
Computer Architecture
Lecture 2a: Memory Refresh

Prof. Onur Mutlu
ETH Zürich
Fall 2019

20 September 2019

Another Example
n DRAM Refresh

2

DRAM in the System

3

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S
Multi-Core
Chip

*Die photo credit: AMD Barcelona

DRAM MEMORY
CONTROLLER

A DRAM Cell

n A DRAM cell consists of a capacitor and an access transistor
n It stores data in terms of charge in the capacitor
n A DRAM chip consists of (10s of 1000s of) rows of such cells

wordline

bi
tli

ne

bi
tli

ne

bi
tli

ne

bi
tli

ne

(row enable)

DRAM Refresh
n DRAM capacitor charge leaks over time

n The memory controller needs to refresh each row periodically
to restore charge
q Activate each row every N ms
q Typical N = 64 ms

n Downsides of refresh
-- Energy consumption: Each refresh consumes energy
-- Performance degradation: DRAM rank/bank unavailable while

refreshed
-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM capacity scaling

5

First, Some Analysis
n Imagine a system with 8 ExaByte DRAM (2^63 bytes)
n Assume a row size of 8 KiloBytes (2^13 bytes)

n How many rows are there?
n How many refreshes happen in 64ms?
n What is the total power consumption of DRAM refresh?
n What is the total energy consumption of DRAM refresh

during a day?

n A good exercise…
n Brownie points from me if you do it...

6

Refresh Overhead: Performance

7

8%

46%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Refresh Overhead: Energy

8

15%

47%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

How Do We Solve the Problem?
n Observation: All DRAM rows are refreshed every 64ms.

n Critical thinking: Do we need to refresh all rows every 64ms?

n What if we knew what happened underneath (in DRAM cells)
and exposed that information to upper layers?

9

Underneath: Retention Time Profile of DRAM

10Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Aside: Why Do We Have Such a Profile?

n Answer: Manufacturing is not perfect

n Not all DRAM cells are exactly the same

n Some are more leaky than others

n This is called Manufacturing Process Variation

11

Opportunity: Taking Advantage of This Profile

n Assume we know the retention time of each row exactly

n What can we do with this information?

n Who do we expose this information to?

n How much information do we expose?
q Affects hardware/software overhead, power consumption,

verification complexity, cost

n How do we determine this profile information?
q Also, who determines it?

12

Microarchitecture
ISA (Architecture)

Program/Language
Algorithm
Problem

Logic
Devices

Runtime System
(VM, OS, MM)

Electrons

Retention Time of DRAM Rows
n Observation: Overwhelming majority of DRAM rows can be

refreshed much less often without losing data

n Can we exploit this to reduce refresh operations at low cost?

13

Only ~1000 rows in 32GB DRAM need refresh every 256 ms,
but we refresh all rows every 64ms
Key Idea of RAIDR: Refresh weak rows more frequently,

all other rows less frequently

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

RAIDR: Eliminating
Unnecessary DRAM Refreshes

14

Liu, Jaiyen, Veras, Mutlu,
RAIDR: Retention-Aware Intelligent DRAM Refresh
ISCA 2012.

http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf

1. Profiling: Identify the retention time of all DRAM rows

à can be done at design time or during operation

2. Binning: Store rows into bins by retention time

à use Bloom Filters for efficient and scalable storage

3. Refreshing: Memory controller refreshes rows in different
bins at different rates

à check the bins to determine refresh rate of a row

RAIDR: Mechanism

15

1.25KB storage in controller for 32GB DRAM memory

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

RAIDR: Results and Takeaways
n System: 32GB DRAM, 8-core; Various workloads

n RAIDR hardware cost: 1.25 kB (2 Bloom filters)
n Refresh reduction: 74.6%
n Dynamic DRAM energy reduction: 16%
n Idle DRAM power reduction: 20%
n Performance improvement: 9%

n Benefits increase as DRAM scales in density

16

Reading on RAIDR
n Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,

"RAIDR: Retention-Aware Intelligent DRAM Refresh"
Proceedings of the 39th International Symposium on Computer Architecture

(ISCA), Portland, OR, June 2012. Slides (pdf)

n One potential reading for your Homework 1 assignment

17

http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/liu_isca12_talk.pdf

If You Are Interested … Further Readings
n Onur Mutlu,

"Memory Scaling: A Systems Architecture Perspective"
Technical talk at MemCon 2013 (MEMCON), Santa Clara, CA, August 2013.
Slides (pptx) (pdf) Video

n Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris Wilkerson,
Yoongu Kim, and Onur Mutlu,

"Improving DRAM Performance by Parallelizing
Refreshes with Accesses"
Proceedings of the 20th International Symposium on High-Performance
Computer Architecture (HPCA), Orlando, FL, February 2014. Slides (pptx) (pdf)

18

http://users.ece.cmu.edu/~omutlu/pub/memory-scaling_memcon13.pdf
http://www.memcon.com
http://users.ece.cmu.edu/~omutlu/pub/mutlu_memory-scaling_memcon13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf
http://www.memcon.com/video1.aspx?vfile=2708052590001&federated_f9=61773537001&videoPlayer=999&playerID=61773537001&w=520&h=442&oheight=550
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
http://hpca20.ece.ufl.edu/
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pdf

Takeaway 1

Breaking the abstraction layers
(between components and

transformation hierarchy levels)

and knowing what is underneath

enables you to understand and
solve problems

19

Takeaway 2

Cooperation between
multiple components and layers

can enable
more effective

solutions and systems

20

Digging Deeper:
Making RAIDR Work

“Good ideas are a dime a dozen”

“Making them work is oftentimes the real contribution”

21

1. Profiling: Identify the retention time of all DRAM rows

à can be done at design time or during operation

2. Binning: Store rows into bins by retention time

à use Bloom Filters for efficient and scalable storage

3. Refreshing: Memory controller refreshes rows in different
bins at different rates

à check the bins to determine refresh rate of a row

Recall: RAIDR: Mechanism

22

1.25KB storage in controller for 32GB DRAM memory

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

1. Profiling

23

DRAM Retention Time Profiling

n Q: Is it really this easy?

n A: Ummm, not really…

24

Two Challenges to Retention Time Profiling
n Data Pattern Dependence (DPD) of retention time

n Variable Retention Time (VRT) phenomenon

25

An Example VRT Cell

26

0 2 4 6 8 10
Time (Hours)

0

1

2

3

4

5

6

7
Re

te
nt

io
n

Ti
m

e
(s

)

A cell from E 2Gb chip family

VRT: Implications on Profiling Mechanisms
n Problem 1: There does not seem to be a way of

determining if a cell exhibits VRT without actually observing
a cell exhibiting VRT
q VRT is a memoryless random process [Kim+ JJAP 2010]

n Problem 2: VRT complicates retention time profiling by
DRAM manufacturers
q Exposure to very high temperatures can induce VRT in cells that

were not previously susceptible
à can happen during soldering of DRAM chips
à manufacturer’s retention time profile may not be accurate

n One option for future work: Use ECC to continuously profile
DRAM online while aggressively reducing refresh rate
q Need to keep ECC overhead in check

27

More on DRAM Retention Analysis
n Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,

"An Experimental Study of Data Retention Behavior in Modern DRAM
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

28

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.pdf

Finding DRAM Retention Failures

n How can we reliably find the retention time of all DRAM
cells?

n Goals: so that we can
q Make DRAM reliable and secure
q Make techniques like RAIDR work

à improve performance and energy

29

n Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson,
and Onur Mutlu,
"The Efficacy of Error Mitigation Techniques for DRAM Retention
Failures: A Comparative Experimental Study"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides
(pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets]

30

Mitigation of Retention Issues [SIGMETRICS’14]

http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://www.sigmetrics.org/sigmetrics2014/
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-poster.pdf
http://www.ece.cmu.edu/~safari/tools/dram-sigmetrics2014-fulldata.html

n Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and Onur Mutlu,
"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM
Systems"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.
[Slides (pptx) (pdf)]

31

Handling Variable Retention Time [DSN’15]

https://people.inf.ethz.ch/omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://2015.dsn.org/
https://people.inf.ethz.ch/omutlu/pub/avatar-dram-refresh_dsn15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/avatar-dram-refresh_dsn15-talk.pdf

n Samira Khan, Donghyuk Lee, and Onur Mutlu,
"PARBOR: An Efficient System-Level Technique to Detect Data-
Dependent Failures in DRAM"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Toulouse, France, June 2016.
[Slides (pptx) (pdf)]

32

Handling Data-Dependent Failures [DSN’16]

https://people.inf.ethz.ch/omutlu/pub/parbor-efficient-system-level-test-for-DRAM-failures_dsn16.pdf
http://2015.dsn.org/
https://people.inf.ethz.ch/omutlu/pub/parbor-efficient-system-level-test-for-DRAM-failures_khan_dsn16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/parbor-efficient-system-level-test-for-DRAM-failures_khan_dsn16-talk.pdf

n Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R. Alameldeen, Donghyuk Lee,
and Onur Mutlu,
"Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting
Current Memory Content"
Proceedings of the 50th International Symposium on Microarchitecture (MICRO),
Boston, MA, USA, October 2017.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

33

Handling Data-Dependent Failures [MICRO’17]

https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17.pdf
http://www.microarch.org/micro50/
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-poster.pdf

Handling Both DPD and VRT [ISCA’17]

34

n Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
"The Reach Profiler (REAPER): Enabling the Mitigation of DRAM
Retention Failures via Profiling at Aggressive Conditions"
Proceedings of the 44th International Symposium on Computer
Architecture (ISCA), Toronto, Canada, June 2017.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

n First experimental analysis of (mobile) LPDDR4 chips

n Analyzes the complex tradeoff space of retention time profiling

n Idea: enable fast and robust profiling at higher refresh intervals & temperatures

https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17.pdf
http://isca17.ece.utoronto.ca/doku.php
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-lightning-talk.pdf

2. Binning
n How to efficiently and scalably store rows into retention

time bins?
n Use Hardware Bloom Filters [Bloom, CACM 1970]

35Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Bloom Filter
n [Bloom, CACM 1970]
n Probabilistic data structure that compactly represents set

membership (presence or absence of element in a set)

n Non-approximate set membership: Use 1 bit per element to
indicate absence/presence of each element from an element
space of N elements

n Approximate set membership: use a much smaller number of
bits and indicate each element’s presence/absence with a
subset of those bits
q Some elements map to the bits other elements also map to

n Operations: 1) insert, 2) test, 3) remove all elements
36Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Bloom Filter Operation Example

37Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Bloom Filter Operation Example

38

Bloom Filter Operation Example

39

Bloom Filter Operation Example

40

Bloom Filter Operation Example

41

Bloom Filters

42Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Bloom Filters: Pros and Cons
n Advantages

+ Enables storage-efficient representation of set membership
+ Insertion and testing for set membership (presence) are fast
+ No false negatives: If Bloom Filter says an element is not
present in the set, the element must not have been inserted
+ Enables tradeoffs between time & storage efficiency & false
positive rate (via sizing and hashing)

n Disadvantages
-- False positives: An element may be deemed to be present in
the set by the Bloom Filter but it may never have been inserted

Not the right data structure when you cannot tolerate false
positives

43Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Benefits of Bloom Filters as Refresh Rate Bins

n False positives: a row may be declared present in the
Bloom filter even if it was never inserted
q Not a problem: Refresh some rows more frequently than

needed

n No false negatives: rows are never refreshed less
frequently than needed (no correctness problems)

n Scalable: a Bloom filter never overflows (unlike a fixed-size
table)

n Efficient: No need to store info on a per-row basis; simple
hardware à 1.25 KB for 2 filters for 32 GB DRAM system

44

Use of Bloom Filters in Hardware

n Useful when you can tolerate false positives in set
membership tests

n See the following recent examples for clear descriptions of
how Bloom Filters are used
q Liu et al., “RAIDR: Retention-Aware Intelligent DRAM

Refresh,” ISCA 2012.
q Seshadri et al., “The Evicted-Address Filter: A Unified

Mechanism to Address Both Cache Pollution and Thrashing,”
PACT 2012.

45

3. Refreshing (RAIDR Refresh Controller)

46

3. Refreshing (RAIDR Refresh Controller)

47

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

RAIDR: Baseline Design

48

Refresh control is in DRAM in today’s auto-refresh systems
RAIDR can be implemented in either the controller or DRAM

RAIDR in Memory Controller: Option 1

49

���������	
������ �
��

��	
���������

���

������������������
��

�������
�������������������
��

��� �� �!	"�

###

Overhead of RAIDR in DRAM controller:
1.25 KB Bloom Filters, 3 counters, additional commands
issued for per-row refresh (all accounted for in evaluations)

RAIDR in DRAM Chip: Option 2

50

Overhead of RAIDR in DRAM chip:

Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip)

Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM)

RAIDR: Results and Takeaways
n System: 32GB DRAM, 8-core; SPEC, TPC-C, TPC-H workloads

n RAIDR hardware cost: 1.25 kB (2 Bloom filters)
n Refresh reduction: 74.6%
n Dynamic DRAM energy reduction: 16%
n Idle DRAM power reduction: 20%
n Performance improvement: 9%

n Benefits increase as DRAM scales in density

51

DRAM Refresh: More Questions

n What else can you do to reduce the impact of refresh?

n What else can you do if you know the retention times of
rows?

n How can you accurately measure the retention time of
DRAM rows?

n Recommended reading:
q Liu et al., “An Experimental Study of Data Retention Behavior

in Modern DRAM Devices: Implications for Retention Time
Profiling Mechanisms,” ISCA 2013.

52

Industry Is Writing Papers About It, Too

53

Call for Intelligent Memory Controllers

54

We Will Dig Deeper More
In This Course

“Good ideas are a dime a dozen”

“Making them work is oftentimes the real contribution”

55

Computer Architecture
Lecture 2a: Memory Refresh

Prof. Onur Mutlu
ETH Zürich
Fall 2019

20 September 2019

