Computer Architecture Lecture 2a: Memory Refresh Prof. Onur Mutlu ETH Zürich Fall 2019 20 September 2019 #### Another Example DRAM Refresh #### DRAM in the System Multi-Core Chip #### A DRAM Cell - A DRAM cell consists of a capacitor and an access transistor - It stores data in terms of charge in the capacitor - A DRAM chip consists of (10s of 1000s of) rows of such cells #### DRAM Refresh - DRAM capacitor charge leaks over time - The memory controller needs to refresh each row periodically to restore charge - Activate each row every N ms - \square Typical N = 64 ms - Downsides of refresh - -- Energy consumption: Each refresh consumes energy - -- Performance degradation: DRAM rank/bank unavailable while refreshed - -- QoS/predictability impact: (Long) pause times during refresh - Refresh rate limits DRAM capacity scaling #### First, Some Analysis - Imagine a system with 8 ExaByte DRAM (2^63 bytes) - Assume a row size of 8 KiloBytes (2^13 bytes) - How many rows are there? - How many refreshes happen in 64ms? - What is the total power consumption of DRAM refresh? - What is the total energy consumption of DRAM refresh during a day? - A good exercise... - Brownie points from me if you do it... #### Refresh Overhead: Performance #### Refresh Overhead: Energy #### How Do We Solve the Problem? Observation: All DRAM rows are refreshed every 64ms. Critical thinking: Do we need to refresh all rows every 64ms? What if we knew what happened underneath (in DRAM cells) and exposed that information to upper layers? #### Underneath: Retention Time Profile of DRAM 64-128ms >256ms 128-256ms #### Aside: Why Do We Have Such a Profile? Answer: Manufacturing is not perfect Not all DRAM cells are exactly the same Some are more leaky than others This is called Manufacturing Process Variation #### Opportunity: Taking Advantage of This Profile - Assume we know the retention time of each row exactly - What can we do with this information? - Who do we expose this information to? - How much information do we expose? - Affects hardware/software overhead, power verification complexity, cost - How do we determine this profile information p - Also, who determines it? **Problem** Algorithm Program/Language **Runtime System** (VIVI, US, IVIIVI) ISA (Architecture) Microarchitecture Logic Electrons #### Retention Time of DRAM Rows Observation: Overwhelming majority of DRAM rows can be refreshed much less often without losing data Key Idea of RAIDR: Refresh weak rows more frequently, all other rows less frequently ## RAIDR: Eliminating Unnecessary DRAM Refreshes Liu, Jaiyen, Veras, Mutlu, RAIDR: Retention-Aware Intelligent DRAM Refresh ISCA 2012. #### RAIDR: Mechanism 1. Profiling: Identify the retention time of all DRAM rows 64-128ms #### <u>>256mc</u> 1.25KB storage in controller for 32GB DRAM memory #### 128-256ms > check the bins to determine refresh rate of a row #### RAIDR: Results and Takeaways - System: 32GB DRAM, 8-core; Various workloads - RAIDR hardware cost: 1.25 kB (2 Bloom filters) - Refresh reduction: 74.6% - Dynamic DRAM energy reduction: 16% - Idle DRAM power reduction: 20% - Performance improvement: 9% - Benefits increase as DRAM scales in density #### Reading on RAIDR Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu, "RAIDR: Retention-Aware Intelligent DRAM Refresh" Proceedings of the 39th International Symposium on Computer Architecture (ISCA), Portland, OR, June 2012. Slides (pdf) One potential reading for your Homework 1 assignment #### RAIDR: Retention-Aware Intelligent DRAM Refresh Jamie Liu Ben Jaiyen Richard Veras Onur Mutlu Carnegie Mellon University { jamiel, bjaiyen, rveras, onur } @cmu.edu #### If You Are Interested ... Further Readings Onur Mutlu, "Memory Scaling: A Systems Architecture Perspective" Technical talk at MemCon 2013 (MEMCON), Santa Clara, CA, August 2013. Slides (pptx) (pdf) Video Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris Wilkerson, Yoongu Kim, and Onur Mutlu, "Improving DRAM Performance by Parallelizing Refreshes with Accesses" Proceedings of the <u>20th International Symposium on High-Performance</u> <u>Computer Architecture</u> (**HPCA**), Orlando, FL, February 2014. <u>Slides (pptx) (pdf)</u> #### Takeaway 1 Breaking the abstraction layers (between components and transformation hierarchy levels) and knowing what is underneath enables you to **understand** and **solve** problems Cooperation between multiple components and layers can enable more effective solutions and systems # Digging Deeper: Making RAIDR Work "Good ideas are a dime a dozen" "Making them work is oftentimes the real contribution" #### Recall: RAIDR: Mechanism - 1. Profiling: Identify the retention time of all DRAM rows - → can be done at design time or during operation - 2. Binning: Store rows into bins by retention time - → use Bloom Filters for efficient and scalable storage - 1.25KB storage in controller for 32GB DRAM memory - 3. Refreshing: Memory controller refreshes rows in different bins at different rates - > check the bins to determine refresh rate of a row #### 1. Profiling #### To profile a row: - 1. Write data to the row - Prevent it from being refreshed - 3. Measure time before data corruption | | Row 1 | Row 2 | Row 3 | |--------------|-------------------------|-------------------------|----------| | Initially | 11111111 | 11111111 | 11111111 | | After 64 ms | 11111111 | 11111111 | 11111111 | | After 128 ms | 11 <mark>0</mark> 11111 | 11111111 | 11111111 | | | (64–128ms) | | | | After 256 ms | | 11111 <mark>0</mark> 11 | 11111111 | | | | (128-256ms) | (>256ms) | #### DRAM Retention Time Profiling Q: Is it really this easy? A: Ummm, not really... #### Two Challenges to Retention Time Profiling Data Pattern Dependence (DPD) of retention time Variable Retention Time (VRT) phenomenon #### An Example VRT Cell #### VRT: Implications on Profiling Mechanisms - Problem 1: There does not seem to be a way of determining if a cell exhibits VRT without actually observing a cell exhibiting VRT - VRT is a memoryless random process [Kim+ JJAP 2010] - Problem 2: VRT complicates retention time profiling by DRAM manufacturers - Exposure to very high temperatures can induce VRT in cells that were not previously susceptible - → can happen during soldering of DRAM chips - → manufacturer's retention time profile may not be accurate - One option for future work: Use ECC to continuously profile DRAM online while aggressively reducing refresh rate - Need to keep ECC overhead in check #### More on DRAM Retention Analysis Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu, "An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms" Proceedings of the 40th International Symposium on Computer Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf) ## An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms Jamie Liu* Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 jamiel@alumni.cmu.edu Ben Jaiyen* Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 bjaiyen@alumni.cmu.edu Yoongu Kim Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 yoonguk@ece.cmu.edu Chris Wilkerson Intel Corporation 2200 Mission College Blvd. Santa Clara, CA 95054 chris.wilkerson@intel.com Onur Mutlu Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 onur@cmu.edu #### Finding DRAM Retention Failures - How can we reliably find the retention time of all DRAM cells? - Goals: so that we can - Make DRAM reliable and secure - Make techniques like RAIDR work - → improve performance and energy #### Mitigation of Retention Issues [SIGMETRICS'14] Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson, and Onur Mutlu, "The Efficacy of Error Mitigation Techniques for DRAM Retention **Failures: A Comparative Experimental Study**" Proceedings of the <u>ACM International Conference on Measurement and</u> <u>Modeling of Computer Systems</u> (**SIGMETRICS**), Austin, TX, June 2014. [Slides (pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets] #### The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study Samira Khan⁺∗ samirakhan@cmu.edu Donghyuk Lee[†] donghyuk1@cmu.edu Yoongu Kim[†] yoongukim@cmu.edu Alaa R. Alameldeen* alaa.r.alameldeen@intel.com chris.wilkerson@intel.com Chris Wilkerson* Onur Mutlut onur@cmu.edu [†]Carnegie Mellon University *Intel Labs #### Handling Variable Retention Time [DSN'15] Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and Onur Mutlu, "AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems" Proceedings of the <u>45th Annual IEEE/IFIP International Conference on</u> <u>Dependable Systems and Networks</u> (**DSN**), Rio de Janeiro, Brazil, June 2015. [Slides (pptx) (pdf)] ### AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems Moinuddin K. Qureshi[†] Dae-Hyun Kim[†] Georgia Institute of Technology {moin, dhkim, pnair6}@ece.gatech.edu Samira Khan[‡] Prashant J. Nair[†] Onur Mutlu[‡] [‡]Carnegie Mellon University {samirakhan, onur}@cmu.edu 31 #### Handling Data-Dependent Failures [DSN'16] Samira Khan, Donghyuk Lee, and Onur Mutlu, "PARBOR: An Efficient System-Level Technique to Detect Data-Dependent Failures in DRAM" Proceedings of the <u>45th Annual IEEE/IFIP International Conference on</u> <u>Dependable Systems and Networks</u> (**DSN**), Toulouse, France, June 2016. [Slides (pptx) (pdf)] ### PARBOR: An Efficient System-Level Technique to Detect Data-Dependent Failures in DRAM Samira Khan* Donghyuk Lee^{†‡} Onur Mutlu*[†] *University of Virginia [†]Carnegie Mellon University [‡]Nvidia *ETH Zürich SAFARI 32 #### Handling Data-Dependent Failures [MICRO'17] Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R. Alameldeen, Donghyuk Lee, and Onur Mutlu, "Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content" Proceedings of the <u>50th International Symposium on Microarchitecture</u> (**MICRO**), Boston, MA, USA, October 2017. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)] ### Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content Samira Khan* Chris Wilkerson[†] Zhe Wang[†] Alaa R. Alameldeen[†] Donghyuk Lee[‡] Onur Mutlu* *University of Virginia [†]Intel Labs [‡]Nvidia Research *ETH Zürich SAFARI 33 #### Handling Both DPD and VRT [ISCA'17] - Minesh Patel, Jeremie S. Kim, and Onur Mutlu, "The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions" Proceedings of the 44th International Symposium on Computer Architecture (ISCA), Toronto, Canada, June 2017. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] - First experimental analysis of (mobile) LPDDR4 chips - Analyzes the complex tradeoff space of retention time profiling - Idea: enable fast and robust profiling at higher refresh intervals & temperatures ### The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions Minesh Patel^{§‡} Jeremie S. Kim^{‡§} Onur Mutlu^{§‡} ETH Zürich [‡]Carnegie Mellon University 34 #### 2. Binning - How to efficiently and scalably store rows into retention time bins? - Use Hardware Bloom Filters [Bloom, CACM 1970] #### Bloom Filter - [Bloom, CACM 1970] - Probabilistic data structure that compactly represents set membership (presence or absence of element in a set) - Non-approximate set membership: Use 1 bit per element to indicate absence/presence of each element from an element space of N elements - Approximate set membership: use a much smaller number of bits and indicate each element's presence/absence with a subset of those bits - Some elements map to the bits other elements also map to - Operations: 1) insert, 2) test, 3) remove all elements ## Bloom Filters ## Space/Time Trade-offs in ## Hash Coding with Allowable Errors In such applications, it is envisaged that overall performance could be improved by using a smaller core resident hash area in conjunction with the new methods and, when necessary, by using some secondary and perhaps time-consuming test to "catch" the small fraction of errors associated with the new methods. An example is discussed which illustrates possible areas of application for the new methods. Burton H. Bloom Computer Usage Company, Newton Upper Falls, Mass. In this paper trade-offs among certain computational factors in hash coding are analyzed. The paradigm problem considered is that of testing a series of messages one-by-one for membership in a given set of messages. Two new hash-coding methods are examined and compared with a particular conventional hash-coding method. The computational factors considered are the size of the hash area (space), the time required to identify a message as a nonmember of the given set (reject time), and an allowable error frequency. ### Bloom Filters: Pros and Cons #### Advantages - + Enables storage-efficient representation of set membership - + Insertion and testing for set membership (presence) are fast - + No false negatives: If Bloom Filter says an element is not present in the set, the element must not have been inserted - + Enables tradeoffs between time & storage efficiency & false positive rate (via sizing and hashing) #### Disadvantages -- False positives: An element may be deemed to be present in the set by the Bloom Filter but it may never have been inserted Not the right data structure when you cannot tolerate false positives #### Benefits of Bloom Filters as Refresh Rate Bins - False positives: a row may be declared present in the Bloom filter even if it was never inserted - Not a problem: Refresh some rows more frequently than needed - No false negatives: rows are never refreshed less frequently than needed (no correctness problems) - Scalable: a Bloom filter never overflows (unlike a fixed-size table) - Efficient: No need to store info on a per-row basis; simple hardware → 1.25 KB for 2 filters for 32 GB DRAM system ## Use of Bloom Filters in Hardware - Useful when you can tolerate false positives in set membership tests - See the following recent examples for clear descriptions of how Bloom Filters are used - Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh," ISCA 2012. - Seshadri et al., "The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing," PACT 2012. # 3. Refreshing (RAIDR Refresh Controller) Choose a refresh candidate row Determine which bin the row is in Determine if refreshing is needed # 3. Refreshing (RAIDR Refresh Controller) Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh," ISCA 2012. # RAIDR: Baseline Design Refresh control is in DRAM in today's auto-refresh systems RAIDR can be implemented in either the controller or DRAM # RAIDR in Memory Controller: Option 1 #### Overhead of RAIDR in DRAM controller: 1.25 KB Bloom Filters, 3 counters, additional commands issued for per-row refresh (all accounted for in evaluations) # RAIDR in DRAM Chip: Option 2 #### Overhead of RAIDR in DRAM chip: Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip) Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM) ## RAIDR: Results and Takeaways - System: 32GB DRAM, 8-core; SPEC, TPC-C, TPC-H workloads - RAIDR hardware cost: 1.25 kB (2 Bloom filters) - Refresh reduction: 74.6% - Dynamic DRAM energy reduction: 16% - Idle DRAM power reduction: 20% - Performance improvement: 9% - Benefits increase as DRAM scales in density # DRAM Refresh: More Questions - What else can you do to reduce the impact of refresh? - What else can you do if you know the retention times of rows? - How can you accurately measure the retention time of DRAM rows? - Recommended reading: - Liu et al., "An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms," ISCA 2013. # Industry Is Writing Papers About It, Too #### **DRAM Process Scaling Challenges** #### Refresh - Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance - · Leakage current of cell access transistors increasing #### tWR - Contact resistance between the cell capacitor and access transistor increasing - · On-current of the cell access transistor decreasing - Bit-line resistance increasing #### VRT Occurring more frequently with cell capacitance decreasing # Call for Intelligent Memory Controllers #### **DRAM Process Scaling Challenges** #### Refresh Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance. THE MEMORY FORUM 2014 # Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng, **John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel # We Will Dig Deeper More In This Course "Good ideas are a dime a dozen" "Making them work is oftentimes the real contribution" # Computer Architecture Lecture 2a: Memory Refresh Prof. Onur Mutlu ETH Zürich Fall 2019 20 September 2019