
Computer Architecture
Lecture 19a: Emerging Memory

Technologies II

Prof. Onur Mutlu
ETH Zürich
Fall 2019

28 November 2019

Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Challenge and Opportunity

Providing the Best of
Multiple Metrics

with
Multiple Memory Technologies

3

Hybrid Memory Systems: Issues
n Cache vs. Main Memory

n Granularity of Data Move/Manage-ment: Fine or Coarse

n Hardware vs. Software vs. HW/SW Cooperative

n When to migrate data?

n How to design a scalable and efficient large cache?

n …

4

Another Challenge

5

Designing Effective
Large (DRAM) Caches

One Problem with Large DRAM Caches
n A large DRAM cache requires a large metadata (tag +

block-based information) store
n How do we design an efficient DRAM cache?

6

DRAM PCM

CPU

(small, fast cache) (high capacity)

Mem
Ctlr

Mem
Ctlr

LOAD X

Access X

Metadata:
X à DRAM

X

Idea 1: Tags in Memory
n Store tags in the same row as data in DRAM

q Store metadata in same row as their data
q Data and metadata can be accessed together

n Benefit: No on-chip tag storage overhead
n Downsides:

q Cache hit determined only after a DRAM access
q Cache hit requires two DRAM accesses

7

Cache block 2Cache block 0 Cache block 1
DRAM row

Tag
0

Tag
1

Tag
2

Idea 2: Cache Tags in SRAM
n Recall Idea 1: Store all metadata in DRAM

q To reduce metadata storage overhead

n Idea 2: Cache in on-chip SRAM frequently-accessed
metadata
q Cache only a small amount to keep SRAM size small

8

Idea 3: Dynamic Data Transfer Granularity
n Some applications benefit from caching more data

q They have good spatial locality
n Others do not

q Large granularity wastes bandwidth and reduces cache utilization

n Idea 3: Simple dynamic caching granularity policy
q Cost-benefit analysis to determine best DRAM cache block size
q Group main memory into sets of rows
q Different sampled row sets follow different fixed caching

granularities
q The rest of main memory follows the best granularity

n Cost–benefit analysis: access latency versus number of cachings
n Performed every quantum

9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SRAM Region TIM TIMBER TIMBER-Dyn

N
or

m
al

ize
d

W
ei

gh
te

d
Sp

ee
du

p

10

TIMBER Performance

-6%

Reduced channel
contention and

improved spatial locality

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

0

0.2

0.4

0.6

0.8

1

1.2

SRAM Region TIM TIMBER TIMBER-Dyn

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

 p
er

 W
at

t
(fo

r M
em

or
y

Sy
st

em
)

11

TIMBER Energy Efficiency

Fewer migrations reduce
transmitted data and
channel contention

18%

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

On Large DRAM Cache Design

n Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and
Parthasarathy Ranganathan,
"Enabling Efficient and Scalable Hybrid Memories
Using Fine-Granularity DRAM Cache Management"
IEEE Computer Architecture Letters (CAL), February 2012.

12

http://users.ece.cmu.edu/~omutlu/pub/timber-fine-grained-dram-cache_ieee-cal12.pdf
http://www.cs.virginia.edu/~tcca/

DRAM Caches: Many Recent Options

13

Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.

Banshee [MICRO 2017]

n Tracks presence in cache using TLB and Page Table
q No tag store needed for DRAM cache
q Enabled by a new lightweight lazy TLB coherence protocol

n New bandwidth-aware frequency-based replacement policy

14

More on Banshee
n Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur

Mutlu, and Srinivas Devadas,
"Banshee: Bandwidth-Efficient DRAM Caching via
Software/Hardware Cooperation"
Proceedings of the 50th International Symposium on
Microarchitecture (MICRO), Boston, MA, USA, October 2017.

15

https://people.inf.ethz.ch/omutlu/pub/banshee-bandwidth-efficient-DRAM-cache_micro17.pdf
http://www.microarch.org/micro50/

Other Opportunities with Emerging Technologies

n Merging of memory and storage
q e.g., a single interface to manage all data

n New applications
q e.g., ultra-fast checkpoint and restore

n More robust system design
q e.g., reducing data loss

n Processing tightly-coupled with memory
q e.g., enabling efficient search and filtering

16

TWO-LEVEL STORAGE MODEL
CP

U
M

EM
O

RY
ST

O
RA

G
E

VOLATILE
FAST

BYTE ADDR
NONVOLATILE

SLOW
BLOCK ADDR

Ld/St

FILE
I/O

DRAM

17

TWO-LEVEL STORAGE MODEL
CP

U
M

EM
O

RY
ST

O
RA

G
E

VOLATILE
FAST

BYTE ADDR
NONVOLATILE

SLOW
BLOCK ADDR

Ld/St

FILE
I/O

DRAM

18

PCM, STT-RAM
NVM

Non-volatile memories combine
characteristics of memory and storage

Two-Level Memory/Storage Model
n The traditional two-level storage model is a bottleneck with NVM

q Volatile data in memory à a load/store interface
q Persistent data in storage à a file system interface
q Problem: Operating system (OS) and file system (FS) code to locate, translate,

buffer data become performance and energy bottlenecks with fast NVM stores

19

Two-Level Store

Processor
and caches

Main Memory Storage (SSD/HDD)

Virtual memory

Address
translation

Load/Store

Operating
system

and file system

fopen, fread, fwrite, …

Persistent (e.g., Phase-Change)
Memory

Unified Memory and Storage with NVM
n Goal: Unify memory and storage management in a single unit to

eliminate wasted work to locate, transfer, and translate data
q Improves both energy and performance
q Simplifies programming model as well

20

Unified Memory/Storage

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

PERSISTENT MEMORY

CPU
PERSISTEN

T
M

EM
O

RY

Provides an opportunity to manipulate
persistent data directly

Ld/St

NVM

21

The Persistent Memory Manager (PMM)

22

2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {

2 // data in file.dat is persistent
3 FILE myData = "file.dat";

4 myData = new int[64];
5 }

6 void updateValue(int n, int value) {

7 FILE myData = "file.dat";

8 myData[n] = value; // value is persistent
9 }

1 int main(void) {

2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");

4 myData = new int[64];
5 }

6 void updateValue(int n, int value) {

7 int *myData = PersistentObject.open("file.dat");

8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5

Load Store

DRAM Flash NVM HDD

Persistent Memory Manager
Hardware

Software
Data Layout, Persistence, Metadata, Security, ...

Hints from SW/OS/runtime

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices

Persistent objects

The Persistent Memory Manager (PMM)
n Exposes a load/store interface to access persistent data

q Applications can directly access persistent memory à no conversion,
translation, location overhead for persistent data

n Manages data placement, location, persistence, security
q To get the best of multiple forms of storage

n Manages metadata storage and retrieval
q This can lead to overheads that need to be managed

n Exposes hooks and interfaces for system software
q To enable better data placement and management decisions

n Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

23

Efficient Data Mapping among Heterogeneous Devices

n A persistent memory exposes a large, persistent address space
q But it may use many different devices to satisfy this goal
q From fast, low-capacity volatile DRAM to slow, high-capacity non-

volatile HDD or Flash
q And other NVM devices in between

n Performance and energy can benefit from good placement of
data among these devices
q Utilizing the strengths of each device and avoiding their weaknesses,

if possible
q For example, consider two important application characteristics:

locality and persistence

24

25

Efficient Data Mapping among Heterogeneous Devices

26

X

Columns in a column store that are
scanned through only infrequently

à place on Flash

Efficient Data Mapping among Heterogeneous Devices

27

X

Columns in a column store that are
scanned through only infrequently

à place on Flash

X

Frequently-updated index for a
Content Delivery Network (CDN)

à place in DRAM

Efficient Data Mapping among Heterogeneous Devices

Applications or system software can provide hints for data placement

Evaluated Systems
n HDD Baseline

q Traditional system with volatile DRAM memory and persistent HDD storage
q Overheads of operating system and file system code and buffering

n NVM Baseline (NB)
q Same as HDD Baseline, but HDD is replaced with NVM
q Still has OS/FS overheads of the two-level storage model

n Persistent Memory (PM)
q Uses only NVM (no DRAM) to ensure full-system persistence
q All data accessed using loads and stores
q Does not waste time on system calls
q Data is manipulated directly on the NVM device

28

Performance Benefits of a Single-Level Store

29

0

0.2

0.4

0.6

0.8

1.0

HDD 2-level NVM 2-level Persistent Memory

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

User CPU User Memory Syscall CPU Syscall I/O

0.044
0.009

~5X

~24X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

Energy Benefits of a Single-Level Store

30

0

0.2

0.4

0.6

0.8

1.0

HDD 2-level NVM 2-level Persistent Memory

Fr
ac

tio
n

of
 T

ot
al

En
er

gy

User CPU Syscall CPU DRAM NVM HDD

0.065
0.013

~5X

~16X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

On Persistent Memory Benefits & Challenges
n Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan

Xie, and Onur Mutlu,
"A Case for Efficient Hardware-Software
Cooperative Management of Storage and Memory"
Proceedings of the 5th Workshop on Energy-Efficient
Design (WEED), Tel-Aviv, Israel, June 2013. Slides (pptx)
Slides (pdf)

31

http://users.ece.cmu.edu/~omutlu/pub/persistent-memory-management_weed13.pdf
http://research.ihost.com/weed2013/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pdf

Challenge and Opportunity

Combined
Memory & Storage

32

Challenge and Opportunity

33

A Unified Interface to
All Data

One Key Challenge in Persistent Memory

n How to ensure consistency of system/data if all
memory is persistent?

n Two extremes
q Programmer transparent: Let the system handle it
q Programmer only: Let the programmer handle it

n Many alternatives in-between…

34

CRASH CONSISTENCY PROBLEM

35

Add a node to a linked list

1. Link to next2. Link to prev

System crash can result in
inconsistent memory state

CURRENT SOLUTIONS
Explicit interfaces to manage consistency

– NV-Heaps [ASPLOS’11], BPFS [SOSP’09], Mnemosyne [ASPLOS’11]

AtomicBegin {
Insert a new node;

} AtomicEnd;

Limits adoption of NVM
Have to rewrite code with clear partition
between volatile and non-volatile data

Burden on the programmers
36

CURRENT SOLUTIONS

37

void hashtable_update(hashtable_t* ht,
void *key, void *data)

{
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) list_find(chain,

&updatePair);
pair->second = data;

}

Example Code
update a node in a persistent hash table

Explicit interfaces to manage consistency
– NV-Heaps [ASPLOS’11], BPFS [SOSP’09], Mnemosyne [ASPLOS’11]

CURRENT SOLUTIONS

38

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key,
void*data){
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) TMLIST_FIND(chain,

&updatePair);
pair->second = data;

}

CURRENT SOLUTIONS

39

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key,
void*data){
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) TMLIST_FIND(chain,

&updatePair);
pair->second = data;

}

Manual declaration of persistent components

CURRENT SOLUTIONS

40

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key,
void*data){
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) TMLIST_FIND(chain,

&updatePair);
pair->second = data;

}

Manual declaration of persistent components

Need a new implementation

CURRENT SOLUTIONS

41

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key,
void*data){
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) TMLIST_FIND(chain,

&updatePair);
pair->second = data;

}

Manual declaration of persistent components

Need a new implementation

Third party code
can be inconsistent

CURRENT SOLUTIONS

42

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key,
void*data){
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) TMLIST_FIND(chain,

&updatePair);
pair->second = data;

}

Manual declaration of persistent components

Need a new implementation

Third party code
can be inconsistent

Prohibited
Operation

Burden on the programmers

OUR APPROACH: ThyNVM

43

Goal:
Software transparent consistency in

persistent memory systems

Key Idea:
Periodically checkpoint state;

recover to previous checkpt on crash

ThyNVM: Summary

44

• Checkpoints at multiple granularities to
reduce both checkpointing latency and
metadata overhead

• Overlaps checkpointing and execution to
reduce checkpointing latency

• Adapts to DRAM and NVM characteristics

Performs within 4.9% of an idealized DRAM
with zero cost consistency

A new hardware-based
checkpointing mechanism

Running

time

Checkpointing Running Checkpointing

time

Epoch 0
Epoch 1

Epoch 2

Epoch 0 Epoch 1Running Checkpointing Running Checkpointing

Running Checkpointing

Epoch 0 Epoch 1

2. OVERLAPPING
CHECKPOINTING AND EXECUTION

More About ThyNVM

46

n Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutlu,
"ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems"
Proceedings of the 48th International Symposium on
Microarchitecture (MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_micro15.pdf
http://www.microarch.org/micro48/
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pdf
https://github.com/CMU-SAFARI/ThyNVM

Another Key Challenge in Persistent Memory

Programming Ease
to Exploit Persistence

47

Tools/Libraries to Help Programmers
n Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric

Schkufza, Onur Mutlu, and Pratap Subrahmanyam,
"NVMove: Helping Programmers Move to Byte-Based
Persistence"
Proceedings of the 4th Workshop on Interactions of NVM/Flash
with Operating Systems and Workloads (INFLOW), Savannah,
GA, USA, November 2016.
[Slides (pptx) (pdf)]

48

https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16.pdf
https://www.usenix.org/conference/osdi16
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pdf

The Future of Emerging Technologies is Bright

n Regardless of challenges
q in underlying technology and overlying problems/requirements

49

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Can enable:

- Orders of magnitude
improvements

- New applications and
computing systems

Yet, we have to

- Think across the stack

- Design enabling systems

If In Doubt, Refer to Flash Memory
n A very “doubtful” emerging technology

q for at least two decades

50https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642

Computer Architecture
Lecture 17a: Emerging Memory

Technologies II

Prof. Onur Mutlu
ETH Zürich
Fall 2019

28 November 2019

