Computer Architecture
Lecture 8: Computation in Memory 111

Prof. Onur Mutlu
ETH Zurich
Fall 2019
11 October 2019

Sub-Agenda: In-Memory Computation

Major Trends Affecting Main Memory
The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices
o Top Down: Pull from Systems and Applications

Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion

SAFARI

Several Questions in 3D-Stacked PIM

=| What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?
a | By changing the entire system

o By performing simple function offloading

= What is the minimal processing-in-memory support we can
provide?
a With minimal changes to system and programming

SAFARI 3

Recall: Tesseract

= Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,
and Kiyoung Choi,

"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing”

Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn Sungpack Hong® Sungjoo Yoo Onur Mutlu' Kiyoung Choi

junwhan@snu.ac.kr, sungpack.hong @oracle.com, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University $Oracle Labs fCarnegie Mellon University

SAFARI 4

http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf

Several Questions in 3D-Stacked PIM

=| What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?

a By changing the entire system

o | By performing simple function offloading

= What is the minimal processing-in-memory support we can
provide?
a With minimal changes to system and programming

SAFARI .

3D-Stacked PIM on Mobile Devices

= Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata
Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki
Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data
Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks
Amirali Boroumand' Saugata Ghose' Youngsok Kim?

Rachata Ausavarungnirun' Eric Shiv> Rahul Thakur’> Daehyun Kim*?
Aki Kuusela® Allan Knies® Parthasarathy Ranganathan® Onur Mutlu”!

SAFARI 6

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Consumer Devices

Consumer devices are everywhere!

Energy consumption is
a first-class concern in consumer devices

SAFARI

Four Important Workloads

e T

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
@ O YouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI

Energy Cost of Data Movement

|5t key observation: 62.7% of the total system
energy is spent on data movement

Data Movement

Processing-In-Memory (PIM)

Potential solution: move computation close to data

Challenge: limited area and energy budget
SAFARI

Using PIM to Reduce Data Movement

2"d key observation: a significant fraction of the
data movement often comes from simple functions

We can design lightweight logic to implement
these simple functions in memory

Small embedded Small fixed-function
low-power core accelerators

Offloading to PIM logic reduces energy and improves
performance, on average, by 55.4% and 54.2%

SAFARI

Workload Analysis

®

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
@ O YouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI

)

TensorFlow Mob

Prediction
9

Inferenc

(¢

57.3% of the inference energy is spent on
data movement

\

54.4% of the data movement energy comes from
packing/unpacking and quantization

SAFARI

Packing

Matrix Packed Matrix
l Packing l

Reorders elements of matrices to minimize
cache misses during matrix multiplication

v v

Up to 40% of the Packing’s data movement
inference energy and 3 1% of accounts for up to
inference execution time 35.3% of the inference energy

A simple data reorganization process
that requires simple arithmetic

SAFARI

Quantization

floating point integer

Converts 32-bit floating point to 8-bit integers to improve
inference execution time and energy consumption

v v

Up to 16.8% of the Majority of quantization
inference energy energy comes from
and 16.1% of data movement

inference execution time

A simple data conversion operation that requires
shift, addition, and multiplication operations

SAFARI

Normalized Energy

CPU-Only mPIM-Core OPIM-Acc

5

o o o
N o (0 0]
1

Normalized Energy
o
N

A,
A,

N
\
X N
N\
.
N
N
-\
N Y
N
R
N \

o
]

Texture Color Com- Decom- Packing Quantization Sub-Pixel Deblocking Motion
Tiling Blitting pression pression Interpolation Filter Estimation

Chrome Browser TensorFlow Video Playback and
Mobile Capture

PIM core and PIM accelerator reduce

energy consumption on average by 49.1% and 55.4%
SAFARI

Normalized Runtime

Normalized Runtime

=

o

o

o

o

o

CPU-Only B PIM-Core [0 PIM-Acc

0 -
8 A
6 A
4 -
2 A
O] 1 1
Texture Color Comp- Decomp- | Sub-Pixel Deblocking Motion |TensorFlow
Tiling Blitting ression ression [Interpolation Filter Estimation
Chrome Browser Video Playback TensorFlow
and Capture Mobile

Offloading these kernels to PIM core and PIM accelerator
improves performance on average by 44.6% and 54.2%

Workload Analysis

Chrome TensorFlow
Google’s web browser Google’s machine learning

framework

()

y |

© O VouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI 17

How Chrome Renders a Web Page

A
|

HTML
Parser

HTML

Render Rasteriza- Composi-

Tree tion ting

SAFARI 14

Loading and Layouting Painting
Parsing

assembles all layers

into a final screen image

|
|
|
|
|
| .
HTML HTML | | 3
Parser : : SS
| Render Lavout | Rasteriza- Composi-
| Tree Y | tion ting
css €SS 1y o0 N
Parser 1/ R I N
| ! ,/ I AN
| ,’ 7 ' A3
N G %e

paints those objects

calculates the

] and generates the bitmaps
visual elements and

position of each object

Browser Analysis

* To satisfy user experience, the browser must
provide:
— Fast loading of webpages
— Smooth scrolling of webpages
— Quick switching between browser tabs

* We focus on two important user interactions:
) Page Scrolling
2) Tab Switching

— Both include page loading

SAFARI

16

SAFARI

Tab Switching

26

What Happens During Tab Switching?

 Chrome employs a multi-process architecture
— Each tab is a separate process

| Chrome Process c :

\————-I —————

(_L ~_L_ -L_
| 9%

I—_

\

=7

\——-

Tab | Tab 2 Tab N
Process Process Process

* Main operations during tab switching:
— Context switch
— Load the new page

SAFARI 27

Memory Consumption

* Primary concerns during tab switching:

— How fast a new tab loads and becomes interactive
— Memory consumption

Chrome uses compression to
reduce each tab’s memory footprint

SAFARI 28

Data Movement Study

* To study data movement during tab switching,
we emulate a user switching through 50 tabs

We make two key observations:

1 Compression and decompression
contribute tol8.1% of the total system energy

2 19.6 GB of data moves between
CPU and ZRAM

SAFARI

29

Can We Use PIM to Mitigate the Cost?

 CPU-Only time CPU +PIM

IWmnmy uw
Swap out N pages - Swap out N pages

-

data movement | No Off"Ch'P data

: mov'ement
Ouher s [

compression

v

PIM core and PIM accelerator are feasible to

implement in-memory compression/decompression

SAFARI 30

Tab Switching Wrap Up

A large amount of data movement happens
during tab switching as Chrome attempts to
compress and decompress tabs

Both functions can benefit from PIM execution

and can be implemented as PIM logic

SAFARI 31

More on PIM for Mobile Devices

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand* Saugata Ghose’ Youngsok Kim*
Rachata Ausavarungnirun’ Eric Shiv> Rahul Thakur’ ~ Daehyun Kim*”
Aki Kuusela® Allan Knies®> Parthasarathy Ranganathan® Onur Mutlu™!

SAFARI 27

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Truly Distributed GPU Processing with PIM?

__global__

void applyScaleFactorsKernel(uint8_ T * const out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols)

// Work out which pixel we are working on.

const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:;
const int colldx = blockIdx.y:

const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if(rowIdx >= numRows) return;

// Compute the index of my element

3 D-StaCked memory size_t linearIdx = rowIdx + colIdx*numRows +

sliceIdx*numRows*numCols;

(memory stack) SM (Streaming Multiprocessor)

<. Logic layer

Logic layer
SM
1

Crossbar switch
| I

Vault| |Vault
Ctrl Ctrl

Accelerating GPU Execution with PIM (I)

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi Gwangsun Kim* Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu$? Stephen W. Keckler!

ICarnegie Mellon University 'NVIDIA *KAIST SETH Ziirich

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Accelerating GPU Execution with PIM (1I)

= Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik® Xulong Tang* Adwait Jog> Onur Kayiran?
Asit K. Mishra* Mahmut T. Kandemirt Onur Mutlu>¢ Chita R. Das!

'Pennsylvania State University =~ *College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs °ETH Zirich ¢Carnegie Mellon University

SAFARI 3

https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/

Accelerating linked Data Structures

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,

"Accelerating Pointer Chasing in 3D-Stacked Memory:

Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer

Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia SETH Ziirich

SAFARI ol

https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/

Accelerating Dependent Cache Misses

= Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

'Accelerating Dependent Cache Misses with an Enhanced

Memory Controller”
Proceedings of the 43rd International Symposium on Computer

Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib', Eiman Ebrahimi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin TApple *NVIDIA SETH Ziirich & Carnegie Mellon University

SAFARI 32

https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf

Accelerating Runahead Execution

= Milad Hashemi, Onur Mutlu, and Yale N. Patt,

'Continuous Runahead: Transparent Hardware Acceleration for

Memory Intensive Workloads"
Proceedings of the 49th International Symposium on

Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

Continuous Runahead: Transparent Hardware Acceleration
for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin SETH Ziirich

SAFARI 33

https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf

Several Questions in 3D-Stacked PIM

= What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?

a By changing the entire system
o By performing simple function offloading

= | What is the minimal processing-in-memory support we can
provide?

ith minimal changes to system and programming

SAFARI 34

PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture”
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn Sungjoo Yoo Onur Mutlu’ Kiyoung Choi
junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University TCarnegie Mellon University

SAFARI

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf

PEI: PIM-Enabled Instructions (Ideas)

Goal: Develop mechanisms to get the most out of near-data
processing with minimal cost, minimal changes to the system, no
changes to the programming model

Key Idea 1: Expose each PIM operation as a cache-coherent,
virtually-addressed host processor instruction (called PEI) that
operates on only a single cache block

0 e.g., __pim_add(&w.next_rank, value) = pim.add r1, (r2)

No changes sequential execution/programming model

No changes to virtual memory

Minimal changes to cache coherence

No need for data mapping: Each PEI restricted to a single memory module

o O O O

Key Idea 2: Dynamically decide where to execute a PEI (i.e., the
host processor or PIM accelerator) based on simple locality
characteristics and simple hardware predictors

o Execute each operation at the location that provides the best performance

SAFARI 36

Simple PIM Operations as ISA Extensions (II)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

w.next_rank += value;

Main Memory

64 bytes in - PR — et
64 bytes out |

Conventional Architecture

SAFARI 37

Simple PIM Operations as ISA Extensions (I1I)

for (v: graph.vertices) {
—_ H %k .
value = weight * v.rank; oim.add r1, (r2)
for (w: v.successors) {

__pim_add(&w.next_rank, value);

Main Memory

"

Sbytesin [EEEm—————m
O bytesout |

In-Memory Addition

SAFARI 38

Always Executing in Memory? Not A Good Idea

60%

50%
(0)
40% Increased
30% Memory Bandwidth
20% Consumption
10% - Caching very effective l
0% ‘ \ —

Speedup

[

-10%
-20%

Reduced Memory Bandwidth

Consumption due to
In-Memory Computation

L

N

20C

S
G4

p2p-Gnu
tella31
web-
Stanford
amazon-
2008
Jourr
ljour

soc-Slash
soc-L

dot0811

More Vertices

—
SAFARI 39

PEIL: PIM-Enabled Instructions (Example)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
__pim_add(&w.next_rank, value);

pim.add r1, (r2)

} Table 1: Summary of Supported PIM Operations
} Operation R W Input Output Applications
pfe nce 8-byte integer increment O O Obytes Obytes AT
pfe nce () . 8-byte integer min O O 8bytes Obytes BFS, SP, WCC
4 Floating-point add O O 8bytes Obytes PR
Hash table probing O X 8bytes 9bytes HJ
Histogram bin index O X 1byte 16bytes HG, RP
Euclidean distance O X 64bytes 4bytes SC
Dot product O X 32bytes 8bytes SVM

Executed either in memory or in the processor: dynamic decision
o Low-cost locality monitoring for a single instruction

Cache-coherent, virtually-addressed, single cache block only

Atomic between different PEIs

Not atomic with normal instructions (use pfence for ordering)

SAFARI

40

PIM-Enabled Instructions

Key to practicality: single-cache-block restriction
a Each PEI can access at most one last-level cache block
o Similar restrictions exist in atomic instructions

Benefits

o Localization: each PEI is bounded to one memory module

o Interoperability: easier support for cache coherence and
virtual memory

o Simplified locality monitoring: data locality of PEIs can be
identified simply by the cache control logic

SAFARI

PEI: Initial Evaluation Results

= Initial evaluations with 10 emerging data-intensive workloads
o Large-scale graph processing

QO In- memory data ana Iytlcs Table 2: Baseline Simulation Configuration
o Machine learning and data mining Component _ Configuration
Core 16 out-of-order cores, 4 GHz, 4-issue
1 1 L1 I/D-Cache Private, 32 KB, 4/8-way, 64 B blocks, 16 MSHRs
J Th ree In pUt SetS (Sma I ll med Iu ml Ia rge) L2 Cache Private, 256 KB, 8-way, 64 B blocks, 16 MSHRs
1 L3 Cache Shared, 16 MB, 16-way, 64 B blocks, 64 MSHRs
for eaCh Workload to a na Iyze the I m paCt On-Chip Network Crossbar, 2 GHz, 144-bit links
i Main Memory 32 GB, 8 HMCs, daisy-chain (80 GB/s full-duplex)
Of data Ioca I Ity HMC 4 GB, 16 vaults, 256 DRAM banks [20]
- DRAM FR-FCFS, tCL = tRCD = tRP = 13.75 ns [27]

— Vertical Links 64 TSVs per vault with 2 Gb/s signaling rate [23]

= Pin-based cycle-level x86-64 simulation

= Performance Improvement and Energy Reduction:
= 47% average speedup with large input data sets
= 32% speedup with small input data sets
= 25% avg. energy reduction in a single node with large input data sets

SAFARI 42

Evaluated Data-Intensive Applications

Ten emerging data-intensive workloads

o Large-scale graph processing

Average teenage follower, BFS, PageRank, single-source shortest
path, weakly connected components

o In-memory data analytics
Hash join, histogram, radix partitioning
o Machine learning and data mining
Streamcluster, SVM-RFE

Three input sets (small, medium, large) for each workload
to show the impact of data locality

SAFARI

PEI Performance Delta: Large Data Sets

70%

60%

50%

40%

30%

20%

10%

0%

(Large Inputs, Baseline: Host-Only)

WCC

B PIM-Only @ Locality-Aware

SVM GM

SAFARI

44

Normalized Amount of Off-chip Transfer

ATF BFS PR SP WCC HJ HG RP SC
W Host-Only BEPIM-Only [Locality-Aware

PEI Performance Delta: Small Data Sets

60%

40%

20%

0%

-20%

-40%

-60%

—

ATF

(Small Inputs, Baseline: Host-Only)

" r [[[f

BFS

PR

SP WCC HJ HG
M PIM-Only @ Locality-Aware

RP

SC

SVM GM

SAFARI

46

Normalized Amount of Off-chip Transfer

8
7
6
5
4
3
2
1
0

dhdddl.d

W Host-Only BEPIM-Only [Locality-Aware

SC

PEI Performance Delta: Medium Data Sets

(Medium Inputs, Baseline: Host-Only)
70%

60%

50%
40%

30%

- § 11 i

ATF BFS PR SP WCC HJ HG RP SC SVM GM
-10%

M PIM-Only @ Locality-Aware

SAFARI 48

PEI Energy Consumption

15 Host-Only
PIM-Only
Locality-Aware
1
0.5
0
Small Medium Large
W Cache B HMC Link @ DRAM
[0 Host-side PCU O Memory-side PCU [PMU

SAFARI

49

PEI: Advantages & Disadvantages

Advantages

+ Simple and low cost approach to PIM

+ No changes to programming model, virtual memory
+ Dynamically decides where to execute an instruction

Disadvantages

- Does not take full advantage of PIM potential
- Single cache block restriction is limiting

SAFARI

50

Simpler PIM: PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture”
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn Sungjoo Yoo Onur Mutlu’ Kiyoung Choi
junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University TCarnegie Mellon University

SAFARI

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf

Automatic Code and Data Mapping

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi Gwangsun Kim* Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu$? Stephen W. Keckler!

ICarnegie Mellon University 'NVIDIA *KAIST SETH Ziirich

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Automatic Offloading of Critical Code

= Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

'Accelerating Dependent Cache Misses with an Enhanced

Memory Controller”
Proceedings of the 43rd International Symposium on Computer

Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib', Eiman Ebrahimi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin TApple *NVIDIA SETH Ziirich & Carnegie Mellon University

SAFARI >3

https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf

Automatic Ottloading ot Pretetch Mechanisms

= Milad Hashemi, Onur Mutlu, and Yale N. Patt,

'Continuous Runahead: Transparent Hardware Acceleration for

Memory Intensive Workloads"
Proceedings of the 49th International Symposium on

Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

Continuous Runahead: Transparent Hardware Acceleration
for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin SETH Ziirich

SAFARI >4

https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf

Eftficient Automatic Data Coherence Support

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
TEEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel’, Hasan Hassan'$, Brandon Lucia’,
Kevin Hsieht, Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*f

f Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich

SAFARI >

https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

Eftficient Automatic Data Coherence Support

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutluy,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators”
Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

CoNDA: Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand" Saugata Ghose' Minesh Patel* Hasan Hassan™
Brandon Lucia’ Rachata Ausavarungnirun’* Kevin Hsieh'
Nastaran Hajinazar®" Krishna T. Malladi® Hongzhong Zheng® Onur Mutlu**

"Carnegie Mellon University *ETH Zurich *KMUTNB
°Simon Fraser University $Samsung Semiconductor, Inc.

SAFARI >0

https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/

Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)
Computing Architectures

SAFARI

Challenge and Opportunity for Future

Fundamentally
High-Performance
(Data-Centric)
Computing Architectures

SAFARI

Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement

SAFARI

Sub-Agenda: In-Memory Computation

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices

o Top Down: Pull from Systems and Applications
Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion

SAFARI 60

Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory

SAFARI

Barriers to Adoption of PIM

1. Functionality of and applications & software for PIM

2. Ease of programming (interfaces and compiler/HW support)
3. System support: coherence & virtual memory

4. Runtime and compilation systems for adaptive scheduling,
data mapping, access/sharing control

5. Infrastructures to assess benefits and feasibility

All can be solved with change of mindset

SAFARI 62

We Need to Revisit the Entire Stack

SW/HW Interface

We can get there step by step

SAFARI

63

PIM Review and Open Problems

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Onur Mutlu®®, Saugata Ghose®, Juan Gémez-Luna?, Rachata Ausavarungnirun®®

“ETH Ziirich
bCarnegie Mellon University
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory

Computation”
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

SAFARI https: / /arxiv.org/pdf/1903.03988.pdf 64

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf

PIM Review and Open Problems (1I)

A Workload and Programming Ease Driven Perspective of Processing-in-Memory
Saugata Ghose’ Amirali Boroumand® Jeremie S. Kim™ Juan Gémez-Luna® Onur Mutlu®'

"Carnegie Mellon University SETH Ziirich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on
Hardware for Artificial Intelligence, to appear in November 2019,

[Preliminary arXiv version]

SAFARI https: / /arxiv.org/pdf/1907.12947.pdf 65

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf

Key Challenge 1: Code Mapping

* Challenge 1: Which operations should be executed
in memory vs.in CPU!? ey

3D-stacked memory
(memory stack)

void applyScaleFactorsKernel(uint8_ T * const out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols)
{
e // Work out which pixel we are working on.
const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:;
EEEEEEEERENm const int colldx = blockIdx.y:
const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if(rowIdx >= numRows) return;

// Compute the index of my element

size_t linearIdx = rowIdx + colIdx*numRows +
sliceIdx*numRows*numCols;

SM (Streaming Multiprocessor)

*
*
*
*

?

JIIIIIIIIIIII

<. Logic layer

, ¥

P Logic layer

Main GPU

/ SM
|
Crossbar switch

[I
. Vault| ... [Vault
N Ctrl Ctrl

Key Challenge 2: Data Mapping

* Challenge 2: How should data be mapped to
different 3D memory stacks!?

3D-stacked memory
(memory stack) SM (Streaming Multiprocessor)

’—— ’9——~
/’

*
*
*
*
03
v
*
*

\
<-.!Logic layer
P g y'

\
-

\ SM

Logic layer

/

/ i

Crossbar switch

Vault

Sl Ctrl

Vault
Ctrl

How to Do the Code and Data Mapping?

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi Gwangsun Kim* Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu$? Stephen W. Keckler!

ICarnegie Mellon University 'NVIDIA *KAIST SETH Ziirich

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

How to Schedule Code? (I)

= Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik® Xulong Tang* Adwait Jog> Onur Kayiran?
Asit K. Mishra* Mahmut T. Kandemir® ~ Onur Mutlu?¢ Chita R. Das!

'Pennsylvania State University = *College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs °ETH Zirich ¢Carnegie Mellon University

SAFARI 69

https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/

How to Schedule Code? (1)

= Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

'Accelerating Dependent Cache Misses with an Enhanced

Memory Controller”
Proceedings of the 43rd International Symposium on Computer

Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib', Eiman Ebrahimi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin TApple *NVIDIA SETH Ziirich & Carnegie Mellon University

SAFARI 70

https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf

How to Schedule Code? (111)

= Milad Hashemi, Onur Mutlu, and Yale N. Patt,

'Continuous Runahead: Transparent Hardware Acceleration for

Memory Intensive Workloads"
Proceedings of the 49th International Symposium on

Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

Continuous Runahead: Transparent Hardware Acceleration
for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin SETH Ziirich

SAFARI 7

https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf

Coherence for Hybrid CPU-PIM Apps

Challenge

Traditional

o > = S
°___E HE R
a | L o
S o m O 28|z C%
o > =
BN B B|E|O m 2
....... UEBIAID
===- 8¢I-dV1lH 0
[a)
=
95¢-dV1H =
)ueyasded
G
lipey =
Ll
sjuauodwo)
AL e T T T -L V—cmzmmm&
S
npey =
| o=
G
sjuauodwo)
T ToE77%)ueyoSeq
=
lipey x
©
sjuauodwo)

72

SAFARI

How to Maintain Coherencer (I)

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
TEEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel’, Hasan Hassan'$, Brandon Lucia’,
Kevin Hsieht, Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*f

f Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich

SAFARI 73

https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

How to Maintain Coherencer (I1)

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutluy,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators”
Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

CoNDA: Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand" Saugata Ghose' Minesh Patel* Hasan Hassan™
Brandon Lucia’ Rachata Ausavarungnirun’* Kevin Hsieh'
Nastaran Hajinazar®" Krishna T. Malladi® Hongzhong Zheng® Onur Mutlu**

"Carnegie Mellon University *ETH Zurich *KMUTNB
°Simon Fraser University $Samsung Semiconductor, Inc.

SAFARI 74

https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/

CoNDA:

Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand

Saugata Ghose, Minesh Patel, Hasan Hassan,
Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,
Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng,

Onur Mutlu

SAFARI CarnegieMellon @
g E ' H Ziirich

Specialized Accelerators

Specialized accelerators are now everywhere!

Ll FPGAs — -

FPGA ASIC

Recent advancement in 3D-stacked technology
enabled Near-Data Accelerators (NDA)

SAFARI 76

Coherence For NDAs

Challenge: Coherence between NDAs and CPUs

(1) Large cost of
off-chip communication

(2) NDA applications generate NDA
a large amount of off-chip data movement

It is impractical to use traditional coherence protocols

SAFARI 77

Existing Coherence Mechanisms

We extensively study existing NDA coherence
mechanisms and make three key observations:

1 These mechanisms eliminate
a significant portion of NDA'’s benefits

2 The majority of off-chip coherence traffic
generated by these mechanisms is unnecessary

Much of the off-chip traffic can be eliminated
3 if the coherence mechanism has insight
into the memory accesses

SAFARI 78

An Optimistic Approach

We find that an optimistic approach to coherence can
address the challenges related to NDA coherence

| Gain insights before any coherence checks happens

2 Perform only the necessary coherence requests

SAFARI 79

CoNDA

We propose CoNDA, a mechanism that uses optimistic
NDA execution to avoid unnecessary coherence traffic

CPU NDA
:CPU Thread
_Execution | =" 1Offloag npaso l
Concurrent Optimistic
. CPU + NDA "
Execution execution

v
SAFARI 80

CoNDA

We propose CoNDA, a mechanism that uses optimistic
NDA execution to avoid unnecessary coherence traffic

CPU NDA

iCPU Thread
. Execution

__

. Concurrent
' CPU + NDA
: Execution)
""""""""""" Send Sig

Coherence Request
atures_

CoNDA comes within 10.4% and 4.4% of performance

and energy of an ideal NDA coherence mechanism
7 Ne-execyt,

CoNDA:

Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand

Saugata Ghose, Minesh Patel, Hasan Hassan,
Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,
Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng,

Onur Mutlu

SAFARI CarnegieMellon @
g E ' H Ziirich

How to Maintain Coherencer (I1)

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutluy,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators”
Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

CoNDA: Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand" Saugata Ghose' Minesh Patel* Hasan Hassan™
Brandon Lucia’ Rachata Ausavarungnirun’* Kevin Hsieh'
Nastaran Hajinazar®" Krishna T. Malladi® Hongzhong Zheng® Onur Mutlu**

"Carnegie Mellon University *ETH Zurich *KMUTNB
°Simon Fraser University $Samsung Semiconductor, Inc.

SAFARI 83

https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/

How to Support Virtual Memory?

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,

"Accelerating Pointer Chasing in 3D-Stacked Memory:

Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer

Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia SETH Ziirich

SAFARI 84

https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/

How to Design Data Structures tor PIM?

= Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,
"Concurrent Data Structures for Near-Memory Computing"
Proceedings of the 29th ACM Symposium on Parallelism in Algorithims
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]

Concurrent Data Structures for Near-Memory Computing

Zhiyu Liu Irina Calciu
Computer Science Department VMware Research Group
Brown University icalciu@vmware.com
zhiyu_liu@brown.edu
Maurice Herlihy Onur Mutlu
Computer Science Department Computer Science Department
Brown University ETH Ziirich
mph@cs.brown.edu onur.mutlu@inf.ethz.ch

SAFARI 85

https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17.pdf
https://spaa.acm.org/
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pdf

Simulation Infrastructures for PIM

= Ramulator extended for PIM

Q

Q

Q

Flexible and extensible DRAM simulator
Can model many different memory standards and proposals

Kim+, "Ramulator: A Flexible and Extensible DRAM
Simulator”, IEEE CAL 2015.

https://github.com/CMU-SAFARI/ramulator-pim

https://qgithub.com/CMU-SAFARI/ramulator

[Source Code for Ramulator-PIM]

Ramulator: A Fast and Extensible DRAM Simulator

Yoongu Kim' Weikun Yang’? Onur Mutlu!
ICarnegie Mellon University ~ ?Peking University

SAFARI 86

https://github.com/CMU-SAFARI/ramulator-pim
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator-pim

Performance & Energy Models for PIM

= Gagandeep Singh, Juan Gomez-Luna, Giovanni Mariani, Geraldo F.
Oliveira, Stefano Corda, Sander Stujik, Onur Mutlu, and Henk Corporaal,
"NAPEL: Near-Memory Computing Application Performance
Prediction via Ensemble Learning”

Proceedings of the 56th Design Automation Conference (DAC), Las Vegas,
NV, USA, June 2019.

[Slides (pptx) (pdf)]

[Poster (pptx) (pdf)]

[Source Code for Ramulator-PIM]

NAPEL: Near-Memory Computing Application Performance
Prediction via Ensemble Learning

Gagandeep Singh** Juan Gémez-Luna” Giovanni Mariani® Geraldo F. Oliveira®
Stefano Corda®‘ Sander Stuijk® Onur Mutlu? Henk Corporaal®
“Eindhoven University of Technology PETH Ziirich “IBM Research - Zurich

SAFARI 87

https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19.pdf
https://dac.com/
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-poster.pdf
https://github.com/CMU-SAFARI/ramulator-pim

An FPGA-based Test-bed for PIM?

= Hasan Hassan et al., SoftMC: A o H;at/ t
Flexible and Practical Open- Chamber '
Source Infrastructure for ’\ »
Enabling Experimental DRAM Epy }! i
Studies HPCA 2017. - =Ga,
keS| Host
/"%]E Machme
= Flexible "
¥ iTlemp> ﬂ,
= Easy to Use (C++ API) Controller
= Open-source Heater : T

i

github.com/CMU-SAFARI/SoftMC

SAFARI 58

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

Simulation Infrastructures for PIM (in SSDs)

= Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati,
Saugata Ghose, and Onur Mutlu,

"MQOSim: A Framework for Enabling Realistic Studies of
Modern Multi-Queue SSD Devices"

Proceedings of the 16th USENIX Conference on File and Storage

lechnologies (FAST), Oakland, CA, USA, February 2018.
Slides (pptx) (pdf)]
[Source Code]

MQSim: A Framework for Enabling Realistic Studies of

Modern Multi-Queue SSD Devices

Arash Tavakkol”, Juan Gémez-Luna’, Mohammad Sadrosadati’, Saugata Ghose*, Onur Mutlu*
YETH Ziirich *Carnegie Mellon University

SAFARI 59

https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim

New Applications and Use Cases for PIM

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies"

BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

GRIM-Filter: Fast seed location filtering in
DNA read mapping using

processing-in-memory technologies

Jeremie S. Kim'®", Damla Senol Cali', Hongyi Xin?, Donghyuk Lee3, Saugata Ghose',
Mohammed Alser*, Hasan Hassan®, Oguz Ergin®, Can Alkan*" and Onur Mutlu®'”

From The Sixteenth Asia Pacific Bioinformatics Conference 2018
Yokohama, Japan. 15-17 January 2018

SAFARI 20

http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf

SAFARI

Genome Read In-Memory (GRIM) Filter:

Fast Seed Location Filtering in DNA Read Mapping
using Processing-in-Memory Technologies

Jeremie Kim,
Damla Senol, Hongyi Xin, Donghyuk Lee,
Saugata Ghose, Mohammed Alser, Hasan Hassan,
Oguz Ergin, Can Alkan, and Onur Mutlu

AN Emzicich

TOBB
UNIVERSITY OF
ECONOMICS AND TECHNOLOGY

Carnegie Mellon

Executive Summary

Genome Read Mapping is a very important problem and is the first
step in many types of genomic analysis

o Could lead to improved health care, medicine, quality of life

Read mapping is an approximate string matching problem
o Find the best fit of 100 character strings into a 3 billion character dictionary

o Alignment is currently the best method for determining the similarity between
two strings, but is very expensive

We propose an in-memory processing algorithm GRIM-Filter for
accelerating read mapping, by reducing the number of required
alignments

We implement GRIM-Filter using in-memory processing within 3D-
stacked memory and show up to 3.7x speedup.

SAFARI 2

Google Workloads

for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

SAFARI CarnegieMellon Google

PSnmsuncg

\?;
A 0

WER® SEOUL
ghy Lo ETH:..

77 UNIVERSITY

\d,&««r

PIM Review and Open Problems

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Onur Mutlu®®, Saugata Ghose®, Juan Gémez-Luna?, Rachata Ausavarungnirun®®

“ETH Ziirich
bCarnegie Mellon University
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory

Computation”
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

SAFARI https: / /arxiv.org/pdf/1903.03988.pdf)4

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf

PIM Review and Open Problems (1I)

A Workload and Programming Ease Driven Perspective of Processing-in-Memory
Saugata Ghose’ Amirali Boroumand® Jeremie S. Kim™ Juan Gémez-Luna® Onur Mutlu®'

"Carnegie Mellon University SETH Ziirich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on
Hardware for Artificial Intelligence, to appear in November 2019,

[Preliminary arXiv version]

SAFARI https: / /arxiv.org/pdf/1907.12947.pdf 75

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf

Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)
Computing Architectures

SAFARI

Challenge and Opportunity for Future

Fundamentally
High-Performance
(Data-Centric)
Computing Architectures

SAFARI

Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement

SAFARI

One Important Takeaway

Main Memory Needs
Intelligent Controllers

SAFARI

Enabling the Paradigm Shift

Recall: Computer Architecture Today

You can revolutionize the way computers are built, if you
understand both the hardware and the software (and
change each accordingly)

You can invent new paradigms for computation,
communication, and storage

Recommended book: Thomas Kuhn, “The Structure of
Scientific Revolutions” (1962)
o Pre-paradigm science: no clear consensus in the field

o Normal science: dominant theory used to explain/improve
things (business as usual); exceptions considered anomalies

o Revolutionary science: underlying assumptions re-examined

101

Recall: Computer Architecture Today

You can revolutionize the way computers are built, if you
understand both the hardware and the software (and
change each accordingly) -

WITH AN INTRODUCTORY ESSAY BY AN HACK]

0 Pre-parci s ieaive s.KUH? ¢ a8 | eld

things (™%
o Revoluti

anomalies
examined

102

UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandwidth

H 8GB/128xDPU PIM R-DIMM Module

LPMEM UPMEM LIPNEM UPMEM LIPMIENE UPREM UPMEM
Pir PrinA PIM PiMA Pin PiM
chip dhip chip i chip ¢ hip

https:/fwww.anandtech.com/show/14750/hot-chips-3 T-analysis-inmemory-processing-by-upmem 103
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

Sub-Agenda: In-Memory Computation

Major Trends Affecting Main Memory
The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices
o Top Down: Pull from Systems and Applications

Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion

SAFARI 104

Maslow’s Hierarchy of Needs, A Third Time

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Self- Self-fulfillment
Maslow, “Motivation and Personality,” actualization: '\ needs
Book, 1954-1970.
Speed
achvihes

needs
Belongi needs:

intim Speed ands |
Speed _—

SA FA Rl Source: https://www.simplypsychology.org/maslow.html 105

Challenge and Opportunity for Future

Fundamentally
High-Performance
(Data-Centric)
Computing Architectures

SAFARI

Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)
Computing Architectures

SAFARI

Challenge and Opportunity for Future

Fundamentally
Low-Latency
(Data-Centric)
Computing Architectures

SAFARI

Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement

SAFARI

PIM: Concluding Remarks

A Quote from A Famous Architect

= architecture [...] based upon principle, and not upon
precedent”

111

Precedent-Based Design?

= architecture [...] based upon principle, and not upon
precedent”

Principled Design

= architecture [...] based upon principle, and not upon
precedent”

114

The Overarching Principle

Organic architecture

From Wikipedia, the free encyclopedia

Organic architecture is a philosophy of architecture which promotes harmony
between human habitation and the natural world through design approaches so
sympathetic and well integrated with its site, that buildings, furnishings, and
surroundings become part of a unified, interrelated composition.

A well-known example of organic architecture is Fallingwater, the residence Frank Lloyd Wright
designed for the Kaufmann family in rural Pennsylvania. Wright had many choices to locate a
home on this large site, but chose to place the home directly over the waterfall and creek creating
a close, yet noisy dialog with the rushing water and the steep site. The horizontal striations of
stone masonry with daring cantilevers of colored beige concrete blend with native rock
outcroppings and the wooded environment.

115

Another Example: Precedent-Based Design

Source: http://cookiemagik.deviantart.com/art/Train-station-207266944

Principled Design

Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256

.é

\
!

—
.o

-m

M
)

d“h

U

I |

Another Principled Design

Source: By Martin Gomez Tagle - Lisbon, Portugal, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13764903 118
Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/

Another Principled Design

Source: CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=172107 119

Pr1nc1ple Apphed to Another Structure

https://commons.wikimedia.org/w/index.php?curid=31493356

The Overarching Principle

Zoomorphic architecture

From Wikipedia, the free encyclopedia

Zoomorphic architecture is the practice of using animal
forms as the inspirational basis and blueprint for architectural
design. "While animal forms have always played a role adding
some of the deepest layers of meaning in architecture, it is
now becoming evident that a new strand of biomorphism is
emerging where the meaning derives not from any specific
representation but from a more general allusion to biological
processes."]

Some well-known examples of Zoomorphic architecture can be found in the TWA
Flight Center building in New York City, by Eero Saarinen, or the Milwaukee Art

Museum by Santiago Calatrava, both inspired by the form of a bird’s wings.!3!
121

Overarching Principle for Computing?

Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg

Concluding Remarks

= It is time to design principled system architectures to solve
the memory problem

= Design complete systems to be balanced, high-performance,
and energy-efficient, i.e., data-centric (or memory-centric)

= Enable computation capability inside and close to memory

= This can

o Lead to orders-of-magnitude improvements

o Enable new applications & computing platforms
o Enable better understanding of nature
Q

123

The Future of Processing in Memory 1s Bright

= Regardless of challenges
a in underlying technology and overlying problems/requirements

Problem
Can enable: Yet, we have to
- Orders of magnitude Program/Language - Think across the stack
improvements System Software

SW/HW Interface - Design enabling systems

- New applications and
computing systems

SAFARI 124

We Need to Revisit the Entire Stack

SW/HW Interface

We can get there step by step

SAFARI 125

If In Doubt, See Other Doubttul Technologies

A very “doubtful” emerging technology
o for at least two decades

§H'H+ S Proceedings of the IEFE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error
characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.

By Yu Cai, SaucaTta GHOsE, EricH F. HARATSCH, YIXIN Luo, AND ONUR MUTLU

SAFARI https:/ /arxiv.org/pdf/1706.08642 126

https://arxiv.org/pdf/1706.08642

Flash Memory Timeline

Flash Memory Timelin

SAFARI

(Vo
(@)}
e |

Dawon Kahng and
Simon M. Sze invent the
tle Memory

Labs: this is published as
A Floating G
Application to M

S:

Lifetime Achi
Award

mory (EPROM
this is published
Behavior
in a Floating-Gate
Avalanche-Injection
MOS (FAMOS) Structure’
n April 1971 (Applied
Physics Letters), which
cited the 1967 Kahng;
Sze Bell Labs Floating

Gate publication

Conduction
g of
trons in Highly
d Thin Films of
Thermal SIO:” (Applied
Physics Letters)

Eli Harari of Hughes
Microelectronics
publishes “Dielectric
Breakdown in
Electrically Stressed
Thin Films of Thermal
Si0:" (Journal of Applied
Physics)

Hughes
Microelectronics
introducesifirst CMOS
NOVRAM 256- bit chip
{non-volatile SRAM)
employing Fowler
Nordheim floating gate
EEPROM at IEEE

1SSCC

IEEE Solid State Circuits
publishes paper titied
“An Electrically Alterable
Non-Volatile Memory
Cell Using Floating Gate
Structure” by Guterman,
Rinawi, Chieu,
Holvorson, and McElroy
of Texas Instruments

Hughes
Microelectronics
introduces the 3108,
first CMOS EEPROM
8Kb chip employing
Fowler Nordheim
tunneling

Intel introduces the
2816, 16Kb HMOS
EEPROM employing
Fowler Nordheim
tunneling

=g :
Flash Memory Summit

British scientist and

‘ inventor Kane Kramer
designs first digital
audio player (IXI) based
on magnetic bubble
memory chips

SEEQ Technology:
introduces the 218,
first EEPROM with
on-chip charge pump.
for in-system write and
erase, an invention used
in all flash memory
devices

Intel introduces 2817A
16Kb EEPROM

First paper describing
flash EEPROM
ed

Electron Devices
Meeting (EDM) in
San Francisco; Fujo
Masuoka went on to
receive the 2013 FMS
Lifetime Achievement
Awarg

Inte! begins
process dev

Flash Memory Timeline

$49.727,000,000 $56.227,000,000
NGO Systems shps FMS 2020 August 4-6
Santa Clara Convention
:.J\J*M'hx’d Center

Storage

V-NAND w

Spansion

companses sarm

Email your suggested s
additions and changes to
timeline@FlashMemorySummit.com

SAFARI

PIM Review and Open Problems

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Onur Mutlu®®, Saugata Ghose®, Juan Gémez-Luna?, Rachata Ausavarungnirun®®

“ETH Ziirich
bCarnegie Mellon University
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory

Computation”
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

SAFARI https: / /arxiv.org/pdf/1903.03988.pdf 129

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf

PIM Review and Open Problems (1I)

A Workload and Programming Ease Driven Perspective of Processing-in-Memory
Saugata Ghose’ Amirali Boroumand® Jeremie S. Kim™ Juan Gémez-Luna® Onur Mutlu®'

"Carnegie Mellon University SETH Ziirich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on
Hardware for Artificial Intelligence, to appear in November 2019,

[Preliminary arXiv version]

SAFARI https:/ /arxiv.org/pdf/1907.12947.pdf 130

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf

Computer Architecture
Lecture 8: Computation in Memory 111

Prof. Onur Mutlu
ETH Zurich
Fall 2019
11 October 2019

Accelerating linked Data Structures

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,

"Accelerating Pointer Chasing in 3D-Stacked Memory:

Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer

Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia SETH Ziirich

SAFARI 152

https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/

Executive Summary

* Our Goal: Accelerating pointer chasing inside
main memory

* Challenges: Parallelism challenge and Address
translation challenge

* Our Solution: In-Memory Polnter Chasing
Accelerator (IMPICA)

* Address-access decoupling: enabling parallelism in the
accelerator with low cost

* IMPICA page table: low cost page table in logic layer

* Key Results:

* 12X - 1.9X speedup for pointer chasing operations, +16%
database throughput

* 6% - 41% reduction in energy consumption
133

Linked Data Structures

* Linked data structures are widely used
in many important applications

Key Value
Data Storane 11

Linked data structures are
connected by pointers

-
§:ﬂ g

Key 1—

Key2>_

NV

L 3|4 5|6 |7
.||. | .lf. | .I\.[.l —
o I R — ~

941 9 d3 dy dg dg d

B-Tree Hash Table

134

The Problem: Pointer Chasing

* Traversing linked data structures
requires chasing pointers

CPU

Serialized and irregular access pattern
6X cycles per instruction in real workloads

135

Our Goal

Accelerating pointer chasing
inside main memory

_—
—
—
—
—
-
p—
==
e
p—
p—
—
— -

Logic layer 136

Parallelism Challenge

! ’Time

M
CPU core {COmpI emory IComp]

access
CPU core Lcompl Memory ICOinp}

access

In-Memory Comp Memory Comp Comp emory ompl
Accelerator access access :

slower for two operatlons

137

Parallelism Challenge and Opportunity

* A simple in-memory accelerator can
still be slower than multiple CPU cores

CPU core CPU core CPU core

T

Accelerator

* Opportunity: a pointer-chasing
accelerator spends a long time
waiting for memory

{Compl Memory access (10-15X of Comp) ICompJ

138

Our Solution:
Address-Access Decoupling

> Time

dCCessS

CPU core {COmpI Memory ICOmp}

CPU core (CnmnT Memorv Y >

Address-access decoupling enables ;
Addr rallellsm in both englnes W|th low co

Memory
Access access

Engine Memory
access

139

IMPICA Core Architecture
DRAM

|
DRAM Layers

Logic Layer

Memory
Lrtieis Controller

Cache
Access Queue t

Request Queue |
}_.> Address ‘ > Access
Engine «— «— Engine
Traversal
|l Response Queue
Traversal| o
Tq" 5 |CPU

Address Translation Challenge

The page ¢able walk requires
multiple memory accesses

0. ‘Q

--
A d

* L4
* *

Virtual Address
] #PML4 | #PDPT

emory side

' S
Duplicating it is costly and create

compatibility

PML4 PDPT PGD PGT

-
-“‘
.

‘e,

Our Solution: IMPICA Page Table

* Completely decouple the page table of
IMPICA from the page table of the

CPUs
INEROP Rz dabilele

d data structure ‘nto IMPICA regions

Map linke eisa partial-to-anY mapping

IMPICA page tabl

] 7\

Virtual Page Physical Page

Virtual Address Space ~ Physical Address Space

142

IMPICA Page Table: Mechanism

Virtual Address ~ —
Bit [47:4 Flat page table Bit [11:0]

L saves one€ memory access

gion tab;Ie is almosté
he cache

Tiny re
always in t

5 Small Page Table
5‘(2M B) (4KB)

LN o*

Physical Address

Evaluation Methodology

* Simulator: gem5

* System Configuration

 CPU
* 4 Oo0 cores, 2GHz

e Cache:32KB L1, 1MB L2

 IMPICA
* 1 core, 500MHz, 32KB Cache

* Memory Bandwidth
* 12.8 GB/s for CPU, 51.2 GB/s for IMPICA

* Our simulator code is open source
 https://github.com/CMU-SAFARI/IMPICA

144

https://github.com/CMU-SAFARI/IMPICA

Result = Microbenchmark Performance

B Baseline + extra 128KB L2 @ IMPICA

1.9X

2.0
g. 1.5 I 1.3X 1 9%
; .
Q10 ~— - S e
Q
o
m 0‘5 l

0.0

Linked List Hash Table B-Tree

145

Result — Database Performance

1.20
1.10
1.00

Database
Throughput

o
o)
o

1.00
0.95
0.90
0.85
0.80

Database
Latency

+16%

IMPICA

Baseline + extra
128KB L2 1MB L2

Baseline + extra Baseline + extra IMPICA
128KB L2 1MB L2

146

System Energy Consumption

[Baseline + extra 128KB L2 = IMPICA

—
o

Normalized Energy
> G

Linked Hash B-Tree DBx1000
List Table

147

Area and Power Overhead

CPU (Cortex-A57)

5.85 mm? per core

L2 Cache 5 mm? per MB
Memory Controller 10 mm?
IMPICA (+32KB cache) |0.45 mm?

* Power overhead: average power

increases by 5.6%

148

