
This paper is included in the Proceedings of the
13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’18).
October 8–10, 2018 • Carlsbad, CA, USA

ISBN 978-1-939133-08-3

Open access to the Proceedings of the
13th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

ZebRAM: Comprehensive and Compatible
Software Protection Against Rowhammer Attacks

Radhesh Krishnan Konoth, Vrije Universiteit Amsterdam; Marco Oliverio, University of
Calabria/Vrije Universiteit Amsterdam; Andrei Tatar, Dennis Andriesse, Herbert Bos,

Cristiano Giuffrida, and Kaveh Razavi, Vrije Universiteit Amsterdam

https://www.usenix.org/conference/osdi18/presentation/konoth

ZebRAM: Comprehensive and Compatible
Software Protection Against Rowhammer Attacks

Radhesh Krishnan Konoth†, Marco Oliverio†§, Andrei Tatar†, Dennis Andriesse†,
Herbert Bos†, Cristiano Giuffrida† and Kaveh Razavi†

† Vrije Universiteit Amsterdam, The Netherlands
§ Università della Calabria, Italy

Abstract
The Rowhammer vulnerability common to many modern
DRAM chips allows attackers to trigger bit flips in a row
of memory cells by accessing the adjacent rows at high
frequencies. As a result, they are able to corrupt sensitive
data structures (such as page tables, cryptographic keys,
object pointers, or even instructions in a program), and
circumvent all existing defenses.

This paper introduces ZebRAM, a novel and compre-
hensive software-level protection against Rowhammer.
ZebRAM isolates every DRAM row that contains data
with guard rows that absorb any Rowhammer-induced bit
flips; the only known method to protect against all forms
of Rowhammer. Rather than leaving guard rows unused,
ZebRAM improves performance by using the guard rows
as efficient, integrity-checked and optionally compressed
swap space. ZebRAM requires no hardware modifications
and builds on virtualization extensions in commodity pro-
cessors to transparently control data placement in DRAM.
Our evaluation shows that ZebRAM provides strong se-
curity guarantees while utilizing all available memory.

1 Introduction

The Rowhammer vulnerability, a defect in DRAM chips
that allows attackers to flip bits in memory at locations
to which they should not have access, has evolved from a
mere curiosity to a serious and very practical attack vector
for compromising PCs [6], VMs in clouds [28, 37], and
mobile devices [13, 34]. Rowhammer allows attackers
to flip bits in DRAM rows simply by repeatedly reading
neighboring rows in rapid succession. Existing software-
based defenses have proven ineffective against advanced
Rowhammer attacks [4, 7], while hardware defenses are
impractical to deploy in the billions of devices already in
operation [23]. This paper introduces ZebRAM, a compre-
hensive software-based defense preventing all Rowham-
mer attacks by isolating every data row in memory with
guard rows that absorb any bit flips that may occur.

Practical Rowhammer attacks Rowhammer attacks
can target a variety of data structures, from page table
entries [30, 34, 36, 37] to cryptographic keys [28], and
from object pointers [6, 13, 32] to opcodes [14]. These
target data structures may reside in the kernel [30, 34],
other virtual machines [28], the same process address
space [6, 13], and even on remote systems [32]. The
attacks may originate in native code [30], JavaScript [6,
15], or from co-processors such as GPUs [13] and even
DMA devices [32]. The objective of the attacker may
be to escalate privileges [6, 34], weaken cryptographic
keys [28], compromise remote systems [32], or simply
lock down the processor in a denial-of-service attack [18].

Today’s defenses are ineffective Existing hardware-
based Rowhammer defenses fall into three categories: re-
fresh rate boosting, target row refresh, and error correcting
codes. Increasing the refresh rate of DRAM [21] makes
it harder for attackers to leak sufficient charge from a row
before the refresh occurs, but cannot prevent Rowham-
mer completely without unacceptable performance loss
and power consumption increase. The target row refresh
(TRR) defense, proposed in the LPDDR4 standard, uses
hardware counters to monitor DRAM row accesses and
refreshes specific DRAM rows suspected to be Rowham-
mer victims. However, TRR is not widely deployed; it
is optional even in DDR4 [20]. Moreover, researchers
still regularly observe bit flips in memory that is equipped
with TRR [29]. As for error correcting codes (ECC), the
first Rowhammer publication already argued that even
ECC-protected DRAM is susceptible to Rowhammer at-
tacks that flip multiple bits per memory word [21]. While
this is complicating attacks, they do not stop fully stop
them as shown by the recent ECCploit attack [10]. Fur-
thermore, ECC memory is unavailable on most consumer
devices.

Software defenses do not suffer from the same deploy-
ment issues as hardware defenses. These solutions can
be categorized into primitive weakening, detection, and

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 697

isolation.
Primitive weakening makes some of the steps in

Rowhammer attacks more difficult, for instance by mak-
ing it harder to obtain physically contiguous uncached
memory [30], or to create the cache eviction sets required
to access DRAM in case the memory is cached. Research
has already shown that these solutions do not fundamen-
tally prevent Rowhammer [13].

Rowhammer detection uses heuristics to detect sus-
pected attacks and refresh victim rows before they suc-
cumb to bit flips. For instance, ANVIL uses hardware
performance counters to identify likely Rowhammer at-
tacks [4]. Unfortunately, hardware performance counters
are not available on all CPUs, and some Rowhammer
attacks may not trigger unusual cache behavior or may
originate from unmonitored devices [13].

A final, and potentially very powerful defense against
Rowhammer is to isolate the memory of different security
domains in memory with unused guard rows that absorb
bit flips. For instance, CATT places a guard row between
kernel and user memory to prevent Rowhammer attacks
against the kernel from user space [7]. Unfortunately,
CATT does not prevent Rowhammer attacks between
user processes, let alone attacks within a process that aim
to subvert cryptographic keys [28]. Moreover, the lines
between security domains are often blurry, even in seem-
ingly clear-cut cases such as the kernel and user-space,
where the shared page cache provides ample opportunity
to flip bits in sensitive memory areas and launch devastat-
ing attacks [14].

ZebRAM: isolate everything from everything Given
the difficulty of correctly delineating security domains,
the only guaranteed approach to prevent all forms of
Rowhammer is to isolate all data rows with guard rows
that absorb bit flips, rendering them harmless. The
guard rows, however, break compatibility: buddy allo-
cation schemes (and certain devices) require physically-
contiguous memory regions. Furthermore, the drawback
of this approach is obvious—sacrificing 50% of memory
to guard rows is extremely costly. This paper introduces
ZebRAM, a novel, comprehensive and compatible soft-
ware protection against Rowhammer attacks that isolates
everything from everything else without sacrificing mem-
ory consumed by guard rows. To preserve compatibility,
ZebRAM remaps physical memory using existing CPU
virtualization extensions. To utilize guard rows, ZebRAM
implements an efficient, integrity-checked and optionally
compressed swap space in memory.

As we show in Section 7, ZebRAM incurs an over-
head of 5% on the SPEC CPU 2006 benchmarks. While
ZebRAM remains expensive in the memory-intensive
redis instance, our evaluation shows that ZebRAM’s in-
memory swap space significantly improves performance

0x0 0xffffffffPhysical Address Space

Memory Controller

I C I C I C I C I C I C I C I C

Memory Controller

Row Buffer

Bank 1
Bank 2

Bank 3
Bank n

Row Buffer

Bank 1
Bank 2

Bank 3
Bank n

Row 1

Row 2

Row 3

Row n

Row 1

Row 2

Row 3

Row n

X Y

X Y

Rank 0

Figure 1: DRAM organization and example mapping of
two consecutive addresses.

compared to our basic solution that leaves the guard
rows unused, in some cases eliminating over half of the
observed performance degradation. In practice, the re-
cent Meltdown/Spectre vulnerabilities show that for a
sufficiently serious threat, even expensive fixes are ac-
cepted [24]. First and foremost, however, this work inves-
tigates an extreme point in the design space of Rowham-
mer defenses: the first complete protection against all
forms of Rowhammer, without sacrificing memory, at a
cost that is a function of the workload.

Contributions Our contributions are the followings:

• We describe ZebRAM, the first comprehensive soft-
ware protection against all forms of Rowhammer.

• We introduce a novel technique to utilize guard
rows as fast, memory-based swap space, significantly
improving performance compared to solutions that
leave guard rows unused.

• We implement ZebRAM and show that it achieves
both practical performance and effective security in
a variety of benchmark suites and workloads.

• ZebRAM is open source to support future work.

2 Background

This section discusses background on DRAM organiza-
tion, the Rowhammer bug, and existing defenses.

2.1 DRAM Organization
We now discuss how DRAM chips are organized inter-
nally, which is important knowledge for launching an
effective Rowhammer attack. Figure 1 illustrates the
DRAM organization.

698 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

The most basic unit of DRAM storage is a cell that
can hold a single bit of information. Each DRAM cell
consists of two components: a capacitor and a transistor.
The capacitor stores a bit by retaining electrical charge.
Because this charge leaks away over time, the memory
controller periodically (typically every 64 ms) reads each
cell and rewrites it, restoring the charge on the capacitor.
This process is known as refreshing.

DRAM cells are grouped into rows that are typically
1024 cells (or columns) wide. Memory accesses happen at
row granularity. When a row is accessed, the contents of
that row are put in a special buffer, called the row buffer,
and the row is said to be activated. After the access, the
activated row is written back (i.e., recharged) with the
contents of the row buffer.

Multiple rows are stacked together to form banks, with
multiple banks on a DRAM integrated circuit (IC) and
a separate row buffer per bank. In turn, DRAM ICs are
grouped into ranks. DRAM ICs are accessed in parallel;
for example, in a DIMM that has eight ICs of 8 bits wide
each, all eight ICs are accessed in parallel to form a 64
bit memory word.

To address a memory word within a DRAM rank, the
system memory controller uses three addresses for the
bank, row and column, respectively. Note that the map-
ping between a physical memory address and the corre-
sponding rank-index, bank-index and row-index on the
hardware module is nonlinear. Consequently, two con-
secutive physical memory addresses can be mapped to
memory cells that are located on different ranks, banks,
or rows (see Figure 1). As explained next, knowledge of
the address mapping is vital to effective Rowhammer.

2.2 The Rowhammer Bug

As DRAM chips become denser, the capacitor charge re-
duces, allowing for increased DRAM capacity and lower
energy consumption. Unfortunately, this increases the
possibility of memory errors owing to the smaller differ-
ence in charge between a “0” bit and a “1” bit.

Research shows that it is possible to force memory er-
rors in DDR3 memory by activating a row many times
in quick succession, causing capacitors in neighboring
victim rows to leak their charge before the memory con-
troller has a chance to refresh them [21]. This rapid
activation of memory rows to flip bits in neighboring
rows is known as the Rowhammer attack. Subsequent
research has shown that bit flips induced by Rowham-
mer are highly reproducible and can be exploited in a
multitude of ways, including privilege escalation attacks
and attacks against co-hosted VMs in cloud environ-
ments [6, 15, 27, 28, 30, 34, 37].

The original Rowhammer attack [30] is now known
as single-sided Rowhammer. As Figure 2 shows, it uses

Aggressor row (k-1)

Victim row (k)
Aggressor row (k-1)

Victim row (k)

Aggressor row (k+1)

(a) Single-sided Rowhamamer attack (b) Double-sided Rowhammer attack

Figure 2: Flipping a bit in a neighboring DRAM row
through single-sided (a) and double-sided (b) Rowham-
mer attacks.

many rapid-fire memory accesses in one aggressor row
k− 1 to induce bit flips in a neighboring victim row k.
A newer variant called double-sided Rowhammer ham-
mers rows k − 1 and k + 1 on both sides of the victim
row k, increasing the likelihood of a bit flip (see Fig-
ure 2). Recent research shows that bit flips can also be
induced by hammering only one memory address [14]
(one-location hammering). Regardless of the type of ham-
mering, Rowhammer can only induce bit flips on directly
neighboring DRAM rows.

In contrast to single-sided Rowhammer, the double-
sided variant requires knowledge of the mapping of virtual
and physical addresses to memory rows. Since DRAM
manufacturers do not publish this information, this neces-
sitates reverse engineering the DRAM organization.

2.3 Rowhammer Defenses
Research has produced both hardware- and software-
based Rowhammer defenses.

The original hardware defense proposed by Kim et
al. [21] doubles the refresh rate. Unfortunately, this
has been proven insufficient to defend against Rowham-
mer [4]. Other hardware defenses include error-correcting
DRAM chips (ECC memory), which can detect and
correct a 1-bit error per ECC word (64-bit data). Un-
fortunately, ECC memory cannot correct multi-bit er-
rors [3, 23] and is not readily available in consumer hard-
ware. The new LPDDR4 standard [19] specifies two
features which together defend against Rowhammer: Tar-
get Row Refresh (TRR) enables the memory controller to
refresh rows adjacent to a certain row, and Maximum Acti-
vation Count (MAC) specifies a maximum row activation
count before adjacent rows are refreshed. Despite these
defenses, Gruss et al. [29] still report bit flips in TRR
memory.

ANVIL [4], a software defense, uses Intel’s perfor-
mance monitoring unit (PMU) to detect physical ad-
dresses that cause many cache misses indicative of
Rowhammer.1 It then recharges suspected victim rows

1Rowhammer attacks repeatedly clear hammered rows from the CPU
cache to ensure that they hammer DRAM memory, not the cache.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 699

by accessing them. Unfortunately, the PMU does not
accurately capture memory accesses through DMA, and
not all CPUs feature PMUs. Moreover, the current im-
plementation of ANVIL does not accurately take into
account DRAM address mapping and has been reported
to be ineffective because of it [31].

Another software-based defense, B-CATT [8], imple-
ments a bootloader extension to blacklist all the loca-
tions vulnerable to Rowhammer, thus wasting the mem-
ory. However, Gruss et al. [14] show that this approach
is not practical as it may blacklist over 95% of memory
locations; similar results were reported by Tatar et al. [31]
showing DIMMs with 99+% vulnerable memory loca-
tions. In addition, in our experiments, we have observed
different bit flip patterns over time for the same module,
making B-CATT incomplete.

Yet another software-based defense called CATT [7]
proposes an alternative memory allocator for the Linux
kernel that isolates user and kernel space in physical mem-
ory, thus ensuring that user-space attackers cannot flip
bits in kernel memory. However, CATT does not defend
against attacks between user-space processes, and pre-
vious work [14] shows that CATT can be bypassed by
flipping bits in the code of the sudo program.

3 Threat Model

The Rowhammer attacks found in prior research aim for
privilege escalation [6, 27, 28, 30, 34, 37, 15], compro-
mising co-hosted virtual machines [28, 37] or even attacks
over the network [32]. Our approach, ZebRAM, addresses
all these attacks through its principle of isolating memory
rows from each other. Our prototype implementation of
ZebRAM focuses only on virtual machines, stopping all
of the aforementioned attacks launched from or at a victim
virtual machine, assuming the hypervisor is trusted. We
discuss possible alternative implementations (e.g., native)
in Section 9.2.

4 Design

To build a comprehensive solution against Rowhammer
attacks, we should consider Rowhammer’s fault model:
bit flips only happen in adjacent rows when a target row
is hammered as shown in Figure 3. Given that any row
can potentially be hammered by an attacker, all rows in
the system can be abused. To protect against Rowhammer
in software, we can follow two approaches: we either
need to protect the entire memory against Rowhammer
or we need to limit the rows that the attacker can ac-
cess. Protecting the entire memory is not secure even in
hardware [23, 34] and software attempts have so far been
shown to be insecure [14]. Instead, we aim to design a

Aggressor row (k-1)

Aggressor row (k+1)

Victim row (k)Odd row

Even row

Figure 3: Hammering even-numbered rows can only in-
duce bit flips in odd-numbered rows and vice versa.

Safe region

Unsafe region

 DRAM Address
 Space

Figure 4: Splitting the memory into safe and unsafe re-
gions using even and odd rows in a zebra pattern.

system where an attacker can only hammer a subset of
rows directly.

Basic ZebRAM In order to make sure that Rowhammer
bit flips cannot target any data, we should enforce the
invariant that all adjacent rows are unused. This can
be done by making sure that either all odd or all even
rows are unused by the system. Assuming odd rows are
unused, all even rows will create a safe region in memory;
it is not possible for an attacker to flip bits in this safe
regions simply because all the odd rows are inaccessible
to the attacker. The attacker can, however, flip bits in the
odd rows by hammering the even rows in the safe region.
Hence, we call the odd rows the unsafe region in memory.
Given that the unsafe region is unused, the attacker cannot
flip bits in the data used by the system. This simple design
with its zebra pattern shown in Figure 4 already stops all
Rowhammer attacks. It however has an obvious downside:
it wastes half of the memory that makes up the unsafe
region. We address this problem later when we explain
our complete ZebRAM design.

A more subtle downside in this design is incompat-
ibility with the Buddy page allocation scheme used in
commodity operating systems such as Linux. Buddy al-
location requires contiguous regions of physical memory
in order to operate efficiently and forcing the system not
to use odd rows does not satisfy this requirement. Ide-
ally, our design should utilize the unsafe region while
providing (the illusion of) a contiguous physical address

700 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Safe region

Unsafe region

DRAM Address Space

OS &
Applications

OS &
Applications

Swap cacheZebRAM

Swap space

Figure 5: ZebRAM logically divides system memory into
a safe region for normal use, a swap space made from the
unsafe region, and a swap cache to protect the safe region
from accesses made to the unsafe region.

space for efficient buddy allocation as shown on the right
side of Figure 4. To address this downside, our design
should provide a translation mechanism that creates a
linear physical address space out of the safe region.

ZebRAM If we can find a way to securely use the un-
safe region, then we can gain back the memory wasted
in the basic ZebRAM design. We need to enforce two
invariants if we want to make use of the unsafe region for
storing data. First, we need to make sure that we properly
handle potential bit flips in the unsafe region. Second, we
need to ensure that accessing the unsafe region does not
trigger bit flips in the safe region. Our proposed design,
ZebRAM, shown in Figure 5 satisfies all these require-
ments. To handle bit flips in the unsafe region, ZebRAM
performs software integrity checks and error correction
whenever data in the unsafe region is accessed. To pro-
tect the safe region from accesses to the unsafe region,
ZebRAM uses a cache in front of the unsafe region. This
cache is allocated from the safe region and ZebRAM is
free to choose its size and replacement policy in a way
that protects the safe region. Finally, to provide backward-
compatibility with memory management in commodity
systems, ZebRAM can employ translation mechanisms
provided by hardware (e.g., virtualization extensions in
commodity processors) to translate even rows into a con-
tiguous physical address space for the guest.

To maintain good performance, ZebRAM ensures that
accesses to the safe region proceed without interposition.
As mentioned earlier, this can potentially cause bit flips in
the unsafe region. Hence, all accesses to the unsafe region
should be interposed for bit flip detection and correction.
To this end, ZebRAM exposes the unsafe region as a
swap device to the protected operating system. With
this design, ZebRAM reuses existing page replacement
policies of the operating system to decide which memory
pages should be evicted to the swap (i.e., unsafe region).
Given that most operating systems use some form of
Least Recently Used (LRU), the working set of the system
remains in the safe region, preserving performance. Once

ZebRAM Cache Layer

ZebRAM Swap Space (Unsafe region)

Manages
Cache Layer
(Read/Write)

Allocate/Free
(guard page)

Read/Write

Hypervisor Memory Remapper

Guest RAM

Sets up

User Space

Kernel Space
ZebRAM Block Device (LKM)

Kswapd

S
a
fe

 re
g
io

n

Swap Manager
(LKM)

Compression / Decompression

ECC Encode / Decode

Hash Generation / Verification

Memory
Allocator

Cache
Manager Read/

Write

 Integrity Manager

Figure 6: ZebRAM Components.

the system needs to access a page from the unsafe region,
the operating system selects a page from the safe region
(e.g., based on LRU) and creates necessary meta data for
bit flip detection (and/or correction) using the contents of
the page and writes it to the unsafe region. At this point,
the system can bring the page to the safe region from
the unsafe region. But before that, it uses the previously
calculated meta data to perform bit flip detection and
correction. Note that the swap cache (for protecting the
safe region) is essentially part of the safe region and is
treated as such by ZebRAM.

Next, we discuss our implementation of ZebRAM’s
design before analyzing its security guarantees and evalu-
ating its performance.

5 Implementation

In this section, we describe a prototype implementation
of ZebRAM on top of the Linux kernel. Our prototype
protects virtual machines against Rowhammer attacks and
consists of the following four components: the Memory
Remapper, the Integrity Manager, the Swap Manager,
and the Cache Manager, as shown in Figure 6. Our pro-
totype implements Memory Remapper in the hypervisor
and the other three components in the guest OS. It is pos-
sible to implement all the components in the host to make
ZebRAM guest-transparent. We discuss alternative imple-
mentations and their associated trade-offs in Section 9.2.
We now discuss these components as implemented in our
prototype.

5.1 ZebRAM Prototype Components
Memory Remapper implements the split of physical
memory into a safe and unsafe region. One region con-

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 701

tains all the even-numbered rows, while the other contains
all the odd-numbered rows. Note that because hardware
vendors do not publish the mapping of physical addresses
to DRAM addresses, we need to reverse engineer this
mapping following the methodology established in prior
work [26, 37, 31].

Because Rowhammer attacks only affect directly neigh-
boring rows, a Rowhammer attack in one region can
only incur bit flips in the other region, as shown in Fig-
ure 3. In addition, ZebRAM supports the conservative
option of increasing the number of guard rows to defend
against Rowhammer attacks that target a victim row not
directly adjacent to the aggressor row. However, our expe-
rience with a large number of vulnerable DRAM modules
shows that with the correct translation of memory pages
to DRAM locations, bit flips trigger exclusively in rows
adjacent to a row that is hammered.

Integrity Manager protects the integrity of the unsafe
region. Our software design allows for a flexible choice
for error detection and correction. For error correction,
we use a commonly-used Single-Error Correction and
Double-Error Detection (SECDED) code. As shown in
recent work [10], SECDED and other similar BCH codes
can still be exploited on DIMMs with large number of
bit flips. Our database of Rowhammer bit flips from 14
vulnerable DIMMs [31] shows that only 0.00015% of all
memory words with bit flips can bypass our SECDED
code (found in 2 of the 14 vulnerable DIMMs) and 0.13%
of them can cause a detectable corruption (found in 7
of the 14 vulnerable DIMMs). To provide strong detec-
tion guarantees, while providing correction possibilities,
ZebRAM provides the possibility to mix SECDED with
collision resistant hash functions such as SHA-256 at the
cost of extra performance overhead.

Swap Manager uses the unsafe region to implement an
efficient swap disk in memory, protected by the Integrity
Manager and accessible only by the OS. Using the unsafe
region as a swap space has the advantage that the OS
will only access the slow, integrity-checked unsafe region
when it runs out of fast safe memory. As with any swap
disk, the OS uses efficient page replacement techniques
to minimize access to it. To maximize utilization of the
available memory, the Swap Manager also implements
a compression engine that optionally compresses pages
stored in the swap space.

Note that ZebRAM also supports configurations with
a dedicated swap disk (such as a hard disk or SSD) in
addition to the memory-based swap space. In this case,
ZebRAM swap is prioritized above any other swap disks
to maximize efficiency.

Cache Manager implements a fully associative cache
that speeds up access to the swap space while simultane-
ously preventing Rowhammer attacks against safe rows
by reducing the access frequency on memory rows in the
unsafe region. The swap cache is faster than the swap
disk because it is located in the safe region and does not
require integrity checks or compression. Because attack-
ers must clear the swap cache to be able to directly access
rows in the unsafe region, the cache prevents attackers
from efficiently hammering guard rows to induce bit flips
in safe rows.

Because the cache layer sits in front of the swap space,
pages swapped out by the OS are first stored in the cache,
in uncompressed format. Only if the cache is full does
the Cache Manager flush the least-recently-added (LRA)
entry to the swap disk. The LRA strategy is important,
because it ensures that attackers must clear the entire
cache after every row access in the unsafe region.

5.2 Implementation Details

We implemented ZebRAM in C on an Intel Haswell ma-
chine running Ubuntu 16.04 with kernel v4.4 on top a
Qemu-KVM v2.11 hypervisor. Next we provide further
details on the implementation various components in the
ZebRAM prototype.

Memory Remapper To efficiently partition memory
into guard rows and safe rows, we use Second Level Ad-
dress Translation (SLAT), a hardware virtualization ex-
tension commonly available in commodity processors.
To implement the Memory Remapper component, we
patched Qemu-KVM’s mmap function to expose the un-
safe memory rows to the guest machine as a contiguous
memory block starting at physical address 0x3ffe0000.
We use a translation library similar to that of Throwham-
mer [32] for assigning memory pages to odd and even
rows in the Memory Remapper component.

Integrity Manager The Integrity Manager and Cache
Manager are implemented as part of the ZebRAM block
device, and comprise 369 and 192 LoC, respectively. The
Integrity Manager uses SHA-256 algorithm for error de-
tection, implemented in mainline Linux, to hash swap
pages, and keeps the hashes in a linear array stored in safe
memory. Additionally, the Integrity Manager by default
uses an ECC derived from the extended Hamming(63,57)
code [16], expurgated to have a message size an integer
multiple of bytes. The obtained ECC is a [64,56,4]2 block
code, providing single error correction and double error
detection (SECDED) for each individual (64-bit) mem-
ory word—functionally on par with hardware SEC-DED
implementations.

702 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Swap Manager The Swap Manager is implemented as
a Loadable Kernel Module (LKM) for the guest OS that
maintains a stack containing the Page Frame Numbers
(PFNs) of free pages in the swap space. It exposes the
RAM-based swap disk as a readable and writable block
device that we implemented by extending the zram com-
pressed RAM block device commonly available in Linux
distributions. We changed zram’s zsmalloc slab mem-
ory allocator to only use pages from the Swap Manager’s
stack of unsafe memory pages. To compress swap pages,
we use the LZO algorithm also used by zram [1]. The
Swap Manager LKM contains 456 LoC while our modifi-
cations to zram and zsmalloc comprise 437 LoC.

Cache Manager The Cache Manager implements the
swap cache using a linear array to store cache entries and
a radix tree that maps ZebRAM block device page indices
to cache entries. By default, ZebRAM uses 2% of the
safe region for the swap cache.

Guest Modifications The guest OS is unchanged ex-
cept for a minor modification that uses Linux’s boot mem-
ory allocator API (alloc bootmem low pages) to re-
serve the unsafe memory block as swap space at boot
time. Our changes to Qemu-KVM comprise 2.6K lines
of code (LoC), while the changes to the guest OS com-
prise only 4 LoC. Furthermore, the Linux kernel may
eagerly write dirty pages into the swap device based on
its swappiness tunable. In ZebRAM, we use a swappi-
ness of 10 instead of the default value of 60 to reduce the
number of unnecessary writes to the unsafe region.

6 Security Evaluation

This section evaluates ZebRAM’s effectiveness in defend-
ing against traditional Rowhammer exploits. Addition-
ally, we show that ZebRAM successfully defends even
against more advanced ZebRAM-aware Rowhammer ex-
ploits. We evaluated all attacks on a Haswell i7-4790
host machine with 16GB RAM running our ZebRAM-
based Qemu-KVM hypervisor on Ubuntu 16.04 64-bit.
The hypervisor runs a guest machine with 4GB RAM
and Ubuntu 16.04 64-bit with kernel v4.4, containing all
necessary ZebRAM patches and LKMs.

6.1 Traditional Rowhammer Exploits

Under ZebRAM’s memory model, traditional Rowham-
mer exploits on system memory only hammer the safe
region, and can therefore trigger bit flips only in the
integrity-checked unsafe region by construction. We
tested the most popular real-world Rowhammer exploit

variants to confirm that ZebRAM correctly detects these
integrity violations.

In particular, we ran the single-sided Rowhammer ex-
ploit published by Google’s Project Zero,2 as well as
the one-location3 and double-sided4 exploits published
by Gruss et al. on our testbed for a period of 24 hours.
During this period the single-sided Rowhammer exploit
induced two bit flips in the unsafe region, while the one-
location and double-sided exploits failed to produce any
bit flips. ZebRAM successfully detected and corrected all
of the induced bit flips.

The double-sided Rowhammer exploit failed due to
ZebRAM’s changes in the DRAM geometry, alternating
safe rows with unsafe rows. Conventional double-sided
exploits attempt to exploit a victim row k by hammering
the rows k−1 and k+1 below and above it, respectively.
Under ZebRAM, this fails because the hammered rows are
not really adjacent to the victim row, but remapped to be
separated from it by unsafe rows. Unaware of ZebRAM,
the exploit thinks otherwise based on the information gath-
ered from the Linux’ pagemap—due to the virtualization-
based remapping layer—and essentially behaves like an
unoptimized single-sided exploit. Fixing this requires a
ZebRAM-aware exploit that hammers two consecutive
rows in the safe region to induce a bit flip in the unsafe
region. As described next, we developed such an exploit
and tested ZebRAM’s ability to thwart it.

6.2 ZebRAM-aware Exploits
To further demonstrate the effectiveness of ZebRAM, we
developed a ZebRAM-aware double-sided Rowhammer
exploit. This section explains how the exploit attempts to
hammer both the safe and unsafe regions, showing that
ZebRAM detects and corrects all the induced bit flips.

6.2.1 Attacking the Unsafe Region

To induce bit flips in the unsafe region (where the swap
space is kept), we modified the double-sided Rowhammer
exploit published by Gruss et al. [15] to hammer every
pair of two consecutive DRAM rows in the safe region
(assuming the attacker is armed with an ideal ZebRAM-
aware memory layout oracle) and ran the exploit five
times, each time for 6 hours. As Table 1 shows, the first
exploit run induced a total of 4,702 bit flips in the swap
space, with 4,698 occurrences of a single bit flip in a 64-
bit data word and 2 occurrences of a double bit flip in a
64-bit word. ZebRAM successfully corrected all 4,698
single bit flips and detected the double bit flips. As shown

2https://github.com/google/rowhammer-test
3https://github.com/IAIK/flipfloyd
4https://github.com/IAIK/rowhammerjs/tree/master/

native

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 703

https://github.com/google/rowhammer-test
https://github.com/IAIK/flipfloyd
https://github.com/IAIK/rowhammerjs/tree/master/native
https://github.com/IAIK/rowhammerjs/tree/master/native

1 bit flip 2 bit flips Total ZebRAM detection performance
Run no. in 64 bits in 64 bits bit flips Detected bit flips Corrected bit flips

1 4,698 2 4,702 4,702 4,698
2 5,132 0 5,132 5,132 5,132
3 2,790 0 2,790 2,790 2,790
4 4,216 1 4,218 4,218 4,216
5 3,554 0 3,554 3,554 3,554

Table 1: ZebRAM’s effectiveness defending against a ZebRAM-aware Rowhammer exploit.

in Table 1, the other exploit runs produced similar results,
with no bit flips going undetected. Note that ZebRAM
can also detect more than two errors per 64-bit word due
to its combined use of ECC and hashing, although our
experiments produced no such cases.

6.2.2 Attacking the Safe Region

In addition to hammering safe rows, attackers may also
attempt to hammer unsafe rows to induce bit flips in the
safe region. To achieve this, an attacker must trigger
rapid writes or reads of pages in the swap space. We
modified the double-sided Rowhammer exploit to attempt
this by opening the swap space with the open system call
with the O DIRECT flag, followed by repeated preadv
system calls to directly read from the ZebRAM swap disk
(bypassing the Linux page cache).

Because the swap disk only supports page-granular
reads, the exploit must read an entire page on each access.
Reading a ZebRAM swap page results in at least two
memory copies; first to the kernel block I/O buffer, and
next to user space. The exploit evicts the ZebRAM swap
cache before each swap disk read to ensure that it accesses
rows in the swap disk rather than in the cache (which is in
the safe region). After each page read, we use a clflush
instruction to evict the cacheline we use for hammering
purposes. Note that this makes the exploit’s job easier
than it would be in a real attack scenario, where the exploit
cannot use clflush because the attacker does not own
the swap memory. A real attack would require walking
an entire cache eviction buffer after each read from the
swap disk.

We ran the exploit for 24 hours, during which time the
exploit failed to trigger any bit flips. This demonstrates
that the slow access frequency of the swap space—due
to its page granularity, integrity checking, and the swap
cache layer—successfully prevents Rowhammer attacks
against the safe region.

To further verify the reliability of our approach, we
re-tested our exploit with the swap disk’s cache layer,
compression engine, and integrity checking modules dis-
abled, thus providing overly optimistic access speeds (and
security guarantees) to the swap space for the Rowham-
mer exploit. Even in this scenario, the page-granular read
enforcement of the swap device alone proved sufficient

to prevent any bit flips. Our time measurements using
rdtsc show that even in this optimistic scenario, memory
dereferences in the swap space take 2,435 CPU cycles, as
opposed to 200 CPU cycles in the safe region, removing
any possibility of a successful Rowhammer attack against
the safe region.

7 Performance Evaluation

This section measures ZebRAM’s performance in differ-
ent configurations compared to an unprotected system un-
der varying workloads. We test several different kinds of
applications, commonly considered for evaluation by ex-
isting systems security defenses. First, we test ZebRAM
on the SPEC CPU2006 benchmark suite [17] to measure
its performance for CPU-intensive applications. We also
benchmark ZebRAM the popular nginx and Apache web
servers, as well as the redis in-memory key-value store.
Additionally, we present microbenchmark results to better
understand the contributing factors to ZebRAM’s over-
head.

Testbed Similar to our security evaluation, we conduct
our performance evaluation on a Haswell i7-4790 ma-
chine with 16GB RAM running Ubuntu 16.04 64-bit
with our modified Qemu-KVM hypervisor. We run the
ZebRAM modules and the benchmarked applications in
an Ubuntu 16.04 guest VM with kernel v4.4 and 4GB of
memory using a split of 2GB for the safe region and 2GB
for the unsafe region. To establish a baseline, we use the
same guest VM with an unmodified kernel and 4GB of
memory. In the baseline measurements, the guest VM
has direct access to all its memory, while in the ZebRAM
performance measurements half of the memory is dedi-
cated to the ZebRAM swap space. In all reported memory
usage figures we include memory used by the Integrity
Manager and Cache Manager components of ZebRAM.
For our tests of server applications, we use a separate Sky-
lake i7-6700K machine as the client. This machine has
16GB RAM and is linked to the ZebRAM machine via
a 100Gbit/s link. We repeat all our experiments multiple
times and observe marginal deviations across runs.

704 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 10

 20

 30

 40

 50

 60

 70

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar

xalancbm
k

bw
aves

gam
ess

m
ilc

zeusm
p

grom
acs

cactusAD
M

leslie3d

nam
d

dealII

soplex

povray

calculix

G
em

sFDTD

tonto
lbm

w
rf

sphinx3

geom
ean

S
P

E
C

 S
c
o
re

Unmodified
ZebRAM (ECC)

ZebRAM (ECC+SHA-256)

Figure 7: SPEC CPU 2006 performance results.

Unmodifie
d
ZebRAM

(ECC)
ZebRAM

(ECC+SHA-256)
0K

25K

50K

75K

100K

125K

150K

175K

Nu
m

be
r o

f t
ra

ns
ac

tio
ns

/s
ec

nginx

Unmodifie
d
ZebRAM

(ECC)
ZebRAM

(ECC+SHA-256)
0K

25K

50K

75K

100K

125K

150K

175K

Nu
m

be
r o

f t
ra

ns
ac

tio
ns

/s
ec

Apache

Figure 8: Nginx and Apache throughput at saturation.

SPEC 2006 We compare performance scores of the
SPEC 2006 benchmark suite in three different setups: (i)
unmodified, (ii) ZebRAM configured to use only ECC,
and (iii) ZebRAM configured to use ECC and SHA-256.
The ZebRAM (ECC) and ZebRAM (ECC and SHA-256)
show a performance overhead over the unmodified base-
line of 4% and 5%, respectively (see Figure 7). The
reason behind this performance overhead is that as the
ZebRAM splits the memory in a zebra pattern, the OS
can no longer benefit from huge pages. Also, note that
certain benchmarks, such as mcf, exhibits more than 5%
overhead because they use ZebRAM’s swap memory as
their working set do not fit in the safe region.

Web servers We evaluate two popular web servers:
nginx (1.10.3) and Apache (2.4.18). We configure the
virtual machine to use 4 VCPUs. To generate load to
the web servers we use the wrk2 [2] benchmarking tool,
retrieving a default static HTML page of 240 characters.
We set up nginx to use 4 workers, while we set up Apache
with the prefork module, spawning a new worker process
for every new connection. We also increase the maxi-

80K 90K 100K 110K 120K 130K 140K 150K
Client request rate (req/s)

0

200

400

600

99
th

 p
er

ce
nt

ile
 la

te
nc

y
(m

s) nginx
Unmodified
ZebRAM (ECC)
ZebRAM (ECC+SHA-256)

25K 30K 35K 40K 45K 50K 55K
Client request rate (req/s)

0

100

200

300

99
th

 p
er

ce
nt

ile
 la

te
nc

y
(m

s) Apache
Unmodified
ZebRAM (ECC)
ZebRAM (ECC+SHA-256)

Figure 9: Nginx and Apache latency (99th percentile).

mum number of clients allowed by Apache from 150 to
500. We configured the wrk2 tool to use 32 parallel keep-
alive connections across 8 threads. When measuring the
throughput we check that CPU is saturated in the server
VM. We discard the results of 3 warmup rounds, repeat
a one-minute run 11 times, and report the median across
runs. Figure 8 shows the throughput of ZebRAM under
two different configurations: (i) ZebRAM configured to
use only ECC, and (ii) ZebRAM configured to use ECC
and SHA-256. Besides throughput, we want to measure
ZebRAM’s latency impact. We use wrk2 to throttle the
load on the server (using the rate parameter) and report the
99th percentile latency as a function of the client request
rate in Figure 9.

The baseline achieves 182k and 50k requests per sec-
ond on Nginx and Apache respectively. The ZebRAM’s
first configuration (only ECC) reaches 172k and 49k while
the second configuration reaches 166k and 49k.

Before saturation, the results show that ZebRAM im-
poses no overhead on the 99th percentile latency. After
then, both configurations of ZebRAM show a similar
trend with linearly higher 99th percentile response time.

Overall, ZebRAM’s performance impact on both web
servers and SPEC benchmarks is low and mostly due to
the inability to efficiently use Linux’ THP support. This
is expected, since as long as the working set can comfort-
ably fit in the safe region (e.g., around 400MB for our
web server experiments) the unsafe memory management
overhead is completely masked. We isolate and study
such overhead in more detail in the following.

Microbenchmarks To drill down the overhead of each
single feature of ZebRAM, we measure the latency of

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 705

swapping in a page from the ZebRAM device under dif-
ferent configurations. To measure the latency, we use a
small binary that sequentially writes on every page of
a large eviction buffer in a loop. This ensures that, be-
tween two accesses to the same page, we touch the entire
buffer, evicting that page from memory. To be sure that
Linux swaps in just one page for every access, we set the
page-cluster configuration parameter to 0. In this experi-
ment, two components interact with ZebRAM: our binary
triggers swap-in events from the ZebRAM device while
the kswapd kernel thread swaps pages to the ZebRAM
device to free memory. The interaction between them is
completely different if the binary uses exclusively loads
to stress the memory. This is because the kernel would
optimize out unnecessary flushes to swap and batch to-
gether TLB invalidations. Hence, we choose to focus on
stores to study the performance in the worst-case scenario
and because read-only workloads are less common than
mixed workloads.

We reserve a core exclusively for the binary so that
kswapd does not (directly) steal CPU cycles from it. We
measure 1,000,000 accesses for each different configura-
tion. Table 2 presents our results.We also run the binary in
a loop and profile its execution with the perf Linux tool
to measure the time spent in different functions. Due to
function inlining, it is not always trivial to map a symbol
to a particular feature. Nevertheless, perf can provide
insights into the overhead at a fine granularity. In the first
configuration, we disable the all features of ZebRAM and
perform only memory copies into the ZebRAM device.
As the copy operation is fast, the perf tool reports that
just 4% percent of CPU cycles are spent copying. Interest-
ingly, 47% of CPU cycles are spent serving Inter Process
Interrupts from other cores. This is because, while we
are swapping in, kswapd on another core is busy free-
ing memory. For this purpose, kswapd needs to unmap
pages that are on their way to be swapped out from the
process’s page tables. This introduces TLB shootdowns
(and IPIs) to invalidate other cores’ TLB stale entries. It
is important to notice that the faster we swap in pages, the
faster kswapd needs to free memory. This unfortunately
results in a negative feedback loop that represent one of
the major sources of overhead when the large number of
swap-in events continuously force kswapd to wake up.

Adding hashing (SHA-256) on top of the previous con-
figuration shows an increase in latency, which is also
reflected in the CPU cycles breakdown. The perf tool
reports that 55% of CPU cycles are spent swapping in
pages (copy + hashing), while serving IPIs accounts for
29%. Adding cache and compression on top of SHA-256
decreases the latency median and increases the 99th per-
centile. This is because, on a cache hit, the ZebRAM
only needs to copy the page to userspace; however, on
a cache miss, it has to verify the hash of the page and

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Working Set Size

 (As a fraction of total available memory)

0
5

10
15
20
25
30
35
40
45
50
55
60

No
rm

al
ize

d
ex

ec
ut

io
n

tim
e

ZebRAM (Basic)
ZebRAM (ECC)
ZebRAM (ECC+SHA-256)

Figure 10: Redis throughput at saturation.

decompress the page too. The perf tool reports 42% of
CPU cycles are spent in the decompression routine and
26% in serving IPI requests for other cores and less than
5% in hashing and copying. This confirms the presence of
the swap-in/swap-out feedback loop under high memory
pressure. Adding ECC marginally increases the latency,
the perf tool reports similar CPU usage breakdown for
the version without ECC.

Larger working sets As expected, ZebRAM’s over-
heads are mostly associated to swap-in/swap-out opera-
tions, which are masked when the working set can fit in
the safe region but naturally become more prominent as
we grow the working set. In this section, we want to eval-
uate the impact of supporting increasingly larger working
sets compared to a more traditional swap implementa-
tion. For this purpose, we evaluate the performance of
a key-value store in four different setups: (i) unmodifed
system, (ii) the basic version of ZebRAM (iii) ZebRAM
configured with ECC, and (iv) ZebRAM configured with
ECC and SHA-256. The basic version of ZebRAM uses
just one of the two domains in which ZebRAM splits the
RAM and swaps to a fast SSD disk when the memory
used by the OS does not fit into it. We use YCSB[11] to
generate load and induce a target working set size against
a redis (4.0.8) key-value store. We setup YCSB to use
1KB objects and perform a 90/10 read/write operations
ratio. Each test runs for 20 seconds and, for each config-
uration, we discard the results of 3 warmup rounds and
report the median across 11 runs. We configure YCSB to
access the dataset key space uniformly and we measure
the throughput at saturation for different data set sizes.

Figure 10 depicts the reported normalized execution
time as a function of the working set size (in percent-
age compared to the total RAM size). As shown in the
figure, when the working set size is small enough (e.g.,

706 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Configuration median (ns) 90th (ns) 99th (ns)

copy 2,362.0 4,107.0 8,167.0
SHA-256 13,552.0 14,209.0 17,092.0
cache + comp + SHA-256 8,633.0 13,191.0 18,678.0
cache + comp + SHA-256 + ECC 9,862.0 15,118.0 20,794.0

Table 2: Page swap-in latency from the ZebRAM device.

40K 60K 80K 100K 120K
Client request rate (req/s)

200

400

600

99
th

 la
te

nc
y

pe
rc

en
til

e
(u

s)

40K 60K 80K 100K 120K
Client request rate (req/s)

0

2000

4000

6000

99
th

 la
te

nc
y

pe
rc

en
til

e
(u

s)

Unmodified
ZebRAM (Basic)

ZebRAM (ECC)
ZebRAM (ECC+SHA-256)

Figure 11: Redis latency (99th percentile). The working
set size is 50% of RAM (top) and 70% of RAM (bottom).

44%) the OS hardly reclaims any memory, hence the
unsafe region remains unutilized and the normalized exe-
cution time is only 1.08x for the basic version of ZebRAM
while the normalized execution time is between 1.04x and
1.10x for all other configurations of ZebRAM. As we in-
crease the working set size, the OS starts reclaiming pages
and the normalized execution time increases accordingly.
However, the increase is much more gentle for ZebRAM
compared to the basic version of ZebRAM and the gap
becomes more significant for larger working set sizes. For
instance, for a fairly large working set size (e.g., 70%),
ZebRAM (ECC) has 3.00x normalized execution time,
and ZebRAM (ECC and SHA-256) has 3.90x, compared
to the basic version of ZebRAM at 30.47x.

To study the impact of ZebRAM on latency, we fix
the working set size to 50% and 70% of the total RAM
and repeat the same experiment while varying the load
on the server. Figure 11 presents our results for the 99th
latency percentile. At 50%, results of (i) the ZebRAM
configured with ECC, (ii) the ZebRAM configured with
ECC and SHA-256, and (iii) baseline (unmodified) fol-
low the same trend. The ZebRAM’s first configuration
(only ECC) reports a 99th latency percentile of 138us for

client request rates below 80,000, compared to 584us for
ZebRAM (basic). At 70%, the gap is again more promi-
nent, with ZebRAM reporting a 99th latency percentile
of 466us and ZebRAM (basic) reporting 6,887us.

Overall, ZebRAM can more gracefully reduce perfor-
mance for larger working sets compared to a traditional
(basic ZebRAM) swap implementation, thanks to its abil-
ity to use an in-memory cache and despite the integrity
checks required to mitigate Rowhammer. As our exper-
iments demonstrate, given a target performance budget,
ZebRAM can support much larger working sets compared
to the ZebRAM’s basic implementation, while providing
a strong defense against arbitrary Rowhammer attacks.
This is unlike the basic ZebRAM implementation, which
optimistically provides no protection against similar bit
flip-based attacks. Unfortunately, such attacks, which
have been long-known for DRAM [21], have recently
started to target flash memory as well [9, 22].

8 Related work

This section summarizes related work on Rowhammer
attacks and defenses.

Attacks In 2014, Kim et al. [21] were the first to show
that it is possible to flip bits in DDR3 memory on x86
CPUs simply by accessing other parts of memory. Since
then, many studies have demonstrated the effectiveness
of Rowhammer as a real-world exploit in many systems.

The first practical Rowhammer-based privilege escala-
tion attack, by Seaborn and Dullien [30], targeted the x86
architecture and DDR3 memory, hammering the memory
rows by means of the native x86 clflush instruction that
would flush the cache and allow high-frequency access to
DRAM. By flipping bits in page table entries, the attack
obtained access to privileged pages.

Not long after these earliest attacks, researchers greatly
increased the threat of Rowhammer attacks by showing
that is possible to launch them from JavaScript also, al-
lowing attackers to gain arbitrary read/write access to the
browser address space from a malicious web page [6, 15].

Moreover, newer attacks started flipping bits in memory
areas other than page table entries, such as object pointers
(to craft counterfeit objects [6]), opcodes [14], and even
application-level sensitive data [28].

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 707

For instance, Flip Feng Shui demonstrated a new attack
on VMs in cloud environments that flipped bits in RSA
keys in victim VMs to make them easy to factorize, by
massaging the physical memory of the co-located VMs
to land the keys on a page that was hammerable by the
attacker. Around the same time, other researchers inde-
pendently also targeted RSA keys with Rowhammer but
now for fault analysis [5]. Concurrently, also, Xiao et
al. [37] presented another cross-VM attack that manipu-
lates page table entries in Xen.

Where the attacks initially focused on PCs with DDR3
configurations, later research showed that ARM proces-
sors and DDR4 memory chips are also vulnerable [34].
While this opened the way for Rowhammer attacks on
smartphones, the threat was narrower than on PCs, as
the authors were not yet able to launch such attacks from
JavaScript. This changed recently, when research de-
scribed a new way to launch Rowhammer attacks from
JavaScript on mobile phones and PC, by making use of
the GPU. Hammering directly from the GPU by way
of WebGL, the authors managed to compromise a mod-
ern smart phone browser in under two minutes. More-
over, this time the targeted data structures are doubles and
pointers: by flipping a bit in the most significant bytes,
the attack can turn pointers into doubles (making them
readable) and doubles into pointers (yielding arbitrary
read/write access).

All Rowhammer attacks until that point required local
code execution. Recently, however, researchers demon-
strated that even remote attacks on servers are possi-
ble [32], by sending network traffic over high-speed net-
work to a victim process, using RDMA NICs. As the
server that is receiving the network packets is using DMA
to write to its memory, the remote attacker is able to flip
bits in the server. By carefully manipulating the data in a
key-value store, they show that it is possible to completely
compromise the server process.

It should be clear that Rowhammer exploits have spread
from a narrow and arcane threat to target two of the most
popular architectures, in all common computing environ-
ments, different types of memory (and arguably flash [9]),
while covering most common threat models (local priv-
ilege escalation, hosted JavaScript, and even remote at-
tacks). ZebRAM protects against all of the above attacks.

Defenses Kim et al. [21] propose hardware changes to
mitigate Rowhammer by increasing row refresh rates or
using ECC. These defenses have proven insufficient [4]
and infeasible to deploy on the required massive scale.
The new LPDDR4 standard [19] specifies two features
which together defend against Rowhammer: TRR and
MAC. Despite these defenses, van der Veen et al. still
report bit flips on a Google pixel phone with LPDDR4
memory [35] and Gruss et al. [29] report bit flips in TRR

memory. While nobody has demonstrated Rowhammer
attacks against ECC memory yet, the real problem with
such hardware solutions is that most systems in use today
do not have ECC, and replacing all DRAM in current
devices is simply infeasible.

In order to protect from Rowhammer attacks, many ven-
dors simply disabled features in their products to make
life harder for attackers. For instance, Linux disabled un-
privileged access to the pagemap [30], Microsoft disabled
memory deduplication [12] to defend from the Dedup Est
Machina attack [6], and Google disabled [33] the ION
contiguous heap in response to the Drammer attack [34]
on mobile ARM devices. Worryingly, not a single de-
fence is currently deployed to protect from the recent
GPU-based Rowhammer attack on mobile ARM devices
(and PCs), even though it offers attackers a huge number
of vulnerable devices.

Finally, researchers have proposed targeted software-
based solutions against Rowhammer. ANVIL [4] relies
on Intel’s performance monitoring unit (PMU) to detect
and refresh likely Rowhammer victim rows. An improved
version of ANVIL requires specialized Intel PMUs with
a fine-grained physical to DRAM address translation. Un-
fortunately, Intel’s (and AMD’s) PMUs do not capture
precise address information when memory accesses by-
pass the CPU cache through DMA. Hence, this version
of ANVIL is vulnerable to off-CPU Rowhammer attacks.
Unlike ANVIL, ZebRAM is secure against off-CPU at-
tacks, since device drivers transparently allocate memory
from the safe region.

CATT [7] isolates (only) user and kernel space in phys-
ical memory so that user-space attackers cannot trigger
bit flips in kernel memory. However, research [14] shows
CATT to be bypassable by flipping opcode bits in the
sudo program code. Moreover, CATT does not defend
against attacks that target co-hosted VMs at all [7]. In con-
trast, ZebRAM protects against co-hosted VM attacks, at-
tacks against the kernel, attacks between (and even within)
user-space processes and attacks from co-processors such
as GPUs.

Other recent software-based solutions have targeted
specific Rowhammer attack variants. GuardION iso-
lates DMA buffers to protect mobile devices against
DMA-based Rowhammer attacks [36]. ALIS isolates
RDMA buffers to protect RDMA-enabled systems against
Throwhammer [32]. Finally, VUSion randomizes page
frame allocation to protect memory deduplication-enabled
systems against Flip Feng Shui [25].

9 Discussion

This section discusses feature and performance tradeoffs
between our ZebRAM prototype and alternative ZebRAM
implementations.

708 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

9.1 Prototype

Because the ZebRAM prototype relies on the hypervi-
sor to implement safe/unsafe memory separation, and on
a cooperating guest kernel for swap management, both
host and guest need modifications. In addition, the guest
physical address space will map highly non-contiguously
to the host address space, preventing the use of huge
pages. The guest modifications, however, are small and
self-contained, do not touch the core memory manage-
ment implementation and are therefore highly compatible
with mainline and third party LKMs.

9.2 Alternative Implementations

In addition to our implementation presented in Section 5,
several alternative ZebRAM implementations are possible.
Here, we compare our ZebRAM implementation to alter-
native hardware-based, OS-based, and guest-transparent
virtualization-based implementations.

Hardware-based Implementing ZebRAM at the hard-
ware level would require a physical-to-DRAM address
mapping where sets of odd and even rows are mapped to
convenient physical address ranges, for instance an even
lower-half and an odd upper-half. This can be achieved
with by a fully programmable memory controller, or im-
plemented as a configurable feature in existing designs.
With such a mapping in place, the OS can trivially sepa-
rate memory into safe and unsafe regions. In this model,
the Swap Manager, Cache Manager and Integrity Manager
are implemented as LKMs just as in the implementation
from Section 5. In contrast to other implementations,
a hardware implementation requires no hypervisor, al-
lows the OS to make use of (transparent) huge pages and
requires minimal modifications to the memory manage-
ment subsystem. While a hardware-supported ZebRAM
implementation has obvious performance benefits, it is
currently infeasible to implement because memory con-
trollers lack the required features.

OS-based Our current ZebRAM prototype implements
the Memory Remapper as part of a hypervisor. Alter-
natively, the Memory Remapper can be implemented as
part of the bootloader, using Linux’ boot memory allo-
cator to reserve the unsafe region for use as swap space.
While this solution obviates the use of a hypervisor, it also
results in a non-contiguous physical address space that
precludes the use of huge pages and breaks DMA in older
devices. In addition, it is likely that this approach requires
invasive changes to the memory management subsystem
due to the very fragmented physical address space.

Transparent Virtualization-based While our current
ZebRAM implementation requires minor changes to the
guest OS, it is also possible to implement a virtualization-
based variant of ZebRAM that is completely transparent
to the guest. This entails implementing the ZebRAM
swap disk device in the host and then exposing the disk
to the guest OS as a normal block device to which it can
swap out. The drawback of this approach is that it de-
grades performance by having the hypervisor interposed
between the guest OS and unsafe memory for each access
to the swap device, a problem which does not occur in
our current implementation. The clear advantage to this
approach is that it is completely guest-agnostic: guest ker-
nels other than Linux, including legacy and proprietary
ones are equally well protected, enabling existing VM
deployments to be near-seamlessly transitioned over to a
Rowhammer-safe environment.

10 Conclusion

We have introduced ZebRAM, the first comprehen-
sive software defense against all forms of Rowhammer.
ZebRAM uses guard rows to isolate all memory rows
containing user or kernel data, protecting these from
Rowhammer-induced bit flips. Moreover, ZebRAM im-
plements an efficient integrity-checked memory-based
swap disk to utilize the memory sacrificed to the guard
rows. Our evaluation shows ZebRAM to be a strong de-
fense able to use all available memory at a cost that is a
function of the workload. To aid future work, we release
ZebRAM as open source.

Acknowledgements

We would like to thank our shepherd, Xi Wang, and the
anonymous reviewers for their valuable feedback. This
project was supported by the European Union’s Horizon
2020 research and innovation programme under grant
agreement No. 786669 (ReAct) and the UNICORE
project, by the MALPAY project, and by the Netherlands
Organisation for Scientific Research through grants
NWO 639.023.309 VICI “Dowsing”, NWO 639.021.753
VENI “PantaRhei”, NWO 016.Veni.192.262, and NWO
629.002.204 “Parallax”. This paper reflects only the au-
thors’ view. The funding agencies are not responsible for
any use that may be made of the information it contains.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 709

References
[1] LZO. http://www.oberhumer.com/opensource/lzo/, Re-

trieved 09.09.2018.

[2] WRK2 - a HTTP Benchmarking Tool. https://github.com/
giltene/wrk2, Retrieved 09.09.2018.

[3] AICHINGER, B. DDR Memory Errors caused by Row Hammer.
HPEC’15.

[4] AWEKE, Z. B., YITBAREK, S. F., QIAO, R., DAS, R., HICKS,
M., OREN, Y., AND AUSTIN, T. ANVIL: Software-Based Protec-
tion Against Next-Generation Rowhammer Attacks. ASPLOS’16.

[5] BHATTACHARYA, S., AND MUKHOPADHYAY, D. Curious Case
of Rowhammer: Flipping Secret Exponent Bits Using Timing
Analysis. CHESS’16.

[6] BOSMAN, E., RAZAVI, K., BOS, H., AND GIUFFRIDA, C. Dedup
Est Machina: Memory Deduplication as an Advanced Exploitation
Vector. S&P’16.

[7] BRASSER, F., DAVI, L., GENS, D., LIEBCHEN, C., AND
SADEGHI, A.-R. CAn’t Touch This: Software-only Mitigation
against Rowhammer Attacks targeting Kernel Memory. SEC’17.

[8] BRASSER, F., DAVI, L., GENS, D., LIEBCHEN, C., AND
SADEGHI, A.-R. CAn’t Touch This: Practical and Generic
Software-only Defenses Against Rowhammer Attacks. arXiv
preprint arXiv:1611.08396 (2016).

[9] CAI, Y., GHOSE, S., LUO, Y., MAI, K., MUTLU, O., AND
HARATSCH, E. F. Vulnerabilities in MLC NAND Flash Memory
Programming: Experimental Analysis, Exploits, and Mitigation
Techniques. HPCA ’17.

[10] COJOCAR, L., RAZAVI, K., GIUFFRIDA, C., AND BOS, H. Ex-
ploiting correcting codes: On the effectiveness of ecc memory
against rowhammer attacks. S&P ’19.

[11] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN,
R., AND SEARS, R. Benchmarking cloud serving systems with
YCSB. SoCC’10.

[12] CVE-2016-3272. Microsoft Security Bulletin MS16-092
- Important. https: // technet. microsoft. com/ en-us/

library/ security/ ms16-092. aspx (2016).

[13] FRIGO, P., GIUFFRIDA, C., BOS, H., AND RAZAVI, K. Grand
Pwning Unit: Accelerating Microarchitectural Attacks with the
GPU. S&P’18.

[14] GRUSS, D., LIPP, M., SCHWARZ, M., GENKIN, D., JUFFINGER,
J., OCONNELL, S., SCHOECHL, W., , AND YAROM, Y. An-
other Flip in the Wall of Rowhammer Defenses. arXiv preprint
arXiv:1710.00551 (2017).

[15] GRUSS, D., MAURICE, C., AND MANGARD, S. Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript.
DIMVA’16.

[16] HAMMING, R. W. Error detecting and error correcting codes.
Bell Labs Technical Journal 29, 2 (1950), 147–160.

[17] HENNING, J. L. SPEC CPU2006 memory footprint. ACM
SIGARCH Computer Architecture’07.

[18] JANG, Y., LEE, J., LEE, S., AND KIM, T. Sgx-bomb: Locking
down the processor via rowhammer attack. SysTEX’17.

[19] JEDEC SOLID STATE TECHNOLOGY ASSOCIATION. Low Power
Double Data 4 (LPDDR4). JESD209-4A (2015).

[20] JEDEC SOLID STATE TECHNOLOGY ASSOCIATION. DDR4
SDRAM Specification. JESD79-4B (2017).

[21] KIM, Y., DALY, R., KIM, J., FALLIN, C., LEE, J. H., LEE, D.,
WILKERSON, C., LAI, K., AND MUTU, O. Flipping Bits in
Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors. ISCA’14.

[22] KURMUS, A., IOANNOU, N., PAPANDREOU, N., AND PARNELL,
T. From random block corruption to privilege escalation: A
filesystem attack vector for rowhammer-like attacks. WOOT’17.

[23] LANTEIGNE, M. How Rowhammer Could Be Used to Exploit
Weaknesses in Computer Hardware (2016).

[24] NEWMAN, L. H. The hidden toll of fixing meltdown and spectre.
WIRED (2018).

[25] OLIVERIO, M., RAZAVI, K., BOS, H., AND GIUFFRIDA, C.
Secure page fusion with vusion. SOSP’17.

[26] PESSL, P., GRUSS, D., MAURICE, C., SCHWARZ, M., AND
MANGARD, S. DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks. SEC’16.

[27] QIAO, R., AND SEABORN, M. A New Approach for Rowhammer
Attacks. HOST’16.

[28] RAZAVI, K., GRAS, B., BOSMAN, E., PRENEEL, B., GIUF-
FRIDA, C., AND BOS, H. Flip Feng Shui: Hammering a Needle
in the Software Stack. SEC’16.

[29] SCHWARZ, M., GRUSS, D., AND LIPP, M. Another
Flip in the Row. BHUS’18. https://gruss.cc/

files/us-18-Gruss-Another-Flip-In-The-Row.pdf Re-
trieved 09.09.2018.

[30] SEABORN, M., AND DULLIEN, T. Exploiting the DRAM
Rowhammer Bug to Gain Kernel Privileges. BHUS’15.

[31] TATAR, A., GIUFFRIDA, C., BOS, H., AND RAZAVI, K. Defeat-
ing software mitigations against Rowhammer: A surgical precision
hammer. RAID’18.

[32] TATAR, A., KRISHNAN, R., ATHANASOPOULOS, E., GIUF-
FRIDA, C., BOS, H., AND RAZAVI, K. Throwhammer: Rowham-
mer Attacks over the Network and Defenses. ATC’18.

[33] TJIN, P. android-7.1.0 r7 (Disable ION HEAP TYPE SYSTEM
CONTIG). https: // android. googlesource. com/

device/ google/ marlin-kernel/ +/ android-7. 1. 0_ r7

(2016).

[34] VAN DER VEEN, V., FRATANTONIO, Y., LINDORFER, M.,
GRUSS, D., MAURICE, C., VIGNA, G., BOS, H., RAZAVI,
K., AND GIUFFRIDA, C. Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms. CCS’16.

[35] VAN DER VEEN, V., FRATANTONIO, Y., LINDORFER, M.,
GRUSS, D., MAURICE, C., VIGNA, G., BOS, H., RAZAVI,
K., AND GIUFFRIDA, C. Drammer: Deterministic Rowham-
mer Attacks on Mobile Platforms. http://vvdveen.com/

publications/drammer.slides.pdf, Retrieved 09.09.2018.

[36] VAN DER VEEN, V., LINDORFER, M., FRATANTONIO, Y., PIL-
LAI, H. P., VIGNA, G., KRUEGEL, C., BOS, H., AND RAZAVI,
K. GuardION: Practical mitigation of DMA-based Rowhammer
attacks on ARM. DIMVA’18.

[37] XIAO, Y., ZHANG, X., ZHANG, Y., AND TEODORESCU, R. One
Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks and
Privilege Escalation. SEC’16.

710 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://www.oberhumer.com/opensource/lzo/
https://github.com/giltene/wrk2
https://github.com/giltene/wrk2
https://technet.microsoft.com/en-us/library/security/ms16-092.aspx
https://technet.microsoft.com/en-us/library/security/ms16-092.aspx
https://gruss.cc/files/us-18-Gruss-Another-Flip-In-The-Row.pdf
https://gruss.cc/files/us-18-Gruss-Another-Flip-In-The-Row.pdf
https://android.googlesource.com/device/google/marlin-kernel/+/android-7.1.0_r7
https://android.googlesource.com/device/google/marlin-kernel/+/android-7.1.0_r7
http://vvdveen.com/publications/drammer.slides.pdf
http://vvdveen.com/publications/drammer.slides.pdf

	Introduction
	Background
	DRAM Organization
	The Rowhammer Bug
	Rowhammer Defenses

	Threat Model
	Design
	Implementation
	ZebRAM Prototype Components
	Implementation Details

	Security Evaluation
	Traditional Rowhammer Exploits
	ZebRAM-aware Exploits
	Attacking the Unsafe Region
	Attacking the Safe Region

	Performance Evaluation
	Related work
	Discussion
	Prototype
	Alternative Implementations

	Conclusion

