Computer Architecture

Lecture 15: Memory Interference and Quality of Service II

Prof. Onur Mutlu

ETH Zürich

Fall 2019

14 November 2019

Guest Lecture Next Week

November 22, Friday

Stephan Meier, Platform Architecture Team, Apple

Topic: Prefetching

QoS-Aware Memory Systems: Challenges

- How do we reduce inter-thread interference?
 - Improve system performance and core utilization
 - Reduce request serialization and core starvation
- How do we control inter-thread interference?
 - Provide mechanisms to enable system software to enforce QoS policies
 - While providing high system performance
- How do we make the memory system configurable/flexible?
 - Enable flexible mechanisms that can achieve many goals
 - Provide fairness or throughput when needed
 - Satisfy performance guarantees when needed

Designing QoS-Aware Memory Systems: Approaches

- Smart resources: Design each shared resource to have a configurable interference control/reduction mechanism
 - QoS-aware memory controllers
 - QoS-aware interconnects
 - QoS-aware caches

- Dumb resources: Keep each resource free-for-all, but reduce/control interference by injection control or data mapping
 - Source throttling to control access to memory system
 - QoS-aware data mapping to memory controllers
 - QoS-aware thread scheduling to cores

Fundamental Interference Control Techniques

Goal: to reduce/control inter-thread memory interference

- 1. Prioritization or request scheduling
- 2. Data mapping to banks/channels/ranks
- 3. Core/source throttling
- 4. Application/thread scheduling

Stall-Time Fair Memory Scheduling

Onur Mutlu and Thomas Moscibroda,

"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"

40th International Symposium on Microarchitecture (MICRO),

pages 146-158, Chicago, IL, December 2007. Slides (ppt)

STFM Pros and Cons

Upsides:

- First algorithm for fair multi-core memory scheduling
- Provides a mechanism to estimate memory slowdown of a thread
- Good at providing fairness
- Being fair can improve performance

Downsides:

- Does not handle all types of interference
- (Somewhat) complex to implement
- Slowdown estimations can be incorrect

More on STFM

Onur Mutlu and Thomas Moscibroda,
 "Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"

Proceedings of the <u>40th International Symposium on</u> <u>Microarchitecture</u> (**MICRO**), pages 146-158, Chicago, IL, December 2007. [Summary] [Slides (ppt)]

Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors

Onur Mutlu Thomas Moscibroda

Microsoft Research {onur,moscitho}@microsoft.com

Parallelism-Aware Batch Scheduling

Onur Mutlu and Thomas Moscibroda,

"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems"

35th International Symposium on Computer Architecture (ISCA),
pages 63-74, Beijing, China, June 2008. Slides (ppt)

PAR-BS Pros and Cons

Upsides:

- First scheduler to address bank parallelism destruction across multiple threads
- Simple mechanism (vs. STFM)
- Batching provides fairness
- Ranking enables parallelism awareness

Downsides:

Does not always prioritize the latency-sensitive applications

More on PAR-BS

Onur Mutlu and Thomas Moscibroda,
 "Parallelism-Aware Batch Scheduling: Enhancing both
 Performance and Fairness of Shared DRAM Systems"
 Proceedings of the 35th International Symposium on Computer
 Architecture (ISCA), pages 63-74, Beijing, China, June 2008.
 [Summary] [Slides (ppt)]

Parallelism-Aware Batch Scheduling: Enhancing both Performance and Fairness of Shared DRAM Systems

Onur Mutlu Thomas Moscibroda Microsoft Research {onur,moscitho}@microsoft.com

ATLAS Memory Scheduler

Yoongu Kim, Dongsu Han, <u>Onur Mutlu</u>, and Mor Harchol-Balter,

<u>"ATLAS: A Scalable and High-Performance"</u>

<u>Scheduling Algorithm for Multiple Memory Controllers"</u>

<u>16th International Symposium on High-Performance Computer Architecture</u> (**HPCA**),

Bangalore, India, January 2010. <u>Slides (pptx)</u>

ATLAS: Summary

- Goal: To maximize system performance
- Main idea: Prioritize the thread that has attained the least service from the memory controllers (Adaptive per-Thread Least Attained Service Scheduling)
 - Rank threads based on attained service in the past time interval(s)
 - Enforce thread ranking in the memory scheduler during the current interval
- Why it works: Prioritizes "light" (memory non-intensive) threads that are more likely to keep their cores busy

System Throughput: 24-Core System

ATLAS consistently provides higher system throughput than all previous scheduling algorithms

System Throughput: 4-MC System

of cores increases → ATLAS performance benefit increases

ATLAS Pros and Cons

Upsides:

- Good at improving overall throughput (compute-intensive threads are prioritized)
- Low complexity
- Coordination among controllers happens infrequently

Downsides:

 ■ Lowest/medium ranked threads get delayed significantly → high unfairness

More on ATLAS Memory Scheduler

Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,
 "ATLAS: A Scalable and High-Performance Scheduling
 Algorithm for Multiple Memory Controllers"
 Proceedings of the 16th International Symposium on High-Performance Computer Architecture (HPCA), Bangalore, India, January 2010. Slides (pptx)

ATLAS: A Scalable and High-Performance Scheduling Algorithm for Multiple Memory Controllers

Yoongu Kim Dongsu Han Onur Mutlu Mor Harchol-Balter Carnegie Mellon University

TCM: Thread Cluster Memory Scheduling

Yoongu Kim, Michael Papamichael, <u>Onur Mutlu</u>, and Mor Harchol-Balter, <u>"Thread Cluster Memory Scheduling:</u>

<u>Exploiting Differences in Memory Access Behavior"</u>

<u>43rd International Symposium on Microarchitecture</u> (MICRO), pages 65-76, Atlanta, GA, December 2010. <u>Slides (pptx) (pdf)</u>

Previous Scheduling Algorithms are Biased

24 cores, 4 memory controllers, 96 workloads

No previous memory scheduling algorithm provides both the best fairness and system throughput

Throughput vs. Fairness

Throughput biased approach

Prioritize less memory-intensive threads

Fairness biased approach

Take turns accessing memory

Single policy for all threads is insufficient

Achieving the Best of Both Worlds

thread

thread

For Throughput

Prioritize memory-non-intensive threads

For Fairness

- Unfairness caused by memory-intensive being prioritized over each other
 - Shuffle thread ranking
- Memory-intensive threads have different vulnerability to interference
 - Shuffle <u>asymmetrically</u>

Thread Cluster Memory Scheduling [Kim+ MICRO'10]

- 1. Group threads into two *clusters*
- 2. Prioritize non-intensive cluster
- 3. Different policies for each cluster

Memory-non-intensive

Memory-intensive

higher

TCM Outline

Clustering Threads

Step1 Sort threads by MPKI (misses per kiloinstruction)

Step2 Memory bandwidth usage αT divides clusters

TCM Outline

2. Between Clusters

Prioritization Between Clusters

Prioritize non-intensive cluster

- Increases system throughput
 - Non-intensive threads have greater potential for making progress
- Does not degrade fairness
 - Non-intensive threads are "light"
 - Rarely interfere with intensive threads

TCM Outline

3. Non-Intensive Cluster

1. Clustering

2. Between Clusters

Non-Intensive Cluster

Prioritize threads according to MPKI

- Increases system throughput
 - Least intensive thread has the greatest potential for making progress in the processor

TCM Outline

3. Non-Intensive Cluster 1. Clustering Throughput 2. Between 4. Intensive **Clusters** Cluster **Fairness**

Intensive Cluster

Periodically shuffle the priority of threads

- Is treating all threads equally good enough?
- BUT: Equal turns ≠ Same slowdown

Case Study: A Tale of Two Threads

Case Study: Two intensive threads contending

- 1. random-access
- 2. streaming

Which is slowed down more easily?

random-access thread is more easily slowed down

Why are Threads Different?

- All requests parallel
- High bank-level parallelism
- ◆ All requests → Same row
- High row-buffer locality

Vulnerable to interference

TCM Outline

Niceness

How to quantify difference between threads?

TCM: Quantum-Based Operation

TCM: Scheduling Algorithm

- 1. Highest-rank: Requests from higher ranked threads prioritized
 - Non-Intensive cluster > Intensive cluster
 - Non-Intensive cluster: lower intensity → higher rank
 - Intensive cluster: rank shuffling

- 2. Row-hit: Row-buffer hit requests are prioritized
- 3. Oldest: Older requests are prioritized

TCM: Implementation Cost

Required storage at memory controller (24 cores)

Thread memory behavior	Storage
MPKI	~0.2kb
Bank-level parallelism	~0.6kb
Row-buffer locality	~2.9kb
Total	< 4kbits

No computation is on the critical path

Previous Work

FRFCFS [Rixner et al., ISCA00]: Prioritizes row-buffer hits

Thread-oblivious → Low throughput & Low fairness

STFM [Mutlu et al., MICRO07]: Equalizes thread slowdowns

Non-intensive threads not prioritized → Low throughput

PAR-BS [Mutlu et al., ISCA08]: Prioritizes oldest batch of requests while preserving bank-level parallelism

Non-intensive threads not always prioritized Low throughput

ATLAS [Kim et al., HPCA10]: Prioritizes threads with less memory service

Most intensive thread starves
 Low fairness

TCM: Throughput and Fairness

24 cores, 4 memory controllers, 96 workloads

TCM, a heterogeneous scheduling policy, provides best fairness and system throughput

TCM: Fairness-Throughput Tradeoff

When configuration parameter is varied...

TCM allows robust fairness-throughput tradeoff

Operating System Support

- ClusterThreshold is a tunable knob
 - OS can trade off between fairness and throughput

- Enforcing thread weights
 - OS assigns weights to threads
 - TCM enforces thread weights within each cluster

Conclusion

- No previous memory scheduling algorithm provides both high system throughput and fairness
 - Problem: They use a single policy for all threads
- TCM groups threads into two clusters
 - 1. Prioritize *non-intensive* cluster → throughput
 - 2. Shuffle priorities in *intensive* cluster → fairness
 - 3. Shuffling should favor *nice* threads → fairness
- TCM provides the best system throughput and fairness

TCM Pros and Cons

Upsides:

- Provides both high fairness and high performance
- Caters to the needs for different types of threads (latency vs. bandwidth sensitive)
- (Relatively) simple

Downsides:

- Scalability to large buffer sizes?
- Robustness of clustering and shuffling algorithms?
- Ranking is still too complex?

More on TCM

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,

"Thread Cluster Memory Scheduling: Exploiting **Differences in Memory Access Behavior**"

Proceedings of the 43rd International Symposium on

Microarchitecture (MICRO), pages 65-76, Atlanta, GA,

December 2010. Slides (pptx) (pdf)

Thread Cluster Memory Scheduling: Exploiting Differences in Memory Access Behavior

Yoongu Kim yoonguk@ece.cmu.edu papamix@cs.cmu.edu

Michael Papamichael

Onur Mutlu Mor Harchol-Balter onur@cmu.edu harchol@cs.cmu.edu

Carnegie Mellon University

The Blacklisting Memory Scheduler

Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, and Onur Mutlu,

"The Blacklisting Memory Scheduler: Achieving High Performance and Fairness at Low Cost"

Proceedings of the 32nd IEEE International Conference on Computer Design (ICCD),

Seoul, South Korea, October 2014. [Slides (pptx) (pdf)]

Tackling Inter-Application Interference: Application-aware Memory Scheduling

Full ranking increases critical path latency and area significantly to improve performance and fairness

Performance vs. Fairness vs. Simplicity

Key Observation 1: Group Rather Than Rank

Observation 1: Sufficient to separate applications into two groups, rather than do full ranking

Benefit 2: Lower slowdowns than ranking

Key Observation 1: Group Rather Than Rank

Observation 1: Sufficient to separate applications into two groups, rather than do full ranking

How to classify applications into groups?

Key Observation 2

Observation 2: Serving a large number of consecutive requests from an application causes interference

Basic Idea:

- Group applications with a large number of consecutive requests as interference-causing → Blacklisting
- Deprioritize blacklisted applications
- Clear blacklist periodically (1000s of cycles)

Benefits:

- Lower complexity
- Finer grained grouping decisions

 Lower unfairness

Performance vs. Fairness vs. Simplicity

Blacklisting is the closest scheduler to ideal

Performance and Fairness

- 1. Blacklisting achieves the highest performance
- 2. Blacklisting balances performance and fairness

Complexity

Blacklisting reduces complexity significantly

More on BLISS (I)

Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, and Onur Mutlu,
 "The Blacklisting Memory Scheduler: Achieving High Performance and Fairness at Low Cost"
 Proceedings of the 32nd IEEE International Conference on Computer Design (ICCD), Seoul, South Korea, October 2014.
 [Slides (pptx) (pdf)]

The Blacklisting Memory Scheduler: Achieving High Performance and Fairness at Low Cost

Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, Onur Mutlu Carnegie Mellon University {| lsubrama,donghyu1,visesh,harshar,onur}@cmu.edu

More on BLISS: Longer Version

 Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, and Onur Mutlu,

"BLISS: Balancing Performance, Fairness and Complexity in Memory Access Scheduling"

<u>IEEE Transactions on Parallel and Distributed Systems</u> (**TPDS**), to appear in 2016. <u>arXiv.org version</u>, April 2015.

An earlier version as <u>SAFARI Technical Report</u>, TR-SAFARI-2015-004, Carnegie Mellon University, March 2015.

Source Code

BLISS: Balancing Performance, Fairness and Complexity in Memory Access Scheduling

Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, and Onur Mutlu

Staged Memory Scheduling

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu,

"Staged Memory Scheduling: Achieving High Performance

and Scalability in Heterogeneous Systems"

39th International Symposium on Computer Architecture (ISCA),

Portland, OR, June 2012.

SMS: Executive Summary

- Observation: Heterogeneous CPU-GPU systems require memory schedulers with large request buffers
- Problem: Existing monolithic application-aware memory scheduler designs are hard to scale to large request buffer sizes
- Solution: Staged Memory Scheduling (SMS) decomposes the memory controller into three simple stages:
 - 1) Batch formation: maintains row buffer locality
 - 2) Batch scheduler: reduces interference between applications

57

- 3) DRAM command scheduler: issues requests to DRAM
- Compared to state-of-the-art memory schedulers:
 - SMS is significantly simpler and more scalable
 - SMS provides higher performance and fairness

SMS: Staged Memory Scheduling

SMS: Staged Memory Scheduling

Putting Everything Together

Complexity

- Compared to a row hit first scheduler, SMS consumes*
 - 66% less area
 - 46% less static power

- Reduction comes from:
 - Monolithic scheduler → stages of simpler schedulers
 - Each stage has a simpler scheduler (considers fewer properties at a time to make the scheduling decision)
 - Each stage has simpler buffers (FIFO instead of out-of-order)
 - Each stage has a portion of the total buffer size (buffering is distributed across stages)

Performance at Different GPU Weights

Performance at Different GPU Weights

 At every GPU weight, SMS outperforms the best previous scheduling algorithm for that weight

63

More on SMS

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu,
 "Staged Memory Scheduling: Achieving High
 Performance and Scalability in Heterogeneous Systems"
 Proceedings of the 39th International Symposium on Computer
 Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)

Staged Memory Scheduling: Achieving High Performance and Scalability in Heterogeneous Systems

Rachata Ausavarungnirun[†] Kevin Kai-Wei Chang[†] Lavanya Subramanian[†] Gabriel H. Loh[‡] Onur Mutlu[†]

[†]Carnegie Mellon University

[‡]Advanced Micro Devices, Inc.

{rachata,kevincha,lsubrama,onur}@cmu.edu

gabe.loh@amd.com

DASH Memory Scheduler [TACO 2016]

Current SoC Architectures

- Heterogeneous agents: CPUs and HWAs
 - HWA : Hardware Accelerator
- Main memory is shared by CPUs and HWAs → Interference How to schedule memory requests from CPUs and HWAs to mitigate interference?

Memory Controller in Modern SoCs

Fig. 1. Example heterogeneous SoC architecture.

DASH Scheduler: Executive Summary

- <u>Problem</u>: Hardware accelerators (HWAs) and CPUs share the same memory subsystem and interfere with each other in main memory
- Goal: Design a memory scheduler that improves CPU performance while meeting HWAs' deadlines
- <u>Challenge</u>: Different HWAs have different memory access characteristics and different deadlines, which current schedulers do not smoothly handle
 - Memory-intensive and long-deadline HWAs significantly degrade CPU performance when they become high priority (due to slow progress)
 - Short-deadline HWAs sometimes miss their deadlines despite high priority
- Solution: DASH Memory Scheduler
 - Prioritize HWAs over CPU anytime when the HWA is not making good progress
 - Application-aware scheduling for CPUs and HWAs
- Key Results:
 - 1) Improves CPU performance for a wide variety of workloads by 9.5%
 - 2) Meets 100% deadline met ratio for HWAs
- DASH source code freely available on our GitHub

Goal of Our Scheduler (DASH)

- Goal: Design a memory scheduler that
 - Meets GPU/accelerators' frame rates/deadlines and
 - Achieves high CPU performance

• Basic Idea:

- Different CPU applications and hardware accelerators have different memory requirements
- Track progress of different agents and prioritize accordingly

Key Observation: Distribute Priority for Accelerators

- GPU/accelerators need priority to meet deadlines
- Worst case prioritization not always the best
- Prioritize when they are **not** on track to meet a deadline

Distributing priority over time mitigates impact of accelerators on CPU cores' requests

Key Observation: Not All Accelerators are Equal

- Long-deadline accelerators are more likely to meet their deadlines
- Short-deadline accelerators are more likely to miss their deadlines

Schedule short-deadline accelerators based on worst-case memory access time

Key Observation: Not All CPU cores are Equal

- Memory-intensive cores are much less vulnerable to interference
- Memory non-intensive cores are much more vulnerable to interference

Prioritize accelerators over memory-intensive cores to ensure accelerators do not become urgent

DASH Summary: Key Ideas and Results

- Distribute priority for HWAs
- Prioritize HWAs over memory-intensive CPU cores even when not urgent
- Prioritize short-deadline-period HWAs based on worst case estimates

Improves CPU performance by 7-21% Meets (almost) 100% of deadlines for HWAs

DASH: Scheduling Policy

- DASH scheduling policy
 - 1. Short-deadline-period HWAs with high priority
 - 2. Long-deadline-period HWAs with high priority
 - 3. Memory non-intensive CPU applications
 - 4. Long-deadline-period HWAs with low priority
 - 5. Memory-intensive CPU applications
 - 6. Short-deadline-period HWAs with low priority

Switch probabilistically

More on DASH

 Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, and Onur Mutlu,

"DASH: Deadline-Aware High-Performance Memory Scheduler for Heterogeneous Systems with Hardware Accelerators"

<u>ACM Transactions on Architecture and Code Optimization</u> (**TACO**), Vol. 12, January 2016.

Presented at the <u>11th HiPEAC Conference</u>, Prague, Czech Republic, January 2016.

[Slides (pptx) (pdf)]

Source Code

DASH: Deadline-Aware High-Performance Memory Scheduler for Heterogeneous Systems with Hardware Accelerators

HIROYUKI USUI, LAVANYA SUBRAMANIAN, KEVIN KAI-WEI CHANG, and ONUR MUTLU, Carnegie Mellon University

Predictable Performance: Strong Memory Service Guarantees

Goal: Predictable Performance in Complex Systems

- Heterogeneous agents: CPUs, GPUs, and HWAs
- Main memory interference between CPUs, GPUs, HWAs

How to allocate resources to heterogeneous agents to mitigate interference and provide predictable performance?

Strong Memory Service Guarantees

 Goal: Satisfy performance/SLA requirements in the presence of shared main memory, heterogeneous agents, and hybrid memory/storage

Approach:

- Develop techniques/models to accurately estimate the performance loss of an application/agent in the presence of resource sharing
- Develop mechanisms (hardware and software) to enable the resource partitioning/prioritization needed to achieve the required performance levels for all applications
- All the while providing high system performance
- Subramanian et al., "MISE: Providing Performance Predictability and Improving Fairness in Shared Main Memory Systems," HPCA 2013.
- Subramanian et al., "The Application Slowdown Model," MICRO 2015.

Predictable Performance Readings (I)

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
 "Fairness via Source Throttling: A Configurable and High-Performance Fairness Substrate for Multi-Core Memory Systems"

Proceedings of the <u>15th International Conference on</u>

<u>Architectural Support for Programming Languages and Operating</u>

<u>Systems</u> (**ASPLOS**), pages 335-346, Pittsburgh, PA, March 2010.

<u>Slides (pdf)</u>

Fairness via Source Throttling: A Configurable and High-Performance Fairness Substrate for Multi-Core Memory Systems

Eiman Ebrahimi† Chang Joo Lee† Onur Mutlu§ Yale N. Patt†

†Department of Electrical and Computer Engineering The University of Texas at Austin {ebrahimi, cjlee, patt}@ece.utexas.edu

§Computer Architecture Laboratory (CALCM)
Carnegie Mellon University
onur@cmu.edu

Predictable Performance Readings (II)

 Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, and Onur Mutlu,

"MISE: Providing Performance Predictability and Improving Fairness in Shared Main Memory Systems"

Proceedings of the <u>19th International Symposium on High-</u> <u>Performance Computer Architecture</u> (**HPCA**), Shenzhen, China, February 2013. <u>Slides (pptx)</u>

MISE: Providing Performance Predictability and Improving Fairness in Shared Main Memory Systems

Lavanya Subramanian Vivek Seshadri Yoongu Kim Ben Jaiyen Onur Mutlu Carnegie Mellon University

Predictable Performance Readings (III)

 Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and Onur Mutlu,

"The Application Slowdown Model: Quantifying and Controlling the Impact of Inter-Application Interference at Shared Caches and Main Memory"

Proceedings of the <u>48th International Symposium on Microarchitecture</u> (**MICRO**), Waikiki, Hawaii, USA, December 2015.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

[Source Code]

The Application Slowdown Model: Quantifying and Controlling the Impact of Inter-Application Interference at Shared Caches and Main Memory

Lavanya Subramanian* Vivek Seshadri* Arnab Ghosh*†
Samira Khan*‡ Onur Mutlu*

*Carnegie Mellon University §Intel Labs †IIT Kanpur ‡University of Virginia

Handling Memory Interference In Multithreaded Applications

Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo Lee, Onur Mutlu, and Yale N. Patt, "Parallel Application Memory Scheduling"

Proceedings of the <u>44th International Symposium on Microarchitecture</u> (**MICRO**), Porto Alegre, Brazil, December 2011. <u>Slides (pptx)</u>

Multithreaded (Parallel) Applications

- Threads in a multi-threaded application can be interdependent
 - As opposed to threads from different applications
- Such threads can synchronize with each other
 - Locks, barriers, pipeline stages, condition variables, semaphores, ...
- Some threads can be on the critical path of execution due to synchronization; some threads are not
- Even within a thread, some "code segments" may be on the critical path of execution; some are not

Critical Sections

- Enforce mutually exclusive access to shared data
- Only one thread can be executing it at a time
- Contended critical sections make threads wait → threads causing serialization can be on the critical path

Barriers

- Synchronization point
- Threads have to wait until all threads reach the barrier
- Last thread arriving at the barrier is on the critical path

Stages of Pipelined Programs

- Loop iterations are statically divided into code segments called stages
- Threads execute stages on different cores
- Thread executing the slowest stage is on the critical path

Handling Interference in Parallel Applications

- Threads in a multithreaded application are inter-dependent
- Some threads can be on the critical path of execution due to synchronization; some threads are not
- How do we schedule requests of inter-dependent threads to maximize multithreaded application performance?
- Idea: Estimate limiter threads likely to be on the critical path and prioritize their requests; shuffle priorities of non-limiter threads to reduce memory interference among them [Ebrahimi+, MICRO'11]
- Hardware/software cooperative limiter thread estimation:
 - Thread executing the most contended critical section
 - Thread executing the slowest pipeline stage
 - Thread that is falling behind the most in reaching a barrier

Prioritizing Requests from Limiter Threads

Parallel App Mem Scheduling: Pros and Cons

Upsides:

- Improves the performance of multi-threaded applications
- Provides a mechanism for estimating "limiter threads"
- Opens a path for slowdown estimation for multi-threaded applications

Downsides:

- What if there are multiple multi-threaded applications running together?
- Limiter thread estimation can become complex

More on PAMS

 Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
 "Parallel Application Memory Scheduling"

Proceedings of the <u>44th International Symposium on</u> <u>Microarchitecture</u> (**MICRO**), Porto Alegre, Brazil, December 2011. <u>Slides (pptx)</u>

Parallel Application Memory Scheduling

Eiman Ebrahimi† Rustam Miftakhutdinov† Chris Fallin§ Chang Joo Lee‡ José A. Joao† Onur Mutlu§ Yale N. Patt†

†Department of Electrical and Computer Engineering The University of Texas at Austin {ebrahimi, rustam, joao, patt}@ece.utexas.edu

§Carnegie Mellon University {cfallin,onur}@cmu.edu

‡Intel Corporation chang.joo.lee@intel.com

Other Ways of Handling Memory Interference

Fundamental Interference Control Techniques

Goal: to reduce/control inter-thread memory interference

- 1. Prioritization or request scheduling
- 2. Data mapping to banks/channels/ranks
- 3. Core/source throttling
- 4. Application/thread scheduling

Designing QoS-Aware Memory Systems: Approaches

- Smart resources: Design each shared resource to have a configurable interference control/reduction mechanism
 - QoS-aware memory controllers
 - QoS-aware interconnects
 - QoS-aware caches

- Dumb resources: Keep each resource free-for-all, but reduce/control interference by injection control or data mapping
 - Source throttling to control access to memory system
 - QoS-aware data mapping to memory controllers
 - QoS-aware thread scheduling to cores

Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, <u>Onur Mutlu</u>, Mahmut Kandemir, and Thomas Moscibroda, "Reducing Memory Interference in Multicore Systems via

<u>Application-Aware Memory Channel Partitioning</u>"

44th International Symposium on Microarchitecture (MICRO),

Porto Alegre, Brazil, December 2011. Slides (pptx)

Observation: Modern Systems Have Multiple Channels

A new degree of freedom Mapping data across multiple channels

Data Mapping in Current Systems

Causes interference between applications' requests

Partitioning Channels Between Applications

Eliminates interference between applications' requests

Overview: Memory Channel Partitioning (MCP)

Goal

Eliminate harmful interference between applications

Basic Idea

 Map the data of badly-interfering applications to different channels

Key Principles

- Separate low and high memory-intensity applications
- Separate low and high row-buffer locality applications

Key Insight 1: Separate by Memory Intensity

High memory-intensity applications interfere with low memory-intensity applications in shared memory channels

Conventional Page Mapping

Channel Partitioning

Map data of low and high memory-intensity applications to different channels

Key Insight 2: Separate by Row-Buffer Locality

Memory Channel Partitioning (MCP) Mechanism

Hardware

- 1. Profile applications
- 2. Classify applications into groups
- 3. Partition channels between application groups
- 4. Assign a preferred channel to each application
- 5. Allocate application pages to preferred channel

System Software

Interval Based Operation

- 2. Classify applications into groups
- 3. Partition channels between groups
- 4. Assign preferred channel to applications

Observations

- Applications with very low memory-intensity rarely access memory
 - → Dedicating channels to them results in precious memory bandwidth waste
- They have the most potential to keep their cores busy
 - → We would really like to prioritize them
- They interfere minimally with other applications
 - → Prioritizing them does not hurt others

Integrated Memory Partitioning and Scheduling (IMPS)

 Always prioritize very low memory-intensity applications in the memory scheduler

 Use memory channel partitioning to mitigate interference between other applications

Hardware Cost

- Memory Channel Partitioning (MCP)
 - Only profiling counters in hardware
 - No modifications to memory scheduling logic
 - 1.5 KB storage cost for a 24-core, 4-channel system
- Integrated Memory Partitioning and Scheduling (IMPS)
 - A single bit per request
 - Scheduler prioritizes based on this single bit

Performance of Channel Partitioning

Better system performance than the best previous scheduler at lower hardware cost

An Example of Bad Channel Partitioning

Combining Multiple Interference Control Techniques

- Combined interference control techniques can mitigate interference much more than a single technique alone can do
- The key challenge is:
 - Deciding what technique to apply when
 - Partitioning work appropriately between software and hardware

MCP and IMPS: Pros and Cons

Upsides:

- Keeps the memory scheduling hardware simple
- Combines multiple interference reduction techniques
- Can provide performance isolation across applications mapped to different channels
- General idea of partitioning can be extended to smaller granularities in the memory hierarchy: banks, subarrays, etc.

Downsides:

- Reacting is difficult if workload changes behavior after profiling
- Overhead of moving pages between channels restricts benefits

More on Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda,
 "Reducing Memory Interference in Multicore Systems via Application-Aware Memory Channel Partitioning"
 Proceedings of the 44th International Symposium on Microarchitecture (MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)

Reducing Memory Interference in Multicore Systems via Application-Aware Memory Channel Partitioning

Sai Prashanth Muralidhara Pennsylvania State University smuralid@cse.psu.edu Lavanya Subramanian Carnegie Mellon University Isubrama@ece.cmu.edu Onur Mutlu Carnegie Mellon University onur@cmu.edu

Mahmut Kandemir Pennsylvania State University kandemir@cse.psu.edu Thomas Moscibroda
Microsoft Research Asia
moscitho@microsoft.com

Fundamental Interference Control Techniques

Goal: to reduce/control inter-thread memory interference

- 1. Prioritization or request scheduling
- 2. Data mapping to banks/channels/ranks
- 3. Core/source throttling
- 4. Application/thread scheduling

Fairness via Source Throttling

Eiman Ebrahimi, Chang Joo Lee, <u>Onur Mutlu</u>, and Yale N. Patt,

<u>"Fairness via Source Throttling: A Configurable and High-Performance Fairness Substrate for Multi-Core Memory Systems"</u>

<u>15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems</u> (**ASPLOS**), pages 335-346, Pittsburgh, PA, March 2010. <u>Slides (pdf)</u>

Many Shared Resources

The Problem with "Smart Resources"

 Independent interference control mechanisms in caches, interconnect, and memory can contradict each other

- Explicitly coordinating mechanisms for different resources requires complex implementation
- How do we enable fair sharing of the entire memory system by controlling interference in a coordinated manner?

Source Throttling: A Fairness Substrate

- Key idea: Manage inter-thread interference at the cores (sources), not at the shared resources
- Dynamically estimate unfairness in the memory system
- Feed back this information into a controller
- Throttle cores' memory access rates accordingly
 - Whom to throttle and by how much depends on performance target (throughput, fairness, per-thread QoS, etc)
 - E.g., if unfairness > system-software-specified target then throttle down core causing unfairness & throttle up core that was unfairly treated
- Ebrahimi et al., "Fairness via Source Throttling," ASPLOS'10, TOCS'12.

Fairness via Source Throttling (FST)

- Two components (interval-based)
- Run-time unfairness evaluation (in hardware)
 - Dynamically estimates the unfairness (application slowdowns) in the memory system
 - Estimates which application is slowing down which other
- Dynamic request throttling (hardware or software)
 - Adjusts how aggressively each core makes requests to the shared resources
 - Throttles down request rates of cores causing unfairness
 - Limit miss buffers, limit injection rate

Fairness via Source Throttling (FST) [ASPLOS'10]

Dynamic Request Throttling

 Goal: Adjust how aggressively each core makes requests to the shared memory system

- Mechanisms:
 - Miss Status Holding Register (MSHR) quota
 - Controls the number of concurrent requests accessing shared resources from each application
 - Request injection frequency
 - Controls how often memory requests are issued to the last level cache from the MSHRs

Dynamic Request Throttling

 Throttling level assigned to each core determines both MSHR quota and request injection rate

Throttling level	MSHR quota	Request Injection Rate
100%	128	Every cycle
50%	64	Every other cycle
25%	32	Once every 4 cycles
10%	12	Once every 10 cycles
5%	6	Once every 20 cycles
4%	5	Once every 25 cycles
3%	3	Once every 30 cycles
2%	2	Once every 50 cycles

Total # of MSHRs: 128

System Software Support

- Different fairness objectives can be configured by system software
 - Keep maximum slowdown in check
 - Estimated Max Slowdown < Target Max Slowdown</p>
 - Keep slowdown of particular applications in check to achieve a particular performance target
 - Estimated Slowdown(i) < Target Slowdown(i)
- Support for thread priorities
 - Weighted Slowdown(i) =
 Estimated Slowdown(i) x Weight(i)

Source Throttling Results: Takeaways

- Source throttling alone provides better performance than a combination of "smart" memory scheduling and fair caching
 - Decisions made at the memory scheduler and the cache sometimes contradict each other
- Neither source throttling alone nor "smart resources" alone provides the best performance
- Combined approaches are even more powerful
 - Source throttling and resource-based interference control

Source Throttling: Ups and Downs

Advantages

- + Core/request throttling is easy to implement: no need to change the memory scheduling algorithm
- + Can be a general way of handling shared resource contention
- + Can reduce overall load/contention in the memory system

Disadvantages

- Requires slowdown estimations → difficult to estimate
- Thresholds can become difficult to optimize
 - → throughput loss due to too much throttling
 - → can be difficult to find an overall-good configuration

More on Source Throttling (I)

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
 "Fairness via Source Throttling: A Configurable and High-Performance Fairness Substrate for Multi-Core Memory Systems"

Proceedings of the <u>15th International Conference on</u>

<u>Architectural Support for Programming Languages and Operating</u>

<u>Systems</u> (**ASPLOS**), pages 335-346, Pittsburgh, PA, March 2010.

<u>Slides (pdf)</u>

Fairness via Source Throttling: A Configurable and High-Performance Fairness Substrate for Multi-Core Memory Systems

Eiman Ebrahimi† Chang Joo Lee† Onur Mutlu§ Yale N. Patt†

†Department of Electrical and Computer Engineering
The University of Texas at Austin
{ebrahimi, cjlee, patt}@ece.utexas.edu

§Computer Architecture Laboratory (CALCM)
Carnegie Mellon University
onur@cmu.edu

More on Source Throttling (II)

 Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu, "HAT: Heterogeneous Adaptive Throttling for On-Chip Networks"

Proceedings of the <u>24th International Symposium on Computer</u>
<u>Architecture and High Performance Computing</u> (**SBAC-PAD**), New York, NY, October 2012. <u>Slides (pptx) (pdf)</u>

HAT: Heterogeneous Adaptive Throttling for On-Chip Networks

Kevin Kai-Wei Chang, Rachata Ausavarungnirun, Chris Fallin, Onur Mutlu
Carnegie Mellon University
{kevincha, rachata, cfallin, onur}@cmu.edu

More on Source Throttling (III)

George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu, and Srinivasan Seshan,
 "On-Chip Networks from a Networking Perspective:
 Congestion and Scalability in Many-core Interconnects"
 Proceedings of the 2012 ACM SIGCOMM Conference
 (SIGCOMM), Helsinki, Finland, August 2012. Slides (pptx)

On-Chip Networks from a Networking Perspective: Congestion and Scalability in Many-Core Interconnects

George Nychis†, Chris Fallin†, Thomas Moscibroda§, Onur Mutlu†, Srinivasan Seshan†

† Carnegie Mellon University § Microsoft Research Asia
{gnychis,cfallin,onur,srini}@cmu.edu moscitho@microsoft.com

Computer Architecture

Lecture 15: Memory Interference and Quality of Service II

Prof. Onur Mutlu

ETH Zürich

Fall 2019

14 November 2019

We Did Not Cover The Rest of the Slides. They Are For Your Benefit.

Fundamental Interference Control Techniques

Goal: to reduce/control interference

- 1. Prioritization or request scheduling
- 2. Data mapping to banks/channels/ranks
- 3. Core/source throttling
- 4. Application/thread scheduling

Idea: Pick threads that do not badly interfere with each other to be scheduled together on cores sharing the memory system

Application-to-Core Mapping to Reduce Interference

Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh Kumar, and Mani Azimi,
 "Application-to-Core Mapping Policies to Reduce Memory
 System Interference in Multi-Core Systems"
 Proceedings of the 19th International Symposium on High-Performance
 Computer Architecture (HPCA), Shenzhen, China, February 2013.
 Slides (pptx)

Key ideas:

- Cluster threads to memory controllers (to reduce across chip interference)
- Isolate interference-sensitive (low-intensity) applications in a separate cluster (to reduce interference from high-intensity applications)
- Place applications that benefit from memory bandwidth closer to the controller

Multi-Core to Many-Core

Many-Core On-Chip Communication

Applications

Memory Controller

\$ Cache Bank

Problem: Spatial Task Scheduling

Challenges in Spatial Task Scheduling

Application-to-Core Mapping

Step 1 — Clustering

Inefficient data mapping to memory and caches

Step 1 — Clustering

System Performance

System performance improves by 17%

Network Power

More on App-to-Core Mapping

Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh Kumar, and Mani Azimi,
 "Application-to-Core Mapping Policies to Reduce Memory
 System Interference in Multi-Core Systems"

Proceedings of the 19th International Symposium on High-Performant

Proceedings of the <u>19th International Symposium on High-Performance</u> <u>Computer Architecture</u> (**HPCA**), Shenzhen, China, February 2013. <u>Slides (pptx)</u>

Application-to-Core Mapping Policies to Reduce Memory System Interference in Multi-Core Systems

Reetuparna Das* Rachata Ausavarungnirun† Onur Mutlu† Akhilesh Kumar‡ Mani Azimi‡ University of Michigan* Carnegie Mellon University† Intel Labs‡

Interference-Aware Thread Scheduling

- An example from scheduling in compute clusters (data centers)
- Data centers can be running virtual machines

Virtualized Cluster

Conventional DRM Policies

Based on operating-system-level metrics e.g., Carl utilization, memory was acity producity demand

Microarchitecture-level Interference

- VMs within a host compete for:
 - Shared cache capacity
 - Shared memory bandwidth

Can operating-system-level metrics capture the microarchitecture-level resource interference?

Microarchitecture Unawareness

VM	Operating-system-level metrics		
	CPU Utilization	Memory Capacity	
App	92%	369 MB	
Арр	93%	348 MB	

Microarchitecture-level metrics		
LLC Hit Ratio	Memory Bandwidth	
2%	2267 MB/s	
98%	1 MB/s	

Impact on Performance

Impact on Performance

A-DRM: Architecture-aware DRM

- Goal: Take into account microarchitecture-level shared resource interference
 - Shared cache capacity
 - Shared memory bandwidth

Key Idea:

- Monitor and detect microarchitecture-level shared resource interference
- Balance microarchitecture-level resource usage across cluster to minimize memory interference while maximizing system performance

A-DRM: Architecture-aware DRM

More on Architecture-Aware DRM

 Hui Wang, Canturk Isci, Lavanya Subramanian, Jongmoo Choi, Depei Qian, and Onur Mutlu,

"A-DRM: Architecture-aware Distributed Resource Management of Virtualized Clusters"

Proceedings of the <u>11th ACM SIGPLAN/SIGOPS International</u> <u>Conference on Virtual Execution Environments</u> (**VEE**), Istanbul, Turkey, March 2015.

[Slides (pptx) (pdf)]

A-DRM: Architecture-aware Distributed Resource Management of Virtualized Clusters

Hui Wang^{†*}, Canturk Isci[‡], Lavanya Subramanian*, Jongmoo Choi^{‡*}, Depei Qian[†], Onur Mutlu*

[†]Beihang University, [‡]IBM Thomas J. Watson Research Center, *Carnegie Mellon University, [‡]Dankook University

{hui.wang, depeiq}@buaa.edu.cn, canturk@us.ibm.com, {Isubrama, onur}@cmu.edu, choijm@dankook.ac.kr

Interference-Aware Thread Scheduling

Advantages

- + Can eliminate/minimize interference by scheduling "symbiotic applications" together (as opposed to just managing the interference)
- + Less intrusive to hardware (less need to modify the hardware resources)
- Disadvantages and Limitations
 - -- High overhead to migrate threads and data between cores and machines
 - -- Does not work (well) if all threads are similar and they interfere

Summary

Summary: Fundamental Interference Control Techniques

Goal: to reduce/control interference

- 1. Prioritization or request scheduling
- 2. Data mapping to banks/channels/ranks
- 3. Core/source throttling
- 4. Application/thread scheduling

Best is to combine all. How would you do that?

Summary: Memory QoS Approaches and Techniques

- Approaches: Smart vs. dumb resources
 - Smart resources: QoS-aware memory scheduling
 - Dumb resources: Source throttling; channel partitioning
 - Both approaches are effective in reducing interference
 - No single best approach for all workloads
- Techniques: Request/thread scheduling, source throttling, memory partitioning
 - All approaches are effective in reducing interference
 - Can be applied at different levels: hardware vs. software
 - No single best technique for all workloads
- Combined approaches and techniques are the most powerful
 - Integrated Memory Channel Partitioning and Scheduling [MICRO'11]

Summary: Memory Interference and QoS

- QoS-unaware memory ->
 uncontrollable and unpredictable system
- Providing QoS awareness improves performance,
 predictability, fairness, and utilization of the memory system
- Discussed many new techniques to:
 - Minimize memory interference
 - Provide predictable performance
- Many new research ideas needed for integrated techniques and closing the interaction with software

What Did We Not Cover?

- Prefetch-aware shared resource management
- DRAM-controller co-design
- Cache interference management
- Interconnect interference management
- Write-read scheduling
- DRAM designs to reduce interference
- Interference issues in near-memory processing
- ...

What the Future May Bring

- Simple yet powerful interference control and scheduling mechanisms
 - memory scheduling + interconnect scheduling
- Real implementations and investigations
 - SoftMC infrastructure, FPGA-based implementations
- Interference and QoS in the presence of even more heterogeneity
 - □ PIM, accelerators, ...

SoftMC: Open Source DRAM Infrastructure

Hasan Hassan et al., "SoftMC: A
 Flexible and Practical Open Source Infrastructure for
 Enabling Experimental DRAM
 Studies," HPCA 2017.

- Flexible
- Easy to Use (C++ API)
- Open-source github.com/CMU-SAFARI/SoftMC

SoftMC

https://github.com/CMU-SAFARI/SoftMC

SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies

```
 Hasan Hassan Nandita Vijaykumar Samira Khan Saugata Ghose Kevin Chang Gennady Pekhimenko Donghyuk Lee^{6,3} Oguz Ergin Onur Mutlu Onur Mutlu
```

```
<sup>1</sup>ETH Zürich <sup>2</sup>TOBB University of Economics & Technology <sup>3</sup>Carnegie Mellon University <sup>4</sup>University of Virginia <sup>5</sup>Microsoft Research <sup>6</sup>NVIDIA Research
```

Computer Architecture

Lecture 15: Memory Interference and Quality of Service II

Prof. Onur Mutlu

ETH Zürich

Fall 2019

14 November 2019

Backup Slides: Some Other Ideas ...

MISE:

Providing Performance Predictability in Shared Main Memory Systems

Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, Onur Mutlu

Carnegie Mellon

Unpredictable Application Slowdowns

An application's performance depends on which application it is running with

Need for Predictable Performance

- There is a need for predictable performance
 - When multiple applications share resources
 - Especially if some applications require performance

Our Goal: Predictable performance in the presence of memory interference

- Example 2: In server systems
 - Different users' jobs consolidated onto the same server
 - Need to provide bounded slowdowns to critical jobs

Outline

1. Estimate Slowdown

2. Control Slowdown

Outline

1. Estimate Slowdown

- Key Observations
- Implementation
- MISE Model: Putting it All Together
- Evaluating the Model

2. Control Slowdown

- Providing Soft Slowdown Guarantees
- Minimizing Maximum Slowdown

Slowdown: Definition

$$Slowdown = \frac{Performance \text{ Alone}}{Performance \text{ Shared}}$$

For a memory bound application, Performance ∞ Memory request service rate

Normalized Request Service Rate

Request Service Rate _{Alone} (RSR_{Alone}) of an application can be estimated by giving the application highest priority in accessing memory

Highest priority → Little interference

(almost as if the application were run alone)

Memory Interference-induced Slowdown Estimation (MISE) model for memory bound applications

$$Slowdown = \frac{Request Service Rate Alone (RSRAlone)}{Request Service Rate Shared (RSRShared)}$$

Memory phase slowdown dominates overall slowdown

Memory Interference-induced Slowdown Estimation (MISE) model for non-memory bound applications

Slowdown =
$$(1 - \alpha) + \alpha \frac{RSR_{Alone}}{RSR_{Shared}}$$

Outline

1. Estimate Slowdown

- Key Observations
- Implementation
- MISE Model: Putting it All Together
- Evaluating the Model

2. Control Slowdown

- Providing Soft Slowdown Guarantees
- Minimizing Maximum Slowdown

Interval Based Operation

Measuring RSR_{Shared} and α

- Request Service Rate Shared (RSR Shared)
 - Per-core counter to track number of requests serviced
 - At the end of each interval, measure

$$RSR_{Shared} = \frac{Number of Requests Serviced}{Interval Length}$$

- Memory Phase Fraction (α)
 - Count number of stall cycles at the core
 - Compute fraction of cycles stalled for memory

Estimating Request Service Rate Alone (RSR Alone)

- Divide each interval into shorter epochs
- At the beginning of each epoch
 - Memory controller randomly picks an application as the highest priority application
 - How: Periodically give each application
- At this meet aprintarily for each easign tip meetimetry

$$RSR_{Alone} = \frac{Number of Requests During High Priority Epochs}{Number of Cycles Application Given High Priority}$$

Inaccuracy in Estimating RSR_{Alone}

Accounting for Interference in RSR_{Alone} Estimation

 Solution: Determine and remove interference cycles from RSR_{Alone} calculation

$$RSR_{Alone} = \frac{Number of Requests During High Priority Epochs}{Number of Cycles Application Given High Priority Interference Cycles}$$

- A cycle is an interference cycle if
 - a request from the highest priority application is waiting in the request buffer and
 - another application's request was issued previously

Outline

1. Estimate Slowdown

- Key Observations
- Implementation
- MISE Model: Putting it All Together
- Evaluating the Model

2. Control Slowdown

- Providing Soft Slowdown Guarantees
- Minimizing Maximum Slowdown

MISE Model: Putting it All Together

Outline

1. Estimate Slowdown

- Key Observations
- Implementation
- MISE Model: Putting it All Together
- Evaluating the Model

2. Control Slowdown

- Providing Soft Slowdown Guarantees
- Minimizing Maximum Slowdown

Previous Work on Slowdown Estimation

- Previous work on slowdown estimation
 - STFM (Stall Time Fair Memory) Scheduling [Mutlu+, MICRO '07]
 - FST (Fairness via Source Throttling) [Ebrahimi+, ASPLOS '10]
 - □ Per-thread Cycle Accounting [Du Bois+, HiPEAC `13]
- Basic Idea:

Count number of cycles application receives interference

Two Major Advantages of MISE Over STFM

Advantage 1:

- □ STFM estimates alone performance while an application is receiving interference → Hard
- MISE estimates alone performance while giving an application the highest priority → Easier

Advantage 2:

- STFM does not take into account compute phase for non-memory-bound applications
- MISE accounts for compute phase → Better accuracy

Methodology

- Configuration of our simulated system
 - 4 cores
 - 1 channel, 8 banks/channel
 - DDR3 1066 DRAM
 - 512 KB private cache/core
- Workloads
 - SPEC CPU2006
 - 300 multi programmed workloads

Quantitative Comparison

Comparison to STFM

Outline

1. Estimate Slowdown

- Key Observations
- Implementation
- MISE Model: Putting it All Together
- Evaluating the Model

2. Control Slowdown

- Providing Soft Slowdown Guarantees
- Minimizing Maximum Slowdown

Providing "Soft" Slowdown Guarantees

Goal

- 1. Ensure QoS-critical applications meet a prescribed slowdown bound
- 2. Maximize system performance for other applications

Basic Idea

- Allocate just enough bandwidth to QoS-critical application
- Assign remaining bandwidth to other applications

MISE-QoS: Mechanism to Provide Soft QoS

- Assign an initial bandwidth allocation to QoS-critical application
- Estimate slowdown of QoS-critical application using the MISE model
- After every N intervals
 - □ If slowdown > bound B +/- ϵ , increase bandwidth allocation
 - □ If slowdown < bound B +/- ϵ , decrease bandwidth allocation
- When slowdown bound not met for N intervals
 - Notify the OS so it can migrate/de-schedule jobs

Methodology

- Each application (25 applications in total) considered the QoS-critical application
- Run with 12 sets of co-runners of different memory intensities
- Total of 300 multiprogrammed workloads
- Each workload run with 10 slowdown bound values
- Baseline memory scheduling mechanism
 - Always prioritize QoS-critical application
 [Iyer+, SIGMETRICS 2007]
 - Other applications' requests scheduled in FRFCFS order
 [Zuravleff +, US Patent 1997, Rixner+, ISCA 2000]

A Look at One Workload

MISE is effective in

- 1. meeting the slowdown bound for the QoS-critical application
- 2. improving performance of non-QoS-critical applications

Effectiveness of MISE in Enforcing QoS

Across 3000 data points

	Predicted Met	Predicted Not Met
QoS Bound Met	78.8%	2.1%
QoS Bound Not Met	2.2%	16.9%

MISE-QoS correctly predicts whether or not the bound is met for 95.7% of workloads

Performance of Non-QoS-Critical Applications

When slowdown bound is 10/3 MISE-QoS improves system performance by 10%

Outline

1. Estimate Slowdown

- Key Observations
- Implementation
- MISE Model: Putting it All Together
- Evaluating the Model

2. Control Slowdown

- Providing Soft Slowdown Guarantees
- Minimizing Maximum Slowdown

Other Results in the Paper

- Sensitivity to model parameters
 - Robust across different values of model parameters
- Comparison of STFM and MISE models in enforcing soft slowdown guarantees
 - MISE significantly more effective in enforcing guarantees

- Minimizing maximum slowdown
 - MISE improves fairness across several system configurations

Summary

- Uncontrolled memory interference slows down applications unpredictably
- Goal: Estimate and control slowdowns
- Key contribution
 - MISE: An accurate slowdown estimation model
 - Average error of MISE: 8.2%
- Key Idea
 - Request Service Rate is a proxy for performance
 - Request Service Rate _{Alone} estimated by giving an application highest priority in accessing memory
- Leverage slowdown estimates to control slowdowns
 - Providing soft slowdown guarantees
 - Minimizing maximum slowdown

MISE: Pros and Cons

Upsides:

- Simple new insight to estimate slowdown
- Much more accurate slowdown estimations than prior techniques (STFM, FST)
- Enables a number of QoS mechanisms that can use slowdown estimates to satisfy performance requirements

Downsides:

- Slowdown estimation is not perfect there are still errors
- Does not take into account caches and other shared resources in slowdown estimation

More on MISE

 Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, and Onur Mutlu,

"MISE: Providing Performance Predictability and Improving Fairness in Shared Main Memory Systems"

Proceedings of the <u>19th International Symposium on High-</u> <u>Performance Computer Architecture</u> (**HPCA**), Shenzhen, China, February 2013. <u>Slides (pptx)</u>

MISE: Providing Performance Predictability and Improving Fairness in Shared Main Memory Systems

Lavanya Subramanian Vivek Seshadri Yoongu Kim Ben Jaiyen Onur Mutlu Carnegie Mellon University

Extending MISE to Shared Caches: ASM

 Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and Onur Mutlu,

"The Application Slowdown Model: Quantifying and Controlling the Impact of Inter-Application Interference at Shared Caches and Main Memory"

Proceedings of the <u>48th International Symposium on Microarchitecture</u> (**MICRO**), Waikiki, Hawaii, USA, December 2015.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

Source Code

The Application Slowdown Model: Quantifying and Controlling the Impact of Inter-Application Interference at Shared Caches and Main Memory

Lavanya Subramanian*§ Vivek Seshadri* Arnab Ghosh*†
Samira Khan*‡ Onur Mutlu*

*Carnegie Mellon University §Intel Labs †IIT Kanpur ‡University of Virginia

Decoupled DMA w/ Dual-Port DRAM [PACT 2015]

Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM

Decoupled Direct Memory Access

Donghyuk Lee

Lavanya Subramanian, Rachata Ausavarungnirun, Jongmoo Choi, Onur Mutlu

SAFARI

Carnegie Mellon

Logical System Organization

Main memory connects processor and IO devices as an *intermediate layer*

Physical System Implementation

High Pin Cost in Processor

IO access

Our Approach

Enabling IO channel, decoupled & isolated from CPU channel

Executive Summary

Problem

- CPU and IO accesses contend for the shared memory channel
- Our Approach: Decoupled Direct Memory Access (DDMA)
 - Design new DRAM architecture with two independent data ports
 - → Dual-Data-Port DRAM
 - Connect one port to CPU and the other port to IO devices
 - → Decouple CPU and IO accesses

Application

- Communication between compute units (e.g., CPU GPU)
- In-memory communication (e.g., bulk in-memory copy/init.)
- Memory-storage communication (e.g., page fault, IO prefetch)

Result

- Significant performance improvement (20% in 2 ch. & 2 rank system)
- CPU pin count reduction (4.5%)

Outline

1. Problem

2. Our Approach

3. Dual-Data-Port DRAM

4. Applications for DDMA

5. Evaluation

Problem 1: Memory Channel Contention

Problem 1: Memory Channel Contention

A large fraction of the execution time is spent on IO accesses

Problem 2: High Cost for IO Interfaces

Integrating IO interface on the processor chip leads to *high area cost*

Shared Memory Channel

 Memory channel contention for IO access and CPU access

 High area cost for integrating IO interfaces on processor chip

Outline

1. Problem

2. Our Approach

3. Dual-Data-Port DRAM

4. Applications for DDMA

5. Evaluation

Our Approach

Our Approach

Decoupled Direct Memory Access

SAFARI

Outline

1. Problem

2. Our Approach

3. Dual-Data-Port DRAM

4. Applications for DDMA

5. Evaluation

Background: DRAM Operation

DRAM peripheral logic: *i) controls banks,* and *ii) transfers data* over memory channel

Problem: Single Data Port

memory controller at CPU data channel control channel data port bank READY Single read **Data Port** read bank READY

Many Banks

Requests are served *serially* due to *single data port*

Problem: Single Data Port

What about a DRAM with two data ports?

Dual-Data-Port DRAM

twice the bandwidth & independent data ports with low overhead

DDP-DRAM Memory System

memory controller at CPU

control channel with port select

DDMA IO interface

Three Data Transfer Modes

- CPU Access: Access through CPU channel
 - DRAM read/write with CPU port selection
- IO Access: Access through IO channel
 - DRAM read/write with IO port selection
- Port Bypass: Direct transfer between channels
 - DRAM access with port bypass selection

1. CPU Access Mode

2. IO Access Mode

3. Port Bypass Mode

Outline

1. Problem

2. Our Approach

3. Dual-Data-Port DRAM

4. Applications for DDMA

5. Evaluation

Three Applications for DDMA

- Communication b/w Compute Units
 - CPU-GPU communication
- In-Memory Communication and Initialization
 - Bulk page copy/initialization
- Communication b/w Memory and Storage
 - Serving page fault/file read & write

1. Compute Unit ←→ Compute Unit

Transfer data through DDMA without interfering w/ CPU/GPU memory accesses

2. In-Memory Communication

Transfer data in DRAM through DDAM without interfering with CPU memory accesses

3. Memory ↔ Storage

Transfer data from storage through DDMA without interfering with CPU memory accesses

Outline

1. Problem

2. Our Approach

3. Dual-Data-Port DRAM

4. Applications for DDMA

5. Evaluation

Evaluation Methods

System

- − Processor: 4 − 16 cores
- LLC: 16-way associative, 512KB private cache-slice/core
- Memory: 1 4 ranks and 1 4 channels

Workloads

- Memory intensive:
 SPEC CPU2006, TPC, stream (31 benchmarks)
- CPU-GPU communication intensive: polybench (8 benchmarks)
- In-memory communication intensive:
 apache, bootup, compiler, filecopy, mysql, fork,
 shell, memcached (8 in total)

Performance (2 Channel, 2 Rank)

High performance improvement

More performance improvement at higher core count

SAFARI

231

Performance on Various Systems

Performance increases with rank count

DDMA vs. Dual Channel

DDMA achieves *higher performance* at *lower processor pin count*

More on Decoupled DMA

Donghyuk Lee, Lavanya Subramanian, Rachata
 Ausavarungnirun, Jongmoo Choi, and Onur Mutlu,
 "Decoupled Direct Memory Access: Isolating CPU and
 IO Traffic by Leveraging a Dual-Data-Port DRAM"
 Proceedings of the 24th International Conference on Parallel Architectures and Compilation Techniques (PACT), San
 Francisco, CA, USA, October 2015.
 [Slides (pptx) (pdf)]

Decoupled Direct Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM

Donghyuk Lee* Lavanya Subramanian* Rachata Ausavarungnirun* Jongmoo Choi[†] Onur Mutlu*

*Carnegie Mellon University

†Dankook University

{donghyu1, lsubrama, rachata, onur}@cmu.edu choijm@dankook.ac.kr

Interconnect QoS/Performance Ideas

Application-Aware Prioritization in NoCs

- Das et al., "Application-Aware Prioritization Mechanisms for On-Chip Networks," MICRO 2009.
 - https://users.ece.cmu.edu/~omutlu/pub/app-awarenoc_micro09.pdf

Application-Aware Prioritization Mechanisms for On-Chip Networks

Reetuparna Das§ Onur Mutlu† Thomas Moscibroda‡ Chita R. Das§ §Pennsylvania State University †Carnegie Mellon University ‡Microsoft Research {rdas,das}@cse.psu.edu onur@cmu.edu moscitho@microsoft.com

Slack-Based Packet Scheduling

Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das, "Aergia: Exploiting Packet Latency Slack in On-Chip Networks" Proceedings of the <u>37th International Symposium on Computer</u> Architecture (ISCA), pages 106-116, Saint-Malo, France, June 2010. <u>Slides (pptx)</u>

Aérgia: Exploiting Packet Latency Slack in On-Chip Networks

Reetuparna Das[§] Onur Mutlu[†] Thomas Moscibroda[‡] Chita R. Das[§] §Pennsylvania State University †Carnegie Mellon University ‡Microsoft Research {rdas,das}@cse.psu.edu onur@cmu.edu moscitho@microsoft.com

Low-Cost QoS in On-Chip Networks (I)

Boris Grot, Stephen W. Keckler, and Onur Mutlu, "Preemptive Virtual Clock: A Flexible, Efficient, and Costeffective QOS Scheme for Networks-on-Chip" Proceedings of the <u>42nd International Symposium on</u> <u>Microarchitecture</u> (MICRO), pages 268-279, New York, NY, December 2009. <u>Slides (pdf)</u>

Preemptive Virtual Clock: A Flexible, Efficient, and Cost-effective QOS Scheme for Networks-on-Chip

Boris Grot

Stephen W. Keckler

Onur Mutlu[†]

Department of Computer Sciences
The University of Texas at Austin
{bgrot, skeckler@cs.utexas.edu}

[†]Computer Architecture Laboratory (CALCM) Carnegie Mellon University onur@cmu.edu

Low-Cost QoS in On-Chip Networks (II)

Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,
 "Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for Scalability and Service Guarantees"

Proceedings of the <u>38th International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), San Jose, CA, June 2011. <u>Slides (pptx)</u>

Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for Scalability and Service Guarantees

Boris Grot¹ bgrot@cs.utexas.edu Joel Hestness¹ hestness@cs.utexas.edu

Stephen W. Keckler^{1,2} skeckler@nvidia.com

Onur Mutlu³ onur@cmu.edu

¹The University of Texas at Austin Austin, TX ²NVIDIA Santa Clara, CA ³Carnegie Mellon University Pittsburgh, PA

Throttling Based Fairness in NoCs

 Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu, "HAT: Heterogeneous Adaptive Throttling for On-Chip Networks"

Proceedings of the <u>24th International Symposium on Computer</u>
<u>Architecture and High Performance Computing</u> (**SBAC-PAD**), New York, NY, October 2012. <u>Slides (pptx) (pdf)</u>

HAT: Heterogeneous Adaptive Throttling for On-Chip Networks

Kevin Kai-Wei Chang, Rachata Ausavarungnirun, Chris Fallin, Onur Mutlu
Carnegie Mellon University
{kevincha, rachata, cfallin, onur}@cmu.edu

Scalability: Express Cube Topologies

Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu, "Express Cube Topologies for On-Chip Interconnects" Proceedings of the <u>15th International Symposium on High-Performance Computer Architecture</u> (HPCA), pages 163-174, Raleigh, NC, February 2009. <u>Slides (ppt)</u>

Express Cube Topologies for On-Chip Interconnects

Boris Grot

Joel Hestness

Stephen W. Keckler

Onur Mutlu[†]

Department of Computer Sciences The University of Texas at Austin {bgrot, hestness, skeckler}@cs.utexas.edu [†]Computer Architecture Laboratory (CALCM) Carnegie Mellon University onur@cmu.edu

Scalability: Slim NoC

Maciej Besta, Syed Minhaj Hassan, Sudhakar Yalamanchili, Rachata Ausavarungnirun, Onur Mutlu, Torsten Hoefler,
 "Slim NoC: A Low-Diameter On-Chip Network Topology for High Energy Efficiency and Scalability"
 Proceedings of the 23rd International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
 [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
 [Poster (pdf)]

Slim NoC: A Low-Diameter On-Chip Network Topology for High Energy Efficiency and Scalability

Maciej Besta¹ Syed Minhaj Hassan² Sudhakar Yalamanchili² Rachata Ausavarungnirun³ Onur Mutlu^{1,3} Torsten Hoefler¹

¹ETH Zürich

²Georgia Institute of Technology

³Carnegie Mellon University

Bufferless Routing in NoCs

- Moscibroda and Mutlu, "A Case for Bufferless Routing in On-Chip Networks," ISCA 2009.
 - https://users.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf

A Case for Bufferless Routing in On-Chip Networks

Thomas Moscibroda
Microsoft Research
moscitho@microsoft.com

Onur Mutlu
Carnegie Mellon University
onur@cmu.edu

CHIPPER: Low-Complexity Bufferless

Chris Fallin, Chris Craik, and Onur Mutlu,
 "CHIPPER: A Low-Complexity Bufferless Deflection
 Router"

Proceedings of the <u>17th International Symposium on High-Performance Computer Architecture</u> (**HPCA**), pages 144-155, San Antonio, TX, February 2011. <u>Slides (pptx)</u>
<u>An extended version</u> as <u>SAFARI Technical Report</u>, TR-SAFARI-2010-001, Carnegie Mellon University, December 2010.

CHIPPER: A Low-complexity Bufferless Deflection Router

Chris Fallin Chris Craik Onur Mutlu cfallin@cmu.edu craik@cmu.edu onur@cmu.edu

Computer Architecture Lab (CALCM)
Carnegie Mellon University

Minimally-Buffered Deflection Routing

 Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata Ausavarungnirun, and Onur Mutlu,

"MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient Interconnect"

Proceedings of the 6th ACM/IEEE International Symposium on Networks on Chip (NOCS), Lyngby, Denmark, May 2012. Slides (pptx) (pdf)

MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient Interconnect

Chris Fallin, Greg Nazario, Xiangyao Yu[†], Kevin Chang, Rachata Ausavarungnirun, Onur Mutlu

Carnegie Mellon University {cfallin,gnazario,kevincha,rachata,onur}@cmu.edu

[†]Tsinghua University & Carnegie Mellon University yxythu@gmail.com

"Bufferless" Hierarchical Rings

- Ausavarungnirun et al., "Design and Evaluation of Hierarchical Rings with Deflection Routing," SBAC-PAD 2014.
 - http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-withdeflection_sbacpad14.pdf
- Discusses the design and implementation of a mostlybufferless hierarchical ring

Design and Evaluation of Hierarchical Rings with Deflection Routing

```
Rachata Ausavarungnirun Chris Fallin Xiangyao Yu† Kevin Kai-Wei Chang Greg Nazario Reetuparna Das§ Gabriel H. Loh‡ Onur Mutlu
```

Carnegie Mellon University §University of Michigan †MIT ‡Advanced Micro Devices, Inc.

"Bufferless" Hierarchical Rings (II)

- Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Chang, Greg Nazario, Reetuparna Das, Gabriel Loh, and Onur Mutlu,
 "A Case for Hierarchical Rings with Deflection Routing: An Energy-Efficient On-Chip Communication Substrate"
 Parallel Computing (PARCO), to appear in 2016.
 - <u>arXiv.org version</u>, February 2016.

Achieving both High Energy Efficiency and High Performance in On-Chip Communication using Hierarchical Rings with Deflection Routing

Rachata Ausavarungnirun Chris Fallin Xiangyao Yu† Kevin Kai-Wei Chang Greg Nazario Reetuparna Das§ Gabriel H. Loh‡ Onur Mutlu Carnegie Mellon University §University of Michigan †MIT ‡AMD

Summary of Six Years of Research

Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata Ausavarungnirun, and Onur Mutlu,
 "Bufferless and Minimally-Buffered Deflection Routing"
 Invited Book Chapter in Routing Algorithms in Networks-on-Chip, pp. 241-275, Springer, 2014.

Chapter 1 Bufferless and Minimally-Buffered Deflection Routing

Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata Ausavarungnirun, Onur Mutlu

On-Chip vs. Off-Chip Tradeoffs

George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu, and Srinivasan Seshan,
 "On-Chip Networks from a Networking Perspective:

 Congestion and Scalability in Many-core Interconnects"
 Proceedings of the 2012 ACM SIGCOMM
 Conference (SIGCOMM), Helsinki, Finland, August 2012. Slides (pptx)

On-Chip Networks from a Networking Perspective: Congestion and Scalability in Many-Core Interconnects

George Nychis†, Chris Fallin†, Thomas Moscibroda§, Onur Mutlu†, Srinivasan Seshan†

† Carnegie Mellon University § Microsoft Research Asia

{gnychis,cfallin,onur,srini}@cmu.edu moscitho@microsoft.com

Slowdown Estimation in NoCs

Xiyue Xiang, Saugata Ghose, Onur Mutlu, and Nian-Feng Tzeng,
 "A Model for Application Slowdown Estimation in On-Chip Networks and Its Use for Improving System
 Fairness and Performance"
 Proceedings of the 34th IEEE International Conference on
 Computer Design (ICCD), Phoenix, AZ, USA, October 2016.
 [Slides (pptx) (pdf)]

A Model for Application Slowdown Estimation in On-Chip Networks and Its Use for Improving System Fairness and Performance

Xiyue Xiang[†] Saugata Ghose[‡] Onur Mutlu^{§‡} Nian-Feng Tzeng[†]

[†]University of Louisiana at Lafayette [‡]Carnegie Mellon University [§]ETH Zürich

Handling Multicast and Hotspot Issues

 Xiyue Xiang, Wentao Shi, Saugata Ghose, Lu Peng, Onur Mutlu, and Nian-Feng Tzeng,

"Carpool: A Bufferless On-Chip Network Supporting Adaptive Multicast and Hotspot Alleviation"

Proceedings of the International Conference on Supercomputing (ICS), Chicago, IL, USA, June 2017.

[Slides (pptx) (pdf)]

Carpool: A Bufferless On-Chip Network Supporting Adaptive Multicast and Hotspot Alleviation

Xiyue Xiang[†] Wentao Shi^{*} Saugata Ghose[‡] Lu Peng^{*} Onur Mutlu^{§‡} Nian-Feng Tzeng[†] [†]University of Louisiana at Lafayette *Louisiana State University [‡]Carnegie Mellon University [§]ETH Zürich

Predictable Performance Again: Strong Memory Service Guarantees

Remember MISE?

 Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, and Onur Mutlu,

"MISE: Providing Performance Predictability and Improving Fairness in Shared Main Memory Systems"

Proceedings of the <u>19th International Symposium on High-</u> <u>Performance Computer Architecture</u> (**HPCA**), Shenzhen, China, February 2013. <u>Slides (pptx)</u>

MISE: Providing Performance Predictability and Improving Fairness in Shared Main Memory Systems

Lavanya Subramanian Vivek Seshadri Yoongu Kim Ben Jaiyen Onur Mutlu Carnegie Mellon University

Extending Slowdown Estimation to Caches

- How do we extend the MISE model to include shared cache interference?
- Answer: Application Slowdown Model
- Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and Onur Mutlu,
 - "The Application Slowdown Model: Quantifying and Controlling the Impact of Inter-Application Interference at Shared Caches and Main Memory"

Proceedings of the <u>48th International Symposium on Microarchitecture</u> (**MICRO**), Waikiki, Hawaii, USA, December 2015.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]
[Source Code]

SAFARI

Application Slowdown Model

Quantifying and Controlling Impact of Interference at Shared Caches and Main Memory

Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, Onur Mutlu

Carnegie Mellon

Shared Cache and Memory Contention

Slowdown = Request Service Rate Alone
Request Service Rate Shared

MISE (HDC A2131)

MISE [HPCA'13]

Cache Capacity Contention

Applications evict each other's blocks from the shared cache

Estimating Cache and Memory Slowdowns

Service Rates vs. Access Rates

Request service and access rates are tightly coupled

The Application Slowdown Model

$$Slowdown = \frac{Cache\ Access\ Rate\ {}_{Alone}}{Cache\ Access\ Rate\ {}_{Shared}}$$

Real System Studies: Cache Access Rate vs. Slowdown

Challenge

How to estimate alone cache access rate?

Auxiliary Tag Store

Auxiliary tag store tracks such contention misses

Accounting for Contention Misses

Revisiting alone memory request service rate

Alone Request Service Rate of an Application =

Requests During High Priority Epochs

High Priority Cycles

Cycles serving contention misses should not count as high priority cycles

Alone Cache Access Rate Estimation

Cache Access Rate Alone of an Application =

Requests During High Priority Epochs

High Priority Cycles #Cache Contention Cycles

Cache Contention Cycles: Cycles spent serving contention misses

Cache Contention Cycles = # Contention Misses x

Average Memory Service Time

From auxiliary tag store when given high priority

Measured when given high priority

Application Slowdown Model (ASM)

$$Slowdown = \frac{Cache\ Access\ Rate\ {}_{Alone}}{Cache\ Access\ Rate\ {}_{Shared}}$$

Previous Work on Slowdown Estimation

- Previous work on slowdown estimation
 - STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO '07]
 - FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS '10]
 - Per-thread Cycle Accounting [Du Bois et al., HiPEAC '13]

• Basic Idea:

$$Slowdown = \frac{\text{Execution Time Alone}}{\text{Execution Time Shared}}$$

Count interference experienced by each request \rightarrow Difficult ASM's estimates are much more coarse grained \rightarrow Easier

Model Accuracy Results

Average error of ASM's slowdown estimates: 10%

Leveraging ASM's Slowdown Estimates

- Slowdown-aware resource allocation for high performance and fairness
- Slowdown-aware resource allocation to bound application slowdowns
- VM migration and admission control schemes [VEE '15]
- Fair billing schemes in a commodity cloud

Cache Capacity Partitioning

Goal: Partition the shared cache among applications to mitigate contention

Cache Capacity Partitioning

Previous partitioning schemes optimize for miss count Problem: Not aware of performance and slowdowns

ASM-Cache: Slowdown-aware Cache Way Partitioning

Key Requirement: Slowdown estimates for all possible way partitions

 Extend ASM to estimate slowdown for all possible cache way allocations

 Key Idea: Allocate each way to the application whose slowdown reduces the most

Memory Bandwidth Partitioning

Goal: Partition the main memory bandwidth among applications to mitigate contention

ASM-Mem: Slowdown-aware Memory Bandwidth Partitioning

 Key Idea: Allocate high priority proportional to an application's slowdown

High Priority Fraction_i =
$$\frac{Slowdown_{i}}{\sum_{j} Slowdown_{j}}$$

 Application i's requests given highest priority at the memory controller for its fraction

Coordinated Resource Allocation Schemes

- 1. Employ ASM-Cache to partition cache capacity
- 2. Drive ASM-Mem with slowdowns from ASM-Cache

Fairness and Performance Results

Significant fairness benefits across different channel counts

Summary

- Problem: Uncontrolled memory interference cause high and unpredictable application slowdowns
- Goal: Quantify and control slowdowns
- Key Contribution:
 - ASM: An accurate slowdown estimation model
 - Average error of ASM: 10%
- Key Ideas:
 - Shared cache access rate is a proxy for performance
 - Cache Access Rate _{Alone} can be estimated by minimizing memory interference and quantifying cache interference
- Applications of Our Model
 - Slowdown-aware cache and memory management to achieve high performance, fairness and performance guarantees
- Source Code Released in January 2016

More on Application Slowdown Model

 Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and Onur Mutlu,

"The Application Slowdown Model: Quantifying and Controlling the Impact of Inter-Application Interference at Shared Caches and Main Memory"

Proceedings of the <u>48th International Symposium on Microarchitecture</u> (**MICRO**), Waikiki, Hawaii, USA, December 2015.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

Source Code

The Application Slowdown Model: Quantifying and Controlling the Impact of Inter-Application Interference at Shared Caches and Main Memory

Lavanya Subramanian* Vivek Seshadri* Arnab Ghosh*†
Samira Khan*‡ Onur Mutlu*

*Carnegie Mellon University §Intel Labs †IIT Kanpur ‡University of Virginia