
Computer Architecture
Lecture 5: Main Memory

and DRAM Fundamentals

Prof. Onur Mutlu
ETH Zürich
Fall 2018

3 October 2018

Last Lecture
n Wrap-up Caches
n Main Memory and Its Importance
n Main Memory Trends and Challenges

2

Agenda for This Lecture
n Wrap-up Main Memory Challenges
n Main Memory Fundamentals
n DRAM Basics and Operation
n Memory Controllers
n Simulation
n Memory Latency

3

The Main Memory System

Why Is Memory So Important?
(Especially Today)

Importance of Main Memory
n The Performance Perspective

n The Energy Perspective

n The Reliability/Security Perspective

n Trends/Challenges/Opportunities in Main Memory

6

The Performance Perspective
n “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.

The Energy Perspective

8

Dally, HiPEAC 2015

A memory access consumes ~1000X
the energy of a complex addition

The Reliability Perspective
n Data from all of Facebook’s servers worldwide
n Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.

9

Intuition:quadraticincrease
in

capacity

The Security Perspective

10

The Reliability & Security Perspectives

11https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

n Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Lausanne, Switzerland, March 2017.
[Slides (pptx) (pdf)]

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf

Trends, Challenges, and Opportunities
in Main Memory

n Fix it: Make memory and controllers more intelligent
q New interfaces, functions, architectures: system-mem codesign

n Eliminate or minimize it: Replace or (more likely) augment
DRAM with a different technology
q New technologies and system-wide rethinking of memory &

storage

n Embrace it: Design heterogeneous memories (none of which
are perfect) and map data intelligently across them
q New models for data management and maybe usage

n …
13

Solutions (to memory scaling) require
software/hardware/device cooperation

Microarchitecture
ISA

Programs
Algorithms
Problems

Logic
Devices

Runtime System
(VM, OS, MM)

User

How Do We Solve The Memory Problem?

Solution 1: New Memory Architectures

n Overcome memory shortcomings with
q Memory-centric system design
q Novel memory architectures, interfaces, functions
q Better waste management (efficient utilization)

n Key issues to tackle
q Enable reliability at low cost à high capacity
q Reduce energy
q Reduce latency
q Improve bandwidth
q Reduce waste (capacity, bandwidth, latency)
q Enable computation close to data

14

Solution 1: New Memory Architectures
n Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
n Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.

n Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
n Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.
n Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.
n Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.
n Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.

n Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 2014.
n Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.
n Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014.
n Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.
n Qureshi+, “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015.

n Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field,” DSN 2015.
n Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015.
n Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM,” IEEE CAL 2015.
n Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015.

n Ahn+, “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015.
n Lee+, “Decoupled Direct Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM,” PACT 2015.
n Seshadri+, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit Strided Accesses,” MICRO 2015.
n Lee+, “Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” TACO 2016.
n Hassan+, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access Locality,” HPCA 2016.

n Chang+, “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Migration in DRAM,” HPCA 2016.
n Chang+, “Understanding Latency Variation in Modern DRAM Chips Experimental Characterization, Analysis, and Optimization,” SIGMETRICS 2016.
n Khan+, “PARBOR: An Efficient System-Level Technique to Detect Data Dependent Failures in DRAM,” DSN 2016.
n Hsieh+, “Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems,” ISCA 2016.
n Hashemi+, “Accelerating Dependent Cache Misses with an Enhanced Memory Controller,” ISCA 2016.

n Boroumand+, “LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory,” IEEE CAL 2016.
n Pattnaik+, “Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities,” PACT 2016.
n Hsieh+, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation,” ICCD 2016.
n Hashemi+, “Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads,” MICRO 2016.

n Khan+, “A Case for Memory Content-Based Detection and Mitigation of Data-Dependent Failures in DRAM",” IEEE CAL 2016.
n Hassan+, “SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies,” HPCA 2017.
n Mutlu, “The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser,” DATE 2017.
n Lee+, “Design-Induced Latency Variation in Modern DRAM Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” SIGMETRICS 2017.
n Chang+, “Understanding Reduced-Voltage Operation in Modern DRAM Devices: Experimental Characterization, Analysis, and Mechanisms,” SIGMETRICS 2017.

n Patel+, “The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions,” ISCA 2017.
n Seshadri and Mutlu, “Simple Operations in Memory to Reduce Data Movement,” ADCOM 2017.
n Liu+, “Concurrent Data Structures for Near-Memory Computing,” SPAA 2017.
n Khan+, “Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content,” MICRO 2017.
n Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology,” MICRO 2017.

n Avoid DRAM:
q Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012.
q Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012.
q Seshadri+, “The Dirty-Block Index,” ISCA 2014.

q Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015.
q Vijaykumar+, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist Warps,” ISCA 2015.
q Pekhimenko+, “Toggle-Aware Bandwidth Compression for GPUs,” HPCA 2016.

15

Solution 2: Emerging Memory Technologies
n Some emerging resistive memory technologies seem more

scalable than DRAM (and they are non-volatile)

n Example: Phase Change Memory
q Data stored by changing phase of material
q Data read by detecting material’s resistance
q Expected to scale to 9nm (2022 [ITRS 2009])
q Prototyped at 20nm (Raoux+, IBM JRD 2008)
q Expected to be denser than DRAM: can store multiple bits/cell

n But, emerging technologies have (many) shortcomings
q Can they be enabled to replace/augment/surpass DRAM?

16

Solution 2: Emerging Memory Technologies
n Lee+, �Architecting Phase Change Memory as a Scalable DRAM Alternative,� ISCA’09, CACM’10, IEEE Micro’10.
n Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.
n Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.
n Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.
n Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.
n Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.
n Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.
n Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014.
n Ren+, “ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015.
n Chauhan+, “NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016.
n Li+, “Utility-Based Hybrid Memory Management,” CLUSTER 2017.
n Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.

17

Combination: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
CtrlDRAM Technology X (e.g., PCM)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

App/Data A App/Data B App/Data C

M
em

or
y

er
ro

r v
ul

ne
ra

bi
lit

y

Vulnerable
data

Tolerant
data

Exploiting Memory Error Tolerance
with Hybrid Memory Systems

Heterogeneous-Reliability Memory [DSN 2014]

Low-cost memoryReliable memory

Vulnerable
data

Tolerant
data

Vulnerable
data

Tolerant
data

• ECC protected
• Well-tested chips

• NoECC or Parity
• Less-tested chips

19

On Microsoft’s Web Search workload
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %

More on Heterogeneous Reliability Memory
n Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman

Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu,
"Characterizing Application Memory Error Vulnerability to Optimize
Data Center Cost via Heterogeneous-Reliability Memory"
Proceedings of the 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary]
[Slides (pptx) (pdf)] [Coverage on ZDNet]

20

http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_dsn14.pdf
http://2014.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory_dsn14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pdf
http://www.zdnet.com/how-good-does-memory-need-to-be-7000031853/

An Orthogonal Issue: Memory Interference

Main
Memory

21

Core Core

Core Core

Cores’ interfere with each other when accessing shared main memory
Uncontrolled interference leads to many problems (QoS, performance)

n Problem: Memory interference between cores is uncontrolled
à unfairness, starvation, low performance
à uncontrollable, unpredictable, vulnerable system

n Solution: QoS-Aware Memory Systems
q Hardware designed to provide a configurable fairness substrate

n Application-aware memory scheduling, partitioning, throttling
q Software designed to configure the resources to satisfy different

QoS goals

n QoS-aware memory systems can provide predictable
performance and higher efficiency

An Orthogonal Issue: Memory Interference

Goal: Predictable Performance in Complex Systems

n Heterogeneous agents: CPUs, GPUs, and HWAs
n Main memory interference between CPUs, GPUs, HWAs

23

CPU CPU CPU CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance?

Strong Memory Service Guarantees
n Goal: Satisfy performance/SLA requirements in the

presence of shared main memory, heterogeneous agents,
and hybrid memory/storage

n Approach:
q Develop techniques/models to accurately estimate the

performance loss of an application/agent in the presence of
resource sharing

q Develop mechanisms (hardware and software) to enable the
resource partitioning/prioritization needed to achieve the
required performance levels for all applications

q All the while providing high system performance

n Subramanian et al., “MISE: Providing Performance Predictability and Improving Fairness
in Shared Main Memory Systems,” HPCA 2013.

n Subramanian et al., “The Application Slowdown Model,” MICRO 2015.
24

How Can We Fix the Memory Problem &
Design (Memory) Systems of the Future?

Plan of Action
n We first need to understand the principles of:

q Memory and DRAM
q Memory controllers
q Techniques for reducing and tolerating memory latency
q Potential memory technologies that can compete with DRAM
q How to evaluate new ideas in memory systems

n This is what we will cover in the next lectures

26

Main Memory Fundamentals

The Memory Chip/System Abstraction

28

Review: Memory Bank Organization
n Read access sequence:

1. Decode row address
& drive word-lines

2. Selected bits drive
bit-lines

• Entire row read

3. Amplify row data

4. Decode column
address & select subset
of row

• Send to output

5. Precharge bit-lines
• For next access

29

Some Fundamental Concepts (I)
n Physical address space

q Maximum size of main memory: total number of uniquely
identifiable locations

n Physical addressability
q Minimum size of data in memory can be addressed
q Byte-addressable, word-addressable, 64-bit-addressable
q Microarchitectural addressability depends on the abstraction

level of the implementation

n Alignment
q Does the hardware support unaligned access transparently to

software?

n Interleaving
30

Some Fundamental Concepts (II)
n Interleaving (banking)

q Problem: a single monolithic memory array takes long to
access and does not enable multiple accesses in parallel

q Goal: Reduce the latency of memory array access and enable
multiple accesses in parallel

q Idea: Divide the array into multiple banks that can be
accessed independently (in the same cycle or in consecutive
cycles)
n Each bank is smaller than the entire memory storage
n Accesses to different banks can be overlapped

q A Key Issue: How do you map data to different banks? (i.e.,
how do you interleave data across banks?)

31

Interleaving

32

Interleaving Options

33

Some Questions/Concepts
n Remember CRAY-1 with 16 banks [From Digital Circuits]

q 11 cycle bank latency; banks share address/data buses
q Consecutive words in memory in consecutive banks (word

interleaving)
q 1 access can be started (and finished) per cycle

n Can banks be operated fully in parallel?
q Multiple accesses started per cycle?

n What is the cost of this?
q We have seen it earlier

n Modern superscalar processors have L1 data caches with
multiple, fully-independent banks; DRAM banks share buses

34

The Bank Abstraction

35

36

Rank

The DRAM Subsystem

DRAM Subsystem Organization

n Channel
n DIMM
n Rank
n Chip
n Bank
n Row/Column

38

Page Mode DRAM
n A DRAM bank is a 2D array of cells: rows x columns
n A �DRAM row� is also called a �DRAM page�
n �Sense amplifiers� also called �row buffer�

n Each address is a <row,column> pair
n Access to a �closed row�

q Activate command opens row (placed into row buffer)
q Read/write command reads/writes column in the row buffer
q Precharge command closes the row and prepares the bank for

next access
n Access to an �open row�

q No need for activate command

39

The DRAM Bank Structure

40

DRAM Bank Operation

41

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Row address 0

Column address 0

Data

Row 0Empty

(Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
ow

s

Access Address:

The DRAM Chip
n Consists of multiple banks (8 is a common number today)
n Banks share command/address/data buses
n The chip itself has a narrow interface (4-16 bits per read)

n Changing the number of banks, size of the interface (pins),
whether or not command/address/data buses are shared
has significant impact on DRAM system cost

42

128M x 8-bit DRAM Chip

43

DRAM Rank and Module
n Rank: Multiple chips operated together to form a wide

interface
n All chips comprising a rank are controlled at the same time

q Respond to a single command
q Share address and command buses, but provide different data

n A DRAM module consists of one or more ranks
q E.g., DIMM (dual inline memory module)
q This is what you plug into your motherboard

n If we have chips with 8-bit interface, to read 8 bytes in a
single access, use 8 chips in a DIMM

44

A 64-bit Wide DIMM (One Rank)

45

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Command Data

A 64-bit Wide DIMM (One Rank)
n Advantages:

q Acts like a high-
capacity DRAM chip
with a wide
interface

q Flexibility: memory
controller does not
need to deal with
individual chips

n Disadvantages:
q Granularity:

Accesses cannot be
smaller than the
interface width

46

Multiple DIMMs

47

n Advantages:
q Enables even

higher capacity

n Disadvantages:
q Interconnect

complexity and
energy
consumption
can be high
à Scalability is

limited by this

DRAM Channels

n 2 Independent Channels: 2 Memory Controllers (Above)
n 2 Dependent/Lockstep Channels: 1 Memory Controller with

wide interface (Not shown above)

48

Generalized Memory Structure

49

Generalized Memory Structure

50

Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.

Required Readings on DRAM
n DRAM Organization and Operation Basics

q Sections 1 and 2 of: Lee et al., “Tiered-Latency DRAM: A Low
Latency and Low Cost DRAM Architecture,” HPCA 2013.
https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf

q Sections 1 and 2 of Kim et al., “A Case for Subarray-Level
Parallelism (SALP) in DRAM,” ISCA 2012.
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf

n DRAM Refresh Basics
q Sections 1 and 2 of Liu et al., “RAIDR: Retention-Aware

Intelligent DRAM Refresh,” ISCA 2012.
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-
refresh_isca12.pdf

51

https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-refresh_isca12.pdf

The DRAM Subsystem
The Top Down View

DRAM Subsystem Organization

n Channel
n DIMM
n Rank
n Chip
n Bank
n Row/Column
n Cell

53

The DRAM subsystem

Memory channel Memory channel

DIMM (Dual in-line memory module)

Processor

�Channel�

Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM

Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM

Rank 0: collection of 8 chips Rank 1

Rank

Rank 0 (Front) Rank 1 (Back)

Data <0:63>CS <0:1>Addr/Cmd

<0:63><0:63>

Memory channel

Breaking down a Rank

Rank 0

<0:63>

Ch
ip

 0

Ch
ip

 1

Ch
ip

 7. . .

<0
:7

>

<8
:1

5>

<5
6:

63
>

Data <0:63>

Breaking down a Chip

Ch
ip

 0
<0

:7
>

8 ban
ks

Bank 0

<0:7>

<0:7>

<0:7>

...

<0
:7

>

Breaking down a Bank

Bank 0

<0
:7
>

row 0

row 16k-1

...
2kB

1B

1B (column)

1B
Row-buffer

1B
...

<0
:7
>

DRAM Subsystem Organization

n Channel
n DIMM
n Rank
n Chip
n Bank
n Row/Column
n Cell

61

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

...

64B
cache block

Physical memory space

Channel 0

DIMM 0

Rank 0
Mapped to

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

...

64B
cache block

Physical memory space

Rank 0Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6:

63
>

Data <0:63>

. . .

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

...

64B
cache block

Physical memory space

Rank 0Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6:

63
>

Data <0:63>

Row 0
Col 0

. . .

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

...

64B
cache block

Physical memory space

Rank 0Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6:

63
>

Data <0:63>
8B

Row 0
Col 0

. . .

8B

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

...

64B
cache block

Physical memory space

Rank 0Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6:

63
>

Data <0:63>
8B

Row 0
Col 1

. . .

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

...

64B
cache block

Physical memory space

Rank 0Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6:

63
>

Data <0:63>
8B

8B

Row 0
Col 1

. . .

8B

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

...

64B
cache block

Physical memory space

Rank 0Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6:

63
>

Data <0:63>
8B

8B

Row 0
Col 1

A 64B cache block takes 8 I/O cycles to transfer.

During the process, 8 columns are read sequentially.

. . .

Latency Components: Basic DRAM Operation

n CPU → controller transfer time
n Controller latency

q Queuing & scheduling delay at the controller
q Access converted to basic commands

n Controller → DRAM transfer time
n DRAM bank latency

q Simple CAS (column address strobe) if row is �open� OR
q RAS (row address strobe) + CAS if array precharged OR
q PRE + RAS + CAS (worst case)

n DRAM → Controller transfer time
q Bus latency (BL)

n Controller to CPU transfer time

69

Multiple Banks (Interleaving) and Channels
n Multiple banks

q Enable concurrent DRAM accesses
q Bits in address determine which bank an address resides in

n Multiple independent channels serve the same purpose
q But they are even better because they have separate data buses
q Increased bus bandwidth

n Enabling more concurrency requires reducing
q Bank conflicts
q Channel conflicts

n How to select/randomize bank/channel indices in address?
q Lower order bits have more entropy
q Randomizing hash functions (XOR of different address bits)

70

How Multiple Banks Help

71

Address Mapping (Single Channel)
n Single-channel system with 8-byte memory bus

q 2GB memory, 8 banks, 16K rows & 2K columns per bank

n Row interleaving
q Consecutive rows of memory in consecutive banks

q Accesses to consecutive cache blocks serviced in a pipelined manner

n Cache block interleaving
n Consecutive cache block addresses in consecutive banks
n 64 byte cache blocks

n Accesses to consecutive cache blocks can be serviced in parallel
72

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)
3 bits8 bits

Bank Mapping Randomization
n DRAM controller can randomize the address mapping to

banks so that bank conflicts are less likely

n Reading:
q Rau, “Pseudo-randomly Interleaved Memory,” ISCA 1991.

73

Column (11 bits)3 bits Byte in bus (3 bits)

XOR

Bank index
(3 bits)

Address Mapping (Multiple Channels)

n Where are consecutive cache blocks?

74

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)
3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)
3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)
3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)
3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)
3 bits8 bits

C

Interaction with VirtualàPhysical Mapping
n Operating System influences where an address maps to in

DRAM

n Operating system can influence which bank/channel/rank a
virtual page is mapped to.

n It can perform page coloring to
q Minimize bank conflicts
q Minimize inter-application interference [Muralidhara+ MICRO’11]
q Minimize latency in the network [Das+ HPCA’13]

75

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)

Page offset (12 bits)Physical Frame number (19 bits)

Page offset (12 bits)Virtual Page number (52 bits) VA

PA
PA

Memory Channel Partitioning
n Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu,

Mahmut Kandemir, and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011. Slides (pptx)

76

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx

Application-to-Core Mapping
n Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh

Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February 2013.
Slides (pptx)

77

http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx

More on Reducing Bank Conflicts
n Read Sections 1 through 4 of:

q Kim et al., “A Case for Exploiting Subarray-Level Parallelism in
DRAM,” ISCA 2012.

78

Subarray Level Parallelism
n Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu,

"A Case for Exploiting Subarray-Level Parallelism (SALP) in
DRAM"
Proceedings of the 39th International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)

79

https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
http://isca2012.ittc.ku.edu/
https://people.inf.ethz.ch/omutlu/pub/kim_isca12_talk.pptx

DRAM Refresh (I)
n DRAM capacitor charge leaks over time
n The memory controller needs to read each row periodically

to restore the charge
q Activate + precharge each row every N ms
q Typical N = 64 ms

n Implications on performance?
-- DRAM bank unavailable while refreshed
-- Long pause times: If we refresh all rows in burst, every 64ms

the DRAM will be unavailable until refresh ends
n Burst refresh: All rows refreshed immediately after one

another
n Distributed refresh: Each row refreshed at a different time,

at regular intervals
80

DRAM Refresh (II)

n Distributed refresh eliminates long pause times
n How else we can reduce the effect of refresh on

performance?
q Can we reduce the number of refreshes?

81

-- Energy consumption: Each refresh consumes energy
-- Performance degradation: DRAM rank/bank unavailable while
refreshed
-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM density scaling

Downsides of DRAM Refresh

82

Liu et al., “RAIDR: Retention-aware Intelligent DRAM Refresh,” ISCA 2012.

More on DRAM Refresh
n Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,

"RAIDR: Retention-Aware Intelligent DRAM Refresh"
Proceedings of the 39th International Symposium on

Computer Architecture (ISCA), Portland, OR, June 2012.

Slides (pdf)

83

http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/liu_isca12_talk.pdf

DRAM Retention Analysis
n Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,

"An Experimental Study of Data Retention Behavior in Modern DRAM
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

84

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.pdf

Data Retention in Memory [Liu et al., ISCA 2013]

n Data Retention Time Profile of DRAM looks like this:

85

Location dependent
Stored value pattern dependent

Time dependent

DRAM Refresh-Access Parallelization
n Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris

Wilkerson, Yoongu Kim, and Onur Mutlu,
"Improving DRAM Performance by Parallelizing Refreshes with
Accesses"
Proceedings of the 20th International Symposium on High-Performance
Computer Architecture (HPCA), Orlando, FL, February 2014.
[Summary] [Slides (pptx) (pdf)]

86

http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
http://hpca20.ece.ufl.edu/
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pdf

Memory Controllers

DRAM versus Other Types of Memories

n Long latency memories have similar characteristics that
need to be controlled.

n The following discussion will use DRAM as an example, but
many scheduling and control issues are similar in the
design of controllers for other types of memories
q Flash memory
q Other emerging memory technologies

n Phase Change Memory
n Spin-Transfer Torque Magnetic Memory

q These other technologies can place other demands on the
controller

88

Flash Memory (SSD) Controllers
n Similar to DRAM memory controllers, except:

q They are flash memory specific
q They do much more: error correction, garbage collection,

page remapping, …

89Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory
Lifetime”, ICCD 2012.

Another View of the SSD Controller

90

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

https://arxiv.org/pdf/1711.11427.pdf

https://arxiv.org/pdf/1711.11427.pdf

On Modern SSD Controllers (I)

91https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642

On Modern SSD Controllers (II)
n Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, Saugata

Ghose, and Onur Mutlu,
"MQSim: A Framework for Enabling Realistic Studies of Modern
Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage
Technologies (FAST), Oakland, CA, USA, February 2018.
[Slides (pptx) (pdf)]
[Source Code]

92

https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim

On Modern SSD Controllers (III)
n Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie Kim,

Yixin Luo, Yaohua Wang, Nika Mansouri Ghiasi, Lois Orosa, Juan G.
Luna and Onur Mutlu,
"FLIN: Enabling Fairness and Enhancing Performance in
Modern NVMe Solid State Drives"
Proceedings of the 45th International Symposium on Computer
Architecture (ISCA), Los Angeles, CA, USA, June 2018.
[Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video]

93

https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18.pdf
http://iscaconf.org/isca2018/
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-lightning-talk.pdf
https://www.youtube.com/watch?v=eeR18a3_G_A

DRAM Types
n DRAM has different types with different interfaces optimized

for different purposes
q Commodity: DDR, DDR2, DDR3, DDR4, …
q Low power (for mobile): LPDDR1, …, LPDDR5, …
q High bandwidth (for graphics): GDDR2, …, GDDR5, …
q Low latency: eDRAM, RLDRAM, …
q 3D stacked: WIO, HBM, HMC, …
q …

n Underlying microarchitecture is fundamentally the same
n A flexible memory controller can support various DRAM types
n This complicates the memory controller

q Difficult to support all types (and upgrades)

94

DRAM Types (circa 2015)

95

Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE Comp Arch Letters 2015.

DRAM Controller: Functions
n Ensure correct operation of DRAM (refresh and timing)

n Service DRAM requests while obeying timing constraints of
DRAM chips
q Constraints: resource conflicts (bank, bus, channel), minimum

write-to-read delays
q Translate requests to DRAM command sequences

n Buffer and schedule requests to for high performance + QoS
q Reordering, row-buffer, bank, rank, bus management

n Manage power consumption and thermals in DRAM
q Turn on/off DRAM chips, manage power modes

96

A Modern DRAM Controller (I)

97

98

A Modern DRAM Controller

Mutlu+, “Stall-Time Fair Memory Scheduling,” MICRO 2007.

DRAM Scheduling Policies (I)
n FCFS (first come first served)

q Oldest request first

n FR-FCFS (first ready, first come first served)
1. Row-hit first
2. Oldest first
Goal: Maximize row buffer hit rate à maximize DRAM throughput

q Actually, scheduling is done at the command level
n Column commands (read/write) prioritized over row commands

(activate/precharge)
n Within each group, older commands prioritized over younger ones

99

Review: DRAM Bank Operation

100

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Row address 0

Column address 0

Data

Row 0Empty

(Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
ow

s

Access Address:

DRAM Scheduling Policies (II)
n A scheduling policy is a request prioritization order

n Prioritization can be based on
q Request age
q Row buffer hit/miss status
q Request type (prefetch, read, write)
q Requestor type (load miss or store miss)
q Request criticality

n Oldest miss in the core?
n How many instructions in core are dependent on it?
n Will it stall the processor?

q Interference caused to other cores
q …

101

Row Buffer Management Policies
n Open row

q Keep the row open after an access
+ Next access might need the same row à row hit
-- Next access might need a different row à row conflict, wasted energy

n Closed row
q Close the row after an access (if no other requests already in the request

buffer need the same row)
+ Next access might need a different row à avoid a row conflict
-- Next access might need the same row à extra activate latency

n Adaptive policies
q Predict whether or not the next access to the bank will be to

the same row and act accordingly

102

Open vs. Closed Row Policies

Policy First access Next access Commands
needed for next
access

Open row Row 0 Row 0 (row hit) Read
Open row Row 0 Row 1 (row

conflict)
Precharge +
Activate Row 1 +
Read

Closed row Row 0 Row 0 – access in
request buffer
(row hit)

Read

Closed row Row 0 Row 0 – access not
in request buffer
(row closed)

Activate Row 0 +
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 +
Read + Precharge

103

DRAM Power Management
n DRAM chips have power modes
n Idea: When not accessing a chip power it down

n Power states
q Active (highest power)
q All banks idle
q Power-down
q Self-refresh (lowest power)

n Tradeoff: State transitions incur latency during which the
chip cannot be accessed

104

Difficulty of DRAM Control

Why are DRAM Controllers Difficult to Design?

n Need to obey DRAM timing constraints for correctness
q There are many (50+) timing constraints in DRAM
q tWTR: Minimum number of cycles to wait before issuing a read

command after a write command is issued
q tRC: Minimum number of cycles between the issuing of two

consecutive activate commands to the same bank
q …

n Need to keep track of many resources to prevent conflicts
q Channels, banks, ranks, data bus, address bus, row buffers

n Need to handle DRAM refresh
n Need to manage power consumption
n Need to optimize performance & QoS (in the presence of constraints)

q Reordering is not simple
q Fairness and QoS needs complicates the scheduling problem

106

Many DRAM Timing Constraints

n From Lee et al., �DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,� HPS Technical Report,
April 2010.

107

More on DRAM Operation
n Kim et al., “A Case for Exploiting Subarray-Level Parallelism

(SALP) in DRAM,” ISCA 2012.
n Lee et al., “Tiered-Latency DRAM: A Low Latency and Low

Cost DRAM Architecture,” HPCA 2013.

108

Why So Many Timing Constraints? (I)

109

Kim et al., “A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM,” ISCA 2012.

Why So Many Timing Constraints? (II)

110

Lee et al., “Tiered-Latency DRAM: A Low Latency
and Low Cost DRAM Architecture,” HPCA 2013.

DRAM Controller Design Is Becoming More Difficult

n Heterogeneous agents: CPUs, GPUs, and HWAs
n Main memory interference between CPUs, GPUs, HWAs
n Many timing constraints for various memory types
n Many goals at the same time: performance, fairness, QoS,

energy efficiency, …
111

CPU CPU CPU CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

Reality and Dream
n Reality: It difficult to optimize all these different constraints

while maximizing performance, QoS, energy-efficiency, …

n Dream: Wouldn’t it be nice if the DRAM controller
automatically found a good scheduling policy on its own?

112

Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers
n Problem: DRAM controllers difficult to design à It is difficult for

human designers to design a policy that can adapt itself very well
to different workloads and different system conditions

n Idea: Design a memory controller that adapts its scheduling
policy decisions to workload behavior and system conditions
using machine learning.

n Observation: Reinforcement learning maps nicely to memory
control.

n Design: Memory controller is a reinforcement learning agent that
dynamically and continuously learns and employs the best
scheduling policy.

Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich

Caruana,
"Self Optimizing Memory Controllers: A
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on
Computer Architecture (ISCA), pages 39-50, Beijing,
China, June 2008.

114

Goal: Learn to choose actions to maximize r0 + gr1 + g2r2 + … (0 £ g < 1)

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Self-Optimizing DRAM Controllers
n Dynamically adapt the memory scheduling policy via

interaction with the system at runtime
q Associate system states and actions (commands) with long term

reward values: each action at a given state leads to a learned reward
q Schedule command with highest estimated long-term reward value in

each state
q Continuously update reward values for <state, action> pairs based on

feedback from system

115

Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

116

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

States, Actions, Rewards

117

❖ Reward function

• +1 for scheduling
Read and Write
commands

• 0 at all other
times

Goal is to maximize
long-term
data bus
utilization

❖ State attributes

• Number of reads,
writes, and load
misses in
transaction queue

• Number of pending
writes and ROB
heads waiting for
referenced row

• Request’s relative
ROB order

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP

Performance Results

118

Self Optimizing DRAM Controllers
n Advantages

+ Adapts the scheduling policy dynamically to changing workload
behavior and to maximize a long-term target
+ Reduces the designer’s burden in finding a good scheduling
policy. Designer specifies:

1) What system variables might be useful
2) What target to optimize, but not how to optimize it

n Disadvantages and Limitations
-- Black box: designer much less likely to implement what she
cannot easily reason about
-- How to specify different reward functions that can achieve
different objectives? (e.g., fairness, QoS)
-- Hardware complexity?

119

More on Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

120

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Computer Architecture
Lecture 5: Main Memory

and DRAM Fundamentals

Prof. Onur Mutlu
ETH Zürich
Fall 2018

3 October 2018

