Computer Architecture
Lecture 21a: Multiprocessing Basics

Prof. Onur Mutlu
ETH Zurich
Fall 2019
5 December 2019

Today and Next Week

= Multiprocessors
= Memory Consistency

= Cache Coherence

Readings: Multiprocessing

Required
o Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” AFIPS 1967.

Recommended

o Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966

a Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

o Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.

Memory Consistency

= Required

o Lamport, "How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs,” IEEE Transactions on Computers,
1979

Readings: Cache Coherence

Required

o Papamarcos and Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” ISCA 1984.

Recommended:
o Culler and Singh, Parallel Computer Architecture
Chapter 5.1 (pp 269 — 283), Chapter 5.3 (pp 291 — 305)

o P&H, Computer Organization and Design
Chapter 5.8 (pp 534 — 538 in 4t and 4t revised eds.)

Multiprocessors and
Issues 1n Multiprocessing

Remember: Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements
o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor

Why Parallel Computers?

Parallelism: Doing multiple things at a time
Things: instructions, operations, tasks

Main (or Original) Goal

a Improve performance (Execution time or task throughput)
Execution time of a program governed by Amdahl’ s Law

Other Goals

a Reduce power consumption
(4N units at freq F/4) consume less power than (N units at freq F)
Why?

a Improve cost efficiency and scalability, reduce complexity
Harder to design a single unit that performs as well as N simpler units

o Improve dependability: Redundant execution in space

Types of Parallelism and How to Exploit Them

Instruction Level Parallelism

o Different instructions within a stream can be executed in parallel
o Pipelining, out-of-order execution, speculative execution, VLIW
o Dataflow

Data Parallelism

o Different pieces of data can be operated on in parallel
o SIMD: Vector processing, array processing

o Systolic arrays, streaming processors

Task Level Parallelism

o Different “tasks/threads” can be executed in parallel
o Multithreading

o Multiprocessing (multi-core)

Task-Level Parallelism: Creating Tasks

Partition a single problem into multiple related tasks
(threads)
o Explicitly: Parallel programming

Easy when tasks are natural in the problem
0 Web/database queries

Difficult when natural task boundaries are unclear

o Transparently/implicitly: Thread level speculation
Partition a single thread speculatively

Run many independent tasks (processes) together
o Easy when there are many processes
Batch simulations, different users, cloud computing workloads

o Does not improve the performance of a single task
10

Multiprocessing Fundamentals

11

Multiprocessor Types

Loosely coupled multiprocessors
a No shared global memory address space
a Multicomputer network

Network-based multiprocessors

o Usually programmed via message passing
Explicit calls (send, receive) for communication

Tightly coupled multiprocessors

o Shared global memory address space

o Traditional multiprocessing: symmetric multiprocessing (SMP)
Existing multi-core processors, multithreaded processors

o Programming model similar to uniprocessors (i.e., multitasking
uniprocessor) except

Operations on shared data require synchronization
12

Main Design Issues in Tightly-Coupled MP

Shared memory synchronization
o How to handle locks, atomic operations

Cache coherence

o How to ensure correct operation in the presence of private
caches

Memory consistency: Ordering of memory operations
o What should the programmer expect the hardware to provide?

Shared resource management

Communication: Interconnects
13

Main Programming Issues in Tightly-Coupled MP

Load imbalance
o How to partition a single task into multiple tasks

Synchronization
o How to synchronize (efficiently) between tasks
o How to communicate between tasks

o Locks, barriers, pipeline stages, condition variables,
semaphores, atomic operations, ...

Ensuring correct operation while optimizing for performance

14

Aside: Hardware-based Multithreading

Coarse grained
o Quantum based
o Event based (switch-on-event multithreading), e.g., switch on L3 miss

Fine grained
o Cycle by cycle
a Thornton, “CDC 6600: Design of a Computer,” 1970.

o Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP
1978.

Simultaneous

o Can dispatch instructions from multiple threads at the same time
o Good for improving execution unit utilization

15

Limits of Parallel Speedup

Parallel Speedup Example

asx* + asx3 + a,x2 + a;x + ag
Assume given inputs: x and each a

Assume each operation 1 cycle, no communication cost,
each op can be executed in a different processor

How fast is this with a single processor?
o Assume no pipelining or concurrent execution of instructions

How fast is this with 3 processors?

17

R= QA)(" + aoxs' TR el A S e ol

Swrgle prvesse 44— om-uo-rms (da#?}lﬁ?qoh}

18

Three proaessers

.- ~
4
pe =
Qﬁ\ P
Oy Gy >

-

T (emcc.dme whin 3 proe-)

19

Speedup with 3 Processors

Specdvp wih Ipress s = A1 - 2-9__'

Jz_«.)
Ty

ls YHS a fo comporicen?

20

Revisiting the Single-Processor Algorithm

Rewsitr Tt

[Rete— Scn&,\b—r_)ro cesSS o alsy%m 3

28

|

B B R N g™ e G5 0 i

K :<<(a(,)(+ 03))(+ OL)X + 0.>X ¥+ Qo

(!"‘Porncf"s mul"hc,d)

Horner, “A new method of solving numerical equations of all orders, by continuous
approximation,” Philosophical Transactions of the Royal Society, 1819.

21

Superlinear Speedup

Can speedup be greater than P with P processing
elements?

Parallel

Speedup
4
Unfair comparisons _
Compare best parallel | Superlinear
algorithm to wimpy serial 4 Typical

Success

algorithm = unfair

Cache/memory effects
More processors -

more cache or memory - —r—1T—1—1r—1—1—1% #Processors
fewer misses in cache/mem

23

Utilization, Redundancy, Efficiency

Traditional metrics
o Assume all P processors are tied up for parallel computation

Utilization: How much processing capability is used
o U = (# Operations in parallel version) / (processors x Time)

Redundancy: how much extra work is done with parallel
processing

o R = (# of operations in parallel version) / (# operations in best
single processor algorithm version)

Efficiency

o E = (Time with 1 processor) / (processors x Time with P processors)

o E=U/R
24

Utilization of a Multiprocessor

MulHvpreassc— medrdC s
w‘a‘mh : Paww mudh porewssmg Cogpoblifhy we use-
6—‘ -P -2
x| x| x - |
: TP XTI AT X = 10 operhans (i "m{r‘%cm)
ek D6 LK e —30- - et~
p . '

| 19
U= _Orewm prme. |
P x Tp

25

Redmolrna.,-_ . HTMJ i exran wr'k, due do m./l-}mas.smb

R— = OPs w A p.prvc.be-*‘ i 10

bes: ’

OP& wirh, 1 prec.
R is alwoys = 1

EFHO{W Han mvon nesource e uSe couvered v how

reOh BSVTC Wt Con e Gty Wi

e Tbes\- [(fymsve 1 gafo- T teevmirs)
Thcs\— O"ylnsvr’ PP’““&"tPMm)

- T E -y - | -
1S 'E) -

Amdahl’s L.aw and
Caveats of Parallelism

Caveats of Parallelism (I)

Specdwp
P“‘“ ' Mrﬁf‘/‘ a— lrneor spedvp
5ol
s A 4——"”""““]
1 -
‘ P of pruesses)

Why +re cecldgQ (dommnfhong rehms)

o=l (1=t) T4
' o

PR R 5
— N T poralelczeole oo

purallelzaole por-)frmotr
of The Smge-orocesccs
Pragfznq :

Amdahl’s Law

S,Oeeduf? — .ZJ’ — 4 —_
b ol
P prec. Tf’ 73—- +— (4"0()
S pecdup = 1
s 5 itacd 1 @\-} buereck [perdled

Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

29

Amdahl’s Law Implication 1

ol =. 9%
R |
o= .q

A'mda h's

L_onn
i Nugivated

Addmg moe pnd more
processss gues less@less

bowe At if o< L

30

Amdahl’s Law Implication 2

Tre bercfA (s,aedwp)
IS5 sreoll unl gLl

31

Caveats of Parallelism (1)

Amdahl’ s Law
o f: Parallelizable fraction of a program
o N: Number of processors

Speedup = »

N

1-f +

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck

Parallel portion is usually not perfectly parallel
o Synchronization overhead (e.g., updates to shared data)
o Load imbalance overhead (imperfect parallelization)

o Resource sharing overhead (contention among N processors)
32

Sequential Bottleneck

—N=10
00 ——
80 N=1000

O T .o N O NN T O N O t T cON WU O T ON O 0 F O N O
QO QT T oo N AN MM TLNINS WUOUNKNGQG®®RQO®
o O O O o O O O o O O O o O O O o O O O

f (parallel fraction)

33

Why the Sequential Bottleneck?

= Parallel machines have the
sequential bottleneck

22 ; 2 8' = Main cause: Non-parallelizable

operations on data (e.g. non-
parallelizable loops)
for(i=0;i<N;i++)
Ali] = (A[i] + A[i-1]) / 2

= There are other causes as well:

o Single thread prepares data and
spawns parallel tasks (usually
sequential)

34

Another Example of Sequential Bottleneck (I)

InitPriorityQueue(PQ); LEGEND
. A.E: Amdahl’s serial part
SpawnThreads(); @ B: Parallel Portion
ForEach Thread: C1,C2: _Criticgl_ Section_s
D: Outside critical section

N

(while (problem not solved)

Lock (X)
{ SubProblem = PQ.remove(); J @

Unlock(X);

Solve(SubProblem);

If(problem solved) break;
NewSubProblems = Partition(SubProblem);

Lock(X)
PQ.insert(NewSubProblems); @

Unlock(X)

.

PrintSolution(); @

Suleman+, “Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures,” ASPLOS 2009. 35

Another Example ot Sequential Bottleneck (II)

T1 C b2 Jessasans sussnna

- T2 Co2) D@ b1l X
T3 C D1 _x D@ C2 N0 G () I ¢
T4 C 1] X P TTEREE Cx

time

begin 0 1 2 3 4 5 6 end

Suleman+, “Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures,” ASPLOS 2009. 36

Bottlenecks in Parallel Portion

Synchronization: Operations manipulating shared data
cannot be parallelized

o Locks, mutual exclusion, barrier synchronization

o Communication: Tasks may need values from each other

- Causes thread serialization when shared data is contended

Load Imbalance: Parallel tasks may have different lengths
o Due to imperfect parallelization or microarchitectural effects
- Reduces speedup in parallel portion

Resource Contention: Parallel tasks can share hardware
resources, delaying each other
o Replicating all resources (e.g., memory) expensive
- Additional latency not present when each task runs alone
37

Bottlenecks in Parallel Portion: Another View

Threads in a multi-threaded application can be inter-
dependent

o As opposed to threads from different applications

Such threads can synchronize with each other

o Locks, barriers, pipeline stages, condition variables,
semaphores, ...

Some threads can be on the critical path of execution due
to synchronization; some threads are not

Even within a thread, some “code segments” may be on
the critical path of execution; some are not

38

Remember: Critical Sections

Enforce mutually exclusive access to shared data

Only one thread can be executing it at a time

Contended critical sections make threads wait = threads
causing serialization can be on the critical path

Each thread:

loop {
_ompute N T1¢[(N .. .
lock(A) LT
Update shared datal T2 O’ c

unlock(A) C ‘ [

}

39

Remember: Barriers

Synchronization point
Threads have to wait until all threads reach the barrier
Last thread arriving to the barrier is on the critical path

Each thread: barrier
loop1 { 1 L Idle
Compute Ce
} T2 ¢
barrier
loop2 { %

Compute

}

40

Remember: Stages of Pipelined Programs

Loop iterations are statically divided into code segments called stages
= Threads execute stages on different cores
= Thread executing the slowest stage is on the critical path

loop {

Compute1

Compute2

Compute3

}

T (R ™)
T2[(&) X (8] of e

41

Ditticulty in Parallel Programming

Little difficulty if parallelism is natural

o “Embarrassingly parallel” applications
o Multimedia, physical simulation, graphics
o Large web servers, databases?

Difficulty is in
o Getting parallel programs to work correctly
o Optimizing performance in the presence of bottlenecks

Much of parallel computer architecture is about

o Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

o Making programmer’s job easier in writing correct and high-

performance parallel programs
42

We Have Already Seen

Examples

In Previous Two lLectures

= Heterogeneous Multi-Core Systems
o https://www.youtube.com/watch?v=UC ROevjluM

= Bottleneck Acceleration
o https://www.youtube.com/watch?v=-4eNBfz1Egk

44

https://www.youtube.com/watch?v=UC_ROevjIuM
https://www.youtube.com/watch?v=-4eNBfz1Eqk

More on Accelerated Critical Sections

= M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt,
"Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures”
Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 253-264, Washington, DC, March
2009. Slides (ppt)

Accelerating Critical Section Execution
with Asymmetric Multi-Core Architectures

M. Aater Suleman Onur Mutlu Moinuddin K. Qureshi Yale N. Patt

University of Texas at Austin Carnegie Mellon University IBM Research University of Texas at Austin
suleman@hps.utexas.edu onur@cmu.edu mkquresh@us.ibm.com patt@ece.utexas.edu

45

https://people.inf.ethz.ch/omutlu/pub/acs_asplos09.pdf
http://www.cs.virginia.edu/asplos09/
https://people.inf.ethz.ch/omutlu/pub/suleman_asplos09_talk.ppt

More on Bottleneck Identification & Scheduling

= Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Bottleneck Identification and Scheduling in Multithreaded
Applications”
Proceedings of the 1/th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), London, UK, March 2012. Slides (ppt) (pdf)

Bottleneck Identification and Scheduling
in Multithreaded Applications

José€ A. Joao M. Aater Suleman Onur Mutlu Yale N. Patt
ECE Department Calxeda Inc. Computer Architecture Lab. ECE Department
The University of Texas at Austin ~ z3ter.suleman®calxeda.com Carnegie Mellon University =~ The University of Texas at Austin
joao@ece.utexas.edu onur@cmu.edu patt@ece.utexas.edu

46

https://people.inf.ethz.ch/omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
http://research.microsoft.com/en-us/um/cambridge/events/asplos_2012/
https://people.inf.ethz.ch/omutlu/pub/mutlu_asplos12_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_asplos12_talk.pdf

More on Utility-Based Acceleration

= Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Utility-Based Acceleration of Multithreaded Applications
on Asymmetric CMPs"
Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt)
Slides (pdf)

Utility-Based Acceleration of Multithreaded Applications
on Asymmetric CMPs

José A. Joao ! M. Aater Suleman #* Onur Mutlu ¢ Yale N. Patt

I ECE Department + - § Computer Architecture Laboratory
The Uni\'&ersi_tz o_;)'(l'eﬁegsAat Austin Aﬂgﬁg?—&nsﬁgﬂg Cargegig MeAIoSAUrJ\é%rsity
fjoao @ ecs.ut qu Suleman@hps.utexas.edu ftisburgh, FA,
, pattj@ece.utexas.edu onur@cmu.edu

47

http://users.ece.cmu.edu/~omutlu/pub/utility-based-acceleration-acmp_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/joao_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/joao_isca13_talk.pdf

More on Bottleneck Identification & Scheduling

M. Aater Suleman, Onur Mutlu, Jose A. Joao, Khubaib, and Yale N. Patt,
"Data Marshaling for Multi-core Architectures"”

Proceedings of the 3/th International Symposium on Computer
Architecture (ISCA), pages 441-450, Saint-Malo, France, June

2010. Slides (ppt)

Data Marshaling for Multi-core Architectures

M. Aater Sulemant Onur Mutlu§ José A. Joaot Khubaibt Yale N. Patt;

tThe University of Texas at Austin §Carnegie Mellon University
{suleman, joao, khubaib, patt}@hps.utexas.edu onur@cmu.edu

48

https://people.inf.ethz.ch/omutlu/pub/dm_isca10.pdf
http://isca2010.inria.fr/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca10_talk.ppt

Computer Architecture
Lecture 21a: Multiprocessing Basics

Prof. Onur Mutlu
ETH Zurich
Fall 2019
5 December 2019

