Four Key Directions

- Fundamentally Secure/Reliable/Safe Architectures
- Fundamentally Energy-Efficient Architectures
 - Memory-centric (Data-centric) Architectures
- Fundamentally Low-Latency Architectures
- Architectures for Genomics, Medicine, Health
The Story of RowHammer

- One can predictably induce bit flips in commodity DRAM chips
 - >80% of the tested DRAM chips are vulnerable

- First example of how a simple hardware failure mechanism can create a widespread system security vulnerability

WIRED

FORGET SOFTWARE—NOW HACKERS ARE EXPLOITING PHYSICS

ANDY GREENBERG SECURITY 08.31.16 7:00 AM

SHARE

SHARE 18276
We need to start with reliability and security...
How Reliable/Secure/Safe is This Bridge?

Source: http://www.technologystudent.com/struct1/tacom1.png
Collapse of the “Galloping Gertie”

Source: AP
http://www.wsdot.wa.gov/tnbhistory/connections/connections3.htm
How Secure Are These People?

Security is about preventing unforeseen consequences

Source: https://s-media-cache-ak0.pinimg.com/originals/48/09/54/4809543a9c7700246a0cf8acdaae27abf.jpg
The DRAM Scaling Problem

- DRAM stores charge in a capacitor (charge-based memory)
 - Capacitor must be large enough for reliable sensing
 - Access transistor should be large enough for low leakage and high retention time
 - Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

- DRAM capacity, cost, and energy/power hard to scale
As Memory Scales, It Becomes Unreliable

- Data from all of Facebook’s servers worldwide
- Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.

Intuition: quadratic increase in capacity
Large-Scale Failure Analysis of DRAM Chips

- Analysis and modeling of memory errors found in all of Facebook’s server fleet

- Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, "Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field" Proceedings of the 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.

Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field

Justin Meza Qiang Wu* Sanjeev Kumar* Onur Mutlu
Carnegie Mellon University *Facebook, Inc.
Infrastructures to Understand Such Issues

- An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms (Liu et al., ISCA 2013)

- The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study (Khan et al., SIGMETRICS 2014)

- Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014)

- Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case (Lee et al., HPCA 2015)

Infrastructures to Understand Such Issues

- Flexible
- Easy to Use (C++ API)
- Open-source

[Link to GitHub repository: github.com/CMU-SAFARI/SoftMC]
SoftMC

- https://github.com/CMU-SAFARI/SoftMC

SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies

Hasan Hassan1,2,3 Nandita Vijaykumar3 Samira Khan4,3 Saugata Ghose3 Kevin Chang3 Gennady Pekhimenko5,3 Donghyuk Lee6,3 Oguz Ergin2 Onur Mutlu1,3

1ETH Zürich \quad 2TOBB University of Economics & Technology \quad 3Carnegie Mellon University

4University of Virginia \quad 5Microsoft Research \quad 6NVIDIA Research
Data Retention in Memory [Liu et al., ISCA 2013]

- Retention Time Profile of DRAM looks like this:

 - Location dependent
 - Stored value pattern dependent
 - Time dependent

 64-128ms
 >256ms
 128-256ms
RAIDR: Heterogeneous Refresh [ISCA’12]

- Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu, "RAIDR: Retention-Aware Intelligent DRAM Refresh"
 Slides (pdf)
Analysis of Data Retention Failures [ISCA’13]

Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,
"An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

An Experimental Study of Data Retention Behavior in Modern DRAM Devices:
Implications for Retention Time Profiling Mechanisms

Jamie Liu*
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213
jamiel@alumni.cmu.edu

Ben Jaiyen*
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213
bjaiyen@alumni.cmu.edu

Yoongu Kim
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213
yoonguk@ece.cmu.edu

Chris Wilkerson
Intel Corporation
2200 Mission College Blvd.
Santa Clara, CA 95054
chris.wilkerson@intel.com

Onur Mutlu
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213
onur@cmu.edu
Mitigation of Retention Issues [SIGMETRICS'14]

- Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson, and Onur Mutlu,
 "The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study"
Mitigation of Retention Issues [DSN’15]

- Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and Onur Mutlu,

"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems"

Proceedings of the 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.

[Slides (pptx) (pdf)]

AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems

Moinuddin K. Qureshi† Dae-Hyun Kim† Samira Khan‡ Prashant J. Nair† Onur Mutlu‡

†Georgia Institute of Technology
‡Carnegie Mellon University

{moin, dhkim, pnair6}@ece.gatech.edu
{samirakhan, onur}@cmu.edu
Mitigation of Retention Issues [DSN’16]

Samira Khan, Donghyuk Lee, and Onur Mutlu,
"PARBOR: An Efficient System-Level Technique to Detect Data-Dependent Failures in DRAM"
[Slides (pptx) (pdf)]

PARBOR: An Efficient System-Level Technique to Detect Data-Dependent Failures in DRAM

Samira Khan* Donghyuk Lee†‡ Onur Mutlu*†
*University of Virginia †Carnegie Mellon University ‡Nvidia *ETH Zürich

SAFARI
Mitigation of Retention Issues [MICRO’17]

- Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R. Alameldeen, Donghyuk Lee, and Onur Mutlu,

"Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content"

Proceedings of the 50th International Symposium on Microarchitecture (MICRO), Boston, MA, USA, October 2017.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content

Samira Khan* Chris Wilkerson† Zhe Wang† Alaa R. Alameldeen† Donghyuk Lee‡ Onur Mutlu*

*University of Virginia †Intel Labs ‡Nvidia Research *ETH Zürich
Mitigation of Retention Issues [ISCA'17]

- Minesh Patel, Jeremie S. Kim, and Onur Mutlu, "The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions"
 [Slides (pptx) (pdf)]
 [Lightning Session Slides (pptx) (pdf)]

- First experimental analysis of (mobile) LPDDR4 chips
- Analyzes the complex tradeoff space of retention time profiling
- Idea: enable fast and robust profiling at higher refresh intervals & temperatures

The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions

Minesh Patel$‡, Jeremie S. Kim‡§, Onur Mutlu§‡
$ETH Zürich ‡Carnegie Mellon University
Mitigation of Retention Issues [DSN'19]

- Minesh Patel, Jeremie S. Kim, Hasan Hassan, and Onur Mutlu,
 "Understanding and Modeling On-Die Error Correction in Modern DRAM: An Experimental Study Using Real Devices"

[Source Code for EINSim, the Error Inference Simulator]

Best paper award.

Understanding and Modeling On-Die Error Correction in Modern DRAM: An Experimental Study Using Real Devices

Minesh Patel† Jeremie S. Kim‡‡ Hasan Hassan† Onur Mutlu†‡

†ETH Zürich ‡‡Carnegie Mellon University
One can predictably induce errors in most DRAM memory chips
A simple hardware failure mechanism can create a widespread system security vulnerability.
Modern DRAM is Prone to Disturbance Errors

Repeatedly reading a row enough times (before memory gets refreshed) induces disturbance errors in adjacent rows in most real DRAM chips you can buy today.

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors, (Kim et al., ISCA 2014)
Most DRAM Modules Are Vulnerable

A company
86% (37/43)
Up to 1.0×10^7 errors

B company
83% (45/54)
Up to 2.7×10^6 errors

C company
88% (28/32)
Up to 3.3×10^5 errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors, (Kim et al., ISCA 2014)
Recent DRAM Is More Vulnerable
Recent DRAM Is More Vulnerable
Recent DRAM Is More Vulnerable

First Appearance

All modules from 2012–2013 are vulnerable
Why Is This Happening?

- DRAM cells are too close to each other!
 - They are not electrically isolated from each other

- Access to one cell affects the value in nearby cells
 - due to electrical interference between
 - the cells
 - wires used for accessing the cells
 - Also called cell-to-cell coupling/interference

- Example: When we activate (apply high voltage) to a row, an adjacent row gets slightly activated as well
 - Vulnerable cells in that slightly-activated row lose a little bit of charge
 - If row hammer happens enough times, charge in such cells gets drained
Higher-Level Implications

- This simple circuit level failure mechanism has enormous implications on upper layers of the transformation hierarchy.
A Simple Program Can Induce Many Errors

```
loop:
  mov (X), %eax
  mov (Y), %ebx
  clflush (X)
  clflush (Y)
  mfence
  jmp loop
```

Download from: https://github.com/CMU-SAFARI/rowhammer
A Simple Program Can Induce Many Errors

1. Avoid *cache hits*
 – Flush \(X \) from cache

2. Avoid *row hits* to \(X \)
 – Read \(Y \) in another row

Download from: https://github.com/CMU-SAFARI/rowhammer
A Simple Program Can Induce Many Errors

```
loop:
  mov (X), %eax
  mov (Y), %ebx
  clflush (X)
  clflush (Y)
  mfence
  jmp loop
```

Download from: https://github.com/CMU-SAFAI/rowhammer
A Simple Program Can Induce Many Errors

```
loop:
    mov (X), %eax
    mov (Y), %ebx
    clflush (X)
    clflush (Y)
    mfence
    jmp loop
```

Download from: https://github.com/CMU-SAFARI/rowhammer
A Simple Program Can Induce Many Errors

```
loop:
    mov (X), %eax
    mov (Y), %ebx
    clflush (X)
    clflush (Y)
    mfence
    jmp loop
```

Download from: https://github.com/CMU-SAFARI/rowhammer
Observed Errors in Real Systems

<table>
<thead>
<tr>
<th>CPU Architecture</th>
<th>Errors</th>
<th>Access-Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Haswell (2013)</td>
<td>22.9K</td>
<td>12.3M/sec</td>
</tr>
<tr>
<td>Intel Ivy Bridge (2012)</td>
<td>20.7K</td>
<td>11.7M/sec</td>
</tr>
<tr>
<td>Intel Sandy Bridge (2011)</td>
<td>16.1K</td>
<td>11.6M/sec</td>
</tr>
<tr>
<td>AMD Piledriver (2012)</td>
<td>59</td>
<td>6.1M/sec</td>
</tr>
</tbody>
</table>

A real reliability & security issue

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

Project Zero

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)
RowHammer Security Attack Example

- “Rowhammer” is a problem with some recent DRAM devices in which repeatedly accessing a row of memory can cause bit flips in adjacent rows (Kim et al., ISCA 2014).
 - Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014)

- We tested a selection of laptops and found that a subset of them exhibited the problem.

- We built two working privilege escalation exploits that use this effect.
 - Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)

- One exploit uses rowhammer-induced bit flips to gain kernel privileges on x86-64 Linux when run as an unprivileged userland process.
 - When run on a machine vulnerable to the rowhammer problem, the process was able to induce bit flips in page table entries (PTEs).
 - It was able to use this to gain write access to its own page table, and hence gain read-write access to all of physical memory.

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn & Dullien, 2015)
Security Implications

Rowhammer
Security Implications

It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until the vibrations open the door you were after.
Using Memory Errors to Attack a Virtual Machine

Sudhakar Govindavajhala * Andrew W. Appel
Princeton University
{ sudhakar, appel }@cs.princeton.edu

We present an experimental study showing that soft memory errors can lead to serious security vulnerabilities in Java and .NET virtual machines, or in any system that relies on type-checking of untrusted programs as a protection mechanism. Our attack works by sending to the JVM a Java program that is designed so that almost any memory error in its address space will allow it to take control of the JVM. All conventional Java and .NET virtual machines are vulnerable to this attack. The technique of the attack is broadly applicable against other language-based security schemes such as proof-carrying code.

We measured the attack on two commercial Java Virtual Machines: Sun’s and IBM’s. We show that a single-bit error in the Java program’s data space can be exploited to execute arbitrary code with a probability of about 70%, and multiple-bit errors with a lower probability.

Our attack is particularly relevant against smart cards or tamper-resistant computers, where the user has physical access (to the outside of the computer) and can use various means to induce faults; we have successfully used heat. Fortunately, there are some straightforward defenses against this attack.

7 Physical fault injection

If the attacker has physical access to the outside of the machine, as in the case of a smart card or other tamper-resistant computer, the attacker can induce memory errors. We considered attacks on boxes in form factors ranging from a credit card to a palmtop to a desktop PC.

We considered several ways in which the attacker could induce errors.4

Using Memory Errors to Attack a Virtual Machine

Sudhakar Govindavajhala * Andrew W. Appel
Princeton University
{sdhakar,appel}@cs.princeton.edu

Figure 3. Experimental setup to induce memory errors, showing a PC built from surplus components, clip-on gooseneck lamp, 50-watt spotlight bulb, and digital thermometer. Not shown is the variable AC power supply for the lamp.

Selected Readings on RowHammer (I)

- **Our first detailed study:** Rowhammer analysis and solutions (June 2014)
 - Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
 "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors"
 [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and Data]

- **Our Source Code to Induce Errors in Modern DRAM Chips** (June 2014)
 - https://github.com/CMU-SAFARI/rowhammer

- **Google Project Zero’s Attack to Take Over a System** (March 2015)
 - Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)
 - https://github.com/google/rowhammer-test
 - **Double-sided Rowhammer**
Remote RowHammer Attacks via JavaScript (July 2015)
- https://github.com/IAIK/rowhammerjs
- Gruss et al., DIMVA 2016
- CLFLUSH-free Rowhammer
- “A fully automated attack that requires nothing but a website with JavaScript to trigger faults on remote hardware.”
- “We can gain unrestricted access to systems of website visitors.”

ANVIL: Software-Based Protection Against Next-Generation Rowhammer Attacks (March 2016)
- http://dl.acm.org/citation.cfm?doid=2872362.2872390
- Aweke et al., ASPLOS 2016
- CLFLUSH-free Rowhammer
- Software based monitoring for rowhammer detection
Selected Readings on RowHammer (III)

- Dedup Est Machina: Memory Deduplication as an Advanced Exploitation Vector (May 2016)
 - Exploits Rowhammer and Memory Deduplication to overtake a browser
 - “We report on the first reliable remote exploit for the Rowhammer vulnerability running entirely in Microsoft Edge.”
 - “[an attacker] ... can reliably “own” a system with all defenses up, even if the software is entirely free of bugs.”

- CAn’t Touch This: Software-only Mitigation against Rowhammer Attacks targeting Kernel Memory (August 2017)
 - Partitions physical memory into security domains, user vs. kernel; limits rowhammer-induced bit flips to the user domain.
Selected Readings on RowHammer (IV)

- A New Approach for Rowhammer Attacks (May 2016)
 - Qiao et al., HOST 2016
 - **CLFLUSH-free RowHammer**
 - “Libc functions memset and memcpy are found capable of rowhammer.”
 - Triggers RowHammer with malicious inputs but benign code

- One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege Escalation (August 2016)
 - “Technique that allows a malicious guest VM to have read and write accesses to arbitrary physical pages on a shared machine.”
 - Graph-based algorithm to reverse engineer mapping of physical addresses in DRAM
Selected Readings on RowHammer (V)

- **Curious Case of RowHammer: Flipping Secret Exponent Bits using Timing Analysis** (August 2016)
 - Bhattacharya et al., CHES 2016
 - Combines timing analysis to perform rowhammer on cryptographic keys stored in memory

- **DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks** (August 2016)
 - Pessl et al., USENIX Security 2016
 - Shows RowHammer failures on DDR4 devices despite TRR solution
 - Reverse engineers address mapping functions to improve existing RowHammer attacks
Selected Readings on RowHammer (VI)

- **Flip Feng Shui: Hammering a Needle in the Software Stack** (August 2016)
 - Razavi et al., USENIX Security 2016.
 - Combines memory deduplication and RowHammer
 - “A malicious VM can gain unauthorized access to a co-hosted VM running OpenSSH.”
 - Breaks OpenSSH public key authentication

- **Drammer: Deterministic Rowhammer Attacks on Mobile Platforms** (October 2016)
 - http://dl.acm.org/citation.cfm?id=2976749.2978406
 - Van Der Veen et al., ACM CCS 2016
 - **Can take over an ARM-based Android system deterministically**
 - Exploits predictable physical memory allocator behavior
 - Can deterministically place security-sensitive data (e.g., page table) in an attacker-chosen, vulnerable location in memory
When Good Protections go Bad: Exploiting anti-DoS Measures to Accelerate Rowhammer Attacks (May 2017)
- Aga et al., HOST 2017
- “A virtual-memory based cache-flush free attack that is sufficiently fast to **rowhammer with double rate refresh.**”
- Enabled by Cache Allocation Technology

SGX-Bomb: Locking Down the Processor via Rowhammer Attack (October 2017)
- https://dl.acm.org/citation.cfm?id=3152709
- Jang et al., SysTEX 2017
- “Launches the Rowhammer attack against enclave memory to trigger the processor lockdown.”
- Running unknown enclave programs on the cloud can shut down servers shared with other clients.
Another Flip in the Wall of Rowhammer Defenses (May 2018)
- Gruss et al., IEEE S&P 2018
- A new type of Rowhammer attack which only hammers one single address, which can be done without knowledge of physical addresses and DRAM mappings
- Defeats static analysis and performance counter analysis defenses by running inside an SGX enclave

GuardION: Practical Mitigation of DMA-Based Rowhammer Attacks on ARM (June 2018)
- https://link.springer.com/chapter/10.1007/978-3-319-93411-2_5
- Van Der Veen et al., DIMVA 2018
- Presents RAMPAGE, a DMA-based RowHammer attack against the latest Android OS
Grand Pwning Unit: Accelerating Microarchitectural Attacks with the GPU (May 2018)
- The first end-to-end remote Rowhammer exploit on mobile platforms that use our GPU-based primitives in orchestration to compromise browsers on mobile devices in under two minutes.

Throwhammer: Rowhammer Attacks over the Network and Defenses (July 2018)
- Tatar et al., USENIX ATC 2018.
- “[We] show that an attacker can trigger and exploit Rowhammer bit flips directly from a remote machine by only sending network packets.”
Nethammer: Inducing Rowhammer Faults through Network Requests (July 2018)
- Lipp et al., arxiv.org 2018.
- “Nethammer is the first truly remote Rowhammer attack, without a single attacker-controlled line of code on the targeted system.”

ZebRAM: Comprehensive and Compatible Software Protection Against Rowhammer Attacks (October 2018)
- Konoth et al., OSDI 2018
- A new pure-software protection mechanism against RowHammer.
Selected Readings on RowHammer (XI.A)

- PassMark Software, memtest86, since 2014
 - https://www.memtest86.com/troubleshooting.htm#hammer

Why am I only getting errors during Test 13 Hammer Test?

The Hammer Test is designed to detect RAM modules that are susceptible to disturbance errors caused by charge leakage. This phenomenon is characterized in the research paper Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors by Yoongu Kim et al. According to the research, a significant number of RAM modules manufactured 2010 or newer are affected by this defect. In simple terms, susceptible RAM modules can be subjected to disturbance errors when repeatedly accessing addresses in the same memory bank but different rows in a short period of time. Errors occur when the repeated access causes charge loss in a memory cell, before the cell contents can be refreshed at the next DRAM refresh interval.

Starting from MemTest86 v6.2, the user may see a warning indicating that the RAM may be vulnerable to high frequency row hammer bit flips. This warning appears when errors are detected during the first pass (maximum hammer rate) but no errors are detected during the second pass (lower hammer rate). See MemTest86 Test Algorithms for a description of the two passes that are performed during the Hammer Test (Test 13). When performing the second pass, address pairs are hammered only at the rate deemed as the maximum allowable by memory vendors (200K accesses per 64ms). Once this rate is exceeded, the integrity of memory contents may no longer be guaranteed. If errors are detected in both passes, errors are reported as normal.

The errors detected during Test 13, albeit exposed only in extreme memory access cases, are most certainly real errors. During typical home PC usage (eg. web browsing, word processing, etc.), it is less likely that the memory usage pattern will fall into the extreme case that make it vulnerable to disturbance errors. It may be of greater concern if you were running highly sensitive equipment such as medical equipment, aircraft control systems, or bank database servers. It is impossible to predict with any accuracy if these errors will occur in real life applications. One would need to do a major scientific study of 1000 of computers and their usage patterns, then do a forensic analysis of each application to study how it makes use of the RAM while it executes. To date, we have only seen 1-bit errors as a result of running the Hammer Test.
Selected Readings on RowHammer (XI.B)

- PassMark Software, memtest86, since 2014
 - https://www.memtest86.com/troubleshooting.htm#hammer

Detection and mitigation of row hammer errors

The ability of MemTest86 to detect and report on row hammer errors depends on several factors and what mitigations are in place. To generate errors adjacent memory rows must be repeatedly accessed. But hardware features such as multiple channels, interleaving, scrambling, Channel Hashing, NUMA & XOR schemes make it nearly impossible (for an arbitrary CPU & RAM stick) to know which memory addresses correspond to which rows in the RAM. Various mitigations might also be in place. Different BIOS firmware might set the refresh interval to different values (tREFI). The shorter the interval the more resistant the RAM will be to errors. But shorter intervals result in higher power consumption and increased processing overhead. Some CPUs also support pseudo target row refresh (pTRR) that can be used in combination with pTRR-compliant RAM. This field allows the RAM stick to indicate the MAC (Maximum Active Count) level which is the RAM can support. A typical value might be 200,000 row activations. Some CPUs also support the Joint Electron Design Engineering Council (JEDEC) Targeted Row Refresh (TRR) algorithm. The TRR is an improved version of the previously implemented pTRR algorithm and does not inflict any performance drop or additional power usage. As a result the row hammer test implemented in MemTest86 maybe not be the worst case possible and vulnerabilities in the underlying RAM might be undetectable due to the mitigations in place in the BIOS and CPU.
Security Implications (ISCA 2014)

• *Breach of memory protection*
 – OS page (4KB) fits inside DRAM row (8KB)
 – Adjacent DRAM row → Different OS page

• *Vulnerability: disturbance attack*
 – By accessing its own page, a program could corrupt pages belonging to another program

• *We constructed a proof-of-concept*
 – Using only user-level instructions
More Security Implications (I)

“We can gain unrestricted access to systems of website visitors.”

Not there yet, but ... ROOT privileges for web apps!

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16)

Source: https://lab.dsst.io/32c3-slides/7197.html
More Security Implications (II)

“Can gain control of a smart phone deterministically”

Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

Drammer: Deterministic Rowhammer Attacks on Mobile Platforms, CCS’16
More Security Implications (III)

- Using an integrated GPU in a mobile system to remotely escalate privilege via the WebGL interface

Drive-by Rowhammer attack uses GPU to compromise an Android phone

JavaScript based GLitch pwns browsers by flipping bits inside memory chips.

DAN GOODIN - 5/3/2018, 12:00 PM

Grand Pwning Unit: Accelerating Microarchitectural Attacks with the GPU

Pietro Frigo
Vrije Universiteit Amsterdam
p.frigo@vu.nl

Cristiano Giuffrida
Vrije Universiteit Amsterdam
giuffrida@cs.vu.nl

Herbert Bos
Vrije Universiteit Amsterdam
herbertb@cs.vu.nl

Kaveh Razavi
Vrije Universiteit Amsterdam
kaveh@cs.vu.nl
THROWHAMMER —

Packets over a LAN are all it takes to trigger serious Rowhammer bit flips

The bar for exploiting potentially serious DDR weakness keeps getting lower.

DAN GOODIN - 5/10/2018, 5:26 PM

Throwhammer: Rowhammer Attacks over the Network and Defenses

Andrei Tatar
VU Amsterdam

Radhesh Krishnan
VU Amsterdam

Elias Athanasopoulos
University of Cyprus

Cristiano Giuffrida
VU Amsterdam

Herbert Bos
VU Amsterdam

Kaveh Razavi
VU Amsterdam
More Security Implications (V)

- Rowhammer over RDMA (II)

Nethammer—Exploiting DRAM Rowhammer Bug Through Network Requests

Nethammer:

Inducing Rowhammer Faults through Network Requests

- Moritz Lipp
 Graz University of Technology

- Misiker Tadesse Aga
 University of Michigan

- Michael Schwarz
 Graz University of Technology

- Daniel Gruss
 Graz University of Technology

- Clémentine Maurice
 Univ Rennes, CNRS, IRISA

- Lukas Raab
 Graz University of Technology

- Lukas Lamster
 Graz University of Technology
More Security Implications (VI)

IEEE S&P 2020

RAMBleed

RAMBleed: Reading Bits in Memory Without Accessing Them

Andrew Kwong
University of Michigan
ankwong@umich.edu

Daniel Genkin
University of Michigan
genkin@umich.edu

Daniel Gruss
Graz University of Technology
daniel.gruss@iaik.tugraz.at

Yuval Yarom
University of Adelaide and Data61
yval@cs.adelaide.edu.au
More Security Implications (VII)

- Rowhammer on MLC NAND Flash (based on [Cai+, HPCA 2017])

The Register

Security

Rowhammer RAM attack adapted to hit flash storage

Project Zero's two-year-old dog learns a new trick

By Richard Chirgwin 17 Aug 2017 at 04:27

From random block corruption to privilege escalation:
A filesystem attack vector for rowhammer-like attacks

Anil Kurmus Nikolas Ioannou Matthias Neugschwandtner Nikolaos Papandreou

Thomas Parnell

IBM Research – Zurich
More Security Implications?
Understanding RowHammer
Root Causes of Disturbance Errors

• **Cause 1: Electromagnetic coupling**
 – Toggling the wordline voltage briefly increases the voltage of adjacent wordlines
 – Slightly opens adjacent rows → Charge leakage

• **Cause 2: Conductive bridges**

• **Cause 3: Hot-carrier injection**

Confirmed by at least one manufacturer
Experimental DRAM Testing Infrastructure

- An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms (Liu et al., ISCA 2013)

- The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study (Khan et al., SIGMETRICS 2014)

- Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014)

- Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case (Lee et al., HPCA 2015)

Experimental DRAM Testing Infrastructure

Tested DRAM Modules

(129 total)
RowHammer Characterization Results

1. Most Modules Are at Risk
2. Errors vs. Vintage
3. Error = Charge Loss
4. Adjacency: Aggressor & Victim
5. Sensitivity Studies
6. Other Results in Paper
7. Solution Space

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors, (Kim et al., ISCA 2014)
4. Adjacency: Aggressor & Victim

Most aggressors & victims are adjacent

Note: For three modules with the most errors (only first bank)

Most aggressors & victims are adjacent
Note: For three modules with the most errors (only first bank)

Less frequent accesses \rightarrow Fewer errors
2 Refresh Interval

Note: Using three modules with the most errors (only first bank)

More frequent refreshes \(\rightarrow \) Fewer errors
3. Data Pattern

Errors affected by data stored in other cells
6. Other Results (in Paper)

• *Victim Cells ≠ Weak Cells (i.e., leaky cells)*
 – Almost no overlap between them

• *Errors not strongly affected by temperature*
 – Default temperature: 50°C
 – At 30°C and 70°C, number of errors changes <15%

• *Errors are repeatable*
 – Across ten iterations of testing, >70% of victim cells had errors in every iteration
6. Other Results (in Paper) cont’d

• **As many as 4 errors per cache-line**
 – Simple ECC (e.g., SECDED) cannot prevent all errors

• **Number of cells & rows affected by aggressor**
 – Victims cells per aggressor: \(\leq 110 \)
 – Victims rows per aggressor: \(\leq 9 \)

• **Cells affected by two aggressors on either side**
 – Very small fraction of victim cells (\(<100\)) have an error when either one of the aggressors is toggled
More on RowHammer Analysis

- Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,

"Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors"
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and Data]
Retrospective on RowHammer & Future

- Onur Mutlu,
 "The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser"

[Slides (pptx) (pdf)]

The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser

Onur Mutlu
ETH Zürich
onur.mutlu@inf.ethz.ch
https://people.inf.ethz.ch/omutlu
A More Recent RowHammer Retrospective

Onur Mutlu and Jeremie Kim,
"RowHammer: A Retrospective"
[Preliminary arXiv version]

RowHammer: A Retrospective

Onur Mutlu§‡
§ETH Zürich

Jeremie S. Kim‡§
‡Carnegie Mellon University
RowHammer Solutions
Two Types of RowHammer Solutions

- **Immediate**
 - To protect the vulnerable DRAM chips in the field
 - Limited possibilities

- **Longer-term**
 - To protect future DRAM chips
 - Wider range of protection mechanisms

- Our ISCA 2014 paper proposes both types of solutions
 - Seven solutions in total
 - PARA proposed as best solution → already employed in the field
Some Potential Solutions

- Make better DRAM chips
 - Cost

- Refresh frequently
 - Power, Performance

- Sophisticated ECC
 - Cost, Power

- Access counters
 - Cost, Power, Complexity
Naive Solutions

1 Throttle accesses to same row
 - Limit access-interval: ≥500ns
 - Limit number of accesses: ≤128K (=64ms/500ns)

2 Refresh more frequently
 - Shorten refresh-interval by ∼7x

Both naive solutions introduce significant overhead in performance and power
Apple’s Patch for RowHammer

Available for: OS X Mountain Lion v10.8.5, OS X Mavericks v10.9.5

Impact: A malicious application may induce memory corruption to escalate privileges

Description: A disturbance error, also known as Rowhammer, exists with some DDR3 RAM that could have led to memory corruption. This issue was mitigated by increasing memory refresh rates.

CVE-ID

CVE-2015-3693 : Mark Seaborn and Thomas Dullien of Google, working from original research by Yoongu Kim et al (2014)

HP, Lenovo, and other vendors released similar patches
Our Solution to RowHammer

• **PARA: Probabilistic Adjacent Row Activation**

• **Key Idea**
 - After closing a row, we activate (i.e., refresh) one of its neighbors with a low probability: \(p = 0.005 \)

• **Reliability Guarantee**
 - When \(p=0.005 \), errors in one year: \(9.4 \times 10^{-14} \)
 - By adjusting the value of \(p \), we can vary the strength of protection against errors
Advantages of PARA

• **PARA refreshes rows infrequently**
 – Low power
 – Low performance-overhead
 • Average slowdown: **0.20%** (for 29 benchmarks)
 • Maximum slowdown: **0.75%**

• **PARA is stateless**
 – Low cost
 – Low complexity

• **PARA is an effective and low-overhead solution to prevent disturbance errors**
Requirements for PARA

• If implemented in **DRAM chip**
 – Enough slack in timing parameters
 – Plenty of slack today:
 • Chang et al., “Understanding Latency Variation in Modern DRAM Chips,” SIGMETRICS 2016.
 • Lee et al., “Design-Induced Latency Variation in Modern DRAM Chips,” SIGMETRICS 2017.
 • Chang et al., “Understanding Reduced-Voltage Operation in Modern DRAM Devices,” SIGMETRICS 2017.

• If implemented in **memory controller**
 – Better coordination between memory controller and DRAM
 – Memory controller should know which rows are physically adjacent
Probabilistic Activation in Real Life (I)

![Image of computer screen with the Optio Setup Utility interface and a pop-up window for Row Hammer Solution, showing options like Hardware RHP and 2x Refresh.]

[Image: https://twitter.com/isislovecruft/status/1021939922754723841]
Probabilistic Activation in Real Life (II)

https://twitter.com/isislovecruft/status/1021939922754723841
Seven RowHammer Solutions Proposed

- Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,

"Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors"

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and Data]

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

Yoongu Kim¹ Ross Daly* Jeremie Kim¹ Chris Fallin* Ji Hye Lee¹
Donghyuk Lee¹ Chris Wilkerson² Konrad Lai Onur Mutlu¹

¹Carnegie Mellon University ²Intel Labs
A Takeaway

Main Memory Needs
Intelligent Controllers
for Security
Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

- **Refresh**
 - Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance
 - Leakage current of cell access transistors increasing

- **tWR**
 - Contact resistance between the cell capacitor and access transistor increasing
 - On-current of the cell access transistor decreasing
 - Bit-line resistance increasing

- **VRT**
 - Occurring more frequently with cell capacitance decreasing
Call for Intelligent Memory Controllers

DRAM Process Scaling Challenges

- Refresh
 - Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance

THE MEMORY FORUM 2014

Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling

Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng, **John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi

Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel
Aside: Intelligent Controller for NAND Flash

Virtex-II Pro (USB controller)

USB Daughter Board

HAPS-52 Mother Board

Virtex-V FPGA (NAND Controller)

NAND Daughter Board

Aside: Intelligent Controller for NAND Flash

Proceedings of the IEEE, Sept. 2017

Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error characterization, mitigation, and data recovery techniques to improve both SSD’s reliability and lifetime.

By Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu

https://arxiv.org/pdf/1706.08642
A Key Takeaway

Main Memory Needs

Intelligent Controllers
Future Memory
Reliability/Security Challenges
Future of Main Memory

- DRAM is becoming less reliable \rightarrow more vulnerable
Large-Scale Failure Analysis of DRAM Chips

- Analysis and modeling of memory errors found in all of Facebook’s server fleet

- Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, "Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field"
 Proceedings of the 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.
 [Slides (pptx) (pdf)] [DRAM Error Model]

Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field

Justin Meza Qiang Wu* Sanjeev Kumar* Onur Mutlu
Carnegie Mellon University *Facebook, Inc.
DRAM Reliability Reducing

Intuition: quadratic increase in capacity

Meza+, "Revisiting Memory Errors in Large-Scale Production Data Centers," DSN'15.
Aside: SSD Error Analysis in the Field

- First large-scale field study of flash memory errors

Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, "A Large-Scale Study of Flash Memory Errors in the Field"
[Slides (pptx) (pdf)] [Coverage at ZDNet]

A Large-Scale Study of Flash Memory Failures in the Field

Justin Meza
Carnegie Mellon University
meza@cmu.edu

Qiang Wu
Facebook, Inc.
qwu@fb.com

Sanjeev Kumar
Facebook, Inc.
skumar@fb.com

Onur Mutlu
Carnegie Mellon University
onur@cmu.edu
Future of Main Memory

- DRAM is becoming less reliable → more vulnerable

- Due to difficulties in DRAM scaling, other problems may also appear (or they may be going unnoticed)

- Some errors may already be slipping into the field
 - Read disturb errors (Rowhammer)
 - Retention errors
 - Read errors, write errors
 - ...

- These errors can also pose security vulnerabilities
DRAM Data Retention Time Failures

- Determining the data retention time of a cell/row is getting more difficult

- Retention failures may already be slipping into the field
Analysis of Data Retention Failures [ISCA’13]

An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms

Jamie Liu*
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213
jamiel@alumni.cmu.edu

Ben Jaiyen*
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213
bjaiyen@alumni.cmu.edu

Yoongu Kim
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213
yoonguk@ece.cmu.edu

Chris Wilkerson
Intel Corporation
2200 Mission College Blvd.
Santa Clara, CA 95054
chris.wilkerson@intel.com

Onur Mutlu
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213
onur@cmu.edu
Two Challenges to Retention Time Profiling

- Data Pattern Dependence (DPD) of retention time

- Variable Retention Time (VRT) phenomenon
Two Challenges to Retention Time Profiling

- **Challenge 1: Data Pattern Dependence (DPD)**
 - Retention time of a DRAM cell depends on its value and the values of cells nearby it
 - When a row is activated, all bitlines are perturbed simultaneously
Electrical noise on the bitline affects reliable sensing of a DRAM cell.

The magnitude of this noise is affected by values of nearby cells via:
- Bitline-bitline coupling → electrical coupling between adjacent bitlines
- Bitline-wordline coupling → electrical coupling between each bitline and the activated wordline.
Data Pattern Dependence

- Electrical noise on the bitline affects reliable sensing of a DRAM cell
- The magnitude of this noise is affected by values of nearby cells via:
 - Bitline-bitline coupling → electrical coupling between adjacent bitlines
 - Bitline-wordline coupling → electrical coupling between each bitline and the activated wordline

- Retention time of a cell depends on data patterns stored in nearby cells
 → need to find the worst data pattern to find worst-case retention time
 → this pattern is location dependent
Two Challenges to Retention Time Profiling

- **Challenge 2: Variable Retention Time (VRT)**
 - Retention time of a DRAM cell changes randomly over time
 - a cell alternates between multiple retention time states
 - Leakage current of a cell changes sporadically due to a charge trap in the gate oxide of the DRAM cell access transistor
 - When the trap becomes occupied, charge leaks more readily from the transistor’s drain, leading to a short retention time
 - Called *Trap-Assisted Gate-Induced Drain Leakage*
 - This process appears to be a random process

- Worst-case retention time depends on a random process → need to find the worst case despite this
Newer device families have more weak cells than older ones
Likely a result of technology scaling
An Example VRT Cell

A cell from E 2Gb chip family
Variable Retention Time

Many failing cells jump from very high retention time to very low.

Most failing cells exhibit VRT.

Min ret time = Max ret time

Expected if no VRT

A 2Gb chip family
Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

- **Refresh**
 - Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance
 - Leakage current of cell access transistors increasing

- **tWR**
 - Contact resistance between the cell capacitor and access transistor increasing
 - On-current of the cell access transistor decreasing
 - Bit-line resistance increasing

- **VRT**
 - Occurring more frequently with cell capacitance decreasing
Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling

Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng, **John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi

Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel
Keeping Future Memory Secure
How Do We Keep Memory Secure?

- DRAM

- Flash memory

- Emerging Technologies
 - Phase Change Memory
 - STT-MRAM
 - RRAM, memristors
 - ...

SAFARI
Fundamentally
Secure, Reliable, Safe
Computing Architectures
Solution Direction: Principled Designs

Design fundamentally secure computing architectures

Predict and prevent such safety issues
Architecting for Security

- **Understand**: Methods for vulnerability modeling & discovery
 - Modeling and prediction based on real (device) data and analysis
 - Understanding vulnerabilities
 - Developing reliable metrics

- **Architect**: Principled architectures with security as key concern
 - Good partitioning of duties across the stack
 - Cannot give up performance and efficiency
 - Patch-ability in the field

- **Design & Test**: Principled design, automation, (online) testing
 - Design for security
 - High coverage and good interaction with system reliability methods
Understand and Model with Experiments (DRAM)

Understand and Model with Experiments (Flash)

HAPS-52 Mother Board

USB Daughter Board

Virtex-II Pro (USB controller)

Virtex-V FPGA (NAND Controller)

USB Jack

1x-nm NAND Flash

NAND Daughter Board

Understanding Flash Memory Reliability

Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error characterization, mitigation, and data recovery techniques to improve both SSD’s reliability and lifetime.

By Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu

https://arxiv.org/pdf/1706.08642
Understanding Flash Memory Reliability

Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, "A Large-Scale Study of Flash Memory Errors in the Field"

A Large-Scale Study of Flash Memory Failures in the Field

Justin Meza
Carnegie Mellon University
meza@cmu.edu

Qiang Wu
Facebook, Inc.
qwu@fb.com

Sanjeev Kumar
Facebook, Inc.
skumar@fb.com

Onur Mutlu
Carnegie Mellon University
onur@cmu.edu
Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation Techniques

Yu Cai† Saugata Ghose† Yixin Luo‡† Ken Mai† Onur Mutlu§† Erich F. Haratsch‡
†Carnegie Mellon University ‡Seagate Technology §ETH Zürich

Modern NAND flash memory chips provide high density by storing two bits of data in each flash cell, called a multi-level cell (MLC). An MLC partitions the threshold voltage range of a flash cell into four voltage states. When a flash cell is programmed, a high voltage is applied to the cell. Due to parasitic capacitance coupling between flash cells that are physically close to each other, flash cell programming can lead to cell-to-cell program interference, which introduces errors into neighboring flash cells. In order to reduce the impact of cell-to-cell interference on the reliability of MLC NAND flash memory, flash manufacturers adopt a two-step programming method, which programs the MLC in two separate steps. First, the flash memory partially programs the least significant bit of the MLC to some intermediate threshold voltage. Second, it programs the most significant bit to bring the MLC up to its full voltage state.

In this paper, we demonstrate that two-step programming exposes new reliability and security vulnerabilities. We expe-
HeatWatch: Improving 3D NAND Flash Memory Device Reliability by Exploiting Self-Recovery and Temperature Awareness

Yixin Luo†, Saugata Ghose†, Yu Cai‡, Erich F. Haratsch‡, Onur Mutlu§†

†Carnegie Mellon University ‡Seagate Technology §ETH Zürich
Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"Improving 3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process Variation"
[Abstract]
[POMACS Journal Version (same content, different format)]
[Slides (pptx) (pdf)]
Recall: Collapse of the “Galloping Gertie”
Another Example (1994)
Yet Another Example (2007)

A More Recent Example (2018)

The Takeaway, Again

In-Field Patch-ability (Intelligent Memory) Can Avoid Such Failures
Final Thoughts on RowHammer
Some Thoughts on RowHammer

- A simple hardware failure mechanism can create a widespread system security vulnerability

- How to exploit and fix the vulnerability requires a strong understanding across the transformation layers
 - And, a strong understanding of tools available to you

- Fixing needs to happen for two types of chips
 - Existing chips (already in the field)
 - Future chips

- Mechanisms for fixing are different between the two types
Aside: Byzantine Failures

- This class of failures is known as **Byzantine failures**

- Characterized by
 - Undetected erroneous computation
 - Opposite of “fail fast (with an error or no result)”

- “erroneous” can be “malicious” (intent is the only distinction)

- Very difficult to detect and confine Byzantine failures

- **Do all you can to avoid them**

Aside: Byzantine Generals Problem

The Byzantine Generals Problem

LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE
SRI International

Reliable computer systems must handle malfunctioning components that give conflicting information to different parts of the system. This situation can be expressed abstractly in terms of a group of generals of the Byzantine army camped with their troops around an enemy city. Communicating only by messenger, the generals must agree upon a common battle plan. However, one or more of them may be traitors who will try to confuse the others. The problem is to find an algorithm to ensure that the loyal generals will reach agreement. It is shown that, using only oral messages, this problem is solvable if and only if more than two-thirds of the generals are loyal; so a single traitor can confound two loyal generals. With unforgeable written messages, the problem is solvable for any number of generals and possible traitors. Applications of the solutions to reliable computer systems are then discussed.

Categories and Subject Descriptors: C.2.4. [Computer-Communication Networks]: Distributed Systems—network operating systems; D.4.4 [Operating Systems]: Communications Management—network communication; D.4.5 [Operating Systems]: Reliability—fault tolerance

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: Interactive consistency

https://dl.acm.org/citation.cfm?id=357176
One can predictably induce bit flips in commodity DRAM chips. >80% of the tested DRAM chips are vulnerable.

First example of how a simple hardware failure mechanism can create a widespread system security vulnerability.
RowHammer: Retrospective

- **New mindset** that has enabled a renewed interest in HW security attack research:
 - Real (memory) chips are vulnerable, in a simple and widespread manner → this causes real security problems
 - Hardware reliability → security connection is now mainstream discourse

- **Many new RowHammer attacks...**
 - Tens of papers in top security venues
 - **More to come** as RowHammer is getting worse (DDR4 & beyond)

- **Many new RowHammer solutions...**
 - Apple security release; Memtest86 updated
 - Many solution proposals in top venues (latest in ISCA 2019)
 - Principled system-DRAM co-design (in original RowHammer paper)
 - **More to come...**
Perhaps Most Importantly…

- RowHammer enabled a shift of mindset in mainstream security researchers
 - General-purpose hardware is fallible, in a widespread manner
 - Its problems are exploitable

- This mindset has enabled many systems security researchers to examine hardware in more depth
 - And understand HW’s inner workings and vulnerabilities

- It is no coincidence that two of the groups that discovered Meltdown and Spectre heavily worked on RowHammer attacks before
 - More to come…
Summary: RowHammer

- DRAM reliability is reducing
- Reliability issues open up security vulnerabilities
 - Very hard to defend against
- **Rowhammer is a prime example**
 - First example of how a simple hardware failure mechanism can create a widespread system security vulnerability
 - Its implications on system security research are tremendous & exciting

- Bad news: RowHammer is getting worse.

- **Good news: We have a lot more to do.**
 - We are now fully aware hardware is easily fallible.
 - We are developing both attacks and solutions.
 - We are developing principled models, methodologies, solutions.
For More on RowHammer…

- Onur Mutlu and Jeremie Kim, "RowHammer: A Retrospective"
 [Preliminary arXiv version]

RowHammer: A Retrospective

Onur Mutlu§‡ Jeremie S. Kim‡§
§ETH Zürich ‡Carnegie Mellon University
Future Memory
Reliability/Security Challenges
Finding DRAM Retention Failures

- How can we reliably find the retention time of all DRAM cells?

- Goals: so that we can
 - Make DRAM reliable and secure
 - Make techniques like RAIDR work
 → improve performance and energy
Mitigation of Retention Issues [SIGMETRICS'14]

- Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson, and Onur Mutlu,

"The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study"

[Slides (pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets]
Key Observations:

• Testing alone cannot detect all possible failures
• Combination of ECC and other mitigation techniques is much more effective
 – But degrades performance
• Testing can help to reduce the ECC strength
 – Even when starting with a higher strength ECC

Towards an Online Profiling System

1. Initially Protect DRAM with Strong ECC
2. Periodically Test Parts of DRAM
3. Mitigate errors and reduce ECC

Run tests periodically after a short interval at smaller regions of memory
Handling Variable Retention Time [DSN’15]

AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems

Moinuddin K. Qureshi† Dae-Hyun Kim† Samira Khan‡ Prashant J. Nair† Onur Mutlu‡

†Georgia Institute of Technology {moin, dhkim, pnair6}@ece.gatech.edu
‡Carnegie Mellon University {samirakhan, onur}@cmu.edu
AVATAR

Insight: Avoid retention failures ➔ Upgrade row on ECC error

Observation: Rate of VRT >> Rate of soft error (50x-2500x)

AVATAR mitigates VRT by increasing refresh rate on error
RESULTS: REFRESH SAVINGS

Retention Testing Once a Year can revert refresh saving from 60% to 70%

AVATAR reduces refresh by 60%-70%, similar to multi rate refresh but with VRT tolerance
AVATAR gets 2/3rd the performance of NoRefresh. More gains at higher capacity nodes.
ENERGY DELAY PRODUCT

AVATAR reduces EDP,
Significant reduction at higher capacity nodes
Samira Khan, Donghyuk Lee, and Onur Mutlu,
"PARBOR: An Efficient System-Level Technique to Detect Data-Dependent Failures in DRAM"
[Slides (pptx) (pdf)]

PARBOR: An Efficient System-Level Technique to Detect Data-Dependent Failures in DRAM

Samira Khan* Donghyuk Lee†‡ Onur Mutlu*†
*University of Virginia †Carnegie Mellon University ‡Nvidia *ETH Zürich
Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R. Alameldeen, Donghyuk Lee, and Onur Mutlu,
"Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content"
Proceedings of the 50th International Symposium on Microarchitecture (MICRO), Boston, MA, USA, October 2017.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]
Handling Both DPD and VRT [ISCA’17]

- Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
 "The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions"

[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

- First experimental analysis of (mobile) LPDDR4 chips
- Analyzes the complex tradeoff space of retention time profiling
- Idea: enable fast and robust profiling at higher refresh intervals & temperatures

The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions

Minesh Patel§‡ Jeremie S. Kim‡§ Onur Mutlu§‡

§ETH Zürich ‡Carnegie Mellon University
Goal: find *all* retention failures for a refresh interval $T > \text{default (64ms)}$
Characterization of 368 LPDDR4 DRAM Chips

1. Cells are more likely to fail at an increased (refresh interval | temperature)

2. Complex tradeoff space between profiling (speed & coverage & false positives)
temperature

refresh interval

operate here
refresh interval

operate here

REACH PROFILING

profile here

temperature
Reach Profiling

A new DRAM retention failure profiling methodology

+ Faster and more reliable than current approaches

+ Enables longer refresh intervals
LPDDR4 Studies

1. Temperature
2. Data Pattern Dependence
3. Retention Time Distributions
4. Variable Retention Time
5. Individual Cell Characterization
• New failing cells continue to appear over time
 - Attributed to variable retention time (VRT)
• The set of failing cells changes over time
Long-term Continuous Profiling

• New failing cells continue to appear over time
 - Attributed to variable retention time (VRT)
• The set of failing cells changes over time

Error correction codes (ECC) and online profiling are necessary to manage new failing cells

Representative chip from Vendor B, 2048ms, 45°C
Single-cell Failure Probability (Cartoon)

Probability of Read Failure

Refresh Interval (s)

Idealized cell
(retention time = 3s)
Single-cell Failure Probability (Cartoon)

- **Idealized cell** (retention time = 3s)
- **Actual cell**
 \[N(\mu, \sigma) \mid \mu = 3s \]
Single-cell Failure Probability (Real)

Read Failure Probability

Refresh Interval (s)
Single-cell Failure Probability (Real)

- Failed 9 times out of 16 trials

Graph showing the relationship between read failure probability and refresh interval (s).
Single-cell Failure Probability (Real)
Single-cell Failure Probability (Real)
Single-cell Failure Probability (Real)

operate here

Read Failure Probability

Refresh Interval (s)
Single-cell Failure Probability (Real)

Read Failure Probability

Refresh Interval (s)

operate here
Single-cell Failure Probability (Real)

Read Failure Probability

Refresh Interval (s)

operate here

hard to find
Single-cell Failure Probability (Real)

Read Failure Probability

refresh interval (s)

operate here

profile here

hard to find

SAFARI
Single-cell Failure Probability (Real)

Read Failure Probability

Refresh Interval (s)

operate here

profile here

hard to find

easy to find

SAFARI
Any cell is more likely to fail at a longer refresh interval OR a higher temperature.
Reach Profiling

Key idea: profile at a *longer refresh interval* and/or a *higher temperature*

- **Pros**
 - **Fast + Reliable:** reach profiling searches for cells where they are most likely to fail

- **Cons**
 - **False Positives:** profiler may identify cells that fail under profiling conditions, but not under operating conditions
Towards an Implementation

Reach profiling is a general methodology

3 key questions for an implementation:

- What are desirable profiling conditions?
- How often should the system profile?
- What information does the profiler need?
Three Key Profiling Metrics

1. **Runtime**: how long profiling takes

2. **Coverage**: portion of all possible failures discovered by profiling

3. **False positives**: number of cells observed to fail during profiling but never during actual operation
Three Key Profiling Metrics

1. Runtime: how long profiling takes

2. Coverage: portion of all possible failures discovered by profiling

We explore how these three metrics change under many different profiling conditions.
On average, REAPER enables:

- **16.3% system performance improvement**
- **36.4% DRAM power reduction**

REAPER enables longer refresh intervals, which are unreasonable using brute-force profiling.
REAPER Summary

Problem:
• DRAM refresh performance and energy overhead is high
• Current approaches to retention failure profiling are slow or unreliable

Goals:
1. Thoroughly analyze profiling tradeoffs
2. Develop a fast and reliable profiling mechanism

Key Contributions:
1. First detailed characterization of 368 LPDDR4 DRAM chips
2. Reach profiling: Profile at a longer refresh interval or higher temperature than target conditions, where cells are more likely to fail

Evaluation:
• 2.5x faster profiling with 99% coverage and 50% false positives
• REAPER enables 16.3% system performance improvement and 36.4% DRAM power reduction
• Enables longer refresh intervals that were previously unreasonable
The Takeaway, Reinforced

Main Memory Needs
Intelligent Controllers for Reliability & Security
Understanding In-DRAM ECC

Minesh Patel, Jeremie S. Kim, Hasan Hassan, and Onur Mutlu, "Understanding and Modeling On-Die Error Correction in Modern DRAM: An Experimental Study Using Real Devices" Proceedings of the 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Portland, OR, USA, June 2019. [Source Code for EINSim, the Error Inference Simulator]

Best paper session.

Understanding and Modeling On-Die Error Correction in Modern DRAM: An Experimental Study Using Real Devices

Minesh Patel† Jeremie S. Kim‡‡ Hasan Hassan† Onur Mutlu†‡

†ETH Zürich ‡‡Carnegie Mellon University
Understanding Flash Memory Vulnerabilities
Understand and Model with Experiments (Flash)

Virtex-II Pro (USB controller)

Virtex-V FPGA (NAND Controller)

NAND Flash

USB Daughter Board

USB Jack

HAPS-52 Mother Board

NAND Daughter Board

Understanding Flash Memory Reliability

Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error characterization, mitigation, and data recovery techniques to improve both SSD’s reliability and lifetime.

By Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu

https://arxiv.org/pdf/1706.08642
Understanding Flash Memory Reliability

Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Portland, OR, June
2015.
[Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The Register]
[Coverage on TechSpot] [Coverage on The Tech Report]

A Large-Scale Study of Flash Memory Failures in the Field

Justin Meza
Carnegie Mellon University
meza@cmu.edu

Qiang Wu
Facebook, Inc.
qwu@fb.com

Sanjeev Kumar
Facebook, Inc.
skumar@fb.com

Onur Mutlu
Carnegie Mellon University
onur@cmu.edu

SAFARI
Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation Techniques

Yu Cai† Saugata Ghose† Yixin Luo‡‡ Ken Mai† Onur Mutlu§† Erich F. Haratsch‡
†Carnegie Mellon University ‡Seagate Technology §ETH Zürich

Modern NAND flash memory chips provide high density by storing two bits of data in each flash cell, called a multi-level cell (MLC). An MLC partitions the threshold voltage range of a flash cell into four voltage states. When a flash cell is programmed, a high voltage is applied to the cell. Due to parasitic capacitance coupling between flash cells that are physically close to each other, flash cell programming can lead to cell-to-cell program interference, which introduces errors into neighboring flash cells. In order to reduce the impact of cell-to-cell interference on the reliability of MLC NAND flash memory, flash manufacturers adopt a two-step programming method, which programs the MLC in two separate steps. First, the flash memory partially programs the least significant bit of the MLC to some intermediate threshold voltage. Second, it programs the most significant bit to bring the MLC up to its full voltage state.

In this paper, we demonstrate that two-step programming exposes new reliability and security vulnerabilities. We expe-belong to a different flash memory page (the unit of data programmed and read at the same time), which we refer to, respectively, as the least significant bit (LSB) page and the most significant bit (MSB) page [5].

A flash cell is programmed by applying a large voltage on the control gate of the transistor, which triggers charge transfer into the floating gate, thereby increasing the threshold voltage. To precisely control the threshold voltage of the cell, the flash memory uses incremental step pulse programming (ISPP) [12,21,25,41]. ISPP applies multiple short pulses of the programming voltage to the control gate, in order to increase the cell threshold voltage by some small voltage amount (V_{step}) after each step. Initial MLC designs programmed the threshold voltage in one shot, issuing all of the pulses back-to-back to program both bits of data at the same time. However, as flash memory scales down, the distance between neighboring flash cells decreases, which

HeatWatch: Improving 3D NAND Flash Memory Device Reliability by Exploiting Self-Recovery and Temperature Awareness

Yixin Luo†, Saugata Ghose†, Yu Cai‡, Erich F. Haratsch‡, and Onur Mutlu§

†Carnegie Mellon University ‡Seagate Technology §ETH Zürich
Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"Improving 3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process Variation"

Abstract

Improving 3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process Variation

Yixin Luo† Saugata Ghose† Yu Cai† Erich F. Haratsch‡ Onur Mutlu§†
†Carnegie Mellon University ‡Seagate Technology §ETH Zürich
Another Talk: NAND Flash Memory Robustness

Highlighted

Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.

Two Other Solution Directions
There are Two Other Solution Directions

- **New Technologies:** Replace or (more likely) augment DRAM with a different technology
 - Non-volatile memories

- **Embracing Un-reliability:**
 Design memories with different reliability and store data intelligently across them
 [Luo+ DSN 2014]

- ...
Exploiting Memory Error Tolerance with Hybrid Memory Systems

Vulnerable data

Tolerant data

Reliable memory

Low-cost memory

On Microsoft’s Web Search workload
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %

Heterogeneous-Reliability Memory [DSN 2014]
Heterogeneous-Reliability Memory

Step 1: Characterize and classify application memory error tolerance

Step 2: Map application data to the HRM system enabled by SW/HW cooperative solutions

Reliable memory + parity memory + software recovery (Par+R)

Unreliable memory
Evaluation Results

- **Typical Server**
- **Consumer PC**
- **HRM**
- **Less-Tested (L)**
- **HRM/L**

Server HW cost savings (%)

Memory cost savings (%)

Crashes/server/month

Bigger area means better tradeoff

Inner is worse

Outer is better
More on Heterogeneous-Reliability Memory

- Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu,

"Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost via Heterogeneous-Reliability Memory"

Proceedings of the 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary] [Slides (pptx) (pdf)] [Coverage on ZDNet]