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Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best 
Paper Award.
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Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies



Challenge and Opportunity

Providing the Best of
Multiple Metrics

with
Multiple Memory Technologies
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Hybrid Memory Systems: Issues
n Cache vs. Main Memory

n Granularity of Data Move/Manage-ment: Fine or Coarse

n Hardware vs. Software vs. HW/SW Cooperative 

n When to migrate data?

n How to design a scalable and efficient large cache?

n …
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Another Challenge
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Designing Effective 
Large (DRAM) Caches



One Problem with Large DRAM Caches
n A large DRAM cache requires a large metadata (tag + 

block-based information) store
n How do we design an efficient DRAM cache?

6

DRAM PCM

CPU

(small, fast cache) (high capacity)

Mem
Ctlr

Mem
Ctlr

LOAD X

Access X

Metadata:
X à DRAM

X



Idea 1: Tags in Memory
n Store tags in the same row as data in DRAM

q Store metadata in same row as their data
q Data and metadata can be accessed together

n Benefit: No on-chip tag storage overhead
n Downsides: 

q Cache hit determined only after a DRAM access
q Cache hit requires two DRAM accesses
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Idea 2: Cache Tags in SRAM
n Recall Idea 1: Store all metadata in DRAM 

q To reduce metadata storage overhead

n Idea 2: Cache in on-chip SRAM frequently-accessed 
metadata
q Cache only a small amount to keep SRAM size small
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Idea 3: Dynamic Data Transfer Granularity
n Some applications benefit from caching more data

q They have good spatial locality
n Others do not

q Large granularity wastes bandwidth and reduces cache utilization

n Idea 3: Simple dynamic caching granularity policy
q Cost-benefit analysis to determine best DRAM cache block size
q Group main memory into sets of rows
q Different sampled row sets follow different fixed caching 

granularities
q The rest of main memory follows the best granularity

n Cost–benefit analysis:  access latency versus number of cachings
n Performed every quantum
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TIMBER Performance

-6%

Reduced channel 
contention and 

improved spatial locality

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and 
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
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TIMBER Energy Efficiency

Fewer migrations reduce 
transmitted data and 
channel contention

18%

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and 
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.



On Large DRAM Cache Design

n Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and 
Parthasarathy Ranganathan, 
"Enabling Efficient and Scalable Hybrid Memories 
Using Fine-Granularity DRAM Cache Management"
IEEE Computer Architecture Letters (CAL), February 2012. 
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http://users.ece.cmu.edu/~omutlu/pub/timber-fine-grained-dram-cache_ieee-cal12.pdf
http://www.cs.virginia.edu/~tcca/


DRAM Caches: Many Recent Options
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Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.



Banshee [MICRO 2017]

n Tracks presence in cache using TLB and Page Table
q No tag store needed for DRAM cache
q Enabled by a new lightweight lazy TLB coherence protocol

n New bandwidth-aware frequency-based replacement policy
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More on Banshee
n Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur 

Mutlu, and Srinivas Devadas,
"Banshee: Bandwidth-Efficient DRAM Caching via 
Software/Hardware Cooperation"
Proceedings of the 50th International Symposium on 
Microarchitecture (MICRO), Boston, MA, USA, October 2017.
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https://people.inf.ethz.ch/omutlu/pub/banshee-bandwidth-efficient-DRAM-cache_micro17.pdf
http://www.microarch.org/micro50/


Other Opportunities with Emerging Technologies

n Merging of memory and storage
q e.g., a single interface to manage all data

n New applications
q e.g., ultra-fast checkpoint and restore

n More robust system design
q e.g., reducing data loss

n Processing tightly-coupled with memory
q e.g., enabling efficient search and filtering
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PCM, STT-RAM
NVM

Non-volatile memories combine 
characteristics of memory and storage



Two-Level Memory/Storage Model
n The traditional two-level storage model is a bottleneck with NVM

q Volatile data in memory à a load/store interface
q Persistent data in storage à a file system interface
q Problem: Operating system (OS) and file system (FS) code to locate, translate, 

buffer data become performance and energy bottlenecks with fast NVM stores
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Unified Memory and Storage with NVM
n Goal: Unify memory and storage management in a single unit to 

eliminate wasted work to locate, transfer, and translate data
q Improves both energy and performance
q Simplifies programming model as well
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Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013.



PERSISTENT MEMORY
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The Persistent Memory Manager (PMM)
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2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {

2 // data in file.dat is persistent
3 FILE myData = "file.dat";

4 myData = new int[64];
5 }

6 void updateValue(int n, int value) {

7 FILE myData = "file.dat";

8 myData[n] = value; // value is persistent
9 }

1 int main(void) {

2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");

4 myData = new int[64];
5 }

6 void updateValue(int n, int value) {

7 int *myData = PersistentObject.open("file.dat");

8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.
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The Persistent Memory Manager (PMM)
n Exposes a load/store interface to access persistent data

q Applications can directly access persistent memory à no conversion, 
translation, location overhead for persistent data 

n Manages data placement, location, persistence, security
q To get the best of multiple forms of storage

n Manages metadata storage and retrieval
q This can lead to overheads that need to be managed

n Exposes hooks and interfaces for system software
q To enable better data placement and management decisions

n Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013.
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Efficient Data Mapping among Heterogeneous Devices

n A persistent memory exposes a large, persistent address space
q But it may use many different devices to satisfy this goal
q From fast, low-capacity volatile DRAM to slow, high-capacity non-

volatile HDD or Flash
q And other NVM devices in between

n Performance and energy can benefit from good placement of 
data among these devices
q Utilizing the strengths of each device and avoiding their weaknesses, 

if possible
q For example, consider two important application characteristics:  

locality and persistence
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Efficient Data Mapping among Heterogeneous Devices
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Efficient Data Mapping among Heterogeneous Devices
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X

Columns in a column store that are
scanned through only infrequently

à place on Flash

X

Frequently-updated index for a 
Content Delivery Network (CDN) 

à place in DRAM

Efficient Data Mapping among Heterogeneous Devices

Applications or system software can provide hints for data placement



Evaluated Systems
n HDD Baseline 

q Traditional system with volatile DRAM memory and persistent HDD storage
q Overheads of operating system and file system code and buffering

n NVM Baseline (NB)
q Same as HDD Baseline, but HDD is replaced with NVM
q Still has OS/FS overheads of the two-level storage model

n Persistent Memory (PM)
q Uses only NVM (no DRAM) to ensure full-system persistence
q All data accessed using loads and stores
q Does not waste time on system calls
q Data is manipulated directly on the NVM device
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Performance Benefits of a Single-Level Store
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Energy Benefits of a Single-Level Store
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On Persistent Memory Benefits & Challenges 
n Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan 

Xie, and Onur Mutlu,
"A Case for Efficient Hardware-Software 
Cooperative Management of Storage and Memory"
Proceedings of the 5th Workshop on Energy-Efficient 
Design (WEED), Tel-Aviv, Israel, June 2013. Slides (pptx)
Slides (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/persistent-memory-management_weed13.pdf
http://research.ihost.com/weed2013/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pdf


Challenge and Opportunity

Combined 
Memory & Storage
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Challenge and Opportunity
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A Unified Interface to 
All Data



One Key Challenge in Persistent Memory

n How to ensure consistency of system/data if all 
memory is persistent? 

n Two extremes
q Programmer transparent: Let the system handle it
q Programmer only: Let the programmer handle it 

n Many alternatives in-between…
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CRASH CONSISTENCY PROBLEM
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Add a node to a linked list

1. Link to next2. Link to prev

System crash can result in 
inconsistent memory state



CURRENT SOLUTIONS
Explicit interfaces to manage consistency

– NV-Heaps [ASPLOS’11], BPFS [SOSP’09], Mnemosyne [ASPLOS’11]

AtomicBegin {
Insert a new node;

} AtomicEnd;

Limits adoption of NVM
Have to rewrite code with clear partition 
between volatile and non-volatile data

Burden on the programmers
36



CURRENT SOLUTIONS
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void hashtable_update(hashtable_t* ht,
void *key, void *data)

{
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) list_find(chain, 

&updatePair);
pair->second = data;

}

Example Code
update a node in a persistent hash table 

Explicit interfaces to manage consistency
– NV-Heaps [ASPLOS’11], BPFS [SOSP’09], Mnemosyne [ASPLOS’11]



CURRENT SOLUTIONS
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void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key, 
void*data){
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) TMLIST_FIND(chain, 

&updatePair);
pair->second = data;

}



CURRENT SOLUTIONS
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void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key, 
void*data){
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) TMLIST_FIND(chain, 

&updatePair);
pair->second = data;

}

Manual declaration of persistent components



CURRENT SOLUTIONS

40

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key, 
void*data){
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) TMLIST_FIND(chain, 

&updatePair);
pair->second = data;

}

Manual declaration of persistent components

Need a new implementation



CURRENT SOLUTIONS
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void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key, 
void*data){
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) TMLIST_FIND(chain, 

&updatePair);
pair->second = data;

}

Manual declaration of persistent components

Need a new implementation

Third party code 
can be inconsistent



CURRENT SOLUTIONS
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void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key, 
void*data){
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) TMLIST_FIND(chain, 

&updatePair);
pair->second = data;

}

Manual declaration of persistent components

Need a new implementation

Third party code 
can be inconsistent

Prohibited
Operation

Burden on the programmers



OUR APPROACH: ThyNVM
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Goal: 
Software transparent consistency in 

persistent memory systems

Key Idea: 
Periodically checkpoint state; 

recover to previous checkpt on crash



ThyNVM: Summary
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• Checkpoints at multiple granularities to 
reduce both checkpointing latency and 
metadata overhead

• Overlaps checkpointing and execution to 
reduce checkpointing latency

• Adapts to DRAM and NVM characteristics

Performs within 4.9% of an idealized DRAM 
with zero cost consistency

A new hardware-based 
checkpointing mechanism
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2. OVERLAPPING 
CHECKPOINTING AND EXECUTION



More About ThyNVM
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n Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu, 
and Onur Mutlu,
"ThyNVM: Enabling Software-Transparent Crash Consistency 
in Persistent Memory Systems"
Proceedings of the 48th International Symposium on 
Microarchitecture (MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 
(pptx) (pdf)]
[Source Code]

https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_micro15.pdf
http://www.microarch.org/micro48/
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pdf
https://github.com/CMU-SAFARI/ThyNVM


Another Key Challenge in Persistent Memory

Programming Ease
to Exploit Persistence
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Tools/Libraries to Help Programmers
n Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric 

Schkufza, Onur Mutlu, and Pratap Subrahmanyam,
"NVMove: Helping Programmers Move to Byte-Based 
Persistence"
Proceedings of the 4th Workshop on Interactions of NVM/Flash 
with Operating Systems and Workloads (INFLOW), Savannah, 
GA, USA, November 2016.
[Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16.pdf
https://www.usenix.org/conference/osdi16
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pdf


The Future of Emerging Technologies is Bright

n Regardless of challenges 
q in underlying technology and overlying problems/requirements 
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Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Can enable:

- Orders of magnitude 
improvements

- New applications and 
computing systems

Yet, we have to

- Think across the stack

- Design enabling systems



If In Doubt, Refer to Flash Memory
n A very “doubtful” emerging technology 

q for at least two decades

50https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642
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