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Abstract 

This paper describes the Miss Classification Table, a 
simple mechanism that enables the processor or memory 
controller to identify each cache miss as either a conflict 
miss or a capacity (non-confiict) miss. The miss classifi- 
cation table works by storing part of the tag of the most 
recently evicted line of a cache set. If the next miss to that 
cache set has a matching tag, it is identified as a conflict 
miss. This technique correctly identifies 8790 of misses in 
the worst case. 

Several applications of this information are demon- 
strated, including improvements to victim caching, next- 
line prefetching, cache exclusion, and a pseudo-associative 
cache. This paper also presents the Adaptive Miss Buffer 
(AMB), which combines several of these techniques, target- 
ing each miss with the most appropriate optimization, all 
within a single small miss buffer The AMB’s combination 
of techniques achieves 1690 better pe$ormance than any 
single technique alone. 

1. Introduction 

A number of cache-based architectural optimizations 
are aimed at particular types of cache misses. Caches 
that mimic associativity (e.g., victim caches and pseudo- 
associative caches) all target conflict misses. Prefetching 
mechanisms tend to be more effective with capacity misses. 
Each of these mechanisms suffer because they end up be- 
ing applied to all misses, due to our inability to distinguish 
conflict misses from capacity misses on the fly. 

This paper presents a technique to classify misses as ei- 
ther conflict misses or capacity misses (we’ll group com- 
pulsory and capacity misses together and call them capacity 
misses for simplicity). This technique can be used to fil- 
ter misses seen by hardware structures that handle only one 
type of miss well. Even better, it can be used to apply dif- 
ferent mechanisms to different types of misses, as appropri- 

ate. We show that this technique can correctly identify over 
85% of misses as either conflict or capacity; it is accurate 
for both direct-mapped and associative caches of different 
sizes. One possible application of this would restrict the 
misses that can write into a victim buffer. This potentially 
protects two critical resources, the entries themselves, hope- 
fully leaving high-probability entries in the buffer longer, 
and the buffer access ports, increasing its availability. 

Cache conflict misses are identified through the use of 
the Miss Classification Table (MCT). The MCT has one en- 
try corresponding to each set of the cache. For each set, the 
MCT stores the tag of the cache line most recently evicted 
from the cache. If the next miss to that set has the same tag, 
it is labeled a conflict miss. This implies that the line may 
have been a hit with a slightly more associative cache. 

Armed with this information, we can choose to treat dif- 
ferently those lines evicted by a conflict miss, or those lines 
that come into the cache on a conflict miss. We do not 
need to store the entire tag in the MCT, however, the more 
evicted-line tag bits we save, the fewer false hits we receive 
and the more accurate our classification. We show that we 
still get nearly the full accuracy by only keeping 8 bits per 
entry. 

We apply this technique to the following cache archi- 
tectures: victim caches, cache prefetching, cache exclu- 
sion, and pseudo-associative caches. For victim caches, we 
achieve a modest speedup using miss classification filter- 
ing. We significantly increase the prefetch accuracy of a 
simple next-line prefetcher, allowing a very simple scheme 
to approach the accuracy (if not coverage) of more complex 
mechanisms. We show a simple approach to cache exclu- 
sion which decreases the overall cache miss rate over more 
expensive schemes. The pseudo-associative cache uses its 
knowledge of miss type to change the line replacement al- 
gorithm. We also describe a mechanism for combining 
these techniques, targeting each miss with the optimiza- 
tion most likely to produce a performance benefit. This ap- 
proach, called the Adaptive Miss Buffer, demonstrates the 
real potential of miss classification, targeting a different op- 
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timization for each type of cache miss. It achieves as much 
as a 16% speedup over any single technique, while using 
the same buffer structure. 

This paper is organized as follows. Section 2 discusses 
related work. Section 3 describes the miss classification ta- 
ble and other hardware support. Section 4 describes our 
measurement and evaluation methodology. Section 5 de- 
scribes the performance of four applications of miss clas- 
sification filtering on previous architectures and a new ar- 
chitecture that combines several techniques. Section 6 con- 
cludes. 

2. Related Work 

This research applies miss classification to several pre- 
viously proposed and implemented cache structures. Vic- 
tim buffers [lo] store recently evicted cache lines in a small 
buffer, often transforming cache conflict misses into victim 
buffer hits. Hardware cache prefetching [ 14, 10, 31 attempts 
to predict future memory access patterns from prior access 
history, moving those cache lines expected to be accessed 
in the future into the lower levels of the cache hierarchy. 
Cache exclusion identifies either instructions [20] or ad- 
dressable regions of memory [8] that have poor data locality 
(for the particular cache) and do not allow those accesses 
to evict other lines from the cache. A pseudo-associative 
cache [1] uses an alternate entry in the cache as a backup 
location for a line evicted from its primary location. The hit 
time to the primary location is the same as a direct-mapped 
cache, but the hit rate (including hits to the secondary loca- 
tion) is similar to an associative cache. 

Stone [17] describes a shadow directory, which he at- 
tributes to J. Pomerene, that keeps some number of evicted 
line addresses per cache set. It is similar to our miss clas- 
sification table, but there are no performance results avail- 
able to evaluate the technique. He suggests it be used to 
favor shadow misses over other misses (he calls them tran- 
sient misses) in the cache replacement algorithm of a set- 
associative cache. We add to this the conflict bit, which 
allows the retention of the miss classification while the line 
remains in the cache. We examine many more applications 
of the technique. 

Architectures have been proposed that dynamically at- 
tempt to classify other aspects of references, including 
temporal or spatial locality [5, 111 or migratory behav- 
ior [4, 161. 

3. Classifying Misses 

Miss classification identifies the following conflict miss 
scenario. Cache line B is accessed, resulting in a cache 
miss, and evicts line A from the cache. The next miss to 

the same cache set is an access to line A. The second miss 
is a conflict miss which can be identified simply by saving 
the tag for A when it was evicted. On the subsequent miss to 
this cache set, the tag of the most recently evicted line from 
that set is compared with the tag of the newly accessed line. 
If they are identical, we identify this as a conflict miss. This 
is slightly different than the classic definition of a conflict 
miss [6], but is much easier to identify on the fly. This def- 
inition actually filters a more interesting subset of conflict 
misses. It identifies conflict near-misses - direct-mapped 
misses that would have been caught by a 2-way cache, or 4- 
way misses that would have been caught be a 5-way cache. 
These are the misses that a victim buffer, for example, han- 
dles most effectively. Direct-mapped conflict misses that 
would have required g-way associativity to catch are un- 
likely to be aided significantly by a victim buffer. 

The extra tags would be best stored in a structure sepa- 
rate from the cache, because it is accessed much less fre- 
quently and without the access time pressure. We call this 
structure the Miss Classification Table (MCT). The extra 
tag comparison is only done on cache misses. The MCT 
tag comparison will not affect the critical-path access time 
of the cache, nor will it even affect the access time of post- 
cache structures (e.g., victim or prefetch buffer), because 
we only use the conflict information after those structures 
are queried. 

The MCT has one entry per cache set, and thus is direct- 
mapped regardless of the associativity of the cache (we 
could store multiple evicted tags per set to identify higher- 
order conflict misses, but we do not consider that optimiza- 
tion). In addition, we need not store the entire tag to identify 
conflict misses with high accuracy. 

The accuracy with which the MCT identifies conflict and 
capacity misses (assuming complete tags) is shown in Fig- 
ure 1. It correctly identify 88% of conflict misses and 86% 
of capacity misses on a 16KB direct-mapped data cache and 
91% and 92%, respectively, on a 64KB DM cache. In fact, 
it is an overstatement to label the rest of the misses as inac- 
curate, because in some cases our definition of conflict miss 
may be more useful than the classic definition. 

Figure 2 shows the impact of saving only the lower bits 
of the evicted tag. This shows that very little accuracy is lost 
with only 8 bits stored. This, however, can be highly sen- 
sitive to the working set size of the program, so the SPEC 
benchmarks may not be representative. However, lo- 12 bits 
should be sufficient for most applications. This graph is 
for a 16 KB DM cache, showing the average for all bench- 
marks. The results for the other cache configurations con- 
verge in very similar ways. With fewer bits stored, more 
misses are classified as conflict misses, which is why con- 
flict accuracy starts out artificially high and capacity accu- 
racy starts low. This graph shows that even a sijrgle bit per 
cache set could be effective for an architecture that targets 
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Figure 1. The accuracy of miss classification. Results are shown for four cache configurations. The four bars, 
left to I ric Iht, are for a 16KB DM cache, 16KB 2-way cache, 64KB DM cache, and 64KB 2-way cache. 
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Figure 2. The accuracy of miss classification when 
less than the total tag of the evicted line is saved. 
Results are shown for a 16KB DM cache. 

conflict misses, allowing nearly half of capacity misses to 
be excluded while misidentifying very few conflict misses. 

In some cases, we are more interested in the nature of 
the evicted line than the classification of the new miss that 
caused the eviction. If we store one extra bit (call it a con- 
fricf bit) in the MCT per cache line, we can remember which 
lines came in on conflict misses. 

In a direct-mapped cache, this enables the following pos- 
sible filters: in-conflict - the evicted line originally came 

in as a conflict miss, out-conjict - the evicted line is being 
forced out by a conflict miss, and-co@ict - both misses 
were conflict misses, and or-conflicr - either the new or 
evicted line were conflict misses. A set associative cache 
would have even more possible scenarios. We typically 
tried all four filters for each architecture. When results were 
similar, we present the out-conflict result, which does not 
require the extra bits. 

This then provides two mechanisms for changing the 
bias of our classification, depending on how we plan to 
use the information. Fewer saved tag bits and an algorithm 
that uses the or-conflict filter will err on the side of con- 
flict misses. An algorithm that stores more bits and uses the 
and-conjlict filter will err on the side of capacity misses. 

The miss classification table is quite small. If we store 
10 bits per entry, the MCT contains 1.25 KJ3 of storage for a 
direct-mapped 64 KB cache with 64 byte lines (half that for 
a 2-way set-associative cache). If we also store a conflict 
bit per cache line, the total storage overhead goes up to only 
1.4KB. 

4. Methodology 

The utility of conflict miss classification is demonstrated 
by applying it to a variety of cache architectures and mea- 
suring the performance on a detailed emulation-driven pro- 
cessor simulator, SMTSIM [ 191. SMTSIM runs Com- 
paq Alpha binaries and models an out-of-order processor 
pipeline, including execution and memory access along 
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wrong paths following branch mispredictions. The proces- 
sor model used in this study has a 7-stage pipeline, two 32- 
entry instruction queues, and S-instruction fetch and issue, 
including four load-store functional units. 

The processor simulates a three-level memory hierarchy, 
including first-level instruction and data caches, an off-chip 
second level cache (20 cycles from the processor in the ab- 
sence of contention) and main memory (100 cycles from 
the cpu without contention). Contention for cache banks 
and buses between caches is also simulated. All simula- 
tions (except Figure 1) assume a 16 KB direct-mapped Ll 
data cache (multi-ported via &way banking) and a 1 MB 2- 
way L2 unified cache. The Ll data cache configuration was 
chosen to create an interesting mix of conflict and capacity 
misses for the simulated workload (based on Figure I). For 
larger workloads (e.g., databases, OLTP, graphics), we ex- 
pect much larger and associative caches to still experience 
both types of misses in interesting quantities. All caches 
have 64-bye lines. The caches are non-blocking with up 
to 16 misses in-flight at once. When the miss limit is ex- 
ceeded, further misses stall the pipeline, but prefetches are 
discarded. 

Our application suite comes from the SPEC9.5 bench- 
marks. We run the reference data sets, starting measured 
simulation 1 billion instructions into execution, then mea- 
suring the next 300 million instructions (starting with a cold 
cache). We only carry a subset of the SPEC95 benchmarks 
used in the previous section forward, eliminating those that 
don’t have at least a somewhat interesting mix of conflict 
and capacity behavior. However, we show the initial re- 
sults to demonstrate that even the “uninteresting” behav- 
ior is classified accurately. This still includes a number of 
the irregular C applications for which the overall impact of 
the memory subsystem on performance is not high. This is 
in contrast to much of the previous work on, for example, 
prefetching and cache exclusion, which focus on regular nu- 
meric applications. This limits the magnitude of our gains, 
but also tests the applicability of our techniques on much 
“messier” applications. 

We will apply the various architectural techniques exclu- 
sively to the data cache in the following sections; however, 
they should, in general, also apply to the instruction cache. 

We will model a variety of flavors of a cache assist 
buffer, which will serve at different times as a victim buffer, 
prefetch buffer, cache bypass buffer, or the adaptive miss 
buffer. In each case the structure is very similar. In most 
cases it will have eight fully-associative entries and have 
two read and two write ports. It can produce a word to the 
CPU in one cycle. A full cache line read or write requires a 
port for two cycles. A line swap with the data cache requires 
two ports for two cycles. The buffer is only accessed after 
the data cache misses, but can provide data with a single ad- 
ditional cycle of latency (assuming no contention). The size 

of this structure was chosen to ensure single-cycle access. 
All results in the next section store the entire tag in the 

MCT. 

5. Applications of Conflict Miss Filtering 

This section demonstrates the miss classification table by 
examining it in the context of four cache memory architec- 
tures. Also, a new technique that combines these techniques 
in a single mechanism is presented, called the adaptive miss 
buffer. 

5.1. Victim buffer caches 

The victim buffer [lo] is a small buffer that holds data 
recently evicted from the cache. The victim cache is probed 
when the main cache misses, and when the data is found it 
can be returned much more quickly than a full cache miss. 
It targets conflict misses, and is most effective when just a 
few cache sets are heavily contended for. 

Normally, a victim cache hit requires a swap of the two 
affected lines, the newly evicted line now becoming the first 
entry in the victim buffer (and thus the last to be evicted 
from the victim cache). The victim cache can be organized 
as a FIFO from which entries can be taken out of the middle. 
This provides LRU eviction because lines are consumed out 
of the victim cache as soon as they are accessed. 

Although the victim cache serves conflict misses almost 
exclusively, the application of conflict-miss filtering is not 
necessarily straight-forward, We want to put data in the vic- 
tim cache that wilf experience a conflict miss in the near 
future. Therefore, by using a filter to place cache lines in 
the victim cache, we are using the current miss classifica- 
tion as a prediction of future miss classification. If a cache 
line came into the cache originally as a conflict miss, or if it 
was forced out as a conflict miss, we expect that to be a rea- 
sonable predictor that it will be accessed next as a conflict 
miss. Both of those assumptions are true for most applica- 
tions, but we did see exceptions. 

The victim cache provides several policy options. When 
we get a miss, we can choose not to place the evicted line 
in the victim cache if we don’t believe it will be useful. 
This should increase the likelihood useful data in the vic- 
tim cache stays there. This is most useful when the victim 
cache is small. 

When we get a victim cache hit, we can choose not to 
swap the line with the cache, but just have the victim cache 
provide the data to the CPU. Allowing victim cache hits 
without swaps implies (but does not actually require) that 
you now enforce some kind of LRU organization that ac- 
counts for cache hits. This violates the FIFO nature of 
the victim cache, but at the size we are simulating (eight 
entries), a traditional fully-associative organization is not 
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Figure 3. The performance of victim cache policies using the conflict classification. 

complex. Eliminating swaps puts considerably less pres- 
sure on both the victim cache and the data cache, which are 
both occupied during a swap. However, this gain can be lost 
if the rate of victim cache accesses rises significantly. This 
can happen when oft-accessed data remains in the victim 
cache because of our decision not to swap. 

The full range of possible permutations of policies (even 
the subset likely to be profitable) is quite large, and we will 
only show a subset of well-performing or interesting poli- 
cies - this is true for each of the cache architectures we 
examine. Figure 3 shows the performance of the victim 
cache policies. The first bar is a traditional victim cache. 
The second does not swap lines on a victim cache hit for a 
conflict miss. This policy eiiminated a great deal of heavy 
ping-ponging of cache lines between the main cache and the 
victim cache, recognizing that conflict misses were the pri- 
mary culprit. The third bar bypasses the victim cache when 
a line is being evicted from the main cache as a capacity 
miss. The last bar combines the two techniques. Each of 
these policies use the or-con@ algorithm, the most liberal 
identification of conflict misses. 

The speedup (about 3% on average, for the combtned 
policy over a traditional victim cache) was gained primarily 
by placing less pressure on the victim and data caches by 
reducing swaps and victim cache fills. In most cases more 
selective use of the victim cache did not increase overall 
hit rates -the victim cache, even at eight entries, was not 
being overly hurt by contention for entries. Therefore, by- 
passing the victim cache with low-probability entries did 
not in general prevent useful lines from being evicted, but 
did serve to eliminate a large number of unnecessary victim 
cache fills, with very little loss in hit rate. The hit rate data 
and rate of victim cache swaps (on victim cache hit) and fills 
(on victim cache misses) is shown in Table 1. We see that 
the no-fill option cut victim cache fills by more than half. 
The no-swap option dramatically decreased the number of 
swaps. Although the numbers of swaps are relatively low 
to begin with, they are very expensive, occupying both the 
cache bank and the victim buffer. 

Policy 11 D$ HR 1 V$ HR 1 Total I swaps I fills 
no V cache 11 88.2 1 0 1 88.2 1 0 1 0 

Table 1. Hit rates and rate of swaps and fills (as a 
percentage of all accesses) for the various victim 
cache configurations. 

5.2. Cache Prefetching 

Hardware cache prefetching predicts future memory ac- 
cess patterns based on current or past access patterns, and 
attempts to move data likely to be accessed in the near future 
closer to the processor. While all misses can benefit from 
prefetching, we expect capacity misses to be more amenable 
to prediction via pattern analysis than conflict misses. 

Hardware prefetchers range from very simple next- 
line prefetchers to more sophisticated stride [3] or even 
repeated-pattern based predictors [9]. We examined both a 
next-line prefetcher and a stride predictor (results not shown 
here) based on Chen and Baer’s reference prediction table 
(RPT) [3]. However, for most of the benchmarks we use, 
particularly the irregular applications, the simple next-line 
prefetcher actually provides higher coverage of misses. But 
it does so at the expense of a very large number of wasted 
prefetches (prefetches that are lost from the buffer before 
they are, if ever, accessed by the program). Those wasted 
prefetches will be the target of our approach. The RFT 
scheme can potentially benefit from miss classification by 
removing the noise from the access stream created by the 
conflict misses, particularly when the predictor is able to 
follow a limited number of address streams. However, for 
this paper we will focus on the next-line prefetcher. The 
next-line prefetcher simply prefetches the next cache line 
on a cache miss (assuming the next line is not already in 
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Figure 4. The performance of various next-line prefetch strategies. The first bar is a conventional next-line 
prefetcher, The others, left to right, are only prefetch capacity misses, where the filter used is in-conflict, 
out-conflict, or-conflict, and and-conflict, respectively. (b) shows the average speedup over no prefetching. 

the cache) into a buffer which looks very much like our vic- 
tim cache or a stream buffer [lo]. On a hit in the prefetch 
buffer, the line is moved into the cache and the next line is 
prefetched. 

A next-line prefetcher, even when augmented with our 
miss classifier, is much simpler than the RPI prefetcher, 
which must be read and updated on every memory access. 
With our prefetcher, the next-line calculator and the miss 
classihcation table are only accessed on misses. 

Figure 4 shows the effect of applying capacity-miss fil- 
tering to a simple next-Iine prefetcher. The bars, left to 
right, are (1) a standard next-line prefetcher with no filter- 
ing, (2) prefetching only capacity misses, achieved by ig- 
noring the in-conjlicf misses, (3) ignoring the out-conflict 
misses, (4) ignoring the and-con@ misses, and (5) ig- 
noring the or-conjlict misses. The or-conflict filter is the 
most discriminating, because it chooses not to prefetch 
if there is even a hint of a conflict miss. In all cases, 
filtered prefetching provided significantly higher prefetch 
accuracy (fewer wasted prefetches) by eliminating low- 
probability prefetches. In one case (swim), the filtered 
prefetching actually provided higher coverage by eliminat- 
ing useless prefetches from the prefetch buffer, preventing 
useful prefetches from being overwritten. 

In a memory system with sufficient memory bandwidth, 
coverage is ultimately a more important factor than accu- 
racy; however, in some memory-bound scenarios accuracy 
wil1 be important. The speedup results shown are for a sys- 
tem with a slower memory bus (between the Ll and L2 

caches) than modeled in the rest of the paper. However, 
even under those conditions the performance advantage is 
not significant. For prefetching, the payoff is not in nof 
prefetching conflict misses, but in finding something bet- 
ter than prefetching to do for the conflict misses, as seen in 
Section 5.5. 

This section has shown that prefetch filtering using 
the miss classification table can significantly decrease the 
amount of useless prefetch traffic, increasing prefetch accu- 
racy by about 25%. 

5.3. Cache Exclusion 

Tyson, et al. [20] and Johnson and Hwu [8] have demon- 
strated that not all data accesses are good candidates for 
caching. Higher overall hit rates can be achieved by not al- 
locating space for certain cache lines, even on load misses. 
Tyson uses a table, indexed by program counter, to track 
hit/miss frequency, and excludes from the cache accesses 
predicted to miss with high likelihood. Johnson and Hwu 
record the frequency of access to 1 RI3 regions of memory, 
and prevent a cache line from a low-access region from 
replacing one from a high-access region. We model the 
Johnson and Hwu memory access table (MAT) in this sec- 
tion, and compare it with exclusion algorithms based on the 
MCT. 

Both the Tyson and Johnson schemes require tables that 
are updated on every access. A processor with 4 load/store 
units must be able to do 4 reads to the structure, 4 incre- 
ments/decrements, and 4 writes each cycle. The MAT also 
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Figure 5. The performance of various cache-exclusion policies. The first bar in each group has no extra buffer, 
the second uses Johnson and Hwu’s memory access table, the third through sixth use the conflict, the conflict 
history, capacity, and capacity history filter mechanisms to select lines to go into the bypass buffer. (b) shows 

the average speedup over no exclusion. 

requires tag-match comparisons for each access, and on a 
miss must access two entries in the table. If we can achieve 
equal or better performance with our miss classification ta- 
ble, which is only used on cache misses, we can greatly sim- 
plify this structure. We simulate a lK-entry direct-mapped 
MAT. It was shown that excluded accesses do typically have 
some short-term spatial locality [B]; therefore, we bring 
excluded lines into a small 16-entry bypass buffer, which 
again looks much like our victim/prefetch buffer, where 
they remain until bumped out by other lines. The Johnson 
algorithm was originally studied with a much larger buffer, 
and we found it to do poorly with an S-entry buffer, which 
is why we use the slightly larger structure here. 

The best policy was not obvious in this case. Capacity 
accesses are more likely to have the property of short but 
temporary bursts of activity; however, filtering for conflict 
misses ensures that there is a problem to be solved with this 
cache line. We found the former factor to be more important 
and that capacity misses were the best candidates for the 
bypass buffer. 

Filtering for capacity misses required a slight modifica- 
tion to the MCT algorithm. The problem is that no line can 
be classified as a conflict access unless it has been in the 
cache once. But if we redirect all capacity misses to the 
bypass buffer, none ever get classified as conflict. There- 
fore whenever a line gets put into the bypass buffer, we put 
its tag into the MCT entry for the index in the cache where 

it would normally go. That way, if the line causes a miss 
later (after it is evicted from the bypass buffer), it has the 
opportunity to be classified as a conflict miss. 

For this study, we examined more complex exclusion 
algorithms (examining possible compromises between the 
simplicity of the MCT and the complexity of the MAT), 
yet failed to beat the performance of the most simple fil- 
ter. The simulated policies are MAT - the Johnson and 
Hwu scheme, capaciry - put any miss identified as a ca- 
pacity miss in the bypass buffer, capacity history - ex- 
clude misses from a region with a history of capacity misses 
(using a structure somewhat similar to the MAT), con&r 
- put any miss identified as a conflict miss in the bypass 
buffer, and confZict hismy - put accesses from a region 
with a history of conflict misses into the bypass buffer. In 
each case (except MAT), the out-conflict filter is used. 

Figure 5 shows the performance of miss classification 
filtering for cache exclusion. Simply excluding capacity 
misses provided the best performance, both outperform- 
ing the MAT scheme and our simpler variants of the MAT 
scheme. This scheme provided both a higher overall hit 
rate and higher performance, although it does pay a slightly 
higher price in more buffer accesses. 
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Figure 6. The performance of the adaptive miss buffer using various combinations of victim, prefetch, and 
exclusion policies. 

5.4. Pseudo-Associative Cache 5.5. Adaptive Miss Buffer 

A pseudo-associative cache [ 11 uses an alternate entry in 
the cache as a backup location for a line evicted from its pri- 
mary location. The secondary location has a longer hit time 
than the primary, and a hit to the secondary triggers a cache 
line swap between the two locations. Like the victim cache, 
this works most effectively with conflict misses, and we can 
improve its effectiveness by protecting conflict-miss cache 
lines in the cache. A wide variety of policies are possible, 
but here we only describe one particular algorithm which 
we found to be effective. 

So far in this section, we have achieved small gains 
through not applying optimizations where they were not ap- 
propriate, but the real power in miss classification is the op- 
portunity to apply the best optimization to each type of miss 
individually. Each of the first three schemes use a very sim- 
ilar structure to hold data that is not appropriate to put in the 
main cache. It would be straightforward to combine these 
schemes in a single buffer which treats each miss in a man- 
ner most appropriate for that type of miss. 

The traditional pseudo-associative cache can be modified 
to use the MCT to discard cache lines that are less likely 
to profit from the associativity, namely capacity misses. In 
this scheme, the MCT entry at a particular index holds the 
tag of the line most recently evicted from that index, even 
if the line was in its secondary position. A new line gets 
its conflict bit set only if it matches the tag in its primary 
location. When a line needs to be chosen for eviction, and 
exactly one of the two candidates has its conflict bit set, the 
other line is evicted and the first line’s conflict bit is reset, 
regardless of primary/secondary location or the LRU bit. In 
this way we give a temporary advantage to lines that come 
in as conflict misses. If both lines have their conflict bits 
set, traditional LRU is used and the conflict bit of the kept 
line is not cleared. 

The advantage of maintaining a single buffer rather than 
multiple buffers is that the access time remains the same as 
any of the other cache architectures alone. Having multiple 
buffers would add another level of associativity to the access 
which would certainly affect access times. 

Combining these policies requires extra bits to remember 
how a cache line entered the buffer, because we may do 
something different on a buffer hit depending on whether 
the line came in, for example, as a prefetch or a victim swap. 
In some cases lines will transition - for example, if we are 
combining prefetching and exclusion, a hit on a prefetched 
line may still leave the line in the buffer, but mark it as an 
exclusion line. 

This technique improved the average performance of the 
pseudo-associative cache by 1.5%, with individual gains as 
high as 7%. Our modified pseudo-associative cache ran 
only 0.9% slower than a true 2-way set-associative cache. 
In fact, three of the programs, tomcatv, turb3d and wave 
all outperformed the 2-way cache. Overall, the average 
miss rate was improved from 10.22% in the base pseudo- 
associative cache to 9.83%. 

When combining policies, we stayed with the best fil- 
ter found so far. For example, VictPref victim caches 
(but doesn’t swap) conflict misses and prefetches capacity 
misses. PrefExcl does not do anything with conflict misses, 
because both do best with capacity misses; however, we 
found that a variant of PrefExcl which prefetched capacity 
misses and excluded conflict misses also performed well, 
but that result is not shown. For an f&entry buffer, the best 
combination was VictPref (Figure 6), which more than dou- 
bled the overall gain of any single policy. With more room 
in the buffer (see the l&entry result), the policy which does 
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Figure 7. The average data cache and buffer hit rate 
components for the adaptive miss buffer policies. 

everything (VicPreExc, which excludes and prefetches by- 
pass misses, and victim-caches conflict misses) becomes 
more attractive. 

The single-policy results shown use the variant which 
gave the best performance, which in each case did in- 
volve miss classification filtering. All multiple-policy re- 
sults shown use the out-conflict filter. 

The hit rate statistics (Figure 7) show that the AMB is in- 
deed deriving its performance by optimizing the coverage of 
each type of miss. On average a factor of 1.4 improvement 
(30% reduction) in total miss rate is achieved over the best 
individual policy, and for the memory-critical applications, 
it was even higher. On tomcatv, a 1.7X improvement in 
miss rate was achieved (VictPref over Vict). Even that is de- 
ceiving, because while the prefetch hit rates show prefetch- 
ing to be ineffective for the combined policy, the “wasted’ 
prefetches (because they failed to stay long enough in the 
buffer) end up pre-filling the L2 cache quite effectively, so 
the average access time of the remaining misses was also 
much lower with VictPref than with Vict alone. So even 
on the most demanding of our application (tomcatv has a 
38% miss rate with no buffer), we found that almost all of 
the misses are at least partially covered by the adaptive miss 
buffer, despite its small size. 

5.6. Other Applications of Miss Classification 

This paper has examined a few potential applications of 
miss classification, but has certainly not exhausted the pos- 
sibilities. This section presents some other possible appli- 
cations. 

Highly associative caches Many real workloads will still 
experience conflict misses with 4-way or higher-associative 
caches (unfortunately, this is not in general true of the work- 
loads used in this paper). In that case, the cache may benefit 
from using miss classification as part of the cache line re- 
placement algorithm. For example, a bias against capacity 
misses will ensure that accesses that stride through memory 
(characterized by a capacity miss followed by a short burst 
of activity) will move out of the cache set quickly once they 
are no longer being used. This is the same application sug- 
gested by Stone [ 173 and Pomerene. 

Runtime conflict avoidance The cache miss lookaside 
buffer [2, 131 counts cache misses by their page in mem- 
ory. This allows the operating system to alter the virtual-to- 
physical page mapping of two pages that map to the same 
region of the cache and are both experiencing high miss 
rates. Miss classification would allow this technique to only 
count conflict misses. Reallocation could be avoided when 
the majority of misses are capacity misses (in which case 
reallocation typically would not help). 

Multithreaded architectures Multithreaded [ 18,7] pro- 
cessors, or other architectures that allow multiple threads to 
dynamically share a cache [ 15, 121, are particularly prone 
to high levels of conflict, even with associative caches. In 
addition, this problem cannot be solved with software tech- 
niques because the conflicts are produced by competition 
with other threads. 

All of the techniques described in this paper would apply 
to an even greater extent with multithreaded caches. But 
multithreaded processors enable another dimension to the 
solution through control of job scheduling. Jobs which pro- 
duce an inordinate number of conflict misses when sched- 
uled together can be identified as bad candidates for co- 
scheduling in the future. 

6. Conclusions 

This paper describes the miss classification table which 
enables the processor to dynamically distinguish between 
conflict and capacity (non-conflict) cache misses. The miss 
classification table works by storing all or part of the tag 
of the most recently evicted line of a cache set. If the next 
miss to that cache set has a matching tag, it is identified as 
a conflict miss. This technique correctly identifies at least 
87% of misses. In addition, a single bit per cache line (the 
conflict bit) enables the preservation of that miss classifica- 
tion information during the line’s lifetime in the cache. The 
miss classification table is small and simple. It can require 
as little as 8-10 bits per cache set and need be accessed only 
on cache misses. 
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We demonstrate the utility of this information by apply- 
ing it to victim cache design, cache prefetching, a cache 
exclusion mechanisms, and pseudo-associative caches. In 
each case, the architecture benefits from applying different 
policies to different types of misses. It does so in some 
cases by eliminating accesses unlikely to benefit from the 
particular architecture. 

Three of these techniques can be combined into a sin- 
gle architecture, which we call the adaptive miss buffer. 
The adaptive miss buffer uses the victim/prefetch/exclusion 
buffer in a different way depending on the classification of 
each miss. This uses a single structure to optimize buffer 
performance for the elimination of both conflict and ca- 
pacity misses. This greatly increases the effectiveness of 
a cache-assist buffer, providing twice the performance gain 
of any single optimization using the same size buffer. 
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