
Computer Architecture
Lecture 1: Introduction and Basics

Prof. Onur Mutlu
ETH Zürich
Fall 2019

19 September 2019

Brief Self Introduction

n Onur Mutlu
q Full Professor @ ETH Zurich CS (EE), since September 2015
q Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-…
q PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD
q https://people.inf.ethz.ch/omutlu/
q omutlu@gmail.com (Best way to reach me)
q https://people.inf.ethz.ch/omutlu/projects.htm

n Research and Teaching in:
q Computer architecture, computer systems, hardware security, bioinformatics
q Memory and storage systems
q Hardware security, safety, predictability
q Fault tolerance
q Hardware/software cooperation
q Architectures for bioinformatics, health, medicine
q …

2

https://people.inf.ethz.ch/omutlu/
mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu/projects.htm

Research Focus: Computer architecture, HW/SW, bioinformatics, security
• Memory and storage (DRAM, flash, emerging), interconnects
• Heterogeneous & parallel systems, GPUs, systems for data analytics
• System/architecture interaction, new execution models, new interfaces
• Hardware security, energy efficiency, fault tolerance, performance
• Genome sequence analysis & assembly algorithms and architectures
• Biologically inspired systems & system design for bio/medicine

Graphics and Vision Processing

Heterogeneous
Processors and

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Broad research
spanning apps, systems, logic
with architecture at the center

Current Research Focus Areas

Many Interesting Things
Are Happening Today

in Computer Architecture

4

Intel Optane Persistent Memory (2019)

n Non-volatile main memory
n Based on 3D-XPoint Technology

5
https://www.storagereview.com/intel_optane_dc_persistent_memory_module_pmm

https://www.storagereview.com/intel_optane_dc_persistent_memory_module_pmm

Cerebras’s Wafer Scale Engine (2019)

6

Cerebras WSE
1.2 Trillion transistors

46,225 mm2

Largest GPU
21.1 Billion transistors

815 mm2

n The largest ML
accelerator chip

n 400,000 cores

NVIDIA TITAN V
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

UPMEM Processing-in-DRAM Engine (2019)

7

n Processing in DRAM Engine
n Includes standard DIMM modules, with a large

number of DPU processors combined with DRAM chips.

n Replaces standard DIMMs
q DDR4 R-DIMM modules

n 8GB+128 DPUs (16 PIM chips)
n Standard 2x-nm DRAM process

q Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

TESLA Full Self-Driving Computer (2019)

8

n ML accelerator: 260 mm2, 6 billion transistors,
600 GFLOPS GPU, 12 ARM 2.2 GHz CPUs.

n Two redundant chips for better safety.

https://youtu.be/Ucp0TTmvqOE?t=4236

https://youtu.be/Ucp0TTmvqOE?t=4236

Google TPU Generation I (~2016)

9

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.

Google TPU Generation II (2017)

10

https://www.nextplatform.com/2017/05/17/first-depth-look-googles-new-second-generation-tpu/

4 TPU chips
vs 1 chip in TPU1

High Bandwidth Memory
vs DDR3

Floating point operations
vs FP16

45 TFLOPS per chip
vs 23 TOPS

Designed for training
and inference
vs only inference

An Example Modern Systolic Array: TPU (II)

11

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.

An Example Modern Systolic Array: TPU (III)

12

Many Concepts Being Investigated Today
n New Computing Paradigms

q Processing in Memory
q Neuromorphic Computing

n New Accelerators
q Machine Learning
q Graph Analytics
q Genome Analysis

n New Systolic Architectures

n New Memories

13

Computer Architecture Today
n Computing landscape is very different from 10-20 years ago

n Applications and technology both demand novel architectures

14

General Purpose GPUs

Heterogeneous
Processors and

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Every component and its
interfaces, as well as

entire system designs
are being re-examined

Computer Architecture Today (II)
n You can revolutionize the way computers are built, if you

understand both the hardware and the software (and
change each accordingly)

n You can invent new paradigms for computation,
communication, and storage

n Recommended book: Thomas Kuhn, “The Structure of
Scientific Revolutions” (1962)
q Pre-paradigm science: no clear consensus in the field
q Normal science: dominant theory used to explain/improve

things (business as usual); exceptions considered anomalies
q Revolutionary science: underlying assumptions re-examined

15

Computer Architecture Today (II)
n You can revolutionize the way computers are built, if you

understand both the hardware and the software (and
change each accordingly)

n You can invent new paradigms for computation,
communication, and storage

n Recommended book: Thomas Kuhn, “The Structure of
Scientific Revolutions” (1962)
q Pre-paradigm science: no clear consensus in the field
q Normal science: dominant theory used to explain/improve

things (business as usual); exceptions considered anomalies
q Revolutionary science: underlying assumptions re-examined

16

Let’s Start with Some Fundamentals

17

Question: What Is This?

18Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256

Answer: The First Major Piece of a Famous Architect

n Bahnhof Stadelhofen: “The train station has several of
the features that became signatures of his work; straight
lines and right angles are rare.“

n ETH Alumnus, PhD in Civil Engineering

19Source: By �������� Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0,
https://commons.wikimedia.org/w/index.php?curid=31493356, https://en.wikipedia.org/wiki/Santiago_Calatrava

https://commons.wikimedia.org/w/index.php?curid=31493356

Compare To This

20Source: http://cookiemagik.deviantart.com/art/Train-station-207266944

Question 2: What Is This?

21
Source: https://www.dezeen.com/2016/08/29/santiago-calatrava-oculus-world-trade-center-transportation-hub-new-york-photographs-hufton-crow/

Answer: Masterpiece of a Famous Architect

22Source: https://en.wikipedia.org/wiki/World_Trade_Center_station_(PATH)

Strengths and Praise

23Source: https://en.wikipedia.org/wiki/World_Trade_Center_station_(PATH)

Design Constraints and Criticism

24Source: https://en.wikipedia.org/wiki/World_Trade_Center_station_(PATH)

25

Source: https://en.wikipedia.org/wiki/Stegosaurus

Susannah Maidment et al. & Natural History Museum, London - Maidment SCR, Brassey C, Barrett PM (2015)
The Postcranial Skeleton of an Exceptionally Complete Individual of the Plated Dinosaur Stegosaurus stenops
(Dinosauria: Thyreophora) from the Upper Jurassic Morrison Formation of Wyoming, U.S.A. PLoS ONE 10(10):
e0138352. doi:10.1371/journal.pone.0138352

Design Constraints: Noone is Immune

26Source: https://en.wikipedia.org/wiki/World_Trade_Center_station_(PATH)

Question: What Is This?

27

28

Answer: Masterpiece of Another Famous Architect

29Source: https://en.wikipedia.org/wiki/Fallingwater

Your First Comp Arch Assignment
n Go and visit Bahnhof Stadelhofen

q Extra credit: Repeat for Oculus
q Extra+ credit: Repeat for Fallingwater

n Appreciate the beauty & out-of-the-box and creative thinking
n Think about tradeoffs in the design of the Bahnhof

q Strengths, weaknesses, goals of design
n Derive principles on your own for good design and innovation

n Due date: Any time during this course
q Later during the course is better
q Apply what you have learned in this course
q Think out-of-the-box

30

But First, Today’s First Assignment
n Find The Differences Of This and That

31

Find The Differences of
This and That

32

This

33Source: By Toni_V from Zurich, Switzerland - Stadelhofen2, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256

That

34Source: http://cookiemagik.deviantart.com/art/Train-station-207266944

Many Tradeoffs Between Two Designs
n You can list them after you complete the first assignment…

35

Aside: Evaluation Criteria for the Designs
n Functionality (Does it meet the specification?)
n Reliability
n Space requirement
n Cost
n Expandability
n Comfort level of users
n Happiness level of users
n Aesthetics
n …

n How to evaluate goodness of design is always a critical
question.

36

A Key Question
n How was Calavatra able to design especially his key buildings?
n Can have many guesses

q (Ultra) hard work, perseverance, dedication (over decades)
q Experience
q Creativity, Out-of-the-box thinking
q A good understanding of past designs
q Good judgment and intuition
q Strong skill combination (math, architecture, art, engineering, …)
q Funding ($$$$), luck, initiative, entrepreneurialism
q Strong understanding of and commitment to fundamentals
q Principled design
q …

n (You will be exposed to and hopefully develop/enhance many
of these skills in this course)

37

Principled Design
n “To me, there are two overriding principles to be found in

nature which are most appropriate for building:
q one is the optimal use of material,
q the other the capacity of organisms to change shape, to grow,

and to move.”
q Santiago Calatrava

n “Calatrava's constructions are inspired by natural forms like
plants, bird wings, and the human body.”

38Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/

Gare do Oriente, Lisbon, Revisited

39Source: By Martín Gómez Tagle - Lisbon, Portugal, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13764903
Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/

A Principled Design

40

What Does This Remind You Of?

41Source: https://www.dezeen.com/2016/08/29/santiago-calatrava-oculus-world-trade-center-transportation-hub-new-york-photographs-hufton-crow/

What About This?

42Source: De Galván - Puente del Alamillo.jpg on Enciclopedia.us.es, GFDL, https://commons.wikimedia.org/w/index.php?curid=15026095

A Quote from The Other Famous Architect
n “architecture […] based upon principle, and not upon

precedent” (Frank Lloyd Wright)

43Source: http://www.fallingwater.org/

A Principled Design

44

Another View

45Source: https://roadtrippers.com/stories/falling-water

Yet Another View

46Source: By Carol M. Highsmith - http://www.loc.gov/pictures/collection/highsm/item/2010630255/, Public Domain, https://commons.wikimedia.org/w/index.php?curid=29385254

47

Major High-Level Goals of This Course
n Understand the principles
n Understand the precedents

n Based on such understanding:
q Enable you to evaluate tradeoffs of different designs and ideas
q Enable you to develop principled designs
q Enable you to develop novel, out-of-the-box designs

n The focus is on:
q Principles, precedents, and how to use them for new designs

n In Computer Architecture

48

Role of the (Computer) Architect

from Yale Patt’s lecture notes

Role of The (Computer) Architect
n Look backward (to the past)

q Understand tradeoffs and designs, upsides/downsides, past
workloads. Analyze and evaluate the past.

n Look forward (to the future)
q Be the dreamer and create new designs. Listen to dreamers.
q Push the state of the art. Evaluate new design choices.

n Look up (towards problems in the computing stack)
q Understand important problems and their nature.
q Develop architectures and ideas to solve important problems.

n Look down (towards device/circuit technology)
q Understand the capabilities of the underlying technology.
q Predict and adapt to the future of technology (you are

designing for N years ahead). Enable the future technology.

50

Takeaways
n Being an architect is not easy
n You need to consider many things in designing a new

system + have good intuition/insight into ideas/tradeoffs

n But, it is fun and can be very rewarding
n And, enables a great future

q E.g., many scientific and everyday-life innovations would not
have been possible without architectural innovation that
enabled very high performance systems

q E.g., your mobile phones
q E.g., self-driving vehicles

n This course will enable you to become a good computer
architect

51

So, I Hope You Are Here for This

n How does an assembly
program end up executing as
digital logic?

n What happens in-between?
n How is a computer designed

using logic gates and wires
to satisfy specific goals?

52

Systems Prog.

Digital Design

“C” as a model of computation

Digital logic as a
model of computation

Programmer’s view of how
a computer system works

HW designer’s view of how
a computer system works

Architect/microarchitect’s view:
How to design a computer that

meets system design goals.
Choices critically affect both

the SW programmer and
the HW designer

Levels of Transformation

53

Microarchitecture
ISA (Architecture)

Program/Language
Algorithm
Problem

Logic
Devices

Runtime System
(VM, OS, MM)

Electrons

“The purpose of computing is [to gain] insight” (Richard Hamming)
We gain and generate insight by solving problems
How do we ensure problems are solved by electrons?

Algorithm

Step-by-step procedure that is
guaranteed to terminate where
each step is precisely stated
and can be carried out by a
computer

- Finiteness
- Definiteness
- Effective computability

Many algorithms for the same
problem

ISA
(Instruction Set Architecture)

Interface/contract between
SW and HW.

What the programmer
assumes hardware will
satisfy.

Microarchitecture
An implementation of the ISA

Digital logic circuits
Building blocks of micro-arch (e.g., gates)

Aside: A Famous Work By Hamming
n Hamming, “Error Detecting and Error Correcting Codes,”

Bell System Technical Journal 1950.

n Introduced the concept of Hamming distance
q number of locations in which the corresponding symbols of

two equal-length strings is different

n Developed a theory of codes used for error detection and
correction

n Also see:
q Hamming, “You and Your Research,” Talk at Bell Labs, 1986.

q http://www.cs.virginia.edu/~robins/YouAndYourResearch.html

54

http://www.cs.virginia.edu/~robins/YouAndYourResearch.html

n A user-centric view: computer designed for users

n The entire stack should be optimized for user

Levels of Transformation, Revisited

55

Microarchitecture
ISA

Program/Language
Algorithm
Problem

Runtime System
(VM, OS, MM)

User

Logic
Devices
Electrons

The Power of Abstraction
n Levels of transformation create abstractions

q Abstraction: A higher level only needs to know about the
interface to the lower level, not how the lower level is
implemented

q E.g., high-level language programmer does not really need to
know what the ISA is and how a computer executes instructions

n Abstraction improves productivity
q No need to worry about decisions made in underlying levels
q E.g., programming in Java vs. C vs. assembly vs. binary vs. by

specifying control signals of each transistor every cycle

n Then, why would you want to know what goes on
underneath or above?

56

Crossing the Abstraction Layers
n As long as everything goes well, not knowing what happens

underneath (or above) is not a problem.
n What if

q The program you wrote is running slow?
q The program you wrote does not run correctly?
q The program you wrote consumes too much energy?
q Your system just shut down and you have no idea why?
q Someone just compromised your system and you have no idea how?

n What if
q The hardware you designed is too hard to program?
q The hardware you designed is too slow because it does not provide the

right primitives to the software?

n What if
q You want to design a much more efficient and higher performance system?

57

Crossing the Abstraction Layers

n Two key goals of this course are

q to understand how a processor works underneath the
software layer and how decisions made in hardware affect the
software/programmer

q to enable you to be comfortable in making design and
optimization decisions that cross the boundaries of different
layers and system components

58

An Example: Multi-Core Systems

59

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S
Multi-Core
Chip

*Die photo credit: AMD Barcelona

DRAM MEMORY
CONTROLLER

A Trend: Many Cores on Chip
n Simpler and lower power than a single large core
n Parallel processing on single chip à faster, new applications

60

IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores

Many Cores on Chip
n What we want:

q N times the system performance with N times the cores

n What do we get today?

61

Unexpected Slowdowns in Multi-Core

62

Memory Performance Hog
Low priority

High priority

(Core 0) (Core 1)
Moscibroda and Mutlu, �Memory performance attacks: Denial of memory service
in multi-core systems,� USENIX Security 2007.

Three Questions
n Can you figure out why the applications slow down if you

do not know the underlying system and how it works?

n Can you figure out why there is a disparity in slowdowns if
you do not know how the system executes the programs?

n Can you fix the problem without knowing what is
happening “underneath”?

63

Three Questions: Rephrased & Concise
n Why is there any slowdown?

n Why is there a disparity in slowdowns?

n How can we solve the problem if we do not want that
disparity?

64

Why Is This Important?
n We want to execute applications in parallel in multi-core

systems à consolidate more and more (for efficiency)
q Cloud computing
q Mobile phones
q Automotive systems

n We want to mix different types of applications together
q those requiring QoS guarantees (e.g., video, pedestrian detection)
q those that are important but less so
q those that are less important

n We want the system to be controllable and high performance

65

66

Why the Disparity in Slowdowns?

CORE 1 CORE 2

L2
CACHE

L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

matlab gcc

DRAM
Bank 3

Digging Deeper: DRAM Bank Operation

67

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Row address 0

Column address 0

Data

Row 0Empty

(Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
ow

s

Access Address:
This view of a bank is an
abstraction.

Internally, a bank consists of
many cells (transistors &
capacitors) and other
structures that enable access
to cells

68

DRAM Controllers

n A row-conflict memory access takes significantly longer
than a row-hit access

n Current controllers take advantage of this fact

n Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*
(1) Row-hit first: Service row-hit memory accesses first
(2) Oldest-first: Then service older accesses first

n This scheduling policy aims to maximize DRAM throughput

*Rixner et al., �Memory Access Scheduling,� ISCA 2000.
*Zuravleff and Robinson, �Controller for a synchronous DRAM …,� US Patent 5,630,096, May 1997.

69

The Problem
n Multiple applications share the DRAM controller
n DRAM controllers designed to maximize DRAM data

throughput

n DRAM scheduling policies are unfair to some applications
q Row-hit first: unfairly prioritizes apps with high row buffer locality

n Threads that keep on accessing the same row
q Oldest-first: unfairly prioritizes memory-intensive applications

n DRAM controller vulnerable to denial of service attacks
q Can write programs to exploit unfairness

// initialize large arrays A, B

for (j=0; j<N; j++) {
index = rand();
A[index] = B[index];
…

}

70

A Memory Performance Hog

STREAM

- Sequential memory access
- Very high row buffer locality (96% hit rate)
- Memory intensive

RANDOM

- Random memory access
- Very low row buffer locality (3% hit rate)
- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
index = j*linesize;
A[index] = B[index];
…

}

streaming
(in sequence)

random

Moscibroda and Mutlu, �Memory Performance Attacks,� USENIX Security 2007.

71

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16

T0: Row 0T1: Row 111

T0: Row 0T0: Row 0T1: Row 5

T0: Row 0T0: Row 0T0: Row 0T0: Row 0T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, request size: 64B
128 (8KB/64B) requests of STREAM serviced

before a single request of RANDOM
Moscibroda and Mutlu, �Memory Performance Attacks,� USENIX Security 2007.

Now That We Know What Happens Underneath

n How would you solve the problem?

n What is the right place to solve the problem?
q Programmer?
q System software?
q Compiler?
q Hardware (Memory controller)?
q Hardware (DRAM)?
q Circuits?

n Two other goals of this course:
q Enable you to think critically
q Enable you to think broadly

72

Microarchitecture
ISA (Architecture)

Program/Language
Algorithm
Problem

Logic
Devices

Runtime System
(VM, OS, MM)

Electrons

Reading on Memory Performance Attacks
n Thomas Moscibroda and Onur Mutlu,

"Memory Performance Attacks: Denial of Memory Service
in Multi-Core Systems"
Proceedings of the 16th USENIX Security Symposium (USENIX SECURITY),
pages 257-274, Boston, MA, August 2007. Slides (ppt)

n One potential reading for your Homework 1 assignment

73

http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.usenix.org/events/sec07/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt

If You Are Interested … Further Readings
n Onur Mutlu and Thomas Moscibroda,

"Stall-Time Fair Memory Access Scheduling for Chip
Multiprocessors"
Proceedings of the 40th International Symposium on Microarchitecture
(MICRO), pages 146-158, Chicago, IL, December 2007. Slides (ppt)

n Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems”
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA) [Slides (ppt)]

n Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut
Kandemir, and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on Microarchitecture
(MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)

74

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca08_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx

Takeaway

Breaking the abstraction layers
(between components and
transformation hierarchy levels)

and knowing what is underneath

enables you to understand and
solve problems

75

Computer Architecture
Lecture 1: Introduction and Basics

Prof. Onur Mutlu
ETH Zürich
Fall 2019

19 September 2019

We Did Not Cover These Slides.
They Are For Your Benefit.

77

Another Example
n DRAM Refresh

78

DRAM in the System

79

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S
Multi-Core
Chip

*Die photo credit: AMD Barcelona

DRAM MEMORY
CONTROLLER

A DRAM Cell

n A DRAM cell consists of a capacitor and an access transistor
n It stores data in terms of charge in the capacitor
n A DRAM chip consists of (10s of 1000s of) rows of such cells

wordline

bi
tli

ne

bi
tli

ne

bi
tli

ne

bi
tli

ne

(row enable)

DRAM Refresh
n DRAM capacitor charge leaks over time

n The memory controller needs to refresh each row periodically
to restore charge
q Activate each row every N ms
q Typical N = 64 ms

n Downsides of refresh
-- Energy consumption: Each refresh consumes energy
-- Performance degradation: DRAM rank/bank unavailable while

refreshed
-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM capacity scaling

81

First, Some Analysis
n Imagine a system with 8 ExaByte DRAM (2^63 bytes)
n Assume a row size of 8 KiloBytes (2^13 bytes)

n How many rows are there?
n How many refreshes happen in 64ms?
n What is the total power consumption of DRAM refresh?
n What is the total energy consumption of DRAM refresh

during a day?

n A good exercise…
n Brownie points from me if you do it...

82

Refresh Overhead: Performance

83

8%

46%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Refresh Overhead: Energy

84

15%

47%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

How Do We Solve the Problem?
n Observation: All DRAM rows are refreshed every 64ms.

n Critical thinking: Do we need to refresh all rows every 64ms?

n What if we knew what happened underneath (in DRAM cells)
and exposed that information to upper layers?

85

Underneath: Retention Time Profile of DRAM

86Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Aside: Why Do We Have Such a Profile?

n Answer: Manufacturing is not perfect

n Not all DRAM cells are exactly the same

n Some are more leaky than others

n This is called Manufacturing Process Variation

87

Opportunity: Taking Advantage of This Profile

n Assume we know the retention time of each row exactly

n What can we do with this information?

n Who do we expose this information to?

n How much information do we expose?
q Affects hardware/software overhead, power consumption,

verification complexity, cost

n How do we determine this profile information?
q Also, who determines it?

88

Microarchitecture
ISA (Architecture)

Program/Language
Algorithm
Problem

Logic
Devices

Runtime System
(VM, OS, MM)

Electrons

Retention Time of DRAM Rows
n Observation: Overwhelming majority of DRAM rows can be

refreshed much less often without losing data

n Can we exploit this to reduce refresh operations at low cost?

89

Only ~1000 rows in 32GB DRAM need refresh every 256 ms,
but we refresh all rows every 64ms
Key Idea of RAIDR: Refresh weak rows more frequently,

all other rows less frequently

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

RAIDR: Eliminating
Unnecessary DRAM Refreshes

90

Liu, Jaiyen, Veras, Mutlu,
RAIDR: Retention-Aware Intelligent DRAM Refresh
ISCA 2012.

http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf

1. Profiling: Identify the retention time of all DRAM rows

à can be done at design time or during operation

2. Binning: Store rows into bins by retention time

à use Bloom Filters for efficient and scalable storage

3. Refreshing: Memory controller refreshes rows in different
bins at different rates

à check the bins to determine refresh rate of a row

RAIDR: Mechanism

91

1.25KB storage in controller for 32GB DRAM memory

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

RAIDR: Results and Takeaways
n System: 32GB DRAM, 8-core; Various workloads

n RAIDR hardware cost: 1.25 kB (2 Bloom filters)
n Refresh reduction: 74.6%
n Dynamic DRAM energy reduction: 16%
n Idle DRAM power reduction: 20%
n Performance improvement: 9%

n Benefits increase as DRAM scales in density

92

Reading on RAIDR
n Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,

"RAIDR: Retention-Aware Intelligent DRAM Refresh"
Proceedings of the 39th International Symposium on Computer Architecture

(ISCA), Portland, OR, June 2012. Slides (pdf)

n One potential reading for your Homework 1 assignment

93

http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/liu_isca12_talk.pdf

If You Are Interested … Further Readings
n Onur Mutlu,

"Memory Scaling: A Systems Architecture Perspective"
Technical talk at MemCon 2013 (MEMCON), Santa Clara, CA, August 2013.
Slides (pptx) (pdf) Video

n Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris Wilkerson,
Yoongu Kim, and Onur Mutlu,

"Improving DRAM Performance by Parallelizing
Refreshes with Accesses"
Proceedings of the 20th International Symposium on High-Performance
Computer Architecture (HPCA), Orlando, FL, February 2014. Slides (pptx) (pdf)

94

http://users.ece.cmu.edu/~omutlu/pub/memory-scaling_memcon13.pdf
http://www.memcon.com
http://users.ece.cmu.edu/~omutlu/pub/mutlu_memory-scaling_memcon13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf
http://www.memcon.com/video1.aspx?vfile=2708052590001&federated_f9=61773537001&videoPlayer=999&playerID=61773537001&w=520&h=442&oheight=550
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
http://hpca20.ece.ufl.edu/
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pdf

Takeaway 1

Breaking the abstraction layers
(between components and

transformation hierarchy levels)

and knowing what is underneath

enables you to understand and
solve problems

95

Takeaway 2

Cooperation between
multiple components and layers

can enable
more effective

solutions and systems

96

Digging Deeper:
Making RAIDR Work

“Good ideas are a dime a dozen”

“Making them work is oftentimes the real contribution”

97

1. Profiling: Identify the retention time of all DRAM rows

à can be done at design time or during operation

2. Binning: Store rows into bins by retention time

à use Bloom Filters for efficient and scalable storage

3. Refreshing: Memory controller refreshes rows in different
bins at different rates

à check the bins to determine refresh rate of a row

Recall: RAIDR: Mechanism

98

1.25KB storage in controller for 32GB DRAM memory

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

1. Profiling

99

DRAM Retention Time Profiling

n Q: Is it really this easy?

n A: Ummm, not really…

100

Two Challenges to Retention Time Profiling
n Data Pattern Dependence (DPD) of retention time

n Variable Retention Time (VRT) phenomenon

101

An Example VRT Cell

102

0 2 4 6 8 10
Time (Hours)

0

1

2

3

4

5

6

7
Re

te
nt

io
n

Ti
m

e
(s

)

A cell from E 2Gb chip family

VRT: Implications on Profiling Mechanisms
n Problem 1: There does not seem to be a way of

determining if a cell exhibits VRT without actually observing
a cell exhibiting VRT
q VRT is a memoryless random process [Kim+ JJAP 2010]

n Problem 2: VRT complicates retention time profiling by
DRAM manufacturers
q Exposure to very high temperatures can induce VRT in cells that

were not previously susceptible
à can happen during soldering of DRAM chips
à manufacturer’s retention time profile may not be accurate

n One option for future work: Use ECC to continuously profile
DRAM online while aggressively reducing refresh rate
q Need to keep ECC overhead in check

103

More on DRAM Retention Analysis
n Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,

"An Experimental Study of Data Retention Behavior in Modern DRAM
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

104

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.pdf

Finding DRAM Retention Failures

n How can we reliably find the retention time of all DRAM
cells?

n Goals: so that we can
q Make DRAM reliable and secure
q Make techniques like RAIDR work

à improve performance and energy

105

n Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson,
and Onur Mutlu,
"The Efficacy of Error Mitigation Techniques for DRAM Retention
Failures: A Comparative Experimental Study"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides
(pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets]

106

Mitigation of Retention Issues [SIGMETRICS’14]

http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://www.sigmetrics.org/sigmetrics2014/
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-poster.pdf
http://www.ece.cmu.edu/~safari/tools/dram-sigmetrics2014-fulldata.html

n Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and Onur Mutlu,
"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM
Systems"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.
[Slides (pptx) (pdf)]

107

Handling Variable Retention Time [DSN’15]

https://people.inf.ethz.ch/omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://2015.dsn.org/
https://people.inf.ethz.ch/omutlu/pub/avatar-dram-refresh_dsn15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/avatar-dram-refresh_dsn15-talk.pdf

n Samira Khan, Donghyuk Lee, and Onur Mutlu,
"PARBOR: An Efficient System-Level Technique to Detect Data-
Dependent Failures in DRAM"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Toulouse, France, June 2016.
[Slides (pptx) (pdf)]

108

Handling Data-Dependent Failures [DSN’16]

https://people.inf.ethz.ch/omutlu/pub/parbor-efficient-system-level-test-for-DRAM-failures_dsn16.pdf
http://2015.dsn.org/
https://people.inf.ethz.ch/omutlu/pub/parbor-efficient-system-level-test-for-DRAM-failures_khan_dsn16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/parbor-efficient-system-level-test-for-DRAM-failures_khan_dsn16-talk.pdf

n Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R. Alameldeen, Donghyuk Lee,
and Onur Mutlu,
"Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting
Current Memory Content"
Proceedings of the 50th International Symposium on Microarchitecture (MICRO),
Boston, MA, USA, October 2017.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

109

Handling Data-Dependent Failures [MICRO’17]

https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17.pdf
http://www.microarch.org/micro50/
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-poster.pdf

Handling Both DPD and VRT [ISCA’17]

110

n Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
"The Reach Profiler (REAPER): Enabling the Mitigation of DRAM
Retention Failures via Profiling at Aggressive Conditions"
Proceedings of the 44th International Symposium on Computer
Architecture (ISCA), Toronto, Canada, June 2017.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

n First experimental analysis of (mobile) LPDDR4 chips

n Analyzes the complex tradeoff space of retention time profiling

n Idea: enable fast and robust profiling at higher refresh intervals & temperatures

https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17.pdf
http://isca17.ece.utoronto.ca/doku.php
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-lightning-talk.pdf

2. Binning
n How to efficiently and scalably store rows into retention

time bins?
n Use Hardware Bloom Filters [Bloom, CACM 1970]

111Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Bloom Filter
n [Bloom, CACM 1970]
n Probabilistic data structure that compactly represents set

membership (presence or absence of element in a set)

n Non-approximate set membership: Use 1 bit per element to
indicate absence/presence of each element from an element
space of N elements

n Approximate set membership: use a much smaller number of
bits and indicate each element’s presence/absence with a
subset of those bits
q Some elements map to the bits other elements also map to

n Operations: 1) insert, 2) test, 3) remove all elements
112Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Bloom Filter Operation Example

113Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Bloom Filter Operation Example

114

Bloom Filter Operation Example

115

Bloom Filter Operation Example

116

Bloom Filter Operation Example

117

Bloom Filters

118Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Bloom Filters: Pros and Cons
n Advantages

+ Enables storage-efficient representation of set membership
+ Insertion and testing for set membership (presence) are fast
+ No false negatives: If Bloom Filter says an element is not
present in the set, the element must not have been inserted
+ Enables tradeoffs between time & storage efficiency & false
positive rate (via sizing and hashing)

n Disadvantages
-- False positives: An element may be deemed to be present in
the set by the Bloom Filter but it may never have been inserted

Not the right data structure when you cannot tolerate false
positives

119Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Benefits of Bloom Filters as Refresh Rate Bins

n False positives: a row may be declared present in the
Bloom filter even if it was never inserted
q Not a problem: Refresh some rows more frequently than

needed

n No false negatives: rows are never refreshed less
frequently than needed (no correctness problems)

n Scalable: a Bloom filter never overflows (unlike a fixed-size
table)

n Efficient: No need to store info on a per-row basis; simple
hardware à 1.25 KB for 2 filters for 32 GB DRAM system

120

Use of Bloom Filters in Hardware

n Useful when you can tolerate false positives in set
membership tests

n See the following recent examples for clear descriptions of
how Bloom Filters are used
q Liu et al., “RAIDR: Retention-Aware Intelligent DRAM

Refresh,” ISCA 2012.
q Seshadri et al., “The Evicted-Address Filter: A Unified

Mechanism to Address Both Cache Pollution and Thrashing,”
PACT 2012.

121

3. Refreshing (RAIDR Refresh Controller)

122

3. Refreshing (RAIDR Refresh Controller)

123

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

RAIDR: Baseline Design

124

Refresh control is in DRAM in today’s auto-refresh systems
RAIDR can be implemented in either the controller or DRAM

RAIDR in Memory Controller: Option 1

125

���������	
������ ���

��	
���������

���
������������������
��

�������
�������������������
��

��� �� �!	"�

###

Overhead of RAIDR in DRAM controller:
1.25 KB Bloom Filters, 3 counters, additional commands
issued for per-row refresh (all accounted for in evaluations)

RAIDR in DRAM Chip: Option 2

126

Overhead of RAIDR in DRAM chip:

Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip)

Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM)

RAIDR: Results and Takeaways
n System: 32GB DRAM, 8-core; SPEC, TPC-C, TPC-H workloads

n RAIDR hardware cost: 1.25 kB (2 Bloom filters)
n Refresh reduction: 74.6%
n Dynamic DRAM energy reduction: 16%
n Idle DRAM power reduction: 20%
n Performance improvement: 9%

n Benefits increase as DRAM scales in density

127

DRAM Refresh: More Questions

n What else can you do to reduce the impact of refresh?

n What else can you do if you know the retention times of
rows?

n How can you accurately measure the retention time of
DRAM rows?

n Recommended reading:
q Liu et al., “An Experimental Study of Data Retention Behavior

in Modern DRAM Devices: Implications for Retention Time
Profiling Mechanisms,” ISCA 2013.

128

Industry Is Writing Papers About It, Too

129

Call for Intelligent Memory Controllers

130

We Will Dig Deeper More
In This Course

“Good ideas are a dime a dozen”

“Making them work is oftentimes the real contribution”

131

