
Hardware Identification of Cache Conflict Misses

Jamison D. Collins Dean M. Tullsen

Department of Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093-0114

Abstract

This paper describes the Miss Classification Table, a
simple mechanism that enables the processor or memory
controller to identify each cache miss as either a conflict
miss or a capacity (non-confiict) miss. The miss classifi-
cation table works by storing part of the tag of the most
recently evicted line of a cache set. If the next miss to that
cache set has a matching tag, it is identified as a conflict
miss. This technique correctly identifies 8790 of misses in
the worst case.

Several applications of this information are demon-
strated, including improvements to victim caching, next-
line prefetching, cache exclusion, and a pseudo-associative
cache. This paper also presents the Adaptive Miss Buffer
(AMB), which combines several of these techniques, target-
ing each miss with the most appropriate optimization, all
within a single small miss buffer The AMB’s combination
of techniques achieves 1690 better pe$ormance than any
single technique alone.

1. Introduction

A number of cache-based architectural optimizations
are aimed at particular types of cache misses. Caches
that mimic associativity (e.g., victim caches and pseudo-
associative caches) all target conflict misses. Prefetching
mechanisms tend to be more effective with capacity misses.
Each of these mechanisms suffer because they end up be-
ing applied to all misses, due to our inability to distinguish
conflict misses from capacity misses on the fly.

This paper presents a technique to classify misses as ei-
ther conflict misses or capacity misses (we’ll group com-
pulsory and capacity misses together and call them capacity
misses for simplicity). This technique can be used to fil-
ter misses seen by hardware structures that handle only one
type of miss well. Even better, it can be used to apply dif-
ferent mechanisms to different types of misses, as appropri-

ate. We show that this technique can correctly identify over
85% of misses as either conflict or capacity; it is accurate
for both direct-mapped and associative caches of different
sizes. One possible application of this would restrict the
misses that can write into a victim buffer. This potentially
protects two critical resources, the entries themselves, hope-
fully leaving high-probability entries in the buffer longer,
and the buffer access ports, increasing its availability.

Cache conflict misses are identified through the use of
the Miss Classification Table (MCT). The MCT has one en-
try corresponding to each set of the cache. For each set, the
MCT stores the tag of the cache line most recently evicted
from the cache. If the next miss to that set has the same tag,
it is labeled a conflict miss. This implies that the line may
have been a hit with a slightly more associative cache.

Armed with this information, we can choose to treat dif-
ferently those lines evicted by a conflict miss, or those lines
that come into the cache on a conflict miss. We do not
need to store the entire tag in the MCT, however, the more
evicted-line tag bits we save, the fewer false hits we receive
and the more accurate our classification. We show that we
still get nearly the full accuracy by only keeping 8 bits per
entry.

We apply this technique to the following cache archi-
tectures: victim caches, cache prefetching, cache exclu-
sion, and pseudo-associative caches. For victim caches, we
achieve a modest speedup using miss classification filter-
ing. We significantly increase the prefetch accuracy of a
simple next-line prefetcher, allowing a very simple scheme
to approach the accuracy (if not coverage) of more complex
mechanisms. We show a simple approach to cache exclu-
sion which decreases the overall cache miss rate over more
expensive schemes. The pseudo-associative cache uses its
knowledge of miss type to change the line replacement al-
gorithm. We also describe a mechanism for combining
these techniques, targeting each miss with the optimiza-
tion most likely to produce a performance benefit. This ap-
proach, called the Adaptive Miss Buffer, demonstrates the
real potential of miss classification, targeting a different op-

126
1072-4451/99 $10.00 0 1999 IEEE

timization for each type of cache miss. It achieves as much
as a 16% speedup over any single technique, while using
the same buffer structure.

This paper is organized as follows. Section 2 discusses
related work. Section 3 describes the miss classification ta-
ble and other hardware support. Section 4 describes our
measurement and evaluation methodology. Section 5 de-
scribes the performance of four applications of miss clas-
sification filtering on previous architectures and a new ar-
chitecture that combines several techniques. Section 6 con-
cludes.

2. Related Work

This research applies miss classification to several pre-
viously proposed and implemented cache structures. Vic-
tim buffers [lo] store recently evicted cache lines in a small
buffer, often transforming cache conflict misses into victim
buffer hits. Hardware cache prefetching [14, 10, 31 attempts
to predict future memory access patterns from prior access
history, moving those cache lines expected to be accessed
in the future into the lower levels of the cache hierarchy.
Cache exclusion identifies either instructions [20] or ad-
dressable regions of memory [8] that have poor data locality
(for the particular cache) and do not allow those accesses
to evict other lines from the cache. A pseudo-associative
cache [1] uses an alternate entry in the cache as a backup
location for a line evicted from its primary location. The hit
time to the primary location is the same as a direct-mapped
cache, but the hit rate (including hits to the secondary loca-
tion) is similar to an associative cache.

Stone [17] describes a shadow directory, which he at-
tributes to J. Pomerene, that keeps some number of evicted
line addresses per cache set. It is similar to our miss clas-
sification table, but there are no performance results avail-
able to evaluate the technique. He suggests it be used to
favor shadow misses over other misses (he calls them tran-
sient misses) in the cache replacement algorithm of a set-
associative cache. We add to this the conflict bit, which
allows the retention of the miss classification while the line
remains in the cache. We examine many more applications
of the technique.

Architectures have been proposed that dynamically at-
tempt to classify other aspects of references, including
temporal or spatial locality [5, 111 or migratory behav-
ior [4, 161.

3. Classifying Misses

Miss classification identifies the following conflict miss
scenario. Cache line B is accessed, resulting in a cache
miss, and evicts line A from the cache. The next miss to

the same cache set is an access to line A. The second miss
is a conflict miss which can be identified simply by saving
the tag for A when it was evicted. On the subsequent miss to
this cache set, the tag of the most recently evicted line from
that set is compared with the tag of the newly accessed line.
If they are identical, we identify this as a conflict miss. This
is slightly different than the classic definition of a conflict
miss [6], but is much easier to identify on the fly. This def-
inition actually filters a more interesting subset of conflict
misses. It identifies conflict near-misses - direct-mapped
misses that would have been caught by a 2-way cache, or 4-
way misses that would have been caught be a 5-way cache.
These are the misses that a victim buffer, for example, han-
dles most effectively. Direct-mapped conflict misses that
would have required g-way associativity to catch are un-
likely to be aided significantly by a victim buffer.

The extra tags would be best stored in a structure sepa-
rate from the cache, because it is accessed much less fre-
quently and without the access time pressure. We call this
structure the Miss Classification Table (MCT). The extra
tag comparison is only done on cache misses. The MCT
tag comparison will not affect the critical-path access time
of the cache, nor will it even affect the access time of post-
cache structures (e.g., victim or prefetch buffer), because
we only use the conflict information after those structures
are queried.

The MCT has one entry per cache set, and thus is direct-
mapped regardless of the associativity of the cache (we
could store multiple evicted tags per set to identify higher-
order conflict misses, but we do not consider that optimiza-
tion). In addition, we need not store the entire tag to identify
conflict misses with high accuracy.

The accuracy with which the MCT identifies conflict and
capacity misses (assuming complete tags) is shown in Fig-
ure 1. It correctly identify 88% of conflict misses and 86%
of capacity misses on a 16KB direct-mapped data cache and
91% and 92%, respectively, on a 64KB DM cache. In fact,
it is an overstatement to label the rest of the misses as inac-
curate, because in some cases our definition of conflict miss
may be more useful than the classic definition.

Figure 2 shows the impact of saving only the lower bits
of the evicted tag. This shows that very little accuracy is lost
with only 8 bits stored. This, however, can be highly sen-
sitive to the working set size of the program, so the SPEC
benchmarks may not be representative. However, lo- 12 bits
should be sufficient for most applications. This graph is
for a 16 KB DM cache, showing the average for all bench-
marks. The results for the other cache configurations con-
verge in very similar ways. With fewer bits stored, more
misses are classified as conflict misses, which is why con-
flict accuracy starts out artificially high and capacity accu-
racy starts low. This graph shows that even a sijrgle bit per
cache set could be effective for an architecture that targets

127

inacitv rieht]
40

mea* ,v

3.5
PI-

0 capacity wrong

30 0 conflict H

I

’

2 25
n cc ~“.-A

applu apsi camp fpppp gee go hydro ijpeg li m88k mgrid per1 su2corswim tom turb wave
Applications

Figure 1. The accuracy of miss classification. Results are shown for four cache configurations. The four bars,
left to I ric Iht, are for a 16KB DM cache, 16KB 2-way cache, 64KB DM cache, and 64KB 2-way cache.

1

-0.8
‘U
E
5
:: 0.6
5 .J
.4 0.4
cc
5
9 0.2

0
I

/------------
/ /-.’

:
- conflict right

- - - capacity right

I 5 IO 15 21
Tag bits stored

Figure 2. The accuracy of miss classification when
less than the total tag of the evicted line is saved.
Results are shown for a 16KB DM cache.

conflict misses, allowing nearly half of capacity misses to
be excluded while misidentifying very few conflict misses.

In some cases, we are more interested in the nature of
the evicted line than the classification of the new miss that
caused the eviction. If we store one extra bit (call it a con-
fricf bit) in the MCT per cache line, we can remember which
lines came in on conflict misses.

In a direct-mapped cache, this enables the following pos-
sible filters: in-conflict - the evicted line originally came

in as a conflict miss, out-conjict - the evicted line is being
forced out by a conflict miss, and-co@ict - both misses
were conflict misses, and or-conflicr - either the new or
evicted line were conflict misses. A set associative cache
would have even more possible scenarios. We typically
tried all four filters for each architecture. When results were
similar, we present the out-conflict result, which does not
require the extra bits.

This then provides two mechanisms for changing the
bias of our classification, depending on how we plan to
use the information. Fewer saved tag bits and an algorithm
that uses the or-conflict filter will err on the side of con-
flict misses. An algorithm that stores more bits and uses the
and-conjlict filter will err on the side of capacity misses.

The miss classification table is quite small. If we store
10 bits per entry, the MCT contains 1.25 KJ3 of storage for a
direct-mapped 64 KB cache with 64 byte lines (half that for
a 2-way set-associative cache). If we also store a conflict
bit per cache line, the total storage overhead goes up to only
1.4KB.

4. Methodology

The utility of conflict miss classification is demonstrated
by applying it to a variety of cache architectures and mea-
suring the performance on a detailed emulation-driven pro-
cessor simulator, SMTSIM [191. SMTSIM runs Com-
paq Alpha binaries and models an out-of-order processor
pipeline, including execution and memory access along

128

wrong paths following branch mispredictions. The proces-
sor model used in this study has a 7-stage pipeline, two 32-
entry instruction queues, and S-instruction fetch and issue,
including four load-store functional units.

The processor simulates a three-level memory hierarchy,
including first-level instruction and data caches, an off-chip
second level cache (20 cycles from the processor in the ab-
sence of contention) and main memory (100 cycles from
the cpu without contention). Contention for cache banks
and buses between caches is also simulated. All simula-
tions (except Figure 1) assume a 16 KB direct-mapped Ll
data cache (multi-ported via &way banking) and a 1 MB 2-
way L2 unified cache. The Ll data cache configuration was
chosen to create an interesting mix of conflict and capacity
misses for the simulated workload (based on Figure I). For
larger workloads (e.g., databases, OLTP, graphics), we ex-
pect much larger and associative caches to still experience
both types of misses in interesting quantities. All caches
have 64-bye lines. The caches are non-blocking with up
to 16 misses in-flight at once. When the miss limit is ex-
ceeded, further misses stall the pipeline, but prefetches are
discarded.

Our application suite comes from the SPEC9.5 bench-
marks. We run the reference data sets, starting measured
simulation 1 billion instructions into execution, then mea-
suring the next 300 million instructions (starting with a cold
cache). We only carry a subset of the SPEC95 benchmarks
used in the previous section forward, eliminating those that
don’t have at least a somewhat interesting mix of conflict
and capacity behavior. However, we show the initial re-
sults to demonstrate that even the “uninteresting” behav-
ior is classified accurately. This still includes a number of
the irregular C applications for which the overall impact of
the memory subsystem on performance is not high. This is
in contrast to much of the previous work on, for example,
prefetching and cache exclusion, which focus on regular nu-
meric applications. This limits the magnitude of our gains,
but also tests the applicability of our techniques on much
“messier” applications.

We will apply the various architectural techniques exclu-
sively to the data cache in the following sections; however,
they should, in general, also apply to the instruction cache.

We will model a variety of flavors of a cache assist
buffer, which will serve at different times as a victim buffer,
prefetch buffer, cache bypass buffer, or the adaptive miss
buffer. In each case the structure is very similar. In most
cases it will have eight fully-associative entries and have
two read and two write ports. It can produce a word to the
CPU in one cycle. A full cache line read or write requires a
port for two cycles. A line swap with the data cache requires
two ports for two cycles. The buffer is only accessed after
the data cache misses, but can provide data with a single ad-
ditional cycle of latency (assuming no contention). The size

of this structure was chosen to ensure single-cycle access.
All results in the next section store the entire tag in the

MCT.

5. Applications of Conflict Miss Filtering

This section demonstrates the miss classification table by
examining it in the context of four cache memory architec-
tures. Also, a new technique that combines these techniques
in a single mechanism is presented, called the adaptive miss
buffer.

5.1. Victim buffer caches

The victim buffer [lo] is a small buffer that holds data
recently evicted from the cache. The victim cache is probed
when the main cache misses, and when the data is found it
can be returned much more quickly than a full cache miss.
It targets conflict misses, and is most effective when just a
few cache sets are heavily contended for.

Normally, a victim cache hit requires a swap of the two
affected lines, the newly evicted line now becoming the first
entry in the victim buffer (and thus the last to be evicted
from the victim cache). The victim cache can be organized
as a FIFO from which entries can be taken out of the middle.
This provides LRU eviction because lines are consumed out
of the victim cache as soon as they are accessed.

Although the victim cache serves conflict misses almost
exclusively, the application of conflict-miss filtering is not
necessarily straight-forward, We want to put data in the vic-
tim cache that wilf experience a conflict miss in the near
future. Therefore, by using a filter to place cache lines in
the victim cache, we are using the current miss classifica-
tion as a prediction of future miss classification. If a cache
line came into the cache originally as a conflict miss, or if it
was forced out as a conflict miss, we expect that to be a rea-
sonable predictor that it will be accessed next as a conflict
miss. Both of those assumptions are true for most applica-
tions, but we did see exceptions.

The victim cache provides several policy options. When
we get a miss, we can choose not to place the evicted line
in the victim cache if we don’t believe it will be useful.
This should increase the likelihood useful data in the vic-
tim cache stays there. This is most useful when the victim
cache is small.

When we get a victim cache hit, we can choose not to
swap the line with the cache, but just have the victim cache
provide the data to the CPU. Allowing victim cache hits
without swaps implies (but does not actually require) that
you now enforce some kind of LRU organization that ac-
counts for cache hits. This violates the FIFO nature of
the victim cache, but at the size we are simulating (eight
entries), a traditional fully-associative organization is not

129

0 swap only capacity

q victim-$ only conflict

apsi COlTlP t&cc go hydro Ii mgrid perI swim tomcatv turb3d wave

Application

Figure 3. The performance of victim cache policies using the conflict classification.

complex. Eliminating swaps puts considerably less pres-
sure on both the victim cache and the data cache, which are
both occupied during a swap. However, this gain can be lost
if the rate of victim cache accesses rises significantly. This
can happen when oft-accessed data remains in the victim
cache because of our decision not to swap.

The full range of possible permutations of policies (even
the subset likely to be profitable) is quite large, and we will
only show a subset of well-performing or interesting poli-
cies - this is true for each of the cache architectures we
examine. Figure 3 shows the performance of the victim
cache policies. The first bar is a traditional victim cache.
The second does not swap lines on a victim cache hit for a
conflict miss. This policy eiiminated a great deal of heavy
ping-ponging of cache lines between the main cache and the
victim cache, recognizing that conflict misses were the pri-
mary culprit. The third bar bypasses the victim cache when
a line is being evicted from the main cache as a capacity
miss. The last bar combines the two techniques. Each of
these policies use the or-con@ algorithm, the most liberal
identification of conflict misses.

The speedup (about 3% on average, for the combtned
policy over a traditional victim cache) was gained primarily
by placing less pressure on the victim and data caches by
reducing swaps and victim cache fills. In most cases more
selective use of the victim cache did not increase overall
hit rates -the victim cache, even at eight entries, was not
being overly hurt by contention for entries. Therefore, by-
passing the victim cache with low-probability entries did
not in general prevent useful lines from being evicted, but
did serve to eliminate a large number of unnecessary victim
cache fills, with very little loss in hit rate. The hit rate data
and rate of victim cache swaps (on victim cache hit) and fills
(on victim cache misses) is shown in Table 1. We see that
the no-fill option cut victim cache fills by more than half.
The no-swap option dramatically decreased the number of
swaps. Although the numbers of swaps are relatively low
to begin with, they are very expensive, occupying both the
cache bank and the victim buffer.

Policy 11 D$ HR 1 V$ HR 1 Total I swaps I fills
no V cache 11 88.2 1 0 1 88.2 1 0 1 0

Table 1. Hit rates and rate of swaps and fills (as a
percentage of all accesses) for the various victim
cache configurations.

5.2. Cache Prefetching

Hardware cache prefetching predicts future memory ac-
cess patterns based on current or past access patterns, and
attempts to move data likely to be accessed in the near future
closer to the processor. While all misses can benefit from
prefetching, we expect capacity misses to be more amenable
to prediction via pattern analysis than conflict misses.

Hardware prefetchers range from very simple next-
line prefetchers to more sophisticated stride [3] or even
repeated-pattern based predictors [9]. We examined both a
next-line prefetcher and a stride predictor (results not shown
here) based on Chen and Baer’s reference prediction table
(RPT) [3]. However, for most of the benchmarks we use,
particularly the irregular applications, the simple next-line
prefetcher actually provides higher coverage of misses. But
it does so at the expense of a very large number of wasted
prefetches (prefetches that are lost from the buffer before
they are, if ever, accessed by the program). Those wasted
prefetches will be the target of our approach. The RFT
scheme can potentially benefit from miss classification by
removing the noise from the access stream created by the
conflict misses, particularly when the predictor is able to
follow a limited number of address streams. However, for
this paper we will focus on the next-line prefetcher. The
next-line prefetcher simply prefetches the next cache line
on a cache miss (assuming the next line is not already in

130

1
(a) Prefetch Coverage and Accuracy

(b) Average

II
Speedup 1 2

I .
0 wasted prefetches II I 5

Applicatton .c z* r’d 0 d
Prefetch Filter

Figure 4. The performance of various next-line prefetch strategies. The first bar is a conventional next-line
prefetcher, The others, left to right, are only prefetch capacity misses, where the filter used is in-conflict,
out-conflict, or-conflict, and and-conflict, respectively. (b) shows the average speedup over no prefetching.

the cache) into a buffer which looks very much like our vic-
tim cache or a stream buffer [lo]. On a hit in the prefetch
buffer, the line is moved into the cache and the next line is
prefetched.

A next-line prefetcher, even when augmented with our
miss classifier, is much simpler than the RPI prefetcher,
which must be read and updated on every memory access.
With our prefetcher, the next-line calculator and the miss
classihcation table are only accessed on misses.

Figure 4 shows the effect of applying capacity-miss fil-
tering to a simple next-Iine prefetcher. The bars, left to
right, are (1) a standard next-line prefetcher with no filter-
ing, (2) prefetching only capacity misses, achieved by ig-
noring the in-conjlicf misses, (3) ignoring the out-conflict
misses, (4) ignoring the and-con@ misses, and (5) ig-
noring the or-conjlict misses. The or-conflict filter is the
most discriminating, because it chooses not to prefetch
if there is even a hint of a conflict miss. In all cases,
filtered prefetching provided significantly higher prefetch
accuracy (fewer wasted prefetches) by eliminating low-
probability prefetches. In one case (swim), the filtered
prefetching actually provided higher coverage by eliminat-
ing useless prefetches from the prefetch buffer, preventing
useful prefetches from being overwritten.

In a memory system with sufficient memory bandwidth,
coverage is ultimately a more important factor than accu-
racy; however, in some memory-bound scenarios accuracy
wil1 be important. The speedup results shown are for a sys-
tem with a slower memory bus (between the Ll and L2

caches) than modeled in the rest of the paper. However,
even under those conditions the performance advantage is
not significant. For prefetching, the payoff is not in nof
prefetching conflict misses, but in finding something bet-
ter than prefetching to do for the conflict misses, as seen in
Section 5.5.

This section has shown that prefetch filtering using
the miss classification table can significantly decrease the
amount of useless prefetch traffic, increasing prefetch accu-
racy by about 25%.

5.3. Cache Exclusion

Tyson, et al. [20] and Johnson and Hwu [8] have demon-
strated that not all data accesses are good candidates for
caching. Higher overall hit rates can be achieved by not al-
locating space for certain cache lines, even on load misses.
Tyson uses a table, indexed by program counter, to track
hit/miss frequency, and excludes from the cache accesses
predicted to miss with high likelihood. Johnson and Hwu
record the frequency of access to 1 RI3 regions of memory,
and prevent a cache line from a low-access region from
replacing one from a high-access region. We model the
Johnson and Hwu memory access table (MAT) in this sec-
tion, and compare it with exclusion algorithms based on the
MCT.

Both the Tyson and Johnson schemes require tables that
are updated on every access. A processor with 4 load/store
units must be able to do 4 reads to the structure, 4 incre-
ments/decrements, and 4 writes each cycle. The MAT also

131

(a) Cache Hits
(b) Average

7+

ipsi compress gee go hydro Ii mgrid per1 swim tomcatvturb3d wave average C x I t; t < .z B 2 2
z g..gLI

Applications E3u z
Exclusion Policy

Figure 5. The performance of various cache-exclusion policies. The first bar in each group has no extra buffer,
the second uses Johnson and Hwu’s memory access table, the third through sixth use the conflict, the conflict
history, capacity, and capacity history filter mechanisms to select lines to go into the bypass buffer. (b) shows

the average speedup over no exclusion.

requires tag-match comparisons for each access, and on a
miss must access two entries in the table. If we can achieve
equal or better performance with our miss classification ta-
ble, which is only used on cache misses, we can greatly sim-
plify this structure. We simulate a lK-entry direct-mapped
MAT. It was shown that excluded accesses do typically have
some short-term spatial locality [B]; therefore, we bring
excluded lines into a small 16-entry bypass buffer, which
again looks much like our victim/prefetch buffer, where
they remain until bumped out by other lines. The Johnson
algorithm was originally studied with a much larger buffer,
and we found it to do poorly with an S-entry buffer, which
is why we use the slightly larger structure here.

The best policy was not obvious in this case. Capacity
accesses are more likely to have the property of short but
temporary bursts of activity; however, filtering for conflict
misses ensures that there is a problem to be solved with this
cache line. We found the former factor to be more important
and that capacity misses were the best candidates for the
bypass buffer.

Filtering for capacity misses required a slight modifica-
tion to the MCT algorithm. The problem is that no line can
be classified as a conflict access unless it has been in the
cache once. But if we redirect all capacity misses to the
bypass buffer, none ever get classified as conflict. There-
fore whenever a line gets put into the bypass buffer, we put
its tag into the MCT entry for the index in the cache where

it would normally go. That way, if the line causes a miss
later (after it is evicted from the bypass buffer), it has the
opportunity to be classified as a conflict miss.

For this study, we examined more complex exclusion
algorithms (examining possible compromises between the
simplicity of the MCT and the complexity of the MAT),
yet failed to beat the performance of the most simple fil-
ter. The simulated policies are MAT - the Johnson and
Hwu scheme, capaciry - put any miss identified as a ca-
pacity miss in the bypass buffer, capacity history - ex-
clude misses from a region with a history of capacity misses
(using a structure somewhat similar to the MAT), con&r
- put any miss identified as a conflict miss in the bypass
buffer, and confZict hismy - put accesses from a region
with a history of conflict misses into the bypass buffer. In
each case (except MAT), the out-conflict filter is used.

Figure 5 shows the performance of miss classification
filtering for cache exclusion. Simply excluding capacity
misses provided the best performance, both outperform-
ing the MAT scheme and our simpler variants of the MAT
scheme. This scheme provided both a higher overall hit
rate and higher performance, although it does pay a slightly
higher price in more buffer accesses.

132

n Vict q Pref q Excl q PrefExcl n VictPref 0 VictExcl n VicPreExc

Sentry Buffer

M----,-l

1
apsi camp w go hydro Ii mgrid per-1 swim tomcatv turb3d wave average average

Applications

Figure 6. The performance of the adaptive miss buffer using various combinations of victim, prefetch, and
exclusion policies.

5.4. Pseudo-Associative Cache 5.5. Adaptive Miss Buffer

A pseudo-associative cache [11 uses an alternate entry in
the cache as a backup location for a line evicted from its pri-
mary location. The secondary location has a longer hit time
than the primary, and a hit to the secondary triggers a cache
line swap between the two locations. Like the victim cache,
this works most effectively with conflict misses, and we can
improve its effectiveness by protecting conflict-miss cache
lines in the cache. A wide variety of policies are possible,
but here we only describe one particular algorithm which
we found to be effective.

So far in this section, we have achieved small gains
through not applying optimizations where they were not ap-
propriate, but the real power in miss classification is the op-
portunity to apply the best optimization to each type of miss
individually. Each of the first three schemes use a very sim-
ilar structure to hold data that is not appropriate to put in the
main cache. It would be straightforward to combine these
schemes in a single buffer which treats each miss in a man-
ner most appropriate for that type of miss.

The traditional pseudo-associative cache can be modified
to use the MCT to discard cache lines that are less likely
to profit from the associativity, namely capacity misses. In
this scheme, the MCT entry at a particular index holds the
tag of the line most recently evicted from that index, even
if the line was in its secondary position. A new line gets
its conflict bit set only if it matches the tag in its primary
location. When a line needs to be chosen for eviction, and
exactly one of the two candidates has its conflict bit set, the
other line is evicted and the first line’s conflict bit is reset,
regardless of primary/secondary location or the LRU bit. In
this way we give a temporary advantage to lines that come
in as conflict misses. If both lines have their conflict bits
set, traditional LRU is used and the conflict bit of the kept
line is not cleared.

The advantage of maintaining a single buffer rather than
multiple buffers is that the access time remains the same as
any of the other cache architectures alone. Having multiple
buffers would add another level of associativity to the access
which would certainly affect access times.

Combining these policies requires extra bits to remember
how a cache line entered the buffer, because we may do
something different on a buffer hit depending on whether
the line came in, for example, as a prefetch or a victim swap.
In some cases lines will transition - for example, if we are
combining prefetching and exclusion, a hit on a prefetched
line may still leave the line in the buffer, but mark it as an
exclusion line.

This technique improved the average performance of the
pseudo-associative cache by 1.5%, with individual gains as
high as 7%. Our modified pseudo-associative cache ran
only 0.9% slower than a true 2-way set-associative cache.
In fact, three of the programs, tomcatv, turb3d and wave
all outperformed the 2-way cache. Overall, the average
miss rate was improved from 10.22% in the base pseudo-
associative cache to 9.83%.

When combining policies, we stayed with the best fil-
ter found so far. For example, VictPref victim caches
(but doesn’t swap) conflict misses and prefetches capacity
misses. PrefExcl does not do anything with conflict misses,
because both do best with capacity misses; however, we
found that a variant of PrefExcl which prefetched capacity
misses and excluded conflict misses also performed well,
but that result is not shown. For an f&entry buffer, the best
combination was VictPref (Figure 6), which more than dou-
bled the overall gain of any single policy. With more room
in the buffer (see the l&entry result), the policy which does

133

I 0 VsGm n Bypass [7 Prcfctch n Cache

AMB Policy

Figure 7. The average data cache and buffer hit rate
components for the adaptive miss buffer policies.

everything (VicPreExc, which excludes and prefetches by-
pass misses, and victim-caches conflict misses) becomes
more attractive.

The single-policy results shown use the variant which
gave the best performance, which in each case did in-
volve miss classification filtering. All multiple-policy re-
sults shown use the out-conflict filter.

The hit rate statistics (Figure 7) show that the AMB is in-
deed deriving its performance by optimizing the coverage of
each type of miss. On average a factor of 1.4 improvement
(30% reduction) in total miss rate is achieved over the best
individual policy, and for the memory-critical applications,
it was even higher. On tomcatv, a 1.7X improvement in
miss rate was achieved (VictPref over Vict). Even that is de-
ceiving, because while the prefetch hit rates show prefetch-
ing to be ineffective for the combined policy, the “wasted’
prefetches (because they failed to stay long enough in the
buffer) end up pre-filling the L2 cache quite effectively, so
the average access time of the remaining misses was also
much lower with VictPref than with Vict alone. So even
on the most demanding of our application (tomcatv has a
38% miss rate with no buffer), we found that almost all of
the misses are at least partially covered by the adaptive miss
buffer, despite its small size.

5.6. Other Applications of Miss Classification

This paper has examined a few potential applications of
miss classification, but has certainly not exhausted the pos-
sibilities. This section presents some other possible appli-
cations.

Highly associative caches Many real workloads will still
experience conflict misses with 4-way or higher-associative
caches (unfortunately, this is not in general true of the work-
loads used in this paper). In that case, the cache may benefit
from using miss classification as part of the cache line re-
placement algorithm. For example, a bias against capacity
misses will ensure that accesses that stride through memory
(characterized by a capacity miss followed by a short burst
of activity) will move out of the cache set quickly once they
are no longer being used. This is the same application sug-
gested by Stone [173 and Pomerene.

Runtime conflict avoidance The cache miss lookaside
buffer [2, 131 counts cache misses by their page in mem-
ory. This allows the operating system to alter the virtual-to-
physical page mapping of two pages that map to the same
region of the cache and are both experiencing high miss
rates. Miss classification would allow this technique to only
count conflict misses. Reallocation could be avoided when
the majority of misses are capacity misses (in which case
reallocation typically would not help).

Multithreaded architectures Multithreaded [18,7] pro-
cessors, or other architectures that allow multiple threads to
dynamically share a cache [15, 121, are particularly prone
to high levels of conflict, even with associative caches. In
addition, this problem cannot be solved with software tech-
niques because the conflicts are produced by competition
with other threads.

All of the techniques described in this paper would apply
to an even greater extent with multithreaded caches. But
multithreaded processors enable another dimension to the
solution through control of job scheduling. Jobs which pro-
duce an inordinate number of conflict misses when sched-
uled together can be identified as bad candidates for co-
scheduling in the future.

6. Conclusions

This paper describes the miss classification table which
enables the processor to dynamically distinguish between
conflict and capacity (non-conflict) cache misses. The miss
classification table works by storing all or part of the tag
of the most recently evicted line of a cache set. If the next
miss to that cache set has a matching tag, it is identified as
a conflict miss. This technique correctly identifies at least
87% of misses. In addition, a single bit per cache line (the
conflict bit) enables the preservation of that miss classifica-
tion information during the line’s lifetime in the cache. The
miss classification table is small and simple. It can require
as little as 8-10 bits per cache set and need be accessed only
on cache misses.

134

We demonstrate the utility of this information by apply-
ing it to victim cache design, cache prefetching, a cache
exclusion mechanisms, and pseudo-associative caches. In
each case, the architecture benefits from applying different
policies to different types of misses. It does so in some
cases by eliminating accesses unlikely to benefit from the
particular architecture.

Three of these techniques can be combined into a sin-
gle architecture, which we call the adaptive miss buffer.
The adaptive miss buffer uses the victim/prefetch/exclusion
buffer in a different way depending on the classification of
each miss. This uses a single structure to optimize buffer
performance for the elimination of both conflict and ca-
pacity misses. This greatly increases the effectiveness of
a cache-assist buffer, providing twice the performance gain
of any single optimization using the same size buffer.

Acknowledgments

We would like to thank the anonymous reviewers for
their useful comments. This work was funded in part
by NSF CAREER grant No. MIP-9701708, NSF grant
No. CCR-980869, and equipment grants from Compaq
Computer Corporation.

References

[I] A. Agarwal and S. D. Pudar. Column-associative caches:
a technique for reducing the miss rate of direct-mapped
caches. In 20th Annual International Symposium on Com-
puter Architecture, pages 179-190, San Diego, CA, May
1993. ACM.

[2] B. N. Bershad, D. Lee, T. H. Romer, and J. B. Chen. Avoid-
ing conflict misses dynamically in large direct-mapped
caches. In Six International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, pages 158-l 70, Oct. 1994.

[3] T.-F. Chen and J.-L. Baer. Effective hardware-based data
prefetching for high-performance processors. IEEE Trans-
actions on Computers, 44(5):609623, May 1995.

[4] A. L. Cox and R. J. Fowler. Adaptive cache coherency for
detecting migratory shared data. In 20th Annual lnterna-
tional Symposium on Computer Architecture, pages 98-108,
San Diego, CA, May 1993. ACM.

[5] A. Gonzalez, C. Aliagas, and M. Valero. A data cache with
multiple caching strategies tuned to different types of local-
ity. In International Conference on Supercomputing, pages
338-347, June 1995.

[6] M. D. Hill. Aspects of Cache Memory and Instruction Buffer
Performance. PhD thesis, University of California, Berke-
ley, 1987.

[7] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki,
A. Nishimura, Y. Nakase, and T. Nishizawa. An elementary
processor architecture with simultaneous instruction issuing
from multiple threads. In 19th Annual International Sympo-
sium on Computer Architecture, pages 136-145, May 1992.

[8] T. L. Johnson and W. W. Hwu. Run-time adaptive cache hi-
erarchy management via reference analysis. In 24th Annual
International Symposium on Computer Architecture, pages
364-373, May 1997.

[9] D. Joseph and D. Grunwald. Prefetching using markov pre-
dictors. IEEE Transactions on Computers, 48(2): 121-133,
Feb. 1999.

[lo] N. P. Jouppi. Improving direct-mapped cache perfor-
mance by the addition of a small fully-associative cache and
prefetch buffers. In 17th Annual International Symposium
on Computer Architecture, pages 364-373, May 1995.

[l l] V. Milutinovic, M. Tomasevic, B. Markovi, and M. Trem-
blay. A new cache architecture concept: the split tempo-
ral/spatial cache. In Proceedings of 8th Mediterranean Elec-
trotechnical Conference, pages 1108-l 111, May 1996.

[12] B. A. Nayfeh, L. Hammond, and K. Olukotun. Evaluation
of design alternatives for a multiprocessor microprocessor.
In 23rd Annual International Symposium on Computer Ar-
chitecture, pages 67-77, May 1996.

[13] T. H. Romer, D. Lee, B. N. Bershad, and J. B. Chen. Dy-
namic page mapping policies for cache conflict resolution
on standard hardware. In First Annual Symposium on Oper-
ating Systems Design and Implementation, pages 255-266,
Nov. 1994.

[14] A. J. Smith. Cache memories. ACM Computing Surveys,
14(3):473-530, Sept. 1982.

[151 G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
processors. In 22nd Annual International Symposium on
Computer Architecture, pages 414-425, June 1995.

[16] P. Stenstrom, M. Brorsson, and L. Sandberg. An adap-
tive cache coherence protocol optimized for migratory shar-
ing. In 20th Annual International Symposium on Computer
Architecture, pages 109-I 18, San Diego, CA, May 1993.
ACM.

[ll] H. S. Stone. High-Performance Computer Architecture. Ad-
dison Wesley, 1987.

[181 D. M. Tullsen. Simulation and modeling of a simultaneous
multithreading processor. In 22nd Annual Computer Mea-
surement Group Conference, Dec. 1996.

[19] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L.
Lo, and R. L. Stamm. Exploiting choice: Instruction fetch
and issue on an implementable simultaneous multithread-
ing processor. In 23rd Annual International Symposium on
Computer Architecture. May 1996.

[20] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun. A
modified approach to data cache management. In 28th An-
nual International Symposium on Microarchitecture, pages
93-103, Dec. 1995.

135

