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Hybrid Memory Systems

CPU
DRAM PCM
CtrI Ctrl

Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, "Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.
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Challenge and Opportunity

Providing the Best of
Multiple Metrics
with
Multiple Memory Technologies
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Hybrid Memory Systems: Issues

Cache vs. Main Memory

Granularity of Data Move/Manage-ment: Fine or Coarse
Hardware vs. Software vs. HW/SW Cooperative

When to migrate data?

How to design a scalable and efficient large cache?
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Another Challenge

Designing Effective
Large (DRAM) Caches
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One Problem with Large DRAM Caches

= A large DRAM cache requires a large metadata (tag +
block-based information) store

= How do we design an efficient DRAM cache?

Metadata:
X 2 DRAM

N

Access X
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Idea 1: Tags in Memory

Store tags in the same row as data in DRAM
o Store metadata in same row as their data
o Data and metadata can be accessed together

€ DRAM row >

Cache block 0 [ Cache block 1 \ Cache block 2 ng Tig ng

Benefit: No on-chip tag storage overhead
Downsides:

o Cache hit determined only after a DRAM access
a Cache hit requires two DRAM accesses
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Idea 2: Cache Tags in SRAM

Recall Idea 1: Store all metadata in DRAM
o To reduce metadata storage overhead

Idea 2: Cache in on-chip SRAM frequently-accessed
metadata

o Cache only a small amount to keep SRAM size small
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Idea 3: Dynamic Data Transfer Granularity

Some applications benefit from caching more data
o They have good spatial locality

Others do not
o Large granularity wastes bandwidth and reduces cache utilization

Idea 3: Simple dynamic caching granularity policy
o Cost-benefit analysis to determine best DRAM cache block size
o Group main memory into sets of rows

o Different sampled row sets follow different fixed caching
granularities

o The rest of main memory follows the best granularity
Cost—benefit analysis: access latency versus number of cachings
Performed every quantum

SAFARI ?



TIMBER Performance

SRAM

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and

Reduced channel
contention and
improved spatial locality

Region

TIM

TIMBER

TIMBER-Dyn

10

Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.



TIMBER Energy Efficiency
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Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
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On Large DRAM Cache Design

= Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and
Parthasarathy Ranganathan,
"Enabling Efficient and Scalable Hybrid Memories
Using Fine-Granularity DRAM Cache Management”
IEEE Computer Architecture Letters (CAL), February 2012.

Enabling Efficient and Scalable Hybrid Memories Using
Fine-Granularity DRAM Cache Management

Justin Meza* Jichuan Chang® HanBin Yoon® Onur Mutlu® Parthasarathy Ranganathant
*Carnegie Mellon University fHewlett-Packard Labs
{meza,hanbinyoon,onur}@cmu.edu {jichuan.chang,partha.ranganathan}@hp.com
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http://users.ece.cmu.edu/~omutlu/pub/timber-fine-grained-dram-cache_ieee-cal12.pdf
http://www.cs.virginia.edu/~tcca/

DRAM Caches: Many Recent Options

Table 1: Summary of Operational Characteristics of Different State-of-the-Art DRAM Cache Designs - We assume perfect way
prediction for Unison Cache. Latency is relative to the access time of the off-package DRAM (see Section 6 for baseline latencies). We use
different colors to indicate the high (dark red), medium (white), and low (light green) overhead of a characteristic.

| Scheme || DRAM CacheHit | DRAM CacheMiss || Replacement Traffic | Replacement Decision | Large Page Caching |
Unison [32] In-package traffic: 128 B In-package traffic: 96 B On every miss Hardware managed, Yes
(data + tag read and up- | (spec. data + tag read) Footprint size [31] set-associative,
date) Latency: ~2x LRU
Latency: ~1x
Alloy [50] In-package traffic: 96 B In-package traffic: 96 B On some misses Hardware managed, Yes
(data + tag read) (spec. data + tag read) Cacheline size (64 B) direct-mapped,
Latency: ~1x Latency: ~2x stochastic [20]
TDC [38] In-package traffic: 64 B In-package traffic: 0 B On every miss Hardware managed, No
Latency: ~1x Latency: ~1x Footprint size [28] fully-associative,
TLB coherence TLB coherence FIFO
HMA [44] In-package traffic: 64 B In-package traffic: 0 B Software managed, high replacement cost Yes
Latency: ~1x Latency: ~1x
Banshee In-package traffic: 64 B In-package traffic: 0 B Only for hot pages Hardware managed, Yes
(This work) Latency: ~1x Latency: ~1x Page size (4 KB) set-associative,
frequency based

Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.

SAFARI
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Banshee [MICRO 2017]

= Tracks presence in cache using TLB and Page Table
o No tag store needed for DRAM cache
o Enabled by a new lightweight lazy TLB coherence protocol

= New bandwidth-aware frequency-based replacement policy
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More on Banshee

= Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur
Mutlu, and Srinivas Devadas,

"Banshee: Bandwidth-Efficient DRAM Caching via
Software/Hardware Cooperation”

Proceedings of the 50th International Symposium on
Microarchitecture (MICRO), Boston, MA, USA, October 2017.

Banshee: Bandwidth-Efficient DRAM Caching
via Software/Hardware Cooperation

Xiangyao Yu! Christopher J. Hughes? Nadathur Satish® Onur Mutlu® Srinivas Devadas!
g P g
IMIT 2Intel Labs 3ETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/banshee-bandwidth-efficient-DRAM-cache_micro17.pdf
http://www.microarch.org/micro50/

Other Opportunities with Emerging Technologies

Merging of memory and storage

o e.g., a single interface to manage all data

New applications
o e.g., ultra-fast checkpoint and restore

More robust system design
o e.g., reducing data loss

Processing tightly-coupled with memory
o e.g., enabling efficient search and filtering

SAFARI 16



TWO-LEVEL STORAGE MODEL

VOLATILE
FAST
BYTE ADDR

NONVOLATILE
SLOW
BLOCK ADDR

STORAGE § MEMORY gm CPU
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TWO-LEVEL STORAGE MODEL
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Non-volatile memories combine

characteristics of memory and storage




Two-Level Memory/Storage Model

= The traditional two-level storage model is a bottleneck with NVM
o Volatile data in memory - a load/store interface
o Persistent data in storage - a file system interface

o Problem: Operating system (OS) and file system (FS) code to locate, translate,
buffer data become performance and energy bottlenecks with fast NVM stores

__ Two-Level Store
Load/Store __ fopgh, fread, fwrite, ...

Processor
and caches

........
........
........

Persistent (€0 Phase-Change)
Main Memory Storegeot$SD/HDD)
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Unified Memory and Storage with NVM

= Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data
o Improves both energy and performance
o Simplifies programming model as well

__ Unified Memory/Storage

Persistent Memory
Manager !
Processor
and caches

Load/Store Feedback

Ll
Persistent (e.g., Phase-Change) Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 20
SAFARI Storage and Memory,” WEED 2013.



PERSISTENT MEMORY
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Provides an opportunity to manipulate
persistent data directly
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The Persistent Memory Manager (PMM)

int main (void) {
// data in file.dat 1s persistent
FILE myData = "file.dat";
myData = new int[64];

Persistent objects

}

void updateValue (int n, int value) {
FILE myData = "file.dat";
myData [n] = value; // value is persistent

O 0 1O\ N Wi -

Store l Hints from SW/OS/runtime

Software Persistent Memory Manager
Hardware Data Layout, Persistence, Metadata, Security, ...

I

| DRaM | Fiash | Nvm |[ HDD ]

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices




The Persistent Memory Manager (PMM)

= Exposes a load/store interface to access persistent data

o Applications can directly access persistent memory - no conversion,
translation, location overhead for persistent data

= Manages data placement, location, persistence, security
o To get the best of multiple forms of storage

= Manages metadata storage and retrieval
o This can lead to overheads that need to be managed

= Exposes hooks and interfaces for system software
o To enable better data placement and management decisions

= Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.
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Etticient Data Mapping among Heterogeneous Devices

A persistent memory exposes a large, persistent address space
o But it may use many different devices to satisfy this goal

o From fast, low-capacity volatile DRAM to slow, high-capacity non-
volatile HDD or Flash

o And other NVM devices in between

Performance and energy can benefit from good placement of

data among these devices

o Utilizing the strengths of each device and avoiding their weaknesses,
if possible

o For example, consider two important application characteristics:
locality and persistence

24



Etticient Data Mapping among Heterogeneous Devices

A
Less Locality

More Locality
Ve >
Temporary Persistent
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Etticient Data Mapping among Heterogeneous Devices

Columns in a column store that are
scanned through only infrequently

A - place on Flash
Less Locality X

More Locality
Ve >
Temporary Persistent
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Etticient Data Mapping among Heterogeneous Devices

Columns in a column store that are
scanned through only infrequently

A - place on Flash
Less Locality X

Frequently-updated index for a
Content Delivery Network (CDN)
- place in DRAM

More Locality X
Ve >
Temporary Persistent

Applications or system software can provide hints for data placement

27




Evaluated Systems

= HDD Baseline

o Traditional system with volatile DRAM memory and persistent HDD storage

o Overheads of operating system and file system code and buffering

= NVM Baseline (NB)

Q

Q

Same as HDD Baseline, but HDD is replaced with NVM
Still has OS/FS overheads of the two-level storage model

= Persistent Memory (PM)

Q

Q

Q

Uses only NVM (no DRAM) to ensure full-system persistence
All data accessed using loads and stores

Does not waste time on system calls

Data is manipulated directly on the NVM device

28



Performance Benefits of a Single-l.evel Store

M User CPU [ User Memory B Syscall CPU [ Syscall I/O
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Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 29
SAFARI Storage and Memory,” WEED 2013.



Energy Benefits of a Single-Level Store
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Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
SAFARI Storage and Memory,” WEED 2013.
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On Persistent Memory Benefits & Challenges

= Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan
Xie, and Onur Mutluy,
"A Case for Efficient Hardware-Software
Cooperative Management of Storage and Memory"
Proceedings of the 5th Workshop on Enerqgy-Efficient

Design (WEED), Tel-Aviv, Israel, June 2013. Slides (pptx)
Slides (pdf)

A Case for Efficient Hardware/Software Cooperative Management of Storage and Memory

Justin Meza*  Yixin Luo* Samira Khan** Jishen Zhao' Yuan Xie'® Onur Mutlu*
*Carnegie Mellon University ~ 'Pennsylvania State University ~ *Intel Labs  SAMD Research
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http://users.ece.cmu.edu/~omutlu/pub/persistent-memory-management_weed13.pdf
http://research.ihost.com/weed2013/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pdf

Challenge and Opportunity

Combined
Memory & Storage
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Challenge and Opportunity

A Unified Interface to
All Data

SAFARI



One Key Challenge in Persistent Memory

How to ensure consistency of system/data if all
memory is persistent?

Two extremes
o Programmer transparent: Let the system handle it
o Programmer only: Let the programmer handle it

Many alternatives in-between...

SAFARI 34



CRASH CONSISTENCY PROBLEM

Add a node to a linked list

2. Link to pre# 1. Link to next

System crash can result in

inconsistent memory state



CURRENT SOLUTIONS

Explicit interfaces to manage consistency
— NV-Hea PS (asposag, BPFS [SOSP’09], Mnemosyne [ASPLOS'11]

AtomicBegin {
Insert a new node;

} AtomicEnd;

Limits adoption of NVM

Have to rewrite code with clear partition
between volatile and non-volatile data

Burden on the programmers

36



CURRENT SOLUTIONS

Explicit interfaces to manage consistency
— NV-Hea PS (asposag, BPFS [SOSP’09], Mnemosyne [ASPLOS'11]

. =T T TS
Example Code

update a node in a persistent hash table

 eee——————————————————————————————————

vold hashtable update (hashtable t* ht,
~void *key, void *data)

{

list t* chain = get chain(ht, key);
palir t* pair; -
palr t updatePalr,

updaEePalr first = key;
palr = (palr t¥*) llSt find(chain,

&updatePair) ;
palr—->second = data;



CURRENT SOLUTIONS

volid TMhashtable update (TMARCGDECL
hashtable t* ht, void *key,

void*data) {
list t* chain = get chain(ht, key);
palir t* pair; -
palr t updatePair;
updatePair.first = key;
palr = (pair t*) TMLIST FIND (chain,
N supdatePair) ;

palr—->second = data;



CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL

39



CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL
get chain (ht, key)

Need a new implementation

40



CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL
get chain (ht, key)

Need a new implementation

TMLIST FIND

Third party code
can be inconsistent

41



CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL
get chain (ht, key)

Need a new implementation

TMLIST FIND

Prohibited Third party code
Operation can be inconsistent

Burden on the programmers




OUR APPROACH: ThyNVM

Goal:
Software transparent consistency in
persistent memory systems

Key ldea:
Periodically checkpoint state;
recover to previous checkpt on crash

43



ThyNVM: Summary

A new hardware-based

checkpointing mechanism

 Checkpoints at multiple granularities to
reduce both checkpointing latency and
metadata overhead

* Overlaps checkpointing and execution to
reduce checkpointing latency

 Adapts to DRAM and NVM characteristics
Performs within 4.9% of an idealized DRAM

with zero cost consistency



2. OVERLAPPING
CHECKPOINTING AND EXECUTION

time

— —
Epoch 0 Epoch 1 ‘

Epoch O
Epoch 1
Epoch 2




More About ThyNVM

= Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutlu,
"ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems"”
Proceedings of the 48th International Symposium on
Microarchitecture (MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems

Jinglei Ren*™ Jishen Zhao* Samira Khan™ Jongmoo Choi*" Yongwei Wu* Onur Mutlu”

TCarnegie Mellon University *Tsinghua University
*University of California, Santa Cruz 'University of Virginia Dankook University
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https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_micro15.pdf
http://www.microarch.org/micro48/
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pdf
https://github.com/CMU-SAFARI/ThyNVM

Another Key Challenge 1n Persistent Memory

Programming Ease
to Exploit Persistence

SAFARI



Tools/Libraries to Help Programmers

= Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric
Schkufza, Onur Mutlu, and Pratap Subrahmanyam,
"NVMove: Helping Programmers Move to Byte-Based
Persistence”
Proceedings of the 4th Workshop on Interactions of NVIM/Flash
with Operating Systems and Workloads (INFLOW), Savannah,
GA, USA, November 2016.

[Slides (pptx) (pdf)]

NVMOVE: Helping Programmers Move to Byte-Based Persistence

Himanshu Chauhan * Irina Calciu Vijay Chidambaram
UT Austin VMware Research Group UT Austin
Eric Schkufza Onur Mutlu Pratap Subrahmanyam
VMware Research Group ETH Ziirich VMware
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https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16.pdf
https://www.usenix.org/conference/osdi16
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pdf

The Future of Emerging Technologies is Bright

= Regardless of challenges
a in underlying technology and overlying problems/requirements

Problem
Can enable: Yet, we have to
- Orders of magnitude Program/Language - Think across the stack
improvements System Software

SW/HW Interface - Design enabling systems

- New applications and
computing systems

SAFARI +



It In Doubt, Refer to Flash Memory

= A very “doubtful” emerging technology
o for at least two decades

% FAPER Proceedings of the IEFE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

By Yu Cai, Saucata GHosg, EricH F. HaratscH, Yixin Luo, anp ONUR MuTLU

ABSTRACT | wane flash memory is ubiguitous in everyday life KEYWORDS | Data storage systems:; error recovery; fault
today because its capacity has continuously increased and tolerance; flash memory; reliability; solid-state drives

SAFARI https:/ /arxiv.org/pdf/1706.08642
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https://arxiv.org/pdf/1706.08642
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