Computer Architecture

Lecture 19a: Emerging Memory
Technologies 11

Prof. Onur Mutlu
ETH Zurich
Fall 2019
28 November 2019

Hybrid Memory Systems

CPU
DRAM PCM
CtrI Ctrl

Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, "Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

SAFARI

Challenge and Opportunity

Providing the Best of
Multiple Metrics
with
Multiple Memory Technologies

SAFARI

Hybrid Memory Systems: Issues

Cache vs. Main Memory

Granularity of Data Move/Manage-ment: Fine or Coarse
Hardware vs. Software vs. HW/SW Cooperative

When to migrate data?

How to design a scalable and efficient large cache?

SAFARI

Another Challenge

Designing Effective
Large (DRAM) Caches

SAFARI

One Problem with Large DRAM Caches

= A large DRAM cache requires a large metadata (tag +
block-based information) store

= How do we design an efficient DRAM cache?

Metadata:
X 2 DRAM

N

Access X

SAFARI

Idea 1: Tags in Memory

Store tags in the same row as data in DRAM
o Store metadata in same row as their data
o Data and metadata can be accessed together

€ DRAM row >

Cache block 0 [Cache block 1 \ Cache block 2 ng Tig ng

Benefit: No on-chip tag storage overhead
Downsides:

o Cache hit determined only after a DRAM access
a Cache hit requires two DRAM accesses

SAFARI

Idea 2: Cache Tags in SRAM

Recall Idea 1: Store all metadata in DRAM
o To reduce metadata storage overhead

Idea 2: Cache in on-chip SRAM frequently-accessed
metadata

o Cache only a small amount to keep SRAM size small

SAFARI

Idea 3: Dynamic Data Transfer Granularity

Some applications benefit from caching more data
o They have good spatial locality

Others do not
o Large granularity wastes bandwidth and reduces cache utilization

Idea 3: Simple dynamic caching granularity policy
o Cost-benefit analysis to determine best DRAM cache block size
o Group main memory into sets of rows

o Different sampled row sets follow different fixed caching
granularities

o The rest of main memory follows the best granularity
Cost—benefit analysis: access latency versus number of cachings
Performed every quantum

SAFARI ?

TIMBER Performance

SRAM

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and

Reduced channel
contention and
improved spatial locality

Region

TIM

TIMBER

TIMBER-Dyn

10

Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

TIMBER Energy Efficiency

1.2 18%

o
00

Fewer migrations reduce
transmitted data and
channel contention

o
>

Normalized Performance per Watt
(for Memory System)
o o
N o))

SRAM Region TIM TIMBER TIMBER-Dyn

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

1

On Large DRAM Cache Design

= Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and
Parthasarathy Ranganathan,
"Enabling Efficient and Scalable Hybrid Memories
Using Fine-Granularity DRAM Cache Management”
IEEE Computer Architecture Letters (CAL), February 2012.

Enabling Efficient and Scalable Hybrid Memories Using
Fine-Granularity DRAM Cache Management

Justin Meza* Jichuan Chang® HanBin Yoon® Onur Mutlu® Parthasarathy Ranganathant
*Carnegie Mellon University fHewlett-Packard Labs
{meza,hanbinyoon,onur}@cmu.edu {jichuan.chang,partha.ranganathan}@hp.com

SAFARI 12

http://users.ece.cmu.edu/~omutlu/pub/timber-fine-grained-dram-cache_ieee-cal12.pdf
http://www.cs.virginia.edu/~tcca/

DRAM Caches: Many Recent Options

Table 1: Summary of Operational Characteristics of Different State-of-the-Art DRAM Cache Designs - We assume perfect way
prediction for Unison Cache. Latency is relative to the access time of the off-package DRAM (see Section 6 for baseline latencies). We use
different colors to indicate the high (dark red), medium (white), and low (light green) overhead of a characteristic.

| Scheme || DRAM CacheHit | DRAM CacheMiss || Replacement Traffic | Replacement Decision | Large Page Caching |
Unison [32] In-package traffic: 128 B In-package traffic: 96 B On every miss Hardware managed, Yes
(data + tag read and up- | (spec. data + tag read) Footprint size [31] set-associative,
date) Latency: ~2x LRU
Latency: ~1x
Alloy [50] In-package traffic: 96 B In-package traffic: 96 B On some misses Hardware managed, Yes
(data + tag read) (spec. data + tag read) Cacheline size (64 B) direct-mapped,
Latency: ~1x Latency: ~2x stochastic [20]
TDC [38] In-package traffic: 64 B In-package traffic: 0 B On every miss Hardware managed, No
Latency: ~1x Latency: ~1x Footprint size [28] fully-associative,
TLB coherence TLB coherence FIFO
HMA [44] In-package traffic: 64 B In-package traffic: 0 B Software managed, high replacement cost Yes
Latency: ~1x Latency: ~1x
Banshee In-package traffic: 64 B In-package traffic: 0 B Only for hot pages Hardware managed, Yes
(This work) Latency: ~1x Latency: ~1x Page size (4 KB) set-associative,
frequency based

Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.

SAFARI

13

Banshee [MICRO 2017]

= Tracks presence in cache using TLB and Page Table
o No tag store needed for DRAM cache
o Enabled by a new lightweight lazy TLB coherence protocol

= New bandwidth-aware frequency-based replacement policy

2.0

Norm. Speedup
> o

o
o

0.0

SAFARK.

o=@ Banshee

s=A Alloy

E==m TDC

=3¢ Unison
|1 00%| 66% 50%

DRAM Cache Latency

20}

Norm. Speedup

o
&

o
o

—
&)}

—
o

| a=n Alloy

o=@ Banshee

/i

m=m TDC
=3¢ Unison

8X 14X] 2X
DRAM Cache Bandwidth 14

More on Banshee

= Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur
Mutlu, and Srinivas Devadas,

"Banshee: Bandwidth-Efficient DRAM Caching via
Software/Hardware Cooperation”

Proceedings of the 50th International Symposium on
Microarchitecture (MICRO), Boston, MA, USA, October 2017.

Banshee: Bandwidth-Efficient DRAM Caching
via Software/Hardware Cooperation

Xiangyao Yu! Christopher J. Hughes? Nadathur Satish® Onur Mutlu® Srinivas Devadas!
g P g
IMIT 2Intel Labs 3ETH Ziirich

SAFARI 15

https://people.inf.ethz.ch/omutlu/pub/banshee-bandwidth-efficient-DRAM-cache_micro17.pdf
http://www.microarch.org/micro50/

Other Opportunities with Emerging Technologies

Merging of memory and storage

o e.g., a single interface to manage all data

New applications
o e.g., ultra-fast checkpoint and restore

More robust system design
o e.g., reducing data loss

Processing tightly-coupled with memory
o e.g., enabling efficient search and filtering

SAFARI 16

TWO-LEVEL STORAGE MODEL

VOLATILE
FAST
BYTE ADDR

NONVOLATILE
SLOW
BLOCK ADDR

STORAGE § MEMORY gm CPU

17

TWO-LEVEL STORAGE MODEL

>
o
O

VOLATILE

FAST
BYTE ADDR
NONVOLATILE

SLOW
BLOCK ADDR

MEMORY

STORAGE

Non-volatile memories combine

characteristics of memory and storage

Two-Level Memory/Storage Model

= The traditional two-level storage model is a bottleneck with NVM
o Volatile data in memory - a load/store interface
o Persistent data in storage - a file system interface

o Problem: Operating system (OS) and file system (FS) code to locate, translate,
buffer data become performance and energy bottlenecks with fast NVM stores

__ Two-Level Store
Load/Store __ fopgh, fread, fwrite, ...

Processor
and caches

........
........
........

Persistent (€0 Phase-Change)
Main Memory Storegeot$SD/HDD)

SAFARI 19

Unified Memory and Storage with NVM

= Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data
o Improves both energy and performance
o Simplifies programming model as well

__ Unified Memory/Storage

Persistent Memory
Manager !
Processor
and caches

Load/Store Feedback

Ll
Persistent (e.g., Phase-Change) Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 20
SAFARI Storage and Memory,” WEED 2013.

PERSISTENT MEMORY

P ',.1!
YRS S v
nfncattmin Wthimbmbitto s o, Nk

™
s 3

wn
<&
O -
D2
< 5

Provides an opportunity to manipulate
persistent data directly

21

The Persistent Memory Manager (PMM)

int main (void) {
// data in file.dat 1s persistent
FILE myData = "file.dat";
myData = new int[64];

Persistent objects

}

void updateValue (int n, int value) {
FILE myData = "file.dat";
myData [n] = value; // value is persistent

O 0 1O\ N Wi -

Store l Hints from SW/OS/runtime

Software Persistent Memory Manager
Hardware Data Layout, Persistence, Metadata, Security, ...

I

| DRaM | Fiash | Nvm |[HDD]

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices

The Persistent Memory Manager (PMM)

= Exposes a load/store interface to access persistent data

o Applications can directly access persistent memory - no conversion,
translation, location overhead for persistent data

= Manages data placement, location, persistence, security
o To get the best of multiple forms of storage

= Manages metadata storage and retrieval
o This can lead to overheads that need to be managed

= Exposes hooks and interfaces for system software
o To enable better data placement and management decisions

= Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

23

Etticient Data Mapping among Heterogeneous Devices

A persistent memory exposes a large, persistent address space
o But it may use many different devices to satisfy this goal

o From fast, low-capacity volatile DRAM to slow, high-capacity non-
volatile HDD or Flash

o And other NVM devices in between

Performance and energy can benefit from good placement of

data among these devices

o Utilizing the strengths of each device and avoiding their weaknesses,
if possible

o For example, consider two important application characteristics:
locality and persistence

24

Etticient Data Mapping among Heterogeneous Devices

A
Less Locality

More Locality
Ve >
Temporary Persistent

25

Etticient Data Mapping among Heterogeneous Devices

Columns in a column store that are
scanned through only infrequently

A - place on Flash
Less Locality X

More Locality
Ve >
Temporary Persistent

26

Etticient Data Mapping among Heterogeneous Devices

Columns in a column store that are
scanned through only infrequently

A - place on Flash
Less Locality X

Frequently-updated index for a
Content Delivery Network (CDN)
- place in DRAM

More Locality X
Ve >
Temporary Persistent

Applications or system software can provide hints for data placement

27

Evaluated Systems

= HDD Baseline

o Traditional system with volatile DRAM memory and persistent HDD storage

o Overheads of operating system and file system code and buffering

= NVM Baseline (NB)

Q

Q

Same as HDD Baseline, but HDD is replaced with NVM
Still has OS/FS overheads of the two-level storage model

= Persistent Memory (PM)

Q

Q

Q

Uses only NVM (no DRAM) to ensure full-system persistence
All data accessed using loads and stores

Does not waste time on system calls

Data is manipulated directly on the NVM device

28

Performance Benefits of a Single-l.evel Store

M User CPU [User Memory B Syscall CPU [Syscall I/O

1.0 ~24X

£ 08 \

|_

5 \

i

B 04

\

S 0.2

= ~oX
0 e

HDD 2-level NVM 2-level Persistent Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 29
SAFARI Storage and Memory,” WEED 2013.

Energy Benefits of a Single-Level Store

M User CPU [Syscall CPFU m DRAM [] NVM @ HDD

o o o
N o) N e o

Fraction of Total Energy

©
N

HDD 2-level NVM 2-level Persistent Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
SAFARI Storage and Memory,” WEED 2013.

30

On Persistent Memory Benefits & Challenges

= Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan
Xie, and Onur Mutluy,
"A Case for Efficient Hardware-Software
Cooperative Management of Storage and Memory"
Proceedings of the 5th Workshop on Enerqgy-Efficient

Design (WEED), Tel-Aviv, Israel, June 2013. Slides (pptx)
Slides (pdf)

A Case for Efficient Hardware/Software Cooperative Management of Storage and Memory

Justin Meza* Yixin Luo* Samira Khan** Jishen Zhao' Yuan Xie'® Onur Mutlu*
*Carnegie Mellon University ~ 'Pennsylvania State University ~ *Intel Labs SAMD Research

SAFARI 31

http://users.ece.cmu.edu/~omutlu/pub/persistent-memory-management_weed13.pdf
http://research.ihost.com/weed2013/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pdf

Challenge and Opportunity

Combined
Memory & Storage

SAFARI

Challenge and Opportunity

A Unified Interface to
All Data

SAFARI

One Key Challenge in Persistent Memory

How to ensure consistency of system/data if all
memory is persistent?

Two extremes
o Programmer transparent: Let the system handle it
o Programmer only: Let the programmer handle it

Many alternatives in-between...

SAFARI 34

CRASH CONSISTENCY PROBLEM

Add a node to a linked list

2. Link to pre# 1. Link to next

System crash can result in

inconsistent memory state

CURRENT SOLUTIONS

Explicit interfaces to manage consistency
— NV-Hea PS (asposag, BPFS [SOSP’09], Mnemosyne [ASPLOS'11]

AtomicBegin {
Insert a new node;

} AtomicEnd;

Limits adoption of NVM

Have to rewrite code with clear partition
between volatile and non-volatile data

Burden on the programmers

36

CURRENT SOLUTIONS

Explicit interfaces to manage consistency
— NV-Hea PS (asposag, BPFS [SOSP’09], Mnemosyne [ASPLOS'11]

. =T T TS
Example Code

update a node in a persistent hash table

 eee——————————————————————————————————

vold hashtable update (hashtable t* ht,
~void *key, void *data)

{

list t* chain = get chain(ht, key);
palir t* pair; -
palr t updatePalr,

updaEePalr first = key;
palr = (palr t¥*) llSt find(chain,

&updatePair) ;
palr—->second = data;

CURRENT SOLUTIONS

volid TMhashtable update (TMARCGDECL
hashtable t* ht, void *key,

void*data) {
list t* chain = get chain(ht, key);
palir t* pair; -
palr t updatePair;
updatePair.first = key;
palr = (pair t*) TMLIST FIND (chain,
N supdatePair) ;

palr—->second = data;

CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL

39

CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL
get chain (ht, key)

Need a new implementation

40

CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL
get chain (ht, key)

Need a new implementation

TMLIST FIND

Third party code
can be inconsistent

41

CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL
get chain (ht, key)

Need a new implementation

TMLIST FIND

Prohibited Third party code
Operation can be inconsistent

Burden on the programmers

OUR APPROACH: ThyNVM

Goal:
Software transparent consistency in
persistent memory systems

Key ldea:
Periodically checkpoint state;
recover to previous checkpt on crash

43

ThyNVM: Summary

A new hardware-based

checkpointing mechanism

 Checkpoints at multiple granularities to
reduce both checkpointing latency and
metadata overhead

* Overlaps checkpointing and execution to
reduce checkpointing latency

 Adapts to DRAM and NVM characteristics
Performs within 4.9% of an idealized DRAM

with zero cost consistency

2. OVERLAPPING
CHECKPOINTING AND EXECUTION

time

— —
Epoch 0 Epoch 1 ‘

Epoch O
Epoch 1
Epoch 2

More About ThyNVM

= Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutlu,
"ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems"”
Proceedings of the 48th International Symposium on
Microarchitecture (MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems

Jinglei Ren*™ Jishen Zhao* Samira Khan™ Jongmoo Choi*" Yongwei Wu* Onur Mutlu”

TCarnegie Mellon University *Tsinghua University
*University of California, Santa Cruz 'University of Virginia Dankook University

SAFARI 46

https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_micro15.pdf
http://www.microarch.org/micro48/
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pdf
https://github.com/CMU-SAFARI/ThyNVM

Another Key Challenge 1n Persistent Memory

Programming Ease
to Exploit Persistence

SAFARI

Tools/Libraries to Help Programmers

= Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric
Schkufza, Onur Mutlu, and Pratap Subrahmanyam,
"NVMove: Helping Programmers Move to Byte-Based
Persistence”
Proceedings of the 4th Workshop on Interactions of NVIM/Flash
with Operating Systems and Workloads (INFLOW), Savannah,
GA, USA, November 2016.

[Slides (pptx) (pdf)]

NVMOVE: Helping Programmers Move to Byte-Based Persistence

Himanshu Chauhan * Irina Calciu Vijay Chidambaram
UT Austin VMware Research Group UT Austin
Eric Schkufza Onur Mutlu Pratap Subrahmanyam
VMware Research Group ETH Ziirich VMware

SAFARI 48

https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16.pdf
https://www.usenix.org/conference/osdi16
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pdf

The Future of Emerging Technologies is Bright

= Regardless of challenges
a in underlying technology and overlying problems/requirements

Problem
Can enable: Yet, we have to
- Orders of magnitude Program/Language - Think across the stack
improvements System Software

SW/HW Interface - Design enabling systems

- New applications and
computing systems

SAFARI +

It In Doubt, Refer to Flash Memory

= A very “doubtful” emerging technology
o for at least two decades

% FAPER Proceedings of the IEFE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

By Yu Cai, Saucata GHosg, EricH F. HaratscH, Yixin Luo, anp ONUR MuTLU

ABSTRACT | wane flash memory is ubiguitous in everyday life KEYWORDS | Data storage systems:; error recovery; fault
today because its capacity has continuously increased and tolerance; flash memory; reliability; solid-state drives

SAFARI https:/ /arxiv.org/pdf/1706.08642

50

https://arxiv.org/pdf/1706.08642

Computer Architecture

Lecture 17a: Emerging Memory
Technologies 11

Prof. Onur Mutlu
ETH Zurich
Fall 2019
28 November 2019

