cache

PSEL B PSEL C PSEL DPSEL A

Decides policy for all sets of Cache A (except X and Y)

Each cache learns whether it should act as a spiller or receiver
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Experimental Setup

q Baseline Study:
n 4-core CMP with in-order cores
n Private Cache Hierarchy: 16KB L1, 1MB L2
n 10 cycle latency for local hits, 40 cycles for remote hits 

q Benchmarks:
n 6 benchmarks that have extra cache: �Givers� (G) 
n 6 benchmarks that benefit from more cache: �Takers� (T)
n All 4-thread combinations of 12 benchmarks: 495 total  

Five types of workloads: G4T0 G3T1 G2T2 G1T3 G0T4
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Results for Weighted Speedup
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Distributed Caches
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Caching for Parallel Applications
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core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

core core core core

L2 L2 L2 L2

Data placement determines performance
Goal: place data on chip close to where they are used

cache
slice



Handling Shared Data in Private Caches
n Shared data and locks ping-pong between processors if 

caches are private
-- Increases latency to fetch shared data/locks
-- Reduces cache efficiency (many invalid blocks)
-- Scalability problem: maintaining coherence across a large 

number of private caches is costly

n How to do better?
q Idea: Store shared data and locks only in one special core’s 

cache. Divert all critical section execution to that core/cache.
n Essentially, a specialized core for processing critical sections 
n Suleman et al., “Accelerating Critical Section Execution with 

Asymmetric Multi-Core Architectures,” ASPLOS 2009.
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Non-Uniform Cache Access
n Problem: Large caches take a long time to access
n Wire delay

q Closeby blocks can be accessed faster, but furthest blocks determine 
the worst-case access time

n Idea: Variable latency access time in a single cache
n Partition cache into pieces

q Each piece has different latency
q Which piece does an address map to?

n Static: based on bits in address
n Dynamic: any address can map to any piece

q How to locate an address?
q Replacement and placement policies?

n Kim et al., “An adaptive, non-uniform cache structure for wire-delay 
dominated on-chip caches,” ASPLOS 2002.
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Multi-Core Cache Efficiency: Bandwidth Filters

n Caches act as a filter that reduce memory bandwidth 
requirement
q Cache hit: No need to access memory
q This is in addition to the latency reduction benefit of caching
q GPUs use caches to reduce memory BW requirements

n Efficient utilization of cache space becomes more important 
with multi-core
q Memory bandwidth is more valuable

n Pin count not increasing as fast as # of transistors
q 10%/year vs. 2x every 2 years

q More cores put more pressure on the memory bandwidth

n How to make the bandwidth filtering effect of caches better?
19



Efficient Cache Utilization
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Efficient Cache Utilization: Examples
n Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 

2005.

n Qureshi et al., “Adaptive Insertion Policies for High Performance 
Caching,” ISCA 2007.

n Seshadri et al., �The Evicted-Address Filter: A Unified Mechanism to 
Address both Cache Pollution and Thrashing,� PACT 2012.

n Pekhimenko et al., �Base-Delta-Immediate Compression: Practical 
Data Compression for On-Chip Caches,� PACT 2012. 
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Cache Compression
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Motivation for Cache Compression
Significant redundancy in data:

23

0x00000000

How can we exploit this redundancy?
–Cache compression helps
–Provides effect of a larger cache without 

making it physically larger

0x0000000B 0x00000003 0x00000004 …



Background on Cache Compression

• Key requirements:
– Fast (low decompression latency)
– Simple (avoid complex hardware changes)
– Effective (good compression ratio)
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CPU
L2 

Cache
UncompressedCompressedDecompressionUncompressed

L1 
Cache

Hit



Summary of Major Works
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Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero ü ü û
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Summary of Major Works
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Summary of Major Works
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Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero ü ü û
Frequent Value û û ü
Frequent Pattern û û/ü ü
BΔI ü ü ü



Base-Delta-Immediate 
Cache Compression

Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Philip B. Gibbons, 
Michael A. Kozuch, and Todd C. Mowry,

"Base-Delta-Immediate Compression: Practical Data Compression 
for On-Chip Caches"

Proceedings of the 21st ACM International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Minneapolis, MN, 

September 2012. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/bdi-compression_pact12.pdf
http://www.pactconf.org/
http://users.ece.cmu.edu/~omutlu/pub/pekhimenko_pact12_talk.pptx


Executive Summary
• Off-chip memory latency is high
– Large caches can help, but at significant cost 

• Compressing data in cache enables larger cache at low 
cost

• Problem: Decompression is on the execution critical path 
• Goal: Design a new compression scheme that has 

1. low decompression latency,  2. low cost, 3. high compression ratio  
• Observation: Many cache lines have low dynamic range 

data
• Key Idea: Encode cachelines as a base + multiple differences
• Solution: Base-Delta-Immediate compression with low 

decompression latency and high compression ratio 
– Outperforms three state-of-the-art compression mechanisms 
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Key Data Patterns in Real Applications
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0x00000000 0x00000000 0x00000000 0x00000000 …

0x000000FF 0x000000FF 0x000000FF 0x000000FF …

0x00000000 0x0000000B 0x00000003 0x00000004 …

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 …

Zero Values: initialization,  sparse matrices, NULL pointers

Repeated Values: common initial values, adjacent pixels

Narrow Values: small values stored in a big data type

Other Patterns: pointers to the same memory region



How Common Are These Patterns?
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SPEC2006, databases, web workloads, 2MB L2 cache
“Other Patterns” include Narrow Values

43% of the cache lines belong to key patterns



Key Data Patterns in Real Applications

33

0x00000000 0x00000000 0x00000000 0x00000000 …

0x000000FF 0x000000FF 0x000000FF 0x000000FF …

0x00000000 0x0000000B 0x00000003 0x00000004 …

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 …

Zero Values: initialization,  sparse matrices, NULL pointers

Repeated Values: common initial values, adjacent pixels

Narrow Values: small values stored in a big data type

Other Patterns: pointers to the same memory region

Low Dynamic Range:

Differences between values are significantly 
smaller than the values themselves



32-byte Uncompressed Cache Line

Key Idea: Base+Delta (B+Δ) Encoding
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0xC04039C0 0xC04039C8 0xC04039D0 … 0xC04039F8

4 bytes

0xC04039C0
Base

0x00

1 byte

0x08

1 byte

0x10

1 byte

… 0x38 12-byte 
Compressed Cache Line

20 bytes savedü Fast Decompression: 
vector addition

ü Simple Hardware: 
arithmetic and comparison

ü Effective: good compression ratio



Can We Do Better?

• Uncompressible cache line (with a single base): 

• Key idea: 
Use more bases, e.g., two instead of one

• Pro: 

– More cache lines can be compressed

• Cons:

– Unclear how to find these bases efficiently

– Higher overhead (due to additional bases)

35

0x00000000 0x09A40178 0x0000000B 0x09A4A838 …



B+Δ with Multiple Arbitrary Bases
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How to Find Two Bases Efficiently?
1. First base - first element in the cache line

2. Second base - implicit base of 0

Advantages over 2 arbitrary bases:
– Better compression ratio
– Simpler compression logic

37

ü Base+Delta part

ü Immediate part

Base-Delta-Immediate (BΔI) Compression



B+Δ (with two arbitrary bases) vs. BΔI
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BΔI Cache Compression Implementation

• Decompressor Design
– Low latency

• Compressor Design
– Low cost and complexity

• BΔI Cache Organization
– Modest complexity
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Δ0B0

BΔI Decompressor Design
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Δ1 Δ2 Δ3

Compressed Cache Line

V0 V1 V2 V3

+ +

Uncompressed Cache Line

+ +

B0 Δ0

B0 B0 B0 B0

Δ1 Δ2 Δ3

V0 V1 V2 V3

Vector addition



BΔI Compressor Design
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32-byte Uncompressed Cache Line

8-byte B0
1-byte Δ

CU

8-byte B0
2-byte Δ

CU

8-byte B0
4-byte Δ

CU

4-byte B0
1-byte Δ

CU

4-byte B0
2-byte Δ

CU

2-byte B0
1-byte Δ

CU

Zero
CU

Rep.
Values

CU

Compression Selection Logic (based on compr. size)

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

Compression Flag 
& Compressed 

Cache Line

CFlag &
CCL

Compressed Cache Line



BΔI Compression Unit: 8-byte B0 1-byte Δ
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32-byte Uncompressed Cache Line

V0 V1 V2 V3

8 bytes

- - - -

B0=
V0

V0 B0    B0    B0    B0    

V0 V1 V2 V3

Δ0 Δ1 Δ2 Δ3

Within 1-byte 
range?

Within 1-byte 
range?

Within 1-byte 
range?

Within 1-byte 
range?

Is every element within 1-byte range?

Δ0B0 Δ1 Δ2 Δ3B0 Δ0 Δ1 Δ2 Δ3

Yes No



BΔI Cache Organization
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Tag0 Tag1

… …

… …

Tag Storage:
Set0

Set1

Way0 Way1

Data0

…

…

Set0

Set1

Way0 Way1

…

Data1

…

32 bytesData Storage:
Conventional 2-way cache with 32-byte cache lines

BΔI: 4-way cache with 8-byte segmented data

Tag0 Tag1

… …

… …

Tag Storage:

Way0 Way1 Way2 Way3

… …

Tag2 Tag3

… …

Set0

Set1

üTwice as many tags

üC - Compr. encoding bitsC

Set0

Set1

… … … … … … … …

S0S0 S1 S2 S3 S4 S5 S6 S7

… … … … … … … …

8 bytes

üTags map to multiple adjacent segments2.3% overhead for 2 MB cache



Qualitative Comparison with Prior Work
• Zero-based designs
– ZCA [Dusser+, ICS’09]: zero-content augmented cache
– ZVC [Islam+, PACT’09]: zero-value cancelling
– Limited applicability (only zero values)

• FVC [Yang+, MICRO’00]: frequent value compression
– High decompression latency and complexity

• Pattern-based compression designs
– FPC [Alameldeen+, ISCA’04]: frequent pattern compression

• High decompression latency (5 cycles) and complexity
– C-pack [Chen+, T-VLSI Systems’10]: practical implementation of 

FPC-like algorithm
• High decompression latency (8 cycles)
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Cache Compression Ratios

BΔI achieves the highest compression ratio
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Single-Core: IPC and MPKI
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Multi-Core Workloads
• Application classification based on 

Compressibility: effective cache size increase
(Low Compr. (LC) < 1.40, High Compr. (HC) >= 1.40)

Sensitivity: performance gain with more cache 
(Low Sens. (LS) < 1.10, High Sens. (HS) >= 1.10; 512kB -> 2MB)

• Three classes of applications:
– LCLS, HCLS, HCHS,  no LCHS applications

• For 2-core - random mixes of each possible class pairs  
(20 each, 120 total workloads)
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Multi-Core: Weighted Speedup

BΔI performance improvement is the highest (9.5%)

4.5%
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If at least one application is sensitive, then the 
performance improves 48



Other Results in Paper

• IPC comparison against upper bounds
– BΔI almost achieves performance of the 2X-size cache

• Sensitivity study of having more than 2X tags
– Up to 1.98 average compression ratio

• Effect on bandwidth consumption
– 2.31X decrease on average

• Detailed quantitative comparison with prior work

• Cost analysis of the proposed changes
– 2.3% L2 cache area increase
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Conclusion
• A new Base-Delta-Immediate compression mechanism 
• Key insight: many cache lines can be efficiently 

represented using base + delta encoding
• Key properties:
– Low latency decompression 
– Simple hardware implementation
– High compression ratio with high coverage 

• Improves cache hit ratio and performance of both single-
core and multi-core workloads
– Outperforms state-of-the-art cache compression techniques: 

FVC and FPC
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Readings on Memory Compression (I)
n Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Philip B. Gibbons, 

Michael A. Kozuch, and Todd C. Mowry,
"Base-Delta-Immediate Compression: Practical Data 
Compression for On-Chip Caches"
Proceedings of the 21st International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Minneapolis, MN, 
September 2012. Slides (pptx) Source Code
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http://users.ece.cmu.edu/~omutlu/pub/bdi-compression_pact12.pdf
http://www.pactconf.org/
http://users.ece.cmu.edu/~omutlu/pub/pekhimenko_pact12_talk.pptx
http://www.ece.cmu.edu/~safari/tools/compression.c


Readings on Memory Compression (II)
n Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur 

Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"Linearly Compressed Pages: A Low-Complexity, Low-Latency 
Main Memory Compression Framework"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning 
Session Slides (pptx) (pdf)] Poster (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_pekhimenko_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_pekhimenko_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_pekhimenko_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_pekhimenko_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_pekhimenko_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_pekhimenko_micro13-poster.pdf


Readings on Memory Compression (III)
n Gennady Pekhimenko, Tyler Huberty, Rui Cai, Onur Mutlu, Phillip P. 

Gibbons, Michael A. Kozuch, and Todd C. Mowry,
"Exploiting Compressed Block Size as an Indicator of Future 
Reuse"
Proceedings of the 21st International Symposium on High-Performance 
Computer Architecture (HPCA), Bay Area, CA, February 2015. 
[Slides (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/compression-aware-cache-management_hpca15.pdf
http://darksilicon.org/hpca/
http://users.ece.cmu.edu/~omutlu/pub/compression-aware-cache-management_gennady-hpca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/compression-aware-cache-management_gennady-hpca15-talk.pdf


Readings on Memory Compression (IV)
n Gennady Pekhimenko, Evgeny Bolotin, Nandita Vijaykumar, Onur Mutlu, 

Todd C. Mowry, and Stephen W. Keckler,
"A Case for Toggle-Aware Compression for GPU Systems"
Proceedings of the 22nd International Symposium on High-Performance 
Computer Architecture (HPCA), Barcelona, Spain, March 2016. 
[Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/toggle-aware-compression-for-GPUs_hpca16.pdf
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/toggle-aware-compression-for-GPUs_pekhimenko-hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/toggle-aware-compression-for-GPUs_pekhimenko-hpca16-talk.pdf


Readings on Memory Compression (VI)
n Nandita Vijaykumar, Gennady Pekhimenko, Adwait Jog, Abhishek 

Bhowmick, Rachata Ausavarungnirun, Chita Das, Mahmut Kandemir, Todd 
C. Mowry, and Onur Mutlu,
"A Case for Core-Assisted Bottleneck Acceleration in GPUs: 
Enabling Flexible Data Compression with Assist Warps"
Proceedings of the 42nd International Symposium on Computer 
Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/caba-gpu-assist-warps_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/caba-gpu-assist-warps_isca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/caba-gpu-assist-warps_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/caba-gpu-assist-warps_isca15-lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/caba-gpu-assist-warps_isca15-lightning-talk.pdf


Efficient Cache Utilization: Examples
n Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 

2005.

n Qureshi et al., “Adaptive Insertion Policies for High Performance 
Caching,” ISCA 2007.

n Seshadri et al., �The Evicted-Address Filter: A Unified Mechanism to 
Address both Cache Pollution and Thrashing,� PACT 2012.

n Pekhimenko et al., �Base-Delta-Immediate Compression: Practical 
Data Compression for On-Chip Caches,� PACT 2012. 
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Revisiting Cache Placement (Insertion)
n Is inserting a fetched/prefetched block into the cache 

(hierarchy) always a good idea?
q No allocate on write: does not allocate a block on write miss
q How about reads?

n Allocating on a read miss
-- Evicts another potentially useful cache block
+ Incoming block potentially more useful

n Ideally:
q we would like to place those blocks whose caching would be 

most useful in the future
q we certainly do not want to cache never-to-be-used blocks
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Revisiting Cache Placement (Insertion)
n Ideas:

q Hardware predicts blocks that are not going to be used
n Tyson et al., “A Modified Approach to Data Cache Management,” 

MICRO 1995.
n Lai et al., “Dead Block Prediction,” ISCA 2001.

q Software (programmer/compiler) marks instructions that touch 
data that is not going to be reused
n How does software determine this?

n Streaming versus non-streaming accesses
q If a program is streaming through data, reuse likely occurs only 

for a limited period of time
q If such instructions are marked by the software, the hardware 

can store them temporarily in a smaller buffer (L0 cache) instead 
of the cache
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Reuse at L2 Cache Level

59

DoA Blocks: Blocks unused between insertion and eviction

For the 1MB 16-way L2, 60% of lines are DoA 
è Ineffective use of cache space
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Why Dead on Arrival Blocks?

60

q Streaming data è Never reused. L2 caches don’t help.

q Working set of application greater than cache size

Solution: if working set > cache size, retain some working set
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Cache Insertion Policies: MRU vs. LRU

61

a b c d e f g h
MRU LRU

i a b c d e f g

Reference to ‘i’ with traditional LRU policy:

a b c d e f g i

Reference to ‘i’ with LIP (LRU Insertion Policy):

Choose victim. Do NOT promote to MRU

Lines do not enter non-LRU positions unless reused 



Other Insertion Policies: Bimodal Insertion

62

if  ( rand() < e ) 
Insert at MRU position;

else
Insert at LRU position; 

LIP does not age older lines 

Infrequently insert lines in MRU position 

Let e = Bimodal throttle parameter 

For small e , BIP retains thrashing protection of LIP 
while responding to changes in working set



Analysis with Circular Reference Model

63

For small e , BIP retains thrashing protection of LIP 
while adapting to changes in working set

Policy (a1 a2 a3 … aT)N (b1 b2 b3 … bT)N

LRU 0 0
OPT (K-1)/T (K-1)/T
LIP (K-1)/T 0

BIP (small e) ≈ (K-1)/T ≈ (K-1)/T

Reference stream has T blocks and repeats N times. 
Cache has K blocks (K<T and N>>T)

Cache hit rates of two consecutive reference streams:



Analysis with Circular Reference Model
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LIP and BIP Performance vs. LRU

65

Changes to insertion policy increases misses for 
LRU-friendly workloads

LIP BIP(e=1/32)
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Dynamic Insertion Policy (DIP)
n Qureshi et al., “Adaptive Insertion Policies for High-

Performance Caching,” ISCA 2007.

66

Two types of workloads: LRU-friendly or BIP-friendly 

DIP can be implemented by:

1. Monitor both policies (LRU and BIP)

2. Choose the best-performing policy

3. Apply the best policy to the cache

Need a cost-effective implementation è Set Sampling



Dynamic Insertion Policy Miss Rate
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DIP (32 dedicated sets)BIP
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DIP vs. Other Policies

n Qureshi et al., “Adaptive Insertion Policies for High-
Performance Caching,” ISCA 2007.
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Efficient Cache Utilization: Examples
n Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 

2005.

n Qureshi et al., “Adaptive Insertion Policies for High Performance 
Caching,” ISCA 2007.

n Seshadri et al., �The Evicted-Address Filter: A Unified Mechanism to 
Address both Cache Pollution and Thrashing,� PACT 2012.

n Pekhimenko et al., �Base-Delta-Immediate Compression: Practical 
Data Compression for On-Chip Caches,� PACT 2012. 
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The Evicted-Address Filter

Vivek Seshadri, Onur Mutlu, Michael A. Kozuch, and Todd C. Mowry,
"The Evicted-Address Filter: A Unified Mechanism to Address Both 

Cache Pollution and Thrashing"
Proceedings of the 21st ACM International Conference on Parallel 

Architectures and Compilation Techniques (PACT), Minneapolis, MN, 
September 2012. Slides (pptx)
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Cache Utilization is Important

Core Last-Level 
Cache Memory

Core Core

Core Core

Increasing contention

Effective cache utilization is important

Large latency
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Reuse Behavior of Cache Blocks

A B C A B C S T U V W X Y A B C

Different blocks have different reuse behavior

Access Sequence:

High-reuse block Low-reuse block

Z

Ideal Cache A B C . . . . .
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Cache Pollution

H G F E D C B AS H G F E D C BT S H G F E D CU T S H G F E D

MRU LRU

LRU Policy

Idea: Predict reuse behavior of missed blocks. Insert 
low-reuse blocks at LRU position.

H G F E D C B ASTU

MRU LRU

AB AC B A

AS AT S A

Cache

Problem: Low-reuse blocks evict high-reuse blocks
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Cache Thrashing

H G F E D C B AI H G F E D C BJ I H G F E D CK J I H G F E D

MRU LRU

LRU Policy A B C D E F G H I J KAB AC B A

Idea: Insert at MRU position with a very low 

probability (Bimodal insertion policy)

Cache

H G F E D C B AIJK

MRU LRU

AI AJ I A
A fraction of 

working set 

stays in cache

Cache

Problem: High-reuse blocks evict each other

74
Qureshi+, “Adaptive insertion policies for high performance caching,” ISCA 2007.



Handling Pollution and Thrashing
Need to address both pollution and thrashing 
concurrently

Cache Thrashing
Need to control the number of blocks inserted with 
high priority into the cache

Cache Pollution
Need to distinguish high-reuse blocks from low-
reuse blocks
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Reuse Prediction

Miss Missed-block
High reuse

Low reuse

?

Keep track of the reuse behavior of every cache 
block in the system

Impractical
1. High storage overhead
2. Look-up latency
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Approaches to Reuse Prediction
Use program counter or memory region information.

BA TS

PC 1 PC 2

BA TS

PC 1 PC 2 PC 1

PC 2

C C

U U

1. Group Blocks 2. Learn group 
behavior 3. Predict reuse

1. Same group → same reuse behavior
2. No control over number of high-reuse blocks

77



Per-block Reuse Prediction
Use recency of eviction to predict reuse

A
Time

Time of eviction

A

Accessed soon 
after eviction

S
Time

S

Accessed long time 
after eviction
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Evicted-Address Filter (EAF)

Cache

EAF
(Addresses of recently evicted blocks)

Evicted-block address

Miss Missed-block address

In EAF?Yes No
MRU LRU

High Reuse Low Reuse 
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Naïve Implementation: Full Address Tags

EAF

1. Large storage overhead
2. Associative lookups – High energy 

Recently 
evicted address

Need not be 
100% accurate

?
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Low-Cost Implementation: Bloom Filter

EAF

Implement EAF using a Bloom Filter
Low storage overhead + energy

Need not be 
100% accurate

?
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Bloom Filters (From Lecture 1)

82Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.



Y

Bloom Filter
Compact representation of a set

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

1. Bit vector
2. Set of hash functions

H1 H2

H1 H2

X

1 11

InsertTest
ZW

Remove

X Y

May remove 
multiple addressesClearüû False positive

83

Inserted Elements: X Y



EAF using a Bloom Filter

EAF

Insert

Test

Evicted-block 
address

Remove
FIFO address 

Missed-block address

Bloom Filter

Remove
If present

when full

Clear

ü û

ü

û1

2
when full

Bloom-filter EAF: 4x reduction in storage overhead, 
1.47% compared to cache size 84



EAF-Cache: Final Design

Cache
Bloom Filter

Counter

1

2

3

Cache eviction

Cache miss

Counter reaches max

Insert address into filter
Increment counter

Test if address is present in filter
Yes, insert at MRU. No, insert with BIP

Clear filter and counter
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EAF: Advantages

Cache
Bloom Filter

Counter

1. Simple to implement

2. Easy to design and verify

3. Works with other techniques (replacement policy)

Cache eviction

Cache miss
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EAF Performance – Summary
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Comparison with Prior Works
Addressing Cache Pollution

- No control on number of blocks inserted with high 
priority ⟹	Thrashing

Run-time Bypassing (RTB) – Johnson+ ISCA’97
- Memory region based reuse prediction

Single-usage Block Prediction (SU) – Piquet+ ACSAC’07
Signature-based Hit Prediction (SHIP) – Wu+ MICRO’11
- Program counter based reuse prediction

Miss Classification Table (MCT) – Collins+ MICRO’99
- One most recently evicted block
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Comparison with Prior Works
Addressing Cache Thrashing

- No mechanism to filter low-reuse blocks ⟹	Pollution

TA-DIP – Qureshi+ ISCA’07, Jaleel+ PACT’08
TA-DRRIP – Jaleel+ ISCA’10
- Use set dueling to determine thrashing applications
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Effect of Cache Size
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Effect of EAF Size
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Other Results in Paper

• EAF orthogonal to replacement policies

– LRU, RRIP – Jaleel+ ISCA’10

• Performance improvement of EAF increases with 

increasing memory latency

• EAF performs well on four different metrics

– Performance and fairness

• Alternative EAF-based designs perform comparably 

– Segmented EAF

– Decoupled-clear EAF
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More on Evicted Address Filter Cache
n Vivek Seshadri, Onur Mutlu, Michael A. Kozuch, and Todd C. Mowry,

"The Evicted-Address Filter: A Unified Mechanism to Address 
Both Cache Pollution and Thrashing"
Proceedings of the 21st International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Minneapolis, MN, 
September 2012. Slides (pptx) Source Code
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Predictable Performance Again: 
Strong Memory Service Guarantees
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Remember MISE?
n Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, 

and Onur Mutlu,
"MISE: Providing Performance Predictability and 
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)
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Extending Slowdown Estimation to Caches
n How do we extend the MISE model to include shared cache 

interference?

n Answer: Application Slowdown Model

n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and 
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling 
the Impact of Inter-Application Interference at Shared Caches 
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 
(pptx) (pdf)] 
[Source Code]
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Quantifying and Controlling Impact of 
Interference at Shared Caches and Main Memory

Lavanya Subramanian, Vivek Seshadri, 
Arnab Ghosh, Samira Khan, Onur Mutlu
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Application Slowdown Model



Shared Cache and Memory Contention
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Main 
Memory

Shared 
Cache

Capacity

CoreCore

CoreCore

Slowdown = Request Service Rate Alone

Request Service Rate Shared

MISE [HPCA’13]



Cache Capacity Contention
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Main 
Memory

Shared 
Cache

Cache 
Access Rate

Priority

Core

Core

Applications evict each others’ blocks 
from the shared cache



Estimating Cache and Memory Slowdowns
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Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main 
Memory

Shared 
Cache

Cache 
Service Rate

Memory 
Service Rate



Service Rates vs. Access Rates
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Request service and access rates 
are tightly coupled 

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main 
Memory

Shared 
Cache

Cache 
Service Rate

Cache Access 
Rate



The Application Slowdown Model
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Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main 
Memory

Shared 
Cache

Shared

Alone

 Rate Access Cache
 Rate Access CacheSlowdown =

Cache Access 
Rate



Real System Studies:
Cache Access Rate vs. Slowdown 
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Challenge

How to estimate alone cache access rate?
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Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main 
Memory

Shared 
Cache

Cache 
Access Rate

Auxiliary 
Tag Store

Priority



Auxiliary Tag Store
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Main 
Memory

Shared 
Cache

Cache 
Access Rate

Auxiliary 
Tag Store

Priority

Core

Core

Still in auxiliary 
tag storeAuxiliary 

Tag StoreAuxiliary tag store tracks such contention misses



Accounting for Contention Misses

• Revisiting alone memory request service rate

Cycles serving contention misses should not 
count as high priority cycles

107

 CyclesPriority High  #
EpochsPriority High  During Requests #

nApplicatioan  of Rate ServiceRequest  Alone
           

=



Alone Cache Access Rate Estimation

108

Cycles Contention Cache# - CyclesPriority High  #
EpochsPriority High  During Requests #

nApplicatioan  of  Rate Access Cache                  
           

Alone =

Cache Contention Cycles: Cycles spent serving contention misses

Time ServiceMemory  Average                                            
 x Misses Contention #  Cycles Contention Cache =

From auxiliary tag store
when given high priority

Measured when given 
high priority



Application Slowdown Model (ASM)
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Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main 
Memory

Shared 
Cache

Cache 
Access Rate

Shared

Alone

 Rate Access Cache
 Rate Access CacheSlowdown =



Previous Work on Slowdown 
Estimation

• Previous work on slowdown estimation
– STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ’07] 

– FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ’10]

– Per-thread Cycle Accounting [Du Bois et al., HiPEAC ’13]

• Basic Idea:

Shared

Alone

 TimeExecution 
 TimeExecution  Slowdown =

Count interference experienced by each request à Difficult

110

ASM’s estimates are much more coarse grained à Easier



Model Accuracy Results

Average error of ASM’s slowdown estimates: 10% 
111
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Leveraging ASM’s Slowdown Estimates

• Slowdown-aware resource allocation for high 
performance and fairness

• Slowdown-aware resource allocation to bound 
application slowdowns

• VM migration and admission control schemes 
[VEE ’15]

• Fair billing schemes in a commodity cloud
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Cache Capacity Partitioning

113

Main 
Memory

Shared 
Cache

Cache 
Access Rate

Core

Core

Goal: Partition the shared cache among 
applications to mitigate contention



Cache Capacity Partitioning
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Main 
Memory

Core

Core

Way 
2

Set 0
Set 1
Set 2
Set 3

..
Set N-1

Way 
0

Way 
1

Way 
3

Previous partitioning schemes optimize for miss count
Problem: Not aware of performance and slowdowns



ASM-Cache: Slowdown-aware 
Cache Way Partitioning

• Key Requirement: Slowdown estimates for all 
possible way partitions

• Extend ASM to estimate slowdown for all 
possible cache way allocations

• Key Idea: Allocate each way to the application 
whose slowdown reduces the most
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Memory Bandwidth Partitioning

116

Main 
Memory

Shared 
Cache

Cache 
Access Rate

Core

Core

Goal: Partition the main memory bandwidth 
among applications to mitigate contention



ASM-Mem: Slowdown-aware 
Memory Bandwidth Partitioning

• Key Idea: Allocate high priority proportional to 
an application’s slowdown

• Application i’s requests given highest priority 
at the memory controller for its fraction

117
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Coordinated Resource 
Allocation Schemes
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Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main 
Memory

Shared 
Cache

Cache capacity-aware 
bandwidth allocation

1. Employ ASM-Cache to partition cache capacity 
2. Drive ASM-Mem with slowdowns from ASM-Cache 



Fairness and Performance Results
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16-core system 
100 workloads

Significant fairness benefits across different channel counts
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Summary

• Problem: Uncontrolled memory interference cause high 
and unpredictable application slowdowns

• Goal: Quantify and control slowdowns
• Key Contribution:

– ASM: An accurate slowdown estimation model
– Average error of ASM: 10%

• Key Ideas:
– Shared cache access rate is a proxy for performance
– Cache Access Rate Alone can be estimated by minimizing memory 

interference and quantifying cache interference
• Applications of Our Model

– Slowdown-aware cache and memory management to achieve 
high performance, fairness and performance guarantees

• Source Code Released in January 2016
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More on Application Slowdown Model
n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and 

Onur Mutlu,

"The Application Slowdown Model: Quantifying and Controlling 
the Impact of Inter-Application Interference at Shared Caches 
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture

(MICRO), Waikiki, Hawaii, USA, December 2015. 

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 

(pptx) (pdf)] 

[Source Code] 
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